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ABSTRACT 

Schuh, Martin Henry. Ph.D., Purdue University, August 1989. Strange Parti-
cle Production in Proton-Antiproton Collisions at Center-of-Mass Energies of 630 
GeV and 1800 GeV. Major Professor: Virgil Barnes. 

The inclusive production of the strange particles K~ and A has been studied in 

proton-antiproton collisions at y's = 630 GeV and y's = 1800 GeV. The inclusive 

invariant cross-sections, as functions of transverse momentum (PT ), are presented 

for their production in minimum-bias events. The ratio, as a function of PT, of the 

cross-section for K~ to that for charged hadrons is very similar to what is observed 

at lower energies. At 1800 GeV, we estimate the strangeness-suppression factor 

A = 0.38 ± 0.06. 
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1. INTRODUCTION 

In our present understanding of nature~ matter is made up of elementary parti-

cles, which interact via four fundamental forces. Two of these forces, the gravita-

tional and electromagnetic forces, are familiar from everyday experience. The other 

two, known as the "strong force" and the "weak force", are less familiar. Unlike 

the gravitational and electromagnetic forces, which can affect matter separated by 

any distance, the strong and weak forces -are important only when particles are 

separated by extremely small distances-the strong force acts over distances of the 

order of the size of an atomic nucleus, while the weak force acts over distances a 

thousand times smaller than that. It is a law of nature that the energies required 

to study a given interaction become higher as the distance scale over which the 

interaction occurs becomes smaller. The easiest way to generate large numbers of 

high-energy interactions for study is to accelerate particles to high energies and col-

lide them with either a stationary target or another beam of high energy particles. 

This work is a study of head-on collisions of protons with antiprotons. 

In most proton-antiproton (pp) collisions, most of what happens is governed by 

the strong force. Unfortunately, the theory of the strong force, Quantum Chromo-

dynamics (QCD), is easy to apply only for the most violent collisions, which are 

also the rarest. In this work, on the other hand, we are concerned with the pro-

duction of particles in all events, not just the dramatic rare ones. In later chapters, 
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we compare our measurements to the simplest "perturbative" QCD calculations, 

in order to get an interesting indication of how well perturbative QCD does near 

the limits of its applicable range. 

Protons and antiprotons belong to a class of particles called "hadrons", the only 

class of particles that feels the strong force. In the present "Standard Model" of 

particles and forces, hadrons are made of smaller particles called quarks and gluons. 

There are six "flavors" of quarks. "Strange" particles are hadrons that contain 

quarks of the so-called "strange" flavor, while protons are made primarily of quarks 

with the "up:' and "down" flavors. Up and down quarks are the lightest quarks, 

and strange quarks are considerably heavier. In pp collisions at comparatively low 

energies, say, a few Giga-electron-Volts (GeV), strange particles are produced only 

rarely, because the masses of even the lightest strange particles are of order 0.5 

GeV, so there's not very much energy available to produce them. On the other 

hand, in the collisions studied for this work, the protons and antiprotons each have 

an energy of 900 GeV, which is far larger than the masses of any known strange 

or non-strange particles. \\lith so much energy available, we might naively expect 

that the suppression due to the extra mass of the strange quark would hardly 

matter, and therefore that strange particles would be produced about as often as 

non-strange particles. As we shall see, however, we find that strange particles are 

in fact produced only around 1/10 as often as non-strange ones. In QCD, this effect 

is not so surprising, since protons are thought to be complex composite objects, 

made up of quarks and gluons, so that collisions between protons and anti-protons 

are treated as collisions between quarks and gluons, where each individual quark 
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or gluon carnes only a fraction of the energy of the proton or antiproton. The 

outgoing quarks and gluons must then convert into physically observable hadrons, 

in a process called "fragmentation" or "hadronization". The color field of the 

quarks and gluons produces quark-antiquark and diquark-antidiquark pairs from 

the vacuum by a quantum-mechanical tunelling process. The extra mass of the 

strange quark makes it less probable for strange-antistrange pairs to materialize 

from the vacuum than for up-anti-up pairs, so the extra mass of the strange quark 

is still capable of suppressing the production of strange particles relative to non-

strange ones. 

In the following chapters, we first discuss in more detail the Standard Model 

view of proton-antiproton collisions, then describe the experimental techniques 

used to detect K~ and A particles, the two strange particles that were studied. 

Finally, we compare our results to the predictions of perturbative QCD and several 

QCD- based models. 
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2. THE EXPERIMENTAL APPARATUS 

2.1 The Fermilab Tevatron Collider 

At the time of this writing, the highest-energy proton-antiproton collisions in 

the world, with a center-of-mass energy of 1.8 TeV, are produced at the Tevatron 

Collider at the Fermi National Accelerator Laboratory in Batavia, illinois, USA. 

To create pp collisions, the Fermilab facility must be able not only to accelerate 

protons, but also to use high-energy protons to create antiprotons and to collect, 

store, and accelerate the antiprotons. All this requires a complex of accelerator 

apparatus, a schematic diagram of which is shown in Fig. 2.1. 

pp collisions take place inside the Tevatron ring, the last stage of the accelerator. 

To set up the Tevatron for collisions, it must be filled with a beam of protons and a 

beam of antiprotons and ramped to an energy of 900 GeV per beam for 1800 GeV 

c.m. collisions or 315 GeV for 630 GeV collisions. When the Tevatron his reached 

the operating energy, so-called low-,8 quadrupole magnets at either end of the CDF 

detector (and at several other points around the ring) squeeze both beams to a 

very small transverse size to enhance the probability of collisions. The beams are 

then left to circulate and collide in the Tevatron for a day or so, by which time 

the beams in the Tevatron have become somewhat weaker and larger in size, such 

that the collision rate is low enough to warrant filling the machine again. \Vhile 

the beams are circulating in the Tevatron, other components of the accelerator 
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complex are making and storing antiprotons for the next day's collisions. 

The acceleration of protons begins in a 750 keV Cockroft-\Valton electostatic 

accelerator and continues in a 200 MeV linear accelerator, neither of which are 

shown in the figure. The protons are then accelerated to 8 GeV in the "Booster" 

synchrotron ring, part of which is visible at the left of the figure, and are then 

injected into a 1-km-radius conventional-magnet synchrotron known (for historical 

reasons) as the Main Ring. The final stage of acceleration is provided by the 

superconducting-magnet Tevatron ring, which has the same radius as the Main 

Ring and is located just below the Main Ring in the same tunnel. \Vhen the 

Tevatron is being filled with protons befol'e the start of collisions, the Main Ring 

accelerates protons to 150 Ge V and injects them into the Tevatron, which then 

accelerates them to the final energy of 900 GeV. During p production, however, 

the Main Ring accelerates protons to 120 Ge V, and this beam is extracted from 

the Main Ring and directed onto a tungsten p production target. 

A small fraction of the particles produced when the protons hit the p produc-

tion target are antiprotons. A lithium "lens'' with high electrical currents passing 

through it serves as a magnetic lens to focus the ps and select only the ones with 

momentum of 8.9 GeV. The focussed p beam is fed into the Debuncher ring, where 

the short p bunches are lengthened and stochastic cooling is used to reduce the 

emittance. Further stochastic cooling is done in the Accumulator, where a large 

number of antiprotons is accumulated for later use in pp collisions. More details of 

the antiproton production and cooling process may be found in (1]. 
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2.2 The CDF Detector 

The Collider Detector at Fermilab ( CDF) is a large, azimuthally-symmetric, 

general-purpose detector. As shown in the isometric view in Fig. 2.2, the axis of 

symmetry is the Tevatron beam pipe, in which the proton beam and the antiproton 

beam collide near the center of the central detector. 

CDF follows a pattern common in large spectrometers. Particles emerge from 

the collision into a 1.515 Tesla solenoidal magetic field parallel to the beam axis, 

which makes the charged particles curve, the radius of curvature being proportional 

to their momenta transverse to the beam axis, and this curvature is measured by 

tracking chambers. Particles then hit two layers of calorimeters; electromagnetic 

shower calorimeters first, then hadronic cascade calorimeters. The calorimeters are 

stacks of metal (lead for the electromagnetic calorimeters, steel for the hadronic 

ones) and active material (plastic scintillator in the central calorimeter, gas-filled 

chambers in the forward/backward calorimeters) that measure the energies of par-

ticles by causing them to dump their energy via a shower of secondaries, tertiaries, 

etc., some of which are seen by the scintillator or chambers. Electons and pho-

tons will tend to dump most of their energy in the EM calorimeters, hadrons in 

the hadron calorimeters. Muons, on the other hand, will usually lose only a little 

energy (minimum ionization) in the calorimeters and thus pass clear through a 

calorimeter, something which other types of particles do only rarely. At the back 

of the central calorimeter there are chambers to detect muons, and beyond the 

forward calorimeters there are magnetized iron toroids, also designed to detect 

muons and to measure their momenta. CDF also includes small-angle silicon de-
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tectors mounted in the beam pipe some distance from the central detector; these 

are designed to measure elastic and diffractive pp scattering. 

A standard coordinate system has been established for CDF. The origin of CDF 

coordinates is the center of the Central Detector, and the z-axis is the center of the 

Tevatron beam pipe, with the positive z direction being defined as the direction 

that protons travel in the Tevatron. The polar angle 8 is of course measured from 

the positive z axis, and we will often have occasion to refer to the pseudo-rapidity 

TJ = -ln tan( B /2), an angular variable which approximates the true rapidity y. y 

is defined in terms of the energy E and longitudinal momentum Pz of a particle, 

as follows: y = tln(E + Pz)/(E- Pz), and thus requires that the particle species 

be know, which is not always possible. 

Our study of K~ uses only a few of the detector components-two of the tracking 

chambers (the Vertex Time-Projection Chamber (VTPC) and the Central Tracking 

Chamber (CTC)) and the Beam-Beam counters (BBC). These components are 

described below, and we refer the reader to [2) for details of the rest of the detector 

and further technical information on the components we describe. 

2.2.1 The Beam-Beam Counters 

The layout of one of the beam-beam counter planes is shown in Fig. 2.3. The 

BBCs are located at ±5.82 m from the nominal interaction point, and they cover 

the pseudorapidity range 3.2 ~ ITJI ~ 5.9. The BBCs are used in the trigger system 

to quickly decide whether a collision took place, so that the data aquisition system 

can be told to read out the data from the collision. The trigger for minimum-

bias events requires that at least one scintillator in each array be hit by a charged 
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Figure-2.1 

The Fermilab Tevatron Collider complex. 

Figure 2.2 

Isometric view of CDF. 
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particle within a 15 ns window centered on the beam crossing time. 

2.2.2 The Vertex Time-Projection Chamber 

The VTPC system [3] is the innermost CDF tracking device. It consists of 

eight small time projection chambers mounted end-to-end along the beam pipe. An 

isometric drawing of two of the modules is shown in Fig. 2.4. Particles emerging 

from a collision leave trails of ionization in the argon-ethane gas in the VTPC, 

and the ionization electrons drift under the influence of an electric field toward 

the ends of the module, where they cause a cascade of further ionization that is 

collected on the sense wires. Charge is induced on pads on printed circuit material 

located behind the sense wires. making it possible to tell where along a wire the 

charge was collected 1 but during the 1987 run, the pads were read out only on 

two modules, and this information was not used in our analysis. The sense wires 

are read out by time-to-digital converters (TDCs), and the timing information, 

coupled with knowlege of the drift speed of electrons in the gas. tells us, for each 

wire that was hit, the z coordinate of the track that generated the ionization. 

These measurements give us a 2-dimensional picture of the track trajectory-one 

dimension is R, the radial distance from the beam axis, and the other dimension is 

z. Adjacent modules are rotated with respect to each other by arctan(0.2). so that 

for tracks which pass through more than one module, we have two projections of· 

the track, allowing us to determine the¢ (azimuth) of the track as well. However, 

without the pad information, the VTPC cannot measure the curvatures of tracks 

and hence the momenta of particles. The VTPC can measure tracks in the range 

3 < < ....... T/ ...._ 3. 
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2.2.3 The Central Tracking Chamber 

The CTC [4] is a large cylindrical axial-wire drift chamber, with a cylindrical 

hole in its center that holds the VTPC. The CTC volume is also filled with argon-

ethane gas which is ionized by the passage of charged particles, but in this case the 

wires are arranged such that the chamber volume is divided into a large number 

of small drift cells arranged in concentric "superlayers". Again, the sense wires 

are read out by TDCs, and since we know the drift speed of electrons in the gas, 

the time at which charge reaches reach each wire tell us where a charged particle 

intersected the drift trajectory, giving us a set of points or "hits" along the track. 

Because electrons may drift to a sense-wire plane from either side, each hit may 

be interpreted in two ways. A computer program must resolve this ambiguity and 

find the sets of hits that belong together to form tracks. 

Fig. 2.5 is drawing of one endplate of the CTC. As we proceed radially outward, 

we see eight concentric rings of oblong holes, one for each superlayer, which hold 

feed through blocks for the wires. The rings containing the longer holes are for axial 

superlayers, where the wires run parallel to the beam axis, and the others are for 

"stereo" superlayers, where the wires are tilted 3° with respect to the beam axis. 

As we see from Fig. 2.5, there are 5 axial superlayers and 4 stereo superlayers. 

Combining the information from the axial and stereo wires allows us to measure z 

coordinates along tracks, so tracks can be reconstructed in 3 dimensions. The cells 

are tilted 45° from radial so that the combination of the electric field in the cell 

and the magnetic field from the solenoid makes the drift electrons travel roughly 

azimuthally. 
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Figure-2.3 

A beam 's-eye view of one of the beam-beam counter planes. 

---·--... -···---

Figure 2.4 

Two of the eight VTPC modules. 
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The arrangement of wires in an axial cell is shown in Fig. 2.6, where the di-

rections of the magnetic field (B), electric field (E), and drift velocity(£) are also 

shown. Only the 12 sense wires in an axial cell are read out; the rest of the wires are 

used to shape the electric field to make the drift trajectories as uniform as possi-

ble. Stereo cells have only 6 sense wires. The resolution of each wire measurement 

was 300JLm in the 1987 run. The z resolution of each stereo-wire measurement is 

therefore 300JLm/ sin 3° = 5.7 mm. 

Particles will undergo multiple Coulomb scattering in the beam pipe, the Fara-

day cage surrounding the beam pipe, and the carbon-fiber tube that forms the 

inner bore of the CTC, and also in the gas and wires in the CTC. The deviations 

in the track parameters due to multiple scattering depend on the amount of ma-

terial the particle traverses and the radiation length of the material. The material 

before the CTC active volume is shown in Fig. 2. 7 in fractions of a radiation length 

vs. 0. In the region of interest, 0 ~ () :::_ 3, a particle passes through between 5 

and 10% of a radiation length before entering the active volume of the CTC. 

During the 1987 run, a number of the cells in one of the axial superlayers 

(superlayer 4, where the innermost superlayer is 0 and the outermost is 8) were 

dead due to loose wires. Tracks passing through the dead regions were not used in 

our analysis. 
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Figure 2.5 

One endplate of the CTC. 
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Arrangement of wires in an axial cell. 
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3. THE DATA SAMPLES 

One would like to be able to study the production of K~ and A for all types 

of pji collisions, but this is unfortunately not possible. When a bunch of protons 

·meets a bunch of antiprotons, a proton and and antiproton may collide, or a proton 

or antiproton may collide with an atom of residual gas in the beam pipe, or both, 

or neither. Furthermore, pji collisions may be divided into several classes, some of 

which may be unobserved by our detector. The trigger system must decide whether 

a real collision actually occured. 

The classes into which pji collisions are conventionally divided are: 

1. Elastic Scattering, in which both the proton and the antiproton survive the 

collision intact, but are scattered through some (typically very small) angle. 

2. Single Diffractive, in which either the proton or the antiproton (but not both) 

survives the collision intact. and a narrow spray of particles is produced 

opposite the surviving particle. 

3. Double Diffractive, which is similar to single diffractive, except that neither 

beam particle survives, and two narrow sprays of particles are produced in 

opposite directions near the beam axis 

4. Non-Diffractive, where the collision involves substantial momentum transfer, 

usually resulting in some particles being emitted with substantial momentum 

transverse to the beam axis (PT ). 
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Elastic collisions are of no interest to us here because they produce no strange 

particles. Single and double-diffractive collisions are difficult to detect because it is 

difficult to reliably distinguish the emitted particles, which are usually quite close 

to the beam, from the fringes or "halo" of beam particles that surround the dense 

central portion of the beam. On the other hand, non-diffractive interactions are 

comparatively easy to detect and have only beam-gas interactions as a background. 

Because the gas particles in the beam pipe are nearly at rest, the particles produced 

in a beam-gas collision usually have a lot of momentum in the direction of the beam 

particle, so usually they are one-sided; that is, almost all the particles come out 

in one hemisphere (0 < 0 < goo, or goo < 0 < 180°). Non-diffractive collisions are 

typically more isotropic. 

The data samples we use here are events that passed a beam-beam counter 

trigger, that is, events with at least one particle hitting each scintillator array. 

Requiring that both counters be hit rejects some beam-gas events, because particles 

from beam-gas collisions typically hit only one set of scintillators. Some beam-gas 

collisions do in fact generate particles in both hemispheres, so there is still some 

beam-gas background. At 1800 GeV, we collected 55700 triggers, and at 630 GeV, 

g400. 

In order to reject beam-gas interactions, additional event selection criteria were 

imposed in addition to the trigger criteria. These additional cuts use information 

from the the VTPC track reconstruction and primary vertex finding algorithms, 

which are described in detail in [5] and [6]. The VTPC acceptance depends on 

the positions of the pji interactions, which follow a Gaussian distribution in z, 
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centered near the center of the CDF detector, so in order to insure full acceptance 

of the VTPC in 1111 < 3, we demand that the z coordinate of the primary vertex 

be within 65 em of the nominal interaction point. We also demand that the z 

coordinate of the primary event vertex as calculated using VTPC tracks match the 

z obtained from BBC timing information to within 16 em, and that there be at 

least 4 tracks in the VTPC in 1771 < 3, at least one of which must be in the forward 

hemisphere and one in the backward hemisphere. A sample of events passing these 

cuts were inspected by physicists, and the contamination of non-beam-beam events 

was estimated to be less than 2.5% in the 630 GeV data and less than 0.5% in the 

1800 GeV data. 

To estimate our acceptances for various components of the total cross-section, 

studies were done using the Rockefeller Monte-Carlo [7], and the results are shown 

in Table 3.1. With all of the above cuts applied, we are still 96% (93%) efficient 

for the non-diffractive portion of the cross-section at 1800 (630) GeV. Our samples 

are in effect "non-single-diffractive". The estimated effective cross-sections seen by 

our trigger also appear in Table 3.1. 

A problem in the CTC electronics in the 1987 run caused the CTC readout 

to occasionally be swamped by noise hits at random times, and events where this 

happened were also rejected. After all event-selection cuts have been performed, 

our sample contains about 44000 events at 1800 GeV and 3800 at 630 GeV. 
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Table 3.1 

Monte Carlo estimates of our accepted cross sections from various components of 
the total cross section. 

I 

I I 630 GeV 1800 GeV I 

Non-diffractive 31.6 ± 3.4 mb I 38.6 ± 6.6 mb 
I 
! 

Dou ble-diffractive 1.4 ± 0.3 mb l 3.4 ± 0.6 mb I 

I Sin le-diffractive g 1.1 ± 0.1 mb I 2.4 ± 0.8 mb I 

34 ±3mb 43 ±6mb 
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4. RECONSTRUCTION ALGORITHMS 

We find K~, A and A through the decays K~ ---+ 1r+1r-, A ---+ p1r-, and A ---+ p1r+. 

These decays are known as "neutral Vees" or "V0 s" because _in cloud- and bubble-

chamber experiments, the neutral parent particle is invisible and the tracks left 

by the daughter particles emerge from the decay point in a pattern similar to the 

letter V. In our experiment, most of the decays occur between the beam-pipe and 

the inner bore of the CTC. \Ve could in p-rinciple look for the decay vertices (the 

point of the V) in the VTPC, but decays would be difficult to distinguish from 

Vees formed by tracks that cross near the inner wire layers of the VTPC, pieces of 

spiralling tracks, etc. Instead, we rely entirely on CTC tracks, extrapolating them 

to radii smaller than the CTC inner bore to find the decay vertex. 

The first step in the analysis, then, is to reconstruct tracks from wire hits in the 

CTC. \Ve then try to find the decay vertices among pairs of tracks with opposite 

signs that appear to come from decays; that is, tracks that don't appear to come 

from the primary event vertex, where most tracks in the event meet. To do this, we 

must be able to find the transverse position of the beam relative to the center of the 

CTC, which can be done by reconstructing the primary vertices of a large number 

of events, and we must be able to find the positions of the decay vertices. The 

algorithms by which tracks are reconstructed and primary and secondary vertices 

are found are discussed below. 
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4.1 CTC Track Finding 

Figure 4.1 is an end view of the CTC, showing the positions of CTC hits (dots) 

from a typical 1800 Ge V minimum-bias event. The CTC track-finding algorithm is 

designed to associate sets of these hits to form tracks. In the figure, the arcs drawn 

on top of the dots are the xy projections of tracks found in this event by Version 

4.3 of the CTC tracking algorithm, the version used for this analysis. There are 

many places in the figure where X-shaped patterns of hits may be seen-these are 

places where tracks cross sense-wire planes in the centers of drift cells, and only 

one of the crossed lines corresponds to the actual path of the track, while the other 

is caused by the ambiguity of drift sign discussed above. The tracking algorithm 

begins by looking for these X-shaped patterns in the outermost superlayers, and 

uses them to define "roads" in which to look for additional hits. \Ve will describe 

the algorithm in more detail shortly, but first we will introduce some necessary 

nomenclature. 

4.1.1 Helix Parameters 

The trajectory of a charged particle in a uniform magnetic field is in general a 

helix whose axis is along the field direction, which in CDF is parallel to the beam 

axis. Projected on a plan transverse to the magnetic field, then, a CTC track looks 

like an arc or a circle, while projected in a plane containing the beam axis, it looks 

like a sinusoid. In the absence of measurement or pattern-recognition errors, the 

circle will pass through the beam axis for tracks that come directly from the pp 

collision, while tracks coming from decays will in general miss the beam axis. 

In order to completely specify a helix, we need five parameters. These are 
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conventionally taken as follows: 

1. c, the signed half-curvature. The sign of c is the sign of the charge of the 

particle, and the magnitude of c is 1/(2R), where R is the radius of the 

projected circle. 

2. d, the impact parameter, or distance of closest approach. There is a sign 

convention ford also-when the origin is inside the projected circled has the 

same sign as c, while when the origin is outside d and c have opposite signs. 

3. <Po, the angle, in the xy (transverse) projection, that the track makes with 

respect to the positive x axis at its point of closest approach to the beam 

axis. 

4. zo, the z coordinate of the track at closest approach to the beam axis. 

5. cot 0, the cotangent of the dip angle of the track. 

4.1.2 The Pattern-Recognition Algorithm 

The program that finds CTC tracks begins by finding circles in the transverse 

plane using information from the axial wires, then uses the circles that it finds to 

find corresponding hits in the stereo layers to complete the 3-dimensional track. 

Because tracks are generally well-spaced at the outermost superlayer, the program 

begins by searching for track segments in individual drift cells in this superlayer. 

The program requires that cell segments consist of at least 5 hits and must pass 

through the sense-wire plane of the cell (which means, incidentally, that the track 

can have turned only 30- 40° between the time it left the primary vertex and the 

time it created the hits in the segment). The program then attempts to extend the 

segment into neighboring cells, by comparing hits in the neighbor cells with the 
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position where hits ought to be on each wire, based on the original cell segment. 

If a total of eight hits can be found whose residuals from a straight-line fit are all 

less than 500 J..Lm, the segment is used as a seed to search for other hits on the 

track. Otherwise, the program moves on to looking for segments in other cells, and 

eventually, the next superlayer. The program gives up trying to find tracks when 

it reaches superlayer zero, the innermost superlayer. 

A circle, constrained to pass through the beam position, is now fit to the 

straight-line segment. A search is performed for additional hits on the track, pro-

ceeding inward toward the beam (and outward also, if the starting segment was 

found in some other superlayer than 8). In each layer, we add to the track the 

closest hit to the fitted circle within a 2 mm "road" about the circle. The program 

stops trying to add hits to the track when it encounters 3 wire layers between 

the original segment and the beam in which it was unable to find acceptable hits. 

When the hit search is finished, another circle fit is performed, using all the hits. 

The circle is then refined by rejecting some of the hits- the fit residuals of the 

best 3/4 of the hits are averaged, and remaining hits are removed from the track 

if their residuals are worse than about 3 times this average, and a circle fit, again 

with the beam constraint, is performed on all surviving hits. If, after hit rejection, 

the program was able to find at least 20 acceptable hits, but it not able to find any 

hits below superlayer 3, another fit is performed without the beam constraint and 

is used to define another road, the search for additional hits is performed again 

using the new road, and fitting and hit rejection are done again. 

Now that the program has a good transverse view of the track from the axial 
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hits, it looks for hits in the stereo layers. First, a road must be defined in which 

to search. The stereo hits that in R- ¢ projection are closest to the previously 

fitted circle are used, along with the z of the primary vertex as found by the VTPC 

vertex-finder [6) [5] are used to find trial values of z0 and cot 8, which define the 

road. Stereo hits lying within 1.5 mm of the trial track trajectory are added to the 

track, a 3-dimensional helix fit is performed, and again hits with large residuals are 

rejected. The final helix fit gives us the five helix parameters and their complete 

covariance matrix. 

4.2 Primary and Secondary Vertex-Finding Algorithms 

We have at our disposal two vertex-fitting algorithms (described in the next 

subsection), which are used both in finding the primary vertices of events and in 

finding the decay vertices of K~ and A candidates. Each algorithm takes as input a 

starting approximation of the vertex position, plus the helix parameters and errors 

for some set of CTC tracks, and produces a better approximation of the vertex 

position. \Ve will first describe the two fitting algorithms, then the algorithm we 

use to find the primary event vertex. 

4.2.1 Vertexing Fitting Algorithms 

The simpler of the two vertex-fitting algorithms, which we'll call VSFITO, esti-

mates the point of intersection based on the track parameters and their errors, and 

does not change or "steer" the parameters to force the tracks to actually intersect 

in space. Tracks are approximated by straight lines near the supposed vertex, and 

the algorithm attempts to find the point which has the smallest r.m.s. weighted 
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distance from the lines. This algorithm is described in [8], details of the software 

specification for the routine that implements it are found in [9], and details of the 

track-expansion calculations which form the input to this algorithm are discussed 

in [10]. 

In the second algorithm, called VSFIT1, the track helix parameters are allowed 

to vary about their measured values. This algorithm produces an improved esti-

mate of the vertex point and also a set of helix parameters for each track which 

have been adjusted ("steered") such that the track passes through the improved 

vertex point exactly. The algorithm used is described in [11], the specification in 

[9], and the expansion calculations in [10].- Both algorithms return a x2which may 

be used to test the quality of the fit. 

4.2.2 Primary Vertex Finding Algorithm 

To find the primary vertex of an event, we select all CTC tracks with impact 

parameters less than 3 mm and PT > 0.4 GeV, and we use the VSFITO algorithm 

to improve the vertex position. The improved vertex position is then used as a 

starting point for the VSFIT1 algorithm, which again fits the vertex with the same 

set of tracks. At this point, any tracks that contribute extremely anamolously high 

fractions (> 40%) of the x2 of the fit are subtracted from the fit. If the final x2 of 

the fit is less than 5 per degree of freedom, the fit is accepted and the final vertex 

coordinates are taken as the coordinates of the primary vertex of the event. 

Figures 4.2 and 4.3 are distributions of the x and y positions of primary event 

vertices for around 7500 minimum-bias events. The mean values of < x >= 

-0.03845 em and < y >= -0.01246 em are consistent with values obtained by 
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Adam Para based on the azimuthal variation of the mean impact parameter of 

CTC tracks. The standard deviations are about 0.0750 em. For comparison, the 

transverse size of the beam is around 75 JLm. Figure 4.4 is a distribution of dif-

ference between the z of the primary vertex as found by the CTC primary vertex 

algorithm and the z found by the VTPC primary vertex algorithm. The mean is 

-0.12 em, indicating a slight misalignment between the VTPC and CTC, and the 

standard deviation is 0.68 em, which is of the order of the z resolutions of both 

the CTC and the VTPC. 

Since our transverse position resolution on the pnmary vertex is the better 

part of a millimeter, and since not all events have enough well-measured tracks for 

the algorithm to successfully find a primary vertex, in the K~ and A analysis we 

assume that the vertex position remains fixed in xy at the positions noted above, 

and we take the z coordinate for each event to be the VTPC vertex z minus the 

0.12 em offset between the VTPC and CTC noted above. 

4.2.3 Secondary Vertex Finding Algorithm 

In finding the position of the primary vertex, the origin of the coordinate system 

is fairly close to the final answer and therefore is a fairly good starting point for 

the fits, and two iterations of fitting are usually sufficient. For secondary vertices, 

however, the primary event vertex usually is not such a good starting point, so 

several iterations are required to converge on the vertex position. Protections 

must be applied to prevent the process from diverging, oscillating, or, for that 

matter, infinite-looping. We will first describe the vertex-finding algorithm, and 

then present some results on the performance of the algorithm on simluated K~. 
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Distribution of y of primary event vertex for about 7500 min- bias events . 
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The actual flow of control in the vertex-finding algorithm is somewhat com-

plicated, because numerous checks are performed during the iteration process to 

insure that the fit isn't diverging or oscillating, and that the number of iterations is 

finite. The full structure is perhaps best presented in pseudo-code, which appears 

in Appendix A. In general terms, the technique used is to iterate over the simple 

non-steering fit (VSFITO), refining the vertex point with each iteration, and then, 

if the process has converged and the fit quality is sufficiently good, a steering fit 

(VSFITl) is performed and its quality checked. If the quality of this final fit is good 

enough (x 2 /degree of freedom less than 5.0), the vertex is considered acceptable. 

4.2.4 Performance of the Secondary Vertex Finding Algorithm 

In order to gauge the performance of the vertexing algorithm on K?, a sample 

of K~ was generated with a spectrum matching that of the (at the time) latest 

version of the CDF K~ spectrum, and reconstructed with version 4.3 CTC tracking 

and the vertexing algorithm described. The found vertex radius for each K? was 

compared with the "true"' radius obtained from internal simulation information 

and the difference was histogrammed (see figure 4.5), and the distance between 

tracks at the Yertex (ideally 0) was also histogrammed (see figure 4.6). The bin 

width in the radius-of-vertex plot is 0.4 em; in the distance-of-closest-approach 

plot it's 0.1 em. The r.m.s. deviation from the true vertex radius is 0. 78 em, and 

the average distance bet ween tracks at the vertex is 0.82 em, which is of the same 

order as the assumed z resolution of the CTC. 
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K~ decays. 
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5. FINDING K~, A, AND A CANDIDATES 

In the last chapter, we described the beginnings of the data reduction process-

CTC track finding and the location of the primary vertex. The remaining steps in 

the process of generating and fitting PT spectra forK~ and A/ A are described in this 

chapter, including finding the decay vertices, imposing and tuning cuts to purify 

the samples of decays, evaluating efficiencies, and subtracting the contribution of 

the background. Comparison of the spectra with QCD predictions and Monte-

Carlo models and extrapolations of the spectra are described in later chapters. 

5.1 Finding K~ and A Decay Vertices 

As we have mentioned, the decay daughters of the charged decay modes of K~ 

and A/ A typically have finite impact parameters, which allows us to distinguish 

them from well-measured primary tracks, and the daughter particles always have 

oppositely-signed charges. Furthermore, the efficiency of the CTC track-finding 

algorithm is very low below PT = 250 MeV. In order to ensure that the tracks 

are of good quality, it is also useful to require that at least half of the number of 

hits that could be used on each track, given its measured helix parameters, must 

have been used in the final fit done by the CTC tracking algorithm. Therefore, 

to find decays of K~ and A/ A, we used our secondary-vertex-finding algorithm to 

look for vertices among all pairs of tracks having opposite signs, PT for each track 

greater than 250 MeV, impact parameter (with respect to the primary vertex) of 
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greater than 0.2 em, and at least half the possible hits used. Vertices were deemed 

acceptable if the x2 per degree of freedom (Ndof) of the final vertex fit was less 

than 5. 

In Figure 5.1, we have assigned pion masses to each track of all such pairs in 

the 1800 Ge V data for which acceptable vertices were found, and histogrammed 

the invariant mass. There is an obvious peak at the K~ mass, but there is also 

a very substantial background, which is very likely composed of pairs of primary 

tracks whose impact parameters were badly mismeasured. Mismeasurement may 

be due either to pattern-recognition errors (mis-associated hits) or to imperfections 

in the relatively primitive drift model and drift constants used in Version 4.3 of 

the tracking algorithm. Clearly, in order to get a reasonable signal-to-noise ratio, 

we must impose some cuts. 

A number of possibilities suggested themselves. First, we could demand that 

the tracks have even larger impact parameters than the 0.2 em cut we had already 

applied, or demand that they have greater PT than we were already demanding. 

Second, it was found that most of the background pairs seemed to have vertices 

close to the beam axis, constistent with the hypothesis that they were in fact 

composed of primary tracks-this suggested a cut on the transverse radius of the 

vertex point. Further, one would expect that real K~ would have momenta that 

pointed back to the primary vertex, while random background in general would 

not. 

A program was written to optimize the cut values. Using the real data. as input, 

this program looped over a large number of combinations of cut values, covering the 
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entire reasonable range of values for each cut. For each combination, the program 

counted the total number of pairs whose invariant mass was near the K~ mass, and 

counted the number of pairs whose invariant mass fell in two background windows 

flanking the K~ peak. It then calculated the statistical significance of the net 

background-subtracted K~ signal, which was found to vary rather little over the 

range of cuts considered. 

The number of K~ candidates above background varied between about 100 

and 500, while the signal-to-noise ratio varied from around 10-to-1 to around 3-

to-1. We finally settled on a set of cuts that had neither the best signal-to-noise 

ratio nor the best net signal, but had reasonably good values of both, and, for 

reasons discussed below, did not lie in regions where one has to worry about the 

effects of differences between the CDF simulation and the real data. K~ and A/ A 

candidates were now required to have decay vertices at least 2 em from the beam 

axis, and impact parameters of each candidate track pair were required to have 

impact parameters of at most 2 em, where this impact parameter is defined as the 

distance of closest approach to the primary vertex of a line passing through the 

decay vertex in a direction opposite to the total 3-momentum of the pair (this is 

the "pointing" cut). 

In summary, the cuts used to define K~ and A candidates are: 

• The impact parameter of each track must be greater than 2 mm. 

• The transverse momentum of each track must be at least 250 MeV. 

• At least half of the number of hits that could be used on each track, given 

its measured helix parameters, must have been used in the final fit done by 
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the CTC tracking algorithm. 

• The vertex-fit x2 must be less than 5. 

• The transverse radius of the vertex formed by the tracks must be at least 2.0 

em. 

• The total momentum of the pair must point back to the primary vertex to 

within 2.0 em in 3-space. 

• For simulated K~, the reconstructed invariant mass calculated with a 1r -

1r mass hypothesis must be between 0.470071 and 0.525271 GeV jc2 • For 

simulated A and A, the reconstructed ptr-hypothesis mass must be between 

1.1072 and 1.124 Ge V / c2 • 

• The rapidity of the K~, A and A candidates must be between -1 and 1. 

Figure 5.2 shows the 1r- 1r-assignment mass distribution near the K~ mass for 

all track pairs in the 1800 Ge V data which passed all the cuts. The solid curve is 

the result of a fit to a Gaussian plus a linear background. The fitted mean of the 

Gaussian is 0.4986 GeVc2 (compared to the handbook K~ mass [12] of 0.497671 

GeV jc2 ), and the u is 0.0092 GeV jc2 • If we look within 3u of the handbook K~ 

mass, there are about 450 track pairs in the peak above a background of about 

100. In the 630 GeV data, there are 27 K~ candidates and about 11 background 

pairs under the peak. 

Fig. 5.3 shows the mass distribution near the A mass, where a proton mass has 

been assigned to one track and a charged-pion mass to the other. The solid line is 

again a fit to a Gaussian plus a linear background, and this time the mean is 1.1146 

GeV /c2 (compared to the handbook mass of 1.11563 GeV jc2 ), and the u is 0.0028 
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Ge V / c2 • If we look within 3u of the handbook mass, there are 68 track pairs in 

the peak above a background of 8. Of the 76 track pairs in the peak, including 

both the signal and the background, 39 are consistent with being A and 37 are 

consistent with being A. If there were any A/A ambiguity, it would be possible for 

some track pairs to enter the histogram twice, but we have checked that all pairs 

that fall anywhere near the A mass with the first particle being assigned the proton 

mass will fall very far from the A mass if the first particle is assigned a pion mass, 

and vice-versa. There is too little 630 GeV data to find enough A candidates to 

do physics with. 

We impose cuts on the reconstructed invariant mass in order to determine which 

events are treated as K~ or A candidates and which are to be used for background-

estimation. K~ and A/ A candidates must lie within 3u of their respective handbook 

mass values, and for background estimation, we use track pairs whose reconstructed 

masses lie between 5 and 8 u above or 5 to 8 u below the handbook mass. 

To find out how much our K~ sample could be contaminated by A and A, and 

vice-verse, we have made a scatter-plot (Figure 5.4) where the x of each point is the 

mass with a 1r1r hypothesis and they of each point is the mass with a p1r hypothesis, 

and each track pair enters twice: once with each possible proton-pion assigment. 

The dashed vertical line shows the handbook K~ mass, the dashed horizontal line 

the A mass, and the pairs of solid vertical and horizontal lines show our K~- and 

A-candidate mass cuts, respectively. Any track pairs that can be interpreted either 

as a K~ or as a A or A will fall in the region where the regions bounded by the 

solid lines overlap. There are 4 points in the overlap region, so at most 1% of the 
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K 0 s sample can be A or A, and at most 6% of the A/A sample can be K~. We 

say "at most" because the background-subtraction process will remove a certain 

amount of the contamination in each sample from the final physis distributions. 

Another way to check forK~/ A ambiguity, which is also revealing of some of the 

kinematic biases of our efficienciesl is shown in Figs. 5.5 and 5.6. In Fig. 5.5, we 

plot for each K~ candidate the momentum transverse to the parent direction, Pl., 

versus the decay-asymmetry parameter (pt- p£ )j(pt + p£ ), where Pt is the lab-

frame momentum longitudinal with respect to the parent direction of the positive 

daughter, and p[, is the lab-frame longitudinal momentum of the negative daughter. 

In Fig. 5.6, we plot the same things for Aj A candidates. The overlap between the 

clusters of points is clearly small. Also, interestingly, it is clear that we fail to 

reconstruct the most asymmetric K? decays and the A decays where the pion is 

emitted backward in the center-of-mass. These failures are probably due primarily 

to the limited ability of the CTC tracking algorithm to find tracks with PT below 

about 300 MeV. 
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Figure 5.1 

Invariant mass (in GeV) with a 7!'-7!' mass assignment for all oppositely signed track 
pairs with acceptable vertices in the 1800 GeV data. 
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Figure 5.2 

Invariant mass with a 7r-7i mass assignment for oppositely signed track pairs passing 
all geometrical cuts in the 1800 GeV data. 
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Figure 5.3 

Invariant mass with a p - 1r mass assignment for oppositely signed track pairs 
passing all geometrical cuts in the 1800 GeV data. 
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Mass with a p7i or r.p mass hypothesis versus mass with a 7i1i hypothesis. Both 
masses are in GeV. 
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Pl. versus (p£ -pi, )/(PI +pi,) for pairs meeting the A/ .\-candidate cuts. 
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6. EFFICIENCY CORRECTIONS 

The PT distributions for K~ and A+ A must be corrected for the efficiency with 

which the K~ and A are found. The efficiency for finding K~ and A is affected by 

many things, including the efficiency for finding the daughter tracks, the efficiency 

for finding an acceptable vertex where the daughter tracks meet, and the fractions 

of real K? and A which are eliminated by imposing cuts on K? and A candidates. 

All these effects will in general depend on- the kinematics of the K~ and A decays. 

6.1 Efficiency Studies for K~ 

The chances of finding a given K? depend not only on its PT, but also on the 

kinematics of its decay-certain values of the center-of-mass decay angle (cos(8*)), 

number of proper lifetimes lived (t/T), rapidities, etc. may be favored. We must 

average over all such variables in evaluating the efficiency at each PT value. Also, 

the K~ efficiency may be affected by confusion in the CTC- the CTC tracking 

algorithm may fail to find a given track when there are many hits near the track 

that do not belong on the track, or the track ma.y be poorly reconstructed when 

the pattern recognition code becomes confused by hits not belonging to that track. 

\Ve must model all these effects. 

There is no practical way to gauge the corrections from the real data. Scanning 

events by eye is impractical, because K? that meet all our cuts are relatively rare 

in the minimum-bias data, and because the K~-finding process involves finding 
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vertices of pairs of tracks in three dimensions, which is fairly difficult to do by eye. 

Since there is no practical way to gauge the corrections from the real data, 

one must resort to simulation studies. The CDF simulation [13] allows us to 

easily average out the dependence on the kinematic variables, since it models K~ 

decays according to the proper kinematic distributions. The CTC confusion effect, 

however, is best modeled by the real data itself. The solution is to simulate a 

number of ensembles of K~ at fixed pr, overlay the CTC hits from their daughter 

tracks on top of CTC hits from a real minimum-bias event, and pass the resulting 

CTC hit banks through exactly the same code that was used to find K~ in the 

real minimum-bias data sample. In order to measure the CTC-confusion effect, 

we then divide each fixed-pr ensemble up according to the number of primary 

CTC tracks (1"'(Cf.TC) that were found in the event on which each simulated K~ was 

overlayed. \Ve count the number of K~ found in each pr-N£TC bin and divide 

by the number that were simulated in that bin to get the efficiency in that bin, 

thereby obtaining a 2-dimensional grid of efficiency values. In order to smooth out 

statistical fluctuations, we fit a function of PT and N£TC over the 2-dimensional 

grid. \Vhen we generate the K~ PT distribution from the real min-bias data, each 

K~ candidate and each background candidate is assigned a weight, based on this 

fitted efficiency function, according to the PT of the candidate and the NcCf.TC of 

the event in which the candidate was found. 

6.1.1 Details of the Simulated K~ Samples 

Samples of simulated events were prepared where each event contained nothing 

but a pair of back-to-hack K?, with the Pt of the K? fixed throughout each sample. 
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All effects were turned on in the simulation, including decays, Moliere multiple 

scattering, nuclear intera.ctions, delta rays, etc. The B-field was set to 1.515 kG. 

the same value that was used in analysing the simulated events. The z coordinate 

from which each pair of K~ came was forced to be the same as the VTPC vertex 

of the event on which the pair was superimposed, so that the Zvertex distribution 

was automatically taken into account and so that the CTC stereo reconstruction 

used the proper z starting point. 

These pairs of K~ were superimposed on a set of 500 events from a minimum 

bias run (CDF run number 77i7). The events were required to pass the same 

selection criteria used on the real min-bias data sample. For runs where large 

statistics were necessary, we used these 500 events several times, superimposing a 

different random set of K~ each time. 

The "primary" CTC tracks that were counted were required to pass the same 

set of cuts used in the CDF single-charged-particle-spectrum paper [14]. 

The tracking algorithm used on both the real and simulated K~ was Version 

4.3. 

The PT values at which the efficiency is evaluated were chosen to ensure that 

there were enough points on the sharply-changing parts of the efficiency-vs-pr 

curve to adequately determine its shape. The PT values chosen were 0.6, 0.8, 1.0, 

1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 6.0, and 10.0 GeV. The N3,TC bins were chosen to 

divide the simulated samples roughly into fourths; the bins are as follows: Nc9..TC = 

0 through 3, 4 through 6, 7 through 11, and 12 and up. In the plots in the Results 

section, and in fitting the efficiency surface, weighted averages of Nfi.TC are used. 
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They are: NcCf.TC = 2.13, 5.01, 8.61, and 15.86, respectively. 

The total sample sizes for each PT value were as follows: for PT = 0.6, 0.8, and 

1.0 GeV, we simulated 4000 K~ for each PT value; for PT = 1.2, 4.0, and 10.0, we 

simulated 1000 K~, and for all other values of pr, 2000 K~ were simulated. 

6.1.2 Results 

The cuts used in the results that follow are the same as those used in the real 

data. 

The efficiency forK~, as a function of pr, for fixed values of N3,TC, is shown 

m Fig. 6.1. The efficiency for K~ as a function of N3,TC for fixed values of PT is 

shown in Fig. 6.2. In both figures, the curves drawn in are the results of a fit to 

the "non-factorizing" form described below. 

Note that in Fig. 6.1, the efficiency rises sharply at small pr, due to the Rvertez 

cut and the sharp turn-on of the track-finding efficiency~ and then falls gradually, 

due to the fact that high-pr K~ are more likely to decay at sufficiently high radii 

so that they do not leave hits in the innermost wire layers. Also, the efficiency is 

seen to drop with increasing NS,rc. Fig. 6.3, the efficiency as a function of the 

number of proper lifetimes lived (see "Cross-Checks" below for more information 

on this plot), shows an increase in efficiency at small tjr, due primarily to the 

effects of the Rvertez cut, and a gradual drop-off at large tjr due again to the fact 

that tracks from decays at large radii are more difficult to reconstruct. 

For each fixed-pr sample, we have counted the number of simulated K~ that - survive each analysis step and each cut. The largest losses of K~ occur in the CTC 
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Figure 6.1 

Efficiency for K~ as a function of pr, for fixed values of N;I,Tc. 

-



I 
~ 

r---

• 

-

0.!1 

,.. 
l! • ;; 
.::. 0.1 ... ... .. .. 10 20 30 

Nch ... 'IM (Pt II ttKed at 0.1100 GeVI 

0.4 

,.. 
!! • ;; 

.::. ... 0.1 ... .. o.oo "' 10 20 30 
Neher qed IPt 11 l'txtd at 1.000 GtVI 

0.5 

0.4 

,.. 0.3 

i 0.2 -- u .::. 0.1 ... ... .. 
"' o.oo 30 

Neher tiM lPt II F't•ed at 1.500 GtVI 

> u c 
!! 
u 

.::. 0.1 ... ... .. .. 
20 30 

IPC: II F'txtd at 2.500 GtVI 

0.4 

,.. 
i ;; 

.::. 0.1 ... ... - 0.00 .. 
10 20 30 

Neher qed IPt II t1•td at 3.500 GtVI 

O.O O~ ....... ..o-.110.....,~._2l.O ...... .._.....I30.....A 

Ncherqed IP r 11 f txtd ar 11.000 Gt VI 

0.!1 

0.4 

~ 
0.3 

c 
~ 0.2 

E 0.1 ... .. 
0.00 .. 10 20 30 

Neher 'IN !Pt 11 ftxtd ot 0.800 GtVI 

0.4 

,.. 
l! 
~ 
:! 0.1 ... .. 
"' o.o 

0 10 20 30 
Nch ... qed IPr 11 F'uref et 1.200 GeVI 

0.5 

0.4 

,.. 
~ 
u ... 0.1 ... ... .. 
" o.o 0 20 30 

Neher qed lPt tt F'utd at 2.000 GtVI 

o.!l 
0.4 

~ 
o.J 

c . 0.2 
'! ... 0.1 ... ... .. 

0.00 " 20 30 10 
Neher qed IPr II hl'td ar 3.000 GtVI 

0.4 

,.. 
l! 
!! 
u 

t 0.1 ... .. 
0.00 ,. 

10 20 30 
Neher qed fPt II tt•td at 4.000 GtVI 

,.. 

! 0.1 ... .. 
"' 0"0 o 10 20 30 

Nch.,.qed !Pr 11 f u.jtd or 10.000 GtVI 

Figure 6.2 

Efficiencv for K 0 as a function of NB,TC, for fixed values of PT· . . 
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track-finding process and in the verticizing process. 

6.1.3 Fitting the Efficiency Function 

In correcting the K~ physics distributions, we assign a weight to each K~ can-

• didate individually according to its PT and the NcC,TC of the event in which it was 

found. Of course, real K~ seldom fall exactly on one of the grid points, so we 

must somehow interpolate. Fitting the efficiency as a function of PT and the Nf,.TC 

allows us to do this interpolation, and also reduces the effects of fluctuations in the 

efficiency due to the limited statistics of the simulated samples. 

There is no "theoretical guidance'' available on the choice of functional forms 

to fit. The similarity in the shapes of the curves of Figs. 6.1 and 6.11 suggests that 

the PT and N£TC dependence are independent (l.e., they "factorize"). Choosing a 

factorizing form also makes it easier for us to ensure that the efficiency is positive 

over the whole space of interest, that is, the space occupied by the real data. \Ve 

have tried several such forms, and we find that the shape of the efficiency-vs-pT 

plot at low PT is actually significantly different for the high values of NcC,TC. To 

account for this, we have finally settled on the following non-factorizing form for 

the K~ efficiency: 
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where f(PT) is a quadratic spline with 3 knots, at PT = :Z:t, :z:2, and :z:3: 

f(PT) = 

where at, b1 , ell c2 , c3 , and c4 are parameters of the fit, the remaining coefficients 

being fixed by continuity of function and slope at the knots, and 

CTC -dNCTC -h..LNCTC g( Nch ) = e ch PT ch ' 

where d and h are parameters of the fit. -The fit results are plotted on top of the 

efficiency points in Figs. 6.1 and 6.10. The x2 for this fit is 74.2, and the number 

of degrees of freedom is 40. 

A histogram of the weights applied to the real K~ candidates is shown in Fig. 

6.4. The mean value is 10.7, and the r.m.s is 11.9. 

6.1.4 Cross-Checks 

6.1.4.1 Spectrum for Regular Cuts vs. Narrow Cuts One other check on the 

consistency of the efficiency calculation is a comparison of the K~ spectrum that 

we get with the cuts listed above to the spectrum that we get if we choose a set of 

cuts that accept far fewer K~ candidates. If the efficiencies are calculated correctly, 

the lower efficiencies (and thus larger weights) for the tighter cuts will correctly 

balance the reduced number of real K? passing these cuts, and the spectrum will 

come out the same as for our usual cuts. The "tight" cuts are the same as those 

above except that: 
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• The impact parameter of each track must be greater than 4 mm~ and 

• The transverse radius of the vertex formed by the tracks must be at least 4.0 

em. 

There are 451 K~ above 105 background paus when the usual cuts are applied, 

while there are only 365 K~ and 55 background when the tight cuts are imposed. 

The spectra for the two sets of cuts are plotted in Fig. 6.5. Note that though 

the number of K~ is different by about 20%, the spectra are consistent within 

statistical errors, and that tightening the cuts does not appear to introduce any 

appreciable systematic effect. 

6.1.4.2 Corrected Lifetime Distribution- One may correct the lifetime distribu-

tion for K~ using a single large sample of simulated K~ with PT distributed ran-

domly according to our measured spectrum, and this forms another interesting 

cross-check on the efficiency calculation. After pattern-recognition and cuts have 

been applied to these simulated K~, the number in each tjT bin is, apart from a 

normalization factor, the efficiency for finding K~ that fall in that bin (more de-

tails on this correction technique are given in Appendix C). The corrected lifetime 

plot is shown in Figure 6.6. The less steeply-falling line has the expected slope 

of -1 and a fitted normalization. It will be seen that the points are reasonably 

consistent with this line. The steeper line was fitted with both the slope and the 

normalization as free parameters. The fit yields a slope of -1.3 ± 0.2. 

6.1.4.3 Differences Between Real and Simulated K~ To make sure that the sim-

ulation really models the decay kinematics correctly, and has reasonable resolution 

and multiple-scattering effects, and has no hitherto unnoticed bugs, we have gen-
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erated a small sample of simulated/superimposed K~ according to aPT spectrum 

similar to the result we will present in a later chapter, and we have compared the 

K~ that the analysis code finds in this sample to the K~ candidates in the real 

data. We have generated a number of histograms for the each sample, including 

kinematical quantities and parameters that we cut on, some of which are highly 

resolution-dependent. These histograms, normalized and plotted with error bars, 

appear in Appendix B. In the real data, background contributions have been sub-

tracted (except for the mass plot); in the simulation, no background subtraction is 

necessary, because the program that calculates the efficiencies ignores candidates 

that come from the event on which the fake K~ were overlayed. 

It will be seen that the simulation plots are very similar to those for the real 

data, with three notable exceptions: the x2 of the vertex fit, the K~ impact param-

eter, and the mass distribution. In each case, the distributions for the simulated 

K~ are somewhat narrower than those in the real data. One can estimate by in-

spection the half-width-at-half-maximum for the impact parameter, and one can 

fit the u of the mass peak. \Ve find that the HWHM of the impact-parameter 

distribution is around 0.8 em in the real data, and about 0.6 em in the simulation, 

and the u of the mass peak is 9.4 MeV for the real data, and 6.8 MeV for the 

simulation. We must insure that these differences have as little effect as possible 

on the final physics distributions. 

\Vhile the shapes of the other plots are determined primarily by the things like 

decay kinematics, the shapes and widths of the three misbehaving distributions 

are determined entirely by pattern-recognition errors, measurement errors, and 
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multiple-scattering effects. \Ve have examined some possible causes of the differ-

ences, and will discuss our findings below. However, we can minimize the effects 

of the differences in the widths of these distributions by deliberately choosing cut 

values that are far out in the tails of each of these distributions, so that the fraction 

of K~ candidates cut is about the same in both real data and simulation. Looking 

at the x2 distribution, we see that the x2 cut at 5 is indeed well out in the tail, and 

the impact-parameter distribution convinces us that the 3-space impact parameter 

cut at 2 em is also out in the tail. The mass window for K~ candidates is ±3u 

about the K~ mass, and it was chosen based on the real-data mass resolution, so 

only the tails of the mass peak are removed. 

At present, the cuts used are identical for real data and for simulation. One 

could attempt to account for the differences in the widths of the real-data and 

simulation distributions by rescaling the cuts according to the differences in the 

widths. Thus, one would rescale the impact parameter cut from its usual 2 em to 

(0.6cm)/(0.8cm) · (2cm) = 1.5 em, and one would rescale the mass windows such 

that they are based on a u of 6.8 MeV. It is not so clear how the x2 distribution 

should be scaled, but as a first guess one might rescale it by the same factor of 

"' 3/4 that one sees in the other distributions; that is, it should be around 3/4 of 

5, or 3. 75. 

This exercise has been done. To get a feeling how much difference the rescaled 

cuts make, they have been applied to the large sample of simulated K~ that were 

generated according to our measured PT spectrum; the number of K~ found went 

from 625 with the usual cuts to 590 with the rescaled cuts; that is, about a 6% 
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difference. The cross-section generated by the usual technique (same cuts. for data 

and simulation) is compared in Figure 6.7 to the cross-section generated with 

corrections derived with the rescaled cuts. The difference is almost invisible in the 

cross-section plot, thanks to the log-scale. Figure 6.8 compares the K/hadron ratio 

plots similarly, but on a linear vertical scale, and the difference is somewhat more 

visible, but is still negligible compared to the statistical errors. 

This exercise gives us an estimate of the systematic error induced by differences 

between the simulation and the real data; it is about 6%. 

6.1.4.4 Search for the Cause of the Differences \Ve have investigated a couple of 

possible causes for the real-data/simulation differences. 

First, the value of the CTC setting error used by the simulation is not the same 

as the setting error derived for the set of tracking code and drift constants (Version 

4.3) used to track the real data. In Version 4.3 tracking, the CTC hit resolution 

was around 300 microns, while in the simulation, it is set to 200 microns. Because 

the roads used by the track-finding algorithm are of order 1-2 mm wide, this 

should have little or no effect on the CTC track finding efficiency. The setting 

error also sets the scale for the calculation of the track parameter errors due to 

the chamber resolution; however, the errors used in the verticizing algorithm also 

include contributions due to multiple scattering, which will in general dominate. 

To make sure the CTC resolution is not the culprit, we have generated a small 

sample of simulated K~ according to our PT spectrum, as before, but with the 

simulated CTC hit resolution set to 300 microns. \Ve see no difference in widths in 

the misbehaving distributions between this sample and the sample generated with 



the usual CTC simulation. 

Second, because multiple scattering is expected to dominate the errors on the 

measured track parameters, we have searched for mistakes in either the multiple-

scattering algorithm or the amount of material prior to the CTC in the geometry 

database. The latter was checked [15], by shooting particles through the simulation 

at various angles and making plots of the number of radiation lengths a particle 

passed through before it got to the CTC active volume. That plot appean here as 

Figure 6.9. Figure 2.7 is a copy of the corresponding plot from Ref. [4], which was 

produced by calculating radiation lengths by hand. In the central region, at least, 

the plots are very similar. In fact, Fig. 6.9 is somewhat more realistic than Fig. 

2.7, because Fig. 6.9 includes the lump near 90 degrees (at z = 0) that corresponds 

to the VTPC walls at the center of the detector. In inspecting the simulation code, 

however, we have nonetheless found an error which was causing the wrong radiation 

length to be used for the CTC inner wall; this error changed the total number of 

radiation lengths before the CTC at 90 degrees to 2.5 %, compared to the true 

value of 3 %. Since multiple-scattering effects are proportional to the square root 

of the number of radiation lengths, this error has a negligible effect. 

Of course, the study of Ref. [15] study only demonstrates that the amount of 

material in the simulation geometry is about right, but it does not demonstrate 

that the simulation actually correctly handles multiple scattering in this material. 

Inspection of the program reveals no obvious bugs, however. 

There are a couple of other known effects that are not modeled by the CTC 

simulation: It is known that the LeCroy TDCs that are used to read out the CTC 
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hits have some problems that cause some percentage of hits to be randomly lost. 

This effect is small. Also, there is a certain amount of cross-talk between wires in 

the CTC which causes track-associated noise. This effect is also small. 

One other possible cause for the differences between simulated and real K~ 

involves the CTC drift velocity, which is slightly different for each cell. When one 

extrapolates tracks back into the CTC inner bore, the hits on the innermost CTC 

wires are quite important. It is quite possible that poor drift constants for the in-

nermost CTC super layers (an effect that of course is not present in the simulation) 

are in part responsible for the increased widths of the real-data distributions. 

6.2 Efficiency Studies for A and A 

The techniques used to obtain the efficiencies for A and A are nearly the same as 

those used to get the K~ efficiencies, and we will discuss below the few differences. 

Fewer cross-checks are available for the cross-checks on the A efficiency than for the 

K~ studies, due to the much smaller number of A and A candidates. \Ve therefore 

rely on the K?-efficiency cross-checks to establish the soundness of the technique. 

For the lambda/anti-lambda efficiency studies, the samples of simulated events 

contained nothing but a pair of back-to-hack A or A, or one of each, selected 

randomly such that the total number of A in the sample was approximately equal 

to the total number of X. We expected our efficiency for finding lambdas to be the 

same as for finding anti-lambdas, and in fact, in each of our simulated samples, after 

reconstruction and application of the cuts, the number of lambdas that survived 

was the same, within statistical errors, as the number of anti-lambdas that survived. 

From here on, then, A and "\ will be treated together. The combined efficiency for 
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equally-mixed samples of A and A, as a function of pr, for fixed values of N3.Tc, is 

shown in Fig. 6.10, and the efficiency for the same samples, as a function of N3.TC 

at fixed PT is shown in Fig. 6.11. In both figures, the lines are the results of a 

fit to the factorizing spline fit described below. The average weight applied to a 

A or A candidate was 19. The combined efficiency as a function of the number of 

proper lifetimes lived is shown in Fig. 6.12. 

Because there are so few A and A candidates, even relatively small simulated 

samples will deterimine the efficiency to better statistical accuracy than the statis-

tical errors due to the number of candiates in the real data. The combined number 

of A and A in each fixed-pr sample was 1000. Because the simulated samples are 

smaller than in the K~ studies, the complicated form used in the K~ efficiency fits 

is unnecessary, and we use instead a factorizing form involving 2-knot splines: 

where f(pr) is a quadratic spline with 2 knots, at PT = x1 and x2: 

f(pr) = 

a1PT 2 + b1PT + ell PT 5. Xt 

a2PT 2 + b2PT + c2, Xt 5. PT 5. x2 

a3PT 2 + b3PT + c3, x2 5. PT, 

where at, bt, Ct, c2 , and c3 are parameters of the fit, the remaining coefficients 

being fixed by continuity of function and slope at the knots, and 

where d is a parameter of the fit. The x2 of this fit was 39, and the number of 

degrees of freedom was 36. 
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The single cross-check on the combined A --i- A efficiency is the corrected lifetime 

distribution, shown in Fig. 6.13. The line shown was fitted with both normalization 

and slope as free parameters; the fit yields a slope of -1.0 ± 0.3, and a slope of -1 is 

exactly what we expect if sample is pure A and A and if the effi.cicency corrections 

are done properly. 



,--, 

-

...... .. > tJ 
~ 
....... 
,.Q e ...... .. c. 
~ 
b .. , 
~ 

10° 

10-1 

10-2 

10-3 

to-4 

10-5 
0 4 

Pt (GeV) 

Figure 6.5 

x Usual Cuts 
o Tight Cuts 

6 6 

K? spectrum at 1800 Ge V, with normal cuts and with tightened cuts. 

58' 



,-. 

t 

-('J) ..... ·-~ 
~ 

>. s... 
~ s... ..... ·-.0 s... 
< --1-
'-.... ..... -"t1 
'-.... z 
"t1 

0 1 2 
l/T 

Figure 6.6 

59 

3 4 

Corrected K~ lifetime distribution for the 1800 GeV data, with a line of unit slope 
and a steeper, fitted line of slope -1.3 ± 0.2. 



---

' 

10° 

10-1 

....... 10-2 .. > tl 
~ 

' .D. e 10-3 ....... .. 
Q, , 
' b 

10-4 .. , 
~ 

10-5 
0 

'I 

~ x Using Usual Efficiencies 
HH o Using Efficiencies with Rescaled Cuts 

\ 
~· 

t"'>t< 
~~ 

2 4 
PT {GeV) 

Figure 6. 7 

6 8 

K~ cross-section at 1800 Ge V, with and without rescaled cuts for simulation. 

N 0.8 l I I ' ....... 
I 

..d 

+ x Using Usual Efficiencies 
+ 0 Using Efficiencies with Rescaled Cuts ..d ....... 0.6 t- -... 
Ql > 0 
ot 

0 :.: 
• 0.4 - -c 
.2 

#+~+ttt+ 
... u 
" rn 
I • • 0 0.2 t- -... u 
> .9 -0 
0 I j I ~ 0.0 ., 0 2 4 6 8 0:: 

PT (GeV) 

Figure 6.8 

K~ /hadron ratio at 1800 Ge V, with and without rescaled cuts for simulation. 

60 



,/"""'-

61 

Q 
w 
1.1) cr 
w 
> a: o. 20 I! 
~ 

If) 
1: .... o. 1 s 'i 
I£J 
..J 

z 
0 o. 10 
~ .... 
a: 
~ 

~ o.os a: 

o.oo 
0 so 100 150 

,. THETA IDEG~EESJ 

Figure 6.9 

Total amount of material between the beam and the CTC vs angle, based on the 
CDF simulation. 



_..,...._ 

62 

0.20 0.20 

> > 
u u 0.15 c 0.15 c • ~ 
~ ~ ... 0.10 ... 0.10 ... ... 
ILl ILl 

< -:=: .. ;; 
c c 
< < .... .... 0.00 < 0.00 < 10 20 30 0 10 20 30 0 -. '

0
• '~ ~=''•"d ot 0.800 GeVI Nchorqed !Pt IS F'1xed ot 1.000 GeVI 

0.20 0.20 
> ,. 
u 0.15 u 0.15 c c 
~ ! 
~ ~ ... 0.10 ... 0.10 ... ... 
ILl ILl 
< < 

0.05 .. 0.05 .. c c 
< < .... .... 0.00 < o.ooo < 10 20 30 0 10 20 30 

Nr.h11raed !Pt IS f'txed ot 1.200 GeVl Nchorqed lPt IS f'txed !It 1.500 GeVI 
0.20 0.20 

,. ,.. 
u 0.15 u c c 0.15 
~ ~ u 

~ ... 0.10 ... 0.10 ... ... ILl ILl 
--::: 0.05 -:=: ;; ;; 0.05 
c c < < .... 0.00 .... < < o.oo 0 0 20 30 

Nchorqed Nchorqed lPt u F'1xed ot 2.500 GeVI 
0.20 0.20 

,.. ,. 
u 0.15 u 0.15 c c 
~ ~ u u ... 0.10 ... 0.10 ... ... 

ILl ILl 

--::: < 
;; 0.05 0.05 .. c c < < .... 0.00 .... o.oo < < 0 10 20 30 0 10 20 30 

Nchoraed lPt IS f'txed ot 3.000 GeVI Nchorqed !Pt IS f'txed ot 3.500 GeVI 
0.20 0.20 

> > u 0.15 u c c 0.15 
~ ~ 
~ ~ ... 0.10 ... 0.10 ... ... 
ILl ILl 

--::: 0.05 ~ 0.05 .. ;; 
c c < < .... 

0.000 
.... o.ooo < < 10 20 30 10 20 30 

Neher qed !Pt IS f'txed ot 4.000 GeVl Nchorqed lPt IS f'txed ot 6.000 GeVI 

Figure 6.10 

Efficiency for equally-mixed samples of A and A as a function of NJ,TC, for fixed 
values of PT· 



63 

Nch 0 thru 3 Nch 4 thru 6 
0.5 0.5 

,.. 
0.4 

,.. 
u u 0.4 c c 
! ! 
~ 0.3 ~ 0.3 ... ... ... ... w 0.2 w 0.2 

~ 
~ ~ ;:; 0.1 ;:; 0.1 c: c: < < ..... o.o ..... 0.0 < < 0 2 4 6 0 2 4 6 

Pt !GeVl Pt !GeVl 

Nch 7 thru 11 Nch > 11 

r-- 0.5 0.5 
,.. 

0.4 
,.. 

0.4 u u c c: 

t 
! ! 
~ 0.3 ~ 0.3 ... ... 

t ... ... w 0.2 w 0.2 • ~ ~ .. 0.1 ;:; 0.1 c c 
< < ..... o.o ..... o.o < < 

0 4 6 0 2 4 6 
Pt !GeVl Pt !GeVl 

Figure 6.11 

Efficiency for equally-mixed samples of A and A as a function of pr, for fixed values 
of NcTc 

ch • 



• 
I 
t 

:>-
0 c 
Q) ... 
0 ... 

<... 
<... w 
< . ... 
~ 

c 
< ....... 
< 

' 
0.08r-r-r-r-r-r-r-~~~~~~~~~~~~~ 

0.06 

I 0.04 

I 
0.02 

I 
2 3 4 

Number oP Proper L1Pet1mes Lived 

Figure 6.12 

Efficiency for equally-mixed samples of A and A as a function of tfr. 

64 



-· 

I 

~ 

~ 

~ ~ 

' ~' 

65 

103 

-en ..., ..... c 
~ 

102 >. s.. 
aj 
s.. ..., ..... 

.0 s.. 
< ......... 

10 1 -1-
'-..... ..., ......... 
"0 
'-..... z 
"0 

10° 
0 1 2 3 4 

l/T 

Figure 6.13 

Corrected lifetime distribution for A+ A in the 1800 GeV data, showing a fitted 
line of slope -1 ± 0.3. 



66 

·-

7. CALCULATING THE CORRECTED K~ and A+ A SPECTRA 

7.1 Background Subtraction 

~ As we have seen in Figure 5.2, even after all the geometrical cuts have been 

applied, some background is still present, and we must remove its effects from the 

final physics distributions. Fits performed on the data of Fig. 5.2 and Fig. 5.3 

indicate that the backgrounds for K~ and A + .~ both rise slowly and very nearly 

linearly in the vicinity of the respective· peaks. \Ve may therefore estimate the 

background contribution to physics distributions using the average of the distribu-

tions for events in the background windows above and below the peaks. The mass 

values used to define the K~ and A peaks and the background windows are listed 

in Chapter 5. 

To subtract the background contribution from the PT spectrum of K~, we pro-

ceed as follows (the procedure for lambdas is the same). \Ve make a histogram of 

PT for all pairs falling within the K~ mass-peak window, weighting each K~ accord-

ing to its PT and the primary CTC multiplicity of the event in which it was found. 

We then make the same plot for events that fall in the background mass-windows, 

weighting each such pair in exactly the same way that the K~ candidates were 

weighted. For the K~, we then divide the bin contents of the second histogram 

by 2, to account for the fact that each of the two background windows is exactly --
as wide as the signal window, while for the lambdas, no division by 2 is necessary 
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---
because each background window is 1/2 as wide as the signal window. Finally, we 

subtract the resulting background histogram, bin by bin, from the histogram for 

the respective K~ or A + A candidates. 

7.2 Turning the pr Distribution into an Invariant Cross-Section 

After the corrections have been applied and the contribution of the background 

has been subtracted, we have a corrected Pr distribution. The distributions we 

want, however, are the Lorentz-invariant cross-sections, as functions of PT, for 

producing K~ and for producing A and A. The Lorentz-invariant cross-section is 

the cross-section per unit of Lorentz-invariant phase space, d4 p 8(p2 - m 2 ), w{lere 

pis the 4-momentum of the particle, m is its mass, and and d4 p = dp:z:dpydpzdE. 

At fixed pr, the Dirac delta-function can be removed by integrating over E: 

where ( = p2 - m 2 , so the differential element of phase-space can be written 

as d3 pjE, where d3 p = dp:z;dpydPz· The Lorentz-invariant cross-section is then 

Ed3 u / d3 p. Since we have a PT distribution, and we have assumed that K~ and A 

are produced uniformly in y, we would like to express the invariant cross-section 

in terms of these variables. Recall that PT is defined as (p; + p~) 112 , and that we 

can use the usual transformation between cartesian and cylindrical coordinates to 

rewrite dp:r:dpy as prdprd¢, where ¢is the azimuth coordinate. \Ve can then write 

A little manipulation shows that dy = dpz/ E, so -
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Let N be the contents of one bin of the corrected, background-subtracted PT dis-

tribution. To get the invariant cross-section for each PT bin we have only to relate 

the differential cross-section to N. N is the total number of particles produced 

in our y interval ( IYI < 1 ), over all ¢, with transverse momenta between PT and 

PT + .6.PT· Iff .Cdt is the integrated luminosity, 

N = PTD.PT I d¢ I dy d d
3

~¢d J .Cdt. }~.p }~y PT PT Y 

Because the initial state of the pp collision process is azimuthally symmetric, we 

expect no azimuth-dependence of the cross-section, so the integral over ¢ is just 

I 

I 
D.¢, or 2r.. We assume that the PT, y an_d ¢ dependences of the cross-section are 

I not interrelated, i.e., that the cross-section "factorizes". Then 
~ 

I 

r 
I The integrated luminosity is related to the total number of events N~v that pass 

our trigger and event-selection criteria and to the effective cross-section to which 

we are sensitive: 

N~tJ = U~JJ J .Cdt, 

so now (at last!) we have an expression that allows us to convert each bin of the 

PT distribution to an invariant cross-section value: 

For PT and D.pT we use the bin center and the bin width, respectively. D.y is 2, .6.¢ 

is 2r., and the numbers of events and the effective cross-sections for the 630 Ge V 

and 1800 GeV runs were given in Chapter 3. 
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Finally, it is customary to present cross-sections that reflect the production of 

all K~, A, and A, not just those that decay into charged particles. Therefore, we 

divide all K~ cross-section values by 0.6861, the branching fraction [12] for the 

decay K~ ---+ 7r+7r-, and all A + A cross-section values by 0.641, the branching 

fraction for the decay A ---+ p1r- (which is the same as the branching fraction for 

A- fi7r+). 



70 

8. SPECTRA AND CROSS-SECTION RATIOS 

8.1 The K~ Spectrum 

The corrected, background-subtracted inclusive cross-sections for K~ produc-

tion at y's = 630 and 1800 GeV are shown in Fig. 8.1. The solid lines are fits 

' 
to the cross-section data that will be discussed in Chapter 9. The data points in 

• the figure are tabulated in Tables 8.1 and 8.2, where the units on the cross-section 

values are mb/(GeV2 jc3 ). The statistical uncertainties on the 630 GeV data are 

large, but it is still reasonable to say that the cross-section is smaller at 630 Ge V 

than at 1800 GeV. Unfortunately, the large uncertainties do not allow us to tell 

whether there is any difference in shape between the 630 GeV and 1800 GeV data. 

Fig. 8.2 shows our 1800 and 630 GeV data along with data taken at lower 

energies. The dashed line is a fit to the y's = 546 GeV data of UAS [17]. The 

circular data points are charged kaon data (averaged over positive and negative 

signs) at y = 0 from the Chicago-Princeton (CP) collaboration [16] taken at y's = 

27 GeV. The shape of our 630 GeV cross-section agrees reasonably well with the 

fit to the 546 Ge V data of U AS. However, at fixed PT the cross-section is much 

higher at Tevatron energies than it is in the y's = 27 Ge V CP data. 

It is also instructive to consider the ratio, as a function of pr, of the cross-

section for K~ to the cross-section for charged hadrons, averaged over positive and 

negative charges. The CDF measurements of the charged hadron cross-section 
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B 

Inclusive cross sections for K? production in rapidity IYI < 1.0 in 630 and 1800 
GeV proton-antiproton collisions, with fitted curves. 

Table 8.1 

Inclusive cross-section for K~ in IYi < 1 in proton-antiproton collisions a.t a c.m. 
energy of 630 Ge V, and its statistical uncertainty. 

I PT (Ge\') I Ed3 ujd3p (mb/GeV 2
) 

I 

I 0.85 0.7 ± 0.4 

I 1.15 0.15 ± 0.09 

1.45 0.13 ± 0.04 

1.75 0.03 ± 0.02 

2.05 0.012 ± 0.009 

2.35 0.009 ± 0.006 

2.80 0.004 ± 0.005 
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Inclusive cross sections for K~ in rapidity jyj < 1.0-CDF 1800 GeV, CDF 630 
GeV, CP (y=O) charged kaon data, and fits to CDF 1800 GeV data and to UAS 
546 GeV data. 
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Table 8.2 

Inclusive cross-section in jyj < 1 for K~ in proton-antiproton collisions at a c.m. 
energy of 1800 GeV, and its statistical uncertainty. 

I 

PT (GeV) Ed3 rrjd3 p (mb/GeV2
) I 

0.85 0.9 ± 0.2 l 
1.15 0.31 ± 0.05 I 

I 

1.45 0.18 ± 0.02 

1.75 0.065 ± 0.009 

2.05 0.032 I 0.006 :J: 

2.35 0.019 ± 0.004 

2.65 0.009 ± 0.002 

2.95 0.005 ± 0.002 

3.30 0.003 ...L 0.001 

3.75 0.0004 ± 0.0005 

4.50 0.0004 ± 0.0002 

5.50 0.0002 ± 0.0001 

7.00 0.00009 ± o.oooo6 1 
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were published in Ref. [14]. This ratio is shown for ou:· 1800 GeV data in Fig. 

8.3, along with data from lower energies. To get the CP data points, as above, 

we have averaged their charged kaon data over positive and negative signs, and to 

get a charged hadron cross-section from their data we have added up their pion, 

kaon, and proton data [16], again averaging over positive and negative charges. 

Also, we have added charged-kaon/charged hadron data at Js =53 GeV from the 

British-Scandinavian (BS) collaboration [18]. These data are also for y = 0, and 

we have followed the same procedure as with the CP data to calculate the points 

shown. The data sets all follow remarkably similar trends, hinting that the shape 

of this ratio curve may be independent of: Js. 

One would also like to look at the ratio of the K~ cross-section to the cross-

section for charged pions. \Ve can estimate the charged pion cross-section for each 

bin using the measured [14] charged hadron cross-section and fits to our K~ cross-

section, as follows. \Ve know that charged hadrons consist primarily of charged 

pions, kaons, and protons. Let h be the charged hadron cross-section for a given 

PT value, averaged over positive and negative charges, and similarly for 1r and p. 

Then 

h = 1r + K + p. 

We can na.i"vely assume that the charged kaon cross-section averaged over charges 

is the same as the K 0 cross-section that we measure. For the proton contribution, 
6 

we will assume that the K j p ratio is 1.48, as estimated from data from the U A2 

collaboration [19]. Our estimate of the pion contribution is relatively insensitive 

to the value we choose for K jp, since kaons typically make up only about 10% of 
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the charged hadrons, and protons somewhat less. VVith these assumptions, we may 

write 

or 

h = "+ K + p = "+ (1 + - 1
-)K. 1.48 ' 

"= h- (1 + - 1
-)K. 1.48 

Using this formula to estimate the charged pion cross-section in each bin, we obtain 

Figure 8.4. Data from the CP and BS collaborations (from the same papers cited 

above) are also shown. Once again, our data are consistent with the ratio growing 

with PT in the same way as happens at lower Js. 

Thermodynamic models [20] [21] predict that particle spectra should follow 

falling exponentials in transverse mass, mr = VP} + m 2 , where the slope of the 

exponential is related to the temperature of the hadronic fireball from which par-

tides are emitted. If thermal equilibrium obtains, then, one would expect that the 

ratios of invariant cross-sections for various species of particles would be constant 

as a function of mr. 'Ve can check this hypothesis for K~ and pions, using the 

same ansatz as before to estimate the pion cross-section. (It is easy to show, by 

the way, that mrdmr = prdpr, so to get the cross-section as a function of mr 

we can use Eq. 7.2 with prdpr replaced by mrdmr.) The result is shown in Fig. 

8.5. Our data are consistent with the ratio K~ /((7i+ + "- )/2) being constant as a 

function of mr. 

8.2 The K~ Spectrum in Three Multiplicity Bins 

It is interesting to consider the differences betweeen spectra for particles pro-
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duced in various ranges of multiplicity. Unfortunately, the largest particle sample 

we have contains only around 450 K~, and the others contain far too few particles 

to allow us to subdivide them without losing all statistical significance. We have 

stretched the statistical power of the 1800 Ge V K~ spectrum as far as we think 

prudent by dividing the 1800 GeV event sample roughly into thirds, according to 

the multiplicity of primary charged tracks as measured by the VTPC in IYI < 3. 

The spectrum for each of the three multiplicity ranges is shown in Fig. 8.6, along 

with fit results for the three spectra. The data points are given in Table 8.3. Due 

to the sparseness of the data, not all multiplicity bins have one or more K~ in every 

PT bins. Note that for clarity in the figure, we have multiplied the spectrum for 

the middle multiplicity bin by 10 and the spectrum for the high multiplicity bin 

by 100. The statistical uncertainties prevent us from saying definitively whether 

the shape of the spectrum is any different for the three bins. 

8.3 The A + A Spectrum 

The corrected, background-subtracted inclusive cross-section for A and A pro-

duction at ..jS = 1800 GeV is shown in Fig. 8.7. Note that the cross-section we 

present is the sum, not the average, of the cross-section for A production and that 

for A production. The solid line in the figure is a fitted exponential; the results of 

the fit will be discussed in Chapter 9. The data points in the figure are tabulated 

in Table 8.4. Unfortunately, because of the large statistical uncertainties, we have 

little information about the shape of the spectrum. 

We can plot the ratio of the cross-section for A production to that for K~ 

production as a function of PT or mr, and these are shown in Figures 8.8 and 8.9. 
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Table 8.3 

Invariant cross-section for K~ in three bands of observed charged multiplicities. 
Dashes indicate empty bins. 

Ed3ujd3 p (mb/GeV2
) 

PT (GeV) /4 :S N:;,TPC :S 14 15 < NVTPC < 27 - ch -
28 < NVTPC 

- ch 

0.85 0.5 ± 0.1 0.9 ± 0.2 1.0 ± 0.4 

1.15 0.12 ± 0.03 0.21 ± 0.05 0.5 ± 0.1 

1.45 0.04 ± 0.01 0.12 ± 0.02 0.35 ± 0.05 

1.75 0.016 ± 0.006 0.05 ± 0.01 0.11 ± 0.02 

I 
2.05 I 0.007 ± 0.003 0.028 ± 0.008 0.05 ± 0.01 

2.35 0.007 ± 0.003 0.009 ± 0.004 0.04 ± 0.01 

2.65 0.001 ± 0.001 0.006 ± 0.003 0.017 ± 0.006 

I 2.95 0.002 ± 0.001 0.013 ± 0.005 -

3.30 - - 0.005 ± 0.003 

4.25 0.0003 ± 0.0002 0.004 ± 0.002 0.0005 ± 0.0005 

6.50!- 0.0005 ± 0.0005 0.0002 ± 0.0001 
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Note that in these ratio plots, we have averaged the A and A cross-sections, so 

that the ratio plotted is (A+ l!..)/2/ K?. The average value of the ratio over the PT 

range covered is about 0.4, while in the mT plot the average is about 0.5. 
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Table 8.4 

Inclusive cross-section in IYI < 1 for A and A in proton-antiproton collisions at a 
c.m. energy of 1800 Ge V. 

I PT (GeV) I Ed3 u/d3p (mb/GeV 2
) 

I I 
0.03 1.45 0.07 --1-

1.75 0.03 --1- 0.02 ......._ 

2.05 0.06 --1- 0.01 ......._ 

2.35 0.025 ± 0.009 

2.65 0.007 ± 0.005 

2.95 0.002 I 0.001 

3.3 0.004 I 0.003 I 

4.25 0.0004 ± 0.0003 

6.5 0.00005 ± 0.00005 
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Invariant cross-section for K~ in three bands of observed charged multiplicities. 
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Inclusive cross-section in IYI < 1 for A and A in proton-antiproton collisions at a 
c.m. energy of 1800 Ge V. 
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9. FITTING THE SHAPES OF THE SPECTRA 

Fitting functions to our spectra provides a simple way to compare our results 

to those obtained at lower energies. Also, fitted functions allow us to extrapolate 

the spectrum below the minimum PT values at which we can find K~ and A, which 

is necessary to estimate the mean PT and the central rapidity density for K~. 

A number of functional forms have been used by other experiments: perhaps 

the most common in the most recent data-is the power-law form used by UA1 [23]: 

d3 n 
E~=A Po . 

d3p (PT + Po)n 

This form works well for various spectra at energies approaching ours (UA1 single-

charged-particle data [23], CDF single-charged particle data [14], UA5 K~ data 

[22], etc.), so it is the natural one for comparisons with recent measurements, and 

it is the form we will focus on. We will also discuss results of fits to several other 

common forms. 

Because of the correction and background-subtraction techniques we employ, it 

is somewhat tricky to devise a statistically sound fitting algorithm. Three different 

fitting algorithms have been devised and tested on our 1800 GeV K~ data, since 

it is our largest sample of particles. In the next section, we compare the results 

from the three and find that they agree well. Next, we discuss fits to alternative 

functional forms. The fitting algorithms used are detailed in Appendix D. 
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9.1 Comparison Betweeen the Results of Different Algorithms 

Some bins of our K~ spectra are sparsely populated, particularly at high PT, 

and we want to be sure that we treat these bins in a statistically sound way, 

so that we get the correct covariance matrix on the fit parameters. \Ve have an 

algorithm (hereafter called the "naive" fit) that fits the spectrum by minimizing a 

x2 that assumes Gaussian errors. In addition, Virgil Barnes and Franco Bedeschi 

have devised two algorithms that maximize likelihood functions based on Poisson 

statistics. The first of these uses distributions of the data in pr, averaging over 

the NcCf.TC dimension of the efficiency corrections, so we refer to this fit as the "1-

dimensional Poisson" fit. The second Poisson fit uses distributions of the data in 

two dimensions-NJ.TC and PT· Table 9.1 shows a comparison of the parameters 

of the above functional form for the various fits for the 1800 Ge V K~ data, with 

p0 fixed at 1.3 Ge V (the reason for fixing p0 is discussed in the next section). 

Table 9.1 

Comparison of fit results of the various algorithms for the 1800 GeV K? data. 

I ! Algorithm A I n x2 Ndof I 

Gaussian 45 ± 9 7.7 ± 0.2 8.1 11 

1-dim Poisson 40 ± 7 7.5 ± 0.2 8.6 11 

2-dim Poisson 42 ± 8 7.7 ± 0.2 71 97 I 

It will be seen that the values of the fit parameters and errors are very similar 
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for all the fits. The errors on the fit parameters from the Gaussian fit are somewhat 

more conservative than the others, and the Gaussian fit is by far the simplest, so 

in what follows, we use the Gaussian fitting algorithm exclusively. 

9.2 Fit Results for Power-Law Fits to the K~ Spectrum 

A common way to compare the sharpness of fall of our spectra to data taken at 

lower energies is to compare the values of n obtained by fitting the above power-law 

form to the cross-section data. Because p0 and n are highly correlated, in order to 

make such a comparison meaningful, one must fix p0 to some value. The value of 

p0 used by VAl, UA5 and CDF ([23], [22], [14]) is 1.3 GeV, so that is the value we 

adopt. Also, we have been unable to obtain a stable fit when we allow p0 to vary, 

which is probably a consequence of the low-pT cutoff and the limited statistics of 

our data. 

The results of such a fit for our K~ data are given in Table 9.2. The curves 

defined by the fit results are shown in Fig. 8.1. Unfortunately, n is poorly de-

termined by the 630 Ge V data, and the difference between the n values at 630 

and 1800 Ge V is not statistically significant. Even for the 1800 Ge V data, the 

uncertainty on n is sufficiently large that the differences between our n values and 

those obtained by the UA5 collaboration [22] at 200, 546, and 900 GeV, are not 

statistically significant. 

9.3 Fit results for Fits of Other Functional Forms to the 1800 GeV K~ Spectrum 

Various theories have predicted a number of functional forms for hadron inclu-

sive PT distributions. In order to see whether our 1800 GeV K~ data allow us to 
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Table 9.2 

Resulis of fits of the power-law form for the K~ data. 

...jS(GeV) A (mb/GeV2
) n x2 /Ndof 

630 I 37 ± 33 8.2 ± 1.1 2.2/6 
I 

~~"-/ 1800 1 7.7 ± 0.2 8.1/11 
~ 

rule out any particular form, we have used the Gaussian fitting algorithm to fit 

several of the most popular forms. Table 9.3 compares the quality of the fits, and 

Figures 9.1-9.3 show the fit parameters al!d fitted curves. It appears that we can't 

really distinguish between the power-law and the exponential fits simply on the 

basis of x2 • 

The last form in Table 9.3 is a prediction of the Constituent Interchange Model 

(CIM) [24]. In addition to the explicit PT dependence of the denominator, the 

numerator contains the variable xr = 2pr j..jS. Because our ..jS value is so large 

compared to the PT range covered by our measurement, our data cover only a 

small range of xr, so the fit has essentially no power to determine the exponent m. 

In fact, if m is a free parameter in the fit, the x2 minimization favors very large 

values of m (m > 1000, even!), so we have fixed m at 10, the value predicted by 

the CIM. The exponents m and n are only very weakly correlated, so we get nearly 

the same value of n when we leave m free as when we do not. It is interesting to 

note that n turns out to be 4.4 ± 0.08, in rough agreement with a prediction of 

the CIM. Naively, one might expect a 1/pr4 behavior simply from the Rutherford 
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scattering formula. In the CP data, typical values of n were more like 8 [16], which 

is the ,·alue predicted by the CIM. The transition between p"T8 behavior and p"T4 

behavior is expected in the context of QCD [25]. Given the rather poor quality 

of the fit, however, (x2 /Ndof :::::: 3), one must not take these tempting speculations 

too seriously. 

Table 9.3 

Fit quality for fits of alternative functional forms to the 1800 GeV K~ spectrum. 

I I l 
1 Functional Form x:z i Ndof i ,.-~· 

··-- I Ap~ /(Po + PT t ( ~1 11 
-

I 

Ae-bpT 11.4 11 

Ae-CTnT 12.8 11 

A( I- 2pTf..fi)10 fp''T 31 11 
: 

9.4 Fit results for 1800 GeV K~ Spectra in Multiplicity Bins 

\Ve have fitted the GAl-style power law (with p0 fixed at 1.3 GeV) to the spectra 

presented in Section 8.2, and the results are shown in Table 9.4. As expected, the 

statistical significance of the difference in n between the three spectra is poor. 

9.5 Fit results for the A+ A Spectrum 

The results of fits of several forms to the A +A spectrum are shown in Figures 

9.4-9.6. Once again, we cannot reasonably rule out any of the forms on the basis 
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Table 9.4 

Results of fits of the power-law form for the 1800 Ge V K~ data subdivided by 
VTPC multiplicity. 

! 

i Charged Multiplicity in Event 

4 < Nl'TPC < 14 
- ch -

15 < NVTPC < 27 - ch -

1. 

36 ± 10 8.9 ± 0.8 

45 ± 15 

69 ± 20 

8.1 ± 0.4 

! 7.5 ± 0.3 

I 
2.4/6 I 

I 
4/8 

11/9 
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10. GENERAL CONSIDERATIONS FOR QCD-BASED MODELS OF 

PROTON-ANTIPROTON COLLISIONS 
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In the next chapter, we will compare our measured spectra to the predictions 

of several models. In order to clarify the issues involved in the formulation of such 

models and to introduce some terminology used in the next chapter, we review 

here the ingredients of proton-antiproton collisions vis-a-vis the Standard Model. 

As mentioned in Chapter 1, in the Standard Model, protons and antiprotons are 

composite objects. ·when a proton collides with an antiproton, the collision may 

be viewed as an interaction among the constituents of the proton with those of the 

p. Sometimes these subprocess collisions will be "hard", meaning that they involve 

a large transfer of momentum among the constituents or "partons" involved in the 

collision, and sometimes the pp collision will be "soft", not involving any hard 

subprocess. As we have mentioned, the hard subprocesses are calculable in pertur-

bative QCD, while soft collisions are not. Therefore, models of pp collisions usually 

include two components-a pertubative-QCD treatment of the hard scattering pro-

cesses, and a somewhat more ad-hoc treatment of soft collisions. In addition, these 

models must include a mechanism for the transition from the partons in the sub-

process final state to the hadrons that form the experimentally-observable final 

state. 

Perturbative QCD tells us how to calculate the hard subprocesses, in which 
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both the inputs and the end products are quarks and gluons .. Now, isolated quarks 

and gluons are never seen in nature, due to a property of the strong force known 

as "confinement"; instead, most of the particles we see coming out of a pp collision 

are hadrons. Models of pfi collisions must treat the process by which hadrons 

are created out of the quarks and gluons coming out of the subprocess collision, 

known as "hadronization" or "fragmentation". Hadronization, too, is not readily 

calculable in perturbative QCD. 

The partons taking part in the subprocess collision may be quarks, antiquarks, 

or gluons. The proton is composed of three "valence" quarks (two up quarks and 

a down quark), and gluons, the particles that mediate the strong force that holds 

the proton together. Gluons may split into virtual quark-antiquark pairs, so, in 

addition to the up and down quarks, the proton contains a "sea" of virtual quarks 

and antiquarks, which may have any of the six flavors. Similarly, the antiproton 

is made of two anti-up-quarks and one anti-down-quark, plus gluons and a sea of 

quarks and antiquarks. 

The simplest QCD subprocesses are those that have two partons as input and 

two partons as output, the "2 - 2" processes. These include qq - qq, qij- qij, 

qij - gg, gq - gq, gij - gij, gg - qij, and gg - gg. The simplest Feynman 

graphs for these processes have quantum-mechanical amplitudes that are "second 

order" in o.s, the strong-force coupling constant. Each of these processes may 

also proceed through any one of an infinite number of more complicated graphs of 

higher order in o.s. In modeling pfi collisions, one must decide whether to include 

only the 2 - 2 processes or more complicated processes involving three or more 
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partons in the final state, and one must decide to what order in as to calculate 

the processes that one does include. 

The cross-section for each subprocess depends on the 4-momenta of the par-

tons in the initial state. The momenta of partons in protons and antiprotons are 

distributed according to functions that are characteristic of the structure of the 

proton and are therefore known as "structure functions". The proton structure 

function for a given parton depends on the flavor of the parton, the fraction x of 

the longitudinal momentum of the proton that is carried by the part on, and Q, the 

4-moment urn transfer of the subprocess. These functions are measured in deep-

inelastic lepton-hadron scattering experiments. It is difficult to measure structure 

functions at small x, so the measured functions must be extrapolated to very small 

x. The way that this extrapolation is done may strongly affect predictions for min-

bias events, where the typical xis in fact small. A number of parametrizations and 

fits of structure functions are available. 

As mentioned, fragmentation is not calculable in perturbative QCD, because 

the energy scales involved are of the order of the masses of the light hadrons, 

and as is not small in this regime. So-called fragmentation functions give the 

probability of producing a hadron of a given species carrying a given fraction 

of the momentum of a given fragmenting parton. Some fragmentation functions 

have been measured in e+ e- collisions and deep inelastic lepton-hadron scattering. 

Fragmentation functions do not tell the whole story of the hadronization process, 

though, for a number of reasons-for one thing, they neglect any influence on the 

fragmentation of one parton due to other partons. For this reason, Monte Carlo 
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implementations of fragmentation models, like the Lund string model ~26] have 

been developed. 

Some of the hadrons produced by the fragmentation process will in general 

be resonances, short-lived particles that decay via the strong force into lighter 

hadrons. Many resonances decay into K~ or A, and in our analysis we have made 

no attempt to distinguish direct production of K~ and A from the production due 

to resonance decays, nor from weak or electromagnetic decays of 3, n-, or :E0
• All 

the models with which we will compare our measurements take resonance decays 

into account in one way or another. 

The fragmentation process may be thought of as a parton cascade in which 

quarks undergo bremsstrahlung and emit gluons, which turn into quark-anti-quark 

pairs, which may emit more gluons, etc. Because the strange quark is heavier than 

the up and down quarks, and other quarks are heavier still, one might expect the 

production of strange-anti-strange pairs in the cascade to be suppressed relative 

to that of up-anti-up or down-anti-down pairs, as discussed in Chapter 1. This 

suppression may be characterized by a factor A, which reflects the ratio of the 

relative probability of a gluon splitting into a strange-anti-strange pair to that for 

splitting into an up-anti-up or down-anti-down pair, or alternately, the probability 

of producing a strange quark from the vacuum relative to that of producing an 

up or down quark. Statistical quark models :27] ~28] predict the relative yields of 

K~ and charged pions in terms of A, including the effects of resonance decays~ and 

we can estimate this ratio from our measured spectra and calculate ). using the 

models. 
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11. COMPARING THE SPECTRA TO THE PREDICTIONS OF MODELS 

In this chapter, we compare some of our measurements to the predictions of 

several models of pp collisions, including a simple QCD-based model by Ellis and 

Stirling and two of the Lund Monte-Carlo programs-Pythia and Fritiof. All the 

models we discuss here have been implemented as computer programs. Two of 

them, Pythia and Fritiof, have many adjustable parameters, and we will note in 

each case the values to which the most important variables were set. The data set 

with the most statistical power to make such comparisons meaningful is our 1800 

GeV K~ data. 

11.1 The QCD- based Model of Ellis and Stirling 

S.D. Ellis and W.J. Stirling have prepared a program [29] that implements a 

very simple QCD-based model of pp interactions. This program does a Monte-

Carlo integration convolving first-order QCD 2 ---? 2 cross sections with structure 

functions and fragmentation functions to produce inclusive hadron spectra. \Ve 

have run the program with Aqcn = 0.2 GeV, with the q2 scale set to the p} of the 

parton subprocess, MRS set 2 structure functions (BCDMS fit, Aqcn = 0.2 GeV, 

"soft" gluon structure functions) [30] and Owens fragmentation functions [31]. In 

Fig. 11.1, the solid curve is the power-law fit to our 1800 GeV K~ data, and the 

stars are the results from the program. The vertical scatter of points from the 

Ellis/Stirling program gives an indication of the statistical uncertainties involved 
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A fit to our 1800 Ge V K~ spectrum and predictions of a QCD- based model of Ellis 
and Stirling with MRS set 2 structure functions. 

in the Monte Carlo integration. The program gives results that are systematically 

lower than our data at high pr, which in part may be attributed to the fact that 

first-order QCD matrix elements are used, but, except perhaps at low pr, the shape 

is predicted rather well. \\·e have run the program with several different sets of 

structure functions; the results of using MRS set 1 (EMC fit, AQcD = 0.1 GeV) 

and EHLQ set 1 [32] are representative and are shown in Figures 11.2 and 11.3. 

Figure 1.4 shows the ratio K~ / ( ( h-+ +h-) /2) as a function of PT for our 1800 Ge V 

data and for the Ellis/Stirling program run with MRS set 2 structure functions. 

Again, the vertical scatter of the Ellis/Stirling points can give us a feeling for the 

size of the statistical errors. The Ellis/Stirling program predicts that the ratio 

should be fairly constant with pr, with an average value of 0.15 or so, which is not 

inconsistent with our data. 
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A fit to our 1800 GeV K~ spectrum and predictions of a QCD-based model of Ellis 
and Stirling with MRS set 1 structure functions. 
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Comparison of our 1800 Ge V K~-to-charged-hadron ratio versus predictions of a 
QCD-based model of Ellis and Stirling. 

Unfortunately, the program as supplied to us did not include fragmentation 

functions for A, so we are unable to make a comparison to our A data. 

11.2 The Pythia Monte Carlo Program 

Rather than doing a Monte Carlo integration to calculate inclusive cross sec-

tions, the Pythia [33] program uses Monte Carlo techniques to generate individ-

ual events. The output for an individual event consists of a list of the particles 

produced, including their species and momenta. Short-lived resonances produced 

are decayed randomly according to correct branching fractions and kinematic dis-

tri butions, so that the output particle list includes both directly- and indirectly-

produced K~ and A. VIe select events that pass the same trigger and event-selection 

applied to our real data sample. 
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Pythia uses the lowest-order QCD 2 --t 2 cross-sections, and includes initial- and 

final-state radiation using a parton-cascade approach. Fragmentation is modeled 

via the Lund String Model [26], as implemented by the JETSET fragmentation 

routines [34]. Pythia includes a framework [35] for generating collisions where 

more than one parton-parton collision takes place. In addition to hard-scattering 

processes, Pythia can also generated single-diffractive and double-diffractive events. 

The Pythia program has many options for the user to chose from. We have 

chosen a set recommended in Ref. [35], as follows: We have set the PT lower limit 

for hard-scattering processes at 2.0963 GeV for ..jS = 1800 GeV and 2.0123 GeV 

for ..jS = 630 GeV, as recommended in Ref. [35]. These same values were used for 

the PT cutoff for multiple interactions. In order to simulate the effects of higher-

order QCD subprocesses, a prescription of Ellis and Sexton [36] was used, in which 

as is evaluated at a q2 value that is a constant fraction of the actual subprocess 

q2 • For the multiple-interaction scenario, we selected a double-Gaussian matter 

distribution inside the proton and antiproton. 

The K~ spectrum generated in this way is shown m Fig. 11.5, along with a 

fit to our 1800 GeV data. In this and the next several figures, the error bars on 

the Pythia predictions indicate statistical uncertainties due to the finite size of 

the Pythia event sample used. Pythia predicts the shape of the spectrum rather 

well, but predicts a somewhat higher cross-section at high PT than is indicated 

by the fit. Referring to Fig. 8.1, however, we note that the error bars in our 

data at high PT are considerably larger than the differences between Pythia results 

and the fit. Figure 11.6 shows the Pythia prediction for the sum of the A and 
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Comparison of our 1800 Ge V K~ cross section to the predictions of the Pythia 
Monte Carlo program. 

A cross-sections, along with our 1800 GeV data. Again, the Pythia predictions 

match the data fairly well. Figure 11.7 shows the K~-to-charged-hadron ratio as a 

function of PT· Near PT = 1 GeV, the Pythia results are higher than our data by 

several standard deviations, both because the Pythia prediction for the K~ cross 

section in this region is somewhat higher than in our data and because the Pythia 

charged-hadron cross section is somewhat lower than the CDF result of Ref. [14). 

11.3 The Fritiof Monte Carlo Program 

The Fritiof Monte Carlo program [37) [38] [39] [40} is based on the similarity 

between the confined color force field of QCD and a vortex line in a Type II 

superconductor. In this picture, when hadrons collide, the overlap of the color fields 

generates many disturbances and excitations, and the hadrons exchange momenta 
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through many low-energy collisions between field quanta. The version of the Fritiof 

program that we use has been extended to treat hard interactions by treating the 

largest of the momentum transfers as conventional parton-parton collisions, which 

are then treated as in Pythia. Fritiof has no user-adjustable parameters. 

The predictions of the Fritiof program are compared to a fit to our 1800 GeV 

K~ spectrum in Fig. 11.8. We see that Fritiof predicts cross-section values that 

are as much as a factor of 2 higher than our fit, and that the shape of the Fritiof 

prediction diverges from our fit even at moderate PT values. In Figure 11.9, we see 

that Fritiof predicts a much larger A plus .\ cross sections than our data indicate. 

Figure 11.10 shows the ratio, as a functio& of pr, of the K~ cross section to that for 

charged hadrons. Like Pythia, near PT = 1 Ge V Fritiof predicts ratio values higher 

than our data by several standard deviations, both because the Fritiof prediction 

for the K~ cross section in this region is somewhat higher than in our data and 

because the Fritiof prediction for the charged-hadron cross section is somewhat 

lower than the CDF result of Ref. [14]. 
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12. MEAN PT, CENTRAL RAPIDITY DENSITIES, AND THE 

STRANGENESS-SUPRESSION FACTOR 

110 

There are several quantities of physical interest that must be computed by eval-

uating integrals involving the PT spectra over all PT· These include the the central 

rapidity densities PK(O) = dNK~Jdy iy=O and PAX(O) = dNAJdy iy=O + dN.i,.jdy iy=O 

and the mean value of transverse momentum < PT > for K~ and for A. In addi-

tion, particle ratios like K Jr. may be deri-ved from the rapidity densities, and the 

strangeness-suppression factor A may be derived from particle ratios, as described 

in Appendix E. 

Since we do not measure the spectrum below 0.7 GeV, we must extrapolate. 

\\rhile we cannot distinguish among the several functional forms that we have fit to 

our 1800 Gc V K~ data based on x2 alone, CDF data on charged-particle production 

at 1800 GeV [14] favor the power-law form. \\Te will thus assume that the spectrum 

behaves according to our fitted power-law above some PT value, and according to 

some function of our choice below this value, and we will demand continuity of 

function and of slope at the transition point. We have a great deal of freedom in 

our choice of the function to use below the cutoff. For that matter, the transition 

between the power-law and the other functional form need not be precisely at the 

edge of our measurement range. 

Measurements of inclusive particle spectra in hadron collisions usually do not 
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extend to very low PT· One ISR experiment [41] that did study spectra at low PT 

found that functional form that best described the spectra was an exponential in 

transverse mass, e-lm>T, where mr = ../pr2 + m 2 ; also, UA5 data [17] on charged 

kaon production at low PT are compatible with this form. Statistical thermody-

namic models of hadron production [20] [21] also suggest that spectra should follow 

this form, which is similar to a thermal Boltzmann distribution. It is reasonable 

to guess that the transition between e-lm>T behavior and the power-law occurs at 

a PT comparable to the mass of the particle involved. 

12.1 Extrapolating the K~ Spectrum 

For the 1800 GeV data fitted with the Gaussian fitting algorithm, Table 12.1 

shows values of < PT > and PK(O) calculated using various extrapolations. Table 

12.2 shows values of). calculated in two different models (see Appendix E) using 

these extrapolations. The tables include values of< PT >, p(O), and ). obtained 

when we assume an exponential in PT below 0.4 GeV and when we assume that the 

power-law itself holds all the way to PT = 0. ).1 denotes the strangeness-suppression 

factor calculated in the model of Anisovich and Kobrinsky [27], while >. 2 indicates 

the result of the model of Shekhter and Shchlegova [28]. \Ve have deliberately not 

rounded any of the numbers to the proper number of significant figures, so that 

trends are more obvious. Moving the transition point over the fairly generous range 

0.1 GeV to 0.7 GeV changes< PT >by roughly 3u and p(O) by roughly 2u, where 

u is the statistical error. If instead we look at a range centered at the K~ mass 

and extending 200 MeV to either side, we find that < PT > changes by about 1.5u 

and p(O) changes by roughly 1u. These variations can be taken as an estimate of 
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the systematic-errors due to the extrapolation. 

One way to convince ourselves that a transverse-mass extrapolation with a 

transition point near the K~ mass is valid is to look at the spectrum from some 

Monte-Carlo program. We have generated some .JS = 1800 GeV minimum-bias 

events using Pythia, with parameters set up as recommended in [35] and described 

in Section 11.2. We selected events according to the same criteria used in the 

real-data analysis, and generated a spectrum for K~ with IYI < 1 for all PT· We 

then derive < PT > and p(O) directly from the complete Pythia kaon data, and 

compare the result with what we get when we cut the spectrum at 0.7 GeV, fit 

it with the power-law form, and use the mT extrapolation with various values for 

the transition. Table 12.3 shows the results. It appears that our analysis, when 

applied to Pythia events, gives values for < PT > and p(O) that are consistent with 

their "true" values, within errors. 

U A5 uses the mT extrapolation, with the transition point at 0.4 Ge V. If we 

choose that extrapolation, too, comparisons with UA5 results will be more direct. 

12.2 Extrapolating the 630 Ge V K~ Spectrum 

The statistical uncertainties on our K~ spectrum at fi = 630 Ge V are large 

enough that statistical uncertainties on extrapolated quantities are much larger 

than systematic errors. Therefore, we use the mT exponential form below PT = 0.4 

GeV for the results shown in Table 12.4. 

12.3 Extrapolating the K~ Spectra for Different Multiplicity Ranges 

Using the fit results of Table 9.4 for the K~ spectra in the three multiplicity 
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Table 12.1 

Effects of Choice of Extrapolation on< PT >K~, PK(O), and Kj1r. 

Extrapolation < PT >K~ (GeV) / PK(O) I K/1r 

e-lnnT below 0.1 GeV 0.557 ± 0.028 0.290 ± 0.039 0.123 ± 0.019 
-

e-~T below 0.2 GeV 0.566 ± 0.028 I 0.285 ± 0.038 0.131 ± 0.018 

e-lnnT below 0.3 GeV 0.583 ± 0.028 0.125 ± 0.018 I o.275 ± o.o36 
I 

e-lnnT below 0.4 Ge V 0.603 ± 0.027 l 0.262 ± 0.033 0.119 ± 0.016 

e-lnnT below 0.5 Ge V 0.625 ± 0.027 0.248 ± 0.030 0.112 ± 0.015 

e-lnnT below 0.6 Ge V 0.648 ± 0.027 0.233 ± 0.028 0.105 ± 0.014 

e-lnnT below 0.7 GeV 0.672 ± 0.025 0.219 ± 0.025 0.0979 ± 0.0123 

power law for all Pt i 0.555 ± 0.029 I 0.292 ± 0.039 0.135 ± 0.019 

I 
e-bpT below 0.4 Ge V / 0.568 ± 0.028 0.283 ± 0.037 0.130 ± 0.018 
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Table 12.2 

Effects of Choice of Extrapolation on ).1 and ).2 • 

' 
Extrapolation ).1 ).2 I 

I I 
e-bmT below 0.1 GeV I 0.43 ± 0.07 0.40 ± 0.05 

-
e-bmT below 0.2 Ge V 0.42 ± 0.07 0.39 ± 0.05 

e-bmT below 0.3 GeV 0.39 ± 0.06 0.38 ± 0.05 

e-bmT below 0.4 Ge V 0.38 ± 0.06 0.35 ± 0.05 

e-bmT below 0.5 GeV 0.35 ± 0.05 0.33 ± 0.04 

e.-bmT below 0.6 GeV 1 0.33 ± 0.05 0.31 ± 0.04 
I 

e-bmT below 0. 7 Ge V I 0.31 ± 0.04 o.28 ± o.o3 1 

I 

1 0.43 ± 0.071 0.41 ± 0.05 I power law for all Pt 

e-bpT below 0.4 GeV 0.41 ± 0.06 0.39 ± 0.05 i 
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Table 12.3 

mr Extrapol,ation vs Direct "measurement" for Pythia K~ at 1800 GeV 

Direct "measurement" < PT >Ko (GeV PK(O) . 
0.606 ± 0.009 0.233 ± 0.003 

Extrapolation 

e-bmT below 0.1 GeV 0.579 ± 0.027 0.309 ± 0.015 

e-bmT below 0.2 Ge V 0.589 ± 0.025 0.304 ± 0.014 

e-bmT below 0.3 Ge V I 0.605 ± 0.025 0.294 ± 0.013 I 
I 

e-bmT below 0.4 Ge V I 0.625 ± 0.025 0.281 ± 0.012 I 
i 
1 e-bmT below 0.5 GeV I 0.647 ± 0.025 0.266 ± 0.011 

e-bmT below 0.6 GeV 0.671 ± 0.025 0.252 ± 0.009 

e-bmT below 0.7 GeV 0.694 ± 0.025 0.237 ± 0.008 

I power law for all Pt I 0.578 ± 0.026 1 0.311 ± 0.015 

e-bpT below 0.4 Ge\l I 0.591 ± 0.025 1 0.302 ± 0.014 I 
I 

Table 12.4 

Results of extrapolating the K~ spectrum at 630 GeV using an exponential in 
transverse mass below pr = 0.4 GeV and the power-law above. 

l < Pr >K~ (GeV) I I 
PK(O) Kj-:r ). I 

I 
0.5 ± 0.1 1 0.2 ± 0.1 0.06 ± 0.03 0.17 ± 0.091 
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ranges, we have applied the mT extrapolation with the transition at 0.4 GeV to 

compute < PT >, p(O), the Kj1r ratio and the strangeness-suppression factor. 

Tables 12.5 and 12.6 show the results. 

Table 12.5 

Extrapolated quantities for 1800 GeV K~ data from various VTPC multiplicity 
ranges 

VTPC multiplicity range < PT >K~ (GeV) PK(O) K/7r 
I 
! 

4-14 0.49 ± 0.06 i 0.14 ± 0.04 0.18 ± 0.05 
I 

15-27 0.57 ± 0.04 i 0.20 ± o.o51 0.12 ± o.o3 

~ 28 0.63 ± 0.04 0.46 ± 0.08 0.12 ± 0.02 

Table 12.6 

.>t for 1800 GeV K~ data from various VTPC multiplicity ranges. 

VTPC multiplicity range AI .>t2 I 
4-14 0.6 ± 0.2 0.6 ± 0.2 I 
15-27 0.4 ± 0.1 0.39 ± 0.08 

~ 28 0.36 ± 0.07 0.35 ± 0.06 
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12.4 Extrapolating the A plus A Spectrum 

Tables 12.7 and 12.8 show the results of a number of possible extrapolations of 

the A plus A spectrum. The ratio A/ K is defined as PAX (0)/(2pK(O)), where we use 

the value of PK(O) obtained using the power-law above, and the mr exponential 

extrapolation below, PT = 0.4 GeV. The quantitity Ph+ +Ph- in the denominator 

of the lambda-to-charged-hadron ratio PAl..! Ph+ + Ph- is the sum of the central 

rapidity densities for positive and for negative charged hadrons, as determined 

from the CDF single-charged-particle data [14), and is equal to 4.86 ± 0.08. A3 is 

the strangeness-suppression factor calculated from the ratio PA!i.l Ph+ + Ph- in the 

model of Anisovich and Kobrinsky [27]. In the table, the power-law fit to the A/ A 

is used above the PT transition, except where noted. 

12.5 Comparison with Lower-Energy Data 

Clearly, the values of < PT >, p(O), and A are depend on the ways that the 

spectra are extrapolated. In what follows, the K~ results we will present will 

assume that the cross-section follows the fitted power-law above PT = 0.4 GeV, 

and follows the form e-bmT below this point; the transition point is chosen at 0.4 

GeV because putting it there gave a good fit to UA5 kaon data [17]. The A results 

we will present will make the same assumptions, except that we will assume that 

the transition between power-law and e-lwnT behavior occurs at PT = 1.1 GeV; 

we have placed the transition point arbitrarily, guessing that the transition point 

should be near the A mass, since UA5 found that putting the transition point in 

the neighborhood of the K~ mass gave acceptable fits. 

We find that for the 1800 Ge V data, with the extrapolation described above, 
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Table 12.7 

Effects of choice of extrapolation on< PT >A.A' and PA.A(O). 

Extrapolation I < PT >A.A (GeV) PA.A(O) I 
e-lnnT below 0.8 0.72 ± 0.07 0.13 ± o.o5 I 

-
e-lnnT below 0.9 0.74 ± 0.07 i 0.12 ± 0.05 

e-bmT below 1.0 0.77 ± 0.07 0.11 ± 0.05 I 
e-bmT below 1.1 0.79 ± 0.08 0.11 ± 0.04 

e-lnnT below 1.2 0.82 ± 0.09 0.09 ± 0.04 I 

e-lnnT below 1.3 0.84 ± 0.08 0.09 ± 0.03 

e-bmT below 1.4 0.86 ± 0.08 0.09 ± 0.03 
I 

I 
I 

power-law for all PT 0.58 ± 0.07 0.18 ± 0.08 

e -bPT for all PT 1.0 ± 0.1 0.06 ± 0.02 
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Table 12.8 

Effects of choice of extrapolation on the ratios (A+A)/(2K?) and (A+A)/(h+ +h-). 

-\ 
Extrapolation A/K I (A + A) I ( h + + h- ) I I ).3 

e-bmT below 0.8 
I ~~7 0.25 ± 0.10 0.027 ± 0.010 

e-bmT below 0.9 0.23 ± 0.09 0.025 ± 0.010 I -L 0.17 ....L 0.06 

e-bmT below 1.0 0.21 ± 0.09 0.023 ± 0.010 0.16 ± 0.06 

e-bmT below 1.1 0.21 ± 0.08 0.023 ± 0.008 0.16 ± 0.05 

e-bmT below 1.2 0.17 ± 0.08 0.019 ± 0.008 0.13 ± 0.05 

e-bmT below 1.3 0.17±0.06 0.019 ± 0.006 0.13 ± 0.04 

e-bmT below 1.4 0.17 ± 0.06 0.019 ± 0.006 o.13 ± o.o4 1 

power-law for all PT I 0.35 ± 0.16 0.037 ± 0.016 
I i 0.04 ± 0.02 
I 

e-bPT for all PT 0.12 ± 0.04 0.012 ± 0.004 0.08 ± 0.02 
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31% of the cross-section for K~ lies above 0.7 GeV, which is where our K~ can-

didates are. In other words, about 1/3 of our p(O) value comes from the part of 

the cross-section that we can actually measure. Similarly, with the extrapolation 

described for the A spectrum, the portion of the total A cross section in jyj < 1 

that lies above PT = 1.3 GeV, which is where our A candidates lie, is 21%. 

12.5.1 Mean Transverse Momenta forK~ and A 

Figure 12.1 shows the behavior of < PT > for K~ as a function of ..jS. The 

UA5 points shown are from Refs. [17] and [22]. Our 1800 GeV point is similar to 

the UA5 result at 900 GeV, and combined with the UA5 and CERN Intersecting 

Storage Rings (ISR) results, it strongly suggests that < PT > for K~ increases 

more rapidly than linearly in ln s. 

Figure 12.2 shows the behavior of < PT > for A and A versus ..jS. The lower-

energy data shown are from Refs. [42], [43], [44], and [45], and the other point 

at 1800 GeV is from Ref. [46]. Our result is very close to the result from the CO 

experiment [46] at the Tevatron Collider. 

12.5.2 Particle Production Ratios 

We calculate the particle production ratios based on the central rapidity densi-

ties of the particles in question. The central rapidity density PK(O) forK~ is shown 

as a function of ..jS in Fig. 12.3, where the UA5 data are from Refs. [17] and [22]. 

The data shown are consistent with a rise in PK(O) that is linear in ln s. 

The K j1r ratio is shown versus ..jS in Fig. 12.4. The lower-energy data shown 

are from Refs. [47], [17], and [22]. It should be noted that the lower-energy 
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results are based on particle yields in all· phase space, while ours are based only 

on production in the central region, as outlined in Appendix E. The data shown 

suggest a slow linear rise of K j1r with vfs, but they are also consistent with no rise 

at all. 

Figure 12.5 shows the A-to-charged-hadron ratio as a function of Js. The 

lower-energy data are from Refs. [48], [44], and [45], while the other 1800 GeV 

point is from Ref. [46]. Here again, the data shown suggest a slow rise but are 

also consistent with no rise at all. The ratio (A+ A)/(2K~) is shown versus vfs in 

Figure 12.6, along with data from Refs. [42], [43], [44], and [45]. In both figures, 

the reader must bear in mind that the systematic error on our value of PA(O) is 

very large, implying large systematic errors on both particle ratios. 

12.5.3 The Strangeness-Suppression Factor 

Our value for >., the strangeness-suppression factor calculated from our K/1r 

ratios using the model of Ref. [27] (see also Appendix E) is shown in Figure 12. 7. 

The lower-energy data also shown are from Refs. [17], [22], and Ref. [49] and 

references therein. Above v'S"" 10 GeV or so, the data are consistent with>. being 

constant. Malhotra and Orava [49] have done an extensive study of the strangeness-

suppression factor in many types of high-energy interactions, over a large range of 

effective subprocess energies .;sdf. In Figure 12.8 we have plotted their data for 

hadron collisions, along with our own data and U AS results from Refs. [17] and 

[22]. For our data and UA5's, we have calculated yf.Sdf using the relation used by 

Malhotra and Orava for pp collisions, yf.Sdf = O.llvfs. Again, after a rapid turn-on 

below .;s;ff ....... 1 GeV, the data are consistant with >. having a constant value, 
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independent of ..fS. Malhotra and Orava, using a somewhat different data set than 

that shown, obtain a "world value" of). = 0.29 ± 0.02. VVhen we calculate). from 

the K j1r ratio that we get with the e-lwnT extrapolation with the transition point 

at PT = 0.4 Ge V, we find ). = 0.38 ± 0.06, which is 1.5u higher than the world 

value. On the other hand, while when we calculate >. using the value of the ratio 

(A+ A)/(h+ +h-) that we get with the e-lwnT extrapolation with the transition 

at PT = 1.1 GeV, we find ). = 0.16 ± 0.05, which is lower than the world value by 

roughly 3u. 
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13. SUMMARY OF CONCLUSIONS 

We summarize here some highlights of the results presented in the preceding 

chapters. 

• \Ve have measured the inclusive PT spectra for K~ in pji collisions at .JS = 

630 and 1800 GeV, and of A/A at .JS = 1800 GeV. 

• At .JS = 1800 GeV, the ratio, as a function of pr, of the invariant cross 

section for K~ production to the invariant cross section for charged hadron 

production is very similar to results obtained at much lower .JS, suggesting 

that the shape of this ratio curve may be independent of .JS. 

• We have estimated < PT > KO = 0.5±0.1 Ge Vat .JS = 630 Ge V and 0.60±0.03 . 
GeV at .JS = 1800 GeV, values which are consistent with the ones obtained 

by the UA5 collaboration [17] [22] at .JS = 546 and 900 GeV, respectively. 

Our estimate of < PT >AX= 0. 79 ± 0.08 at .JS = 1800 Ge V is very close to 

the result obtained by the CO collaboration [46] at the same c.m. energy. 

• We have determined PK(O) = 0.2 ± 0.1 at .JS = 630 GeV and PK(O) 

0.26 ± 0.03 at .JS = 1800 GeV, values which are also similar to UA5 results 

[17] [22] at .JS = 546 and 900 GeV, respectively. We have calculated the 

Kj1r ratio to be 0.06 ± 0.03 at .JS = 630 GeV and 0.11 ± 0.01 at .JS = 1800 

GeV. 

• Using our K~ data, we have estimated the strangeness-suppression factor 
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). = 0.17 ± 0.09 at yfs = 630 GeV and ). = 0.38 ± 0.06 at Js = 1800 GeV, 

values which are consistent with the "world value" of Malhotra and Orava 

[49] of 0.29 ± 0.02. The value ). = 0.16 ± 0.05 that we calculate from our 

(A- A/(h+ +h-) ratio at Js = 1800 GeV, is, however, about three standard 

deviations smaller than the world value. 
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Appendix A: Vertex Algorithm Pseudo-Code 

NTRY = 1 

CHIOLD = 999999. 

RV = 0. 

count the number of iterations 

initialize for later convergence check 

starting vertex radius is 0 

TOP: Do Non-Steering Fit, get CHI2 and NEWRV 

c 

c 

IF (CHI2.GT.1000) THEN ! fit obviously not converging 

GOTO OUT_OF_LOOP 

END IF 

NTRY = NTRY + 1 

IF (NTRY.GT.10) THEN 

GOTO OUT_OF_LOOP 

END IF 

DLTCHI = CHIOLD - CHI2 

IF (DLTCHI.LT.0.1) THEN 

GOTO OUT_DF_LODP 

ELSEIF (DLTCHI.LT.O.) THEN 

RV = 0.5*(NEWRV+OLDRV) 

limit number of iterations 

check change in chi**2 

vs last pass 

convergence criterion 

fit may be oscillating 

damp by averaging radii 

with that of last iter. 

Protect from cases where pair appears to intersect 



C at a point outside the chamber, ~hich is a symptom 

C of a diverging fit 

c 

IF (RV.GT.(CHAMEER RADIUS)) THEN 

GOTO OUT_OF_LOOP 

END IF 

CHIOLD = CHI2 

GOTO TOP 

ELSE 

OLDRV = NEWRV 

do another iteration 

IF (NEWRV.GT.(CHAMEER RADIUS)) THEN 

GOTO OUT_OF_LOOP 

END IF 

CHIOLD = CHI2 

GOTO TOP 

END IF 

do another iteration 
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OUT_OF_LOOP:IF((CHI2/NDOF).LE.S.).AND. (RV.LT.(CHAMBER RADIUS)))THEN 

Do Steering Fit, get CHI2_STEERING 

IF ((CHI2_STEERING/NDOF).GT.5) THEN 

NOT an acceptable vertex 

ELSE 

Acceptable Vertex 

END IF 

ELSE 

NOT an acceptable vertex 

END IF 
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Absolute value of impact parameter (in ern) for found K~ daughters-simulation 
(top) versus real data (bottom). The distributions have been cut off at 0.2 ern. 
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PT of found K~ daughters-simulation (top) versus real data (bottom). 
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Figure B.6 

Uncorrected K~ mass (in Ge V) for found simulated K~ (top) versus all real-data 
track pairs passing cuts (bottom). 
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x 2 of vertex fit for K~ candidates-simulation (top) versus real data (bottom). 
The distributions have been cut off at 5. 
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PT for K~ candidates-simulation (top) versus real data (bottom). 
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Figure B.9 

Rapidity (y) of K~ candidates-simulation (top) versus real data (bottom). The 
distributions have been cut off at ±1. 
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Appendix C: Error Propagation 

This appendix describes and provides formulae for the propagation of errors for 

various stages of the K~ analysis. The same techniques and formulae were applied 

in the A/ A analysis. 

C.l Calculating Errors for the PT Spectrum 

As described in 6, every K~ candidate is assigned a weight which is the recip-

rocal of the efficiency evaluated at the PT of the candidate and the CTC charged 

multiplicity of the event in which the candidate was found. Weights. are also as-

signed to each background track-pair in thP same way. 

Consider a single bin in PT· Let a be tne sum of the weights for all the pairs 

in the bin that meet all the geometrical cuts and fall within the K~ mass window: 

schematically, 

where the subscript SB indicates that the K~ mass window includes some signal 

and also some background. Let b be the sum of the weights for all pairs that meet 

all the geometrical cuts but fall within one of the background mass windows: 

b = :LwB. 

The number of K~ in the bin, corrected for efficiency and for background contam-

ination, is 

where the 1/2 reflects the fact that each of the two background windows is just as 

wide as the K~ mass window. 
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The squared error on a is 

and the squared error on b is 

The squared error on Nct:n' .. is then 

2 2 1 2 
(jN = (ja + -(jb • 

COO'P 4 

To get from Nct:n' .. to the value of the invariant cross-section for the bin, we need 

to multiply by a number of constant factors: 

where BR is the branching ratio forK~ --+ 7r+7r-, UeJJ is the effective cross-section 

value we normalize to, Nev is the number of events in the data sample that meet 

our event-selection requirements, D.y is the rapidity interval to which we restrict 

ourselves, D.~ is 2;r, PT is the center of the bin, and dpr is the bin width. To get 

the error on the cross-section value, we multiply UN by the same constants: 

C.2 Lifetime Plot Corrected via Fixed-Lifetime Simulation Files 

C.2.1 The Correction Technique To correct the lifetime distribution, one may 

simulate samples of K~ whose lifetime is fixed and whose pris randomly distributed 

according to the spectrum we measure; one then fits the efficiency as a function 

of tjr and NcCf.TC, and assigns a weight separately to each pair in the K~ mass 

window and to each pair in the background windows. As in the PT case, the 

weighted background is subtracted from the weighted signal. 
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C.2.2 _Error Propagation Since the correction technique is essentially similar to 

the method used for the PT spectrum, the error propagation proceeds along similar 

lines. Let a, b, and NcOf'P'' be defined as above, where it is understood that the 

bin we're talking about is now a bin of the tjr histogram, rather than the PT 

histogram. Then the above expressions for ua, U&, and O"Nco?? still hold. Now, in 

order to convert NcOf'.,. into t::J.Njt::J.(tjr), we must divide by the bin width, D.(t/r): 

D.N 
t::J.(tjr) 

so the error on the above quantity is simply 

D.N 1 
u(~(tjr)) = ~(tjr)O"Nco?r" 

C.3 Lifetime Plot Corrected via Spectrum Simulation Files 

C.3.1 The Correction Technique In another technique for correcting the lifetime 

plot, we base the corrections on a single large sample of simulated K~ with PT dis-

tributed randomly according to our measured spectrum. After pattern-recognition 

and cuts have been applied to these simulated K?, the number in each t/r bin is, 

apart from a normalization factor, the efficiency for finding K? that fall in that 

bin. In this case, we generate 3 UNweighted histograms of tjr: one for pairs in 

the K~ mass window, one for pairs in the background windows, and one for the 

simulated K~. We subtract, bin by bin, the background histogram from the signal-

plus-background histogram, and divide the result, bin by bin, by the histogram for 

the simulated K~. 

To see how this method works, consider the following argument. Let Ns be the 

corrected number of K~ in a given tjr bin, after background-subtraction. Then 
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the corrected number of K~ in that bin is 

where epsilon is the efficieny for that bin. If N.im is the number of K~ that were 

simulated that fell in this bin, and Nfn.d is the number of the simulated K~ in this 

bin that were found, then 

and 

Now, since the simulated sample was generated according to the correct lifetime 

distribution, N.;m is, apart from statistical fluctuations, simply related to N;,.;;,.T, 

the number of K~ in the entire simulated sample: 

N. = NTOT e-(tj-r) 
atm 61m , 

so 

N = NTOT e-(t/"r) Ns 
C01",. 617'71 N . fn.d 

Now, if the technique we use to get efficiencies is correct, NsfNJn.d should be 

the same in all bins, and the corrected lifetime distribution ought to follow an 

exponential in tjr. For simplicity, in generating the lifetime plot, we drop the 

overall normalization N;,.;;,.T. 

C.3.2 Error Propagation In this case, we are dealing with unweighted his-

tograms. Again, consider a single bin in the tjr histogram. Let NsB be the 

number of real-data V 0 's in the bin that meet all geometrical cuts and fall in the 
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K 0 mass window· then . ' 

u1ss = NsB· 

Let N B be the number of pairs in the bin that meet all geometrical cuts and fall 

in the background bins; then 

Let Ns be the of K~ after background subtraction (but before correction for effi-

ciency); then 

and 

Let N•im be the number of simulated K~ in the bin that met all cuts. Then the 

number of K~ in the bin, corrected for efficiency and background contamination, 

is 

and the squared error on Ncar .. is 

Again, we must divide by the bin width to convert to dN/d(tfr): 

Ll]\' 
Ll(tjr) 

so the error on the above quantity is simply 

LlN 1 
u( fl(tjr)) = fl(tjr) O"Ncor .. • 
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.. Appendix D: Fitting Algorithms 

D.1 The Fit Using Gaussian Errors 

In this algorithm, we treat the errors on the cross-section points as if they were 

Gaussian. The derivation of the errors on the cross-section points is described in 

Appendix C. However, if we were to compare the invidual cross-section values 

with the trial function, we'd have to correct the bin centers to account for the fact 

that the spectrum falls steeply. In order to avoid this, we define our x2 in terms 

NfM", the number of corrected K~ in each bin. \Ve compare this number with the 

number of K~ in the bin predicted from f(PT ), the trial function that's supposed 

N ea:pected _ BRNevf:l.yf:lif> jJ( ) d 
i - PT PT PT, 

Uejj i 

where BR is the branching ratio forK~ ~ 7r+7r-, UeJJ is the effective cross-section 

value we normalize to, Nev is the number of events in the data sample that meet 

our event-selection requirements, t::.y is the rapidity interval to which we restrict 

ourselves, .6.if> is 21r, and the subscript i on the integral is understood to indicate 

integration over the ith bin. 

The x2 is then 

where ufc ...... is determined as discussed in Appendix C. As in the other fitting 

algorithms, we use the MINUIT minimization package [50] to minimize the x2 • 

D.2 The One-Dimensional Poisson Fit 

This algorithm is due to Virgil Barnes. 
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There are a number of compromises _that-must be faced if one wants to do a 

fit with a Poisson likelihood function. In the Gaussian fit, we compare Ntw" to 

the number of K~ expected based on the trial function, but NfOf'" is the result of 

subtracting a weighted background from a weighted signal, so it obviously doesn't 

fluctuate according to Poisson statistics. The quantities that do fluctuate Poisso-

nianly are NisB, the raw, uncorrected number of K~ candidates found in each bin 

(including both signal and background) and NiB, the raw, uncorrected number of 

pairs in the background windows in a each bin of the PT distribution. 

Because we have no way of defining a Poisson mean for the background, we 

neglect statistical fluctuations on the background. Also, in order to get to a number 

that follows Poisson statistics, we must remove the effects of the weighting; this 

requires averaging somehow over the multiplicity-dependent part of the weighting 

function. In this algorithm, this averaging is done by dividing the amount of 

expected signal+ background in each bin by the contents of the corresponding bin 

of the weighted signal+ background histogram. The algorithm proceeds as follows: 

1. We obtain an average weight (let's call it vFlB) for each bin by dividing the 

weighted signal+background histogram by the unweighted version. 

2. We integrate the cross-section function over the bin, and multiply by the 

necessary constants to get the expected number of K~ in that bin. We'll call 

this number N;":zpected. 

3. We get the number of background events expected in each bin, weighted ac-

cording to the K~ efficiency function, directly from the weighted background 

histogram. We'll call this number NiWB, and in what follows, we'll assume 
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that the division· by 2 (to account for the relative size of the background 

window) hasn't been done yet. 

4. We define a likelihood function which is the following product of probabilities: 

NWB 
L = II P(N~:I:p = ur.SB N~B - _i -). 

. 1 1 1 2 
1 

We can rewrite this as follows: 

NWB 
(Nt:~:p + -'-z-) 

L = rr P(N1~B = SB ). 
lV· 1 

We then assume that NiSB fluctuates according to Poisson statistics, with 

mean 
NWB 

( N1~:I:P + ~2 ) 
IL~B = ~----~~--,-, - W.SB 

• 

and write a log-likelihood function 

or 

C = 'N~B ln u 5B - "~B - ln N 5B !. L...- a ra ,.-, 1 , 

and we use l\UNUIT to maximize it (by minimizing its negative). 

In order to derive something resembling a x2 for this fit, we must multiply the 

likelihood function by 2, and we must insure that our "x2 " is 0 when the trial 

function passes exactly through all the points, so we define our x2 as follows: 

Since J.LfB is not necessarily an integer, we replace J.LfB! by f(J.LfB + 1). 
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D.3 The Two-Dimensional .Poisson Fit 

This algorithm and its description are due to Franco Bedeschi. 

This algorithm uses the distribution of K~ candidates in two dimensions: N£TC, 

the CTC multiplicity of the underlying event, and PT· Rather than getting the 

weighted background estimate directly from the weighted background histogram, 

as in the !-dimensional fit, we fit the background separately from the cross-section 

fit in order to smooth out statisical fluctuations. In this algorithm, the variation 

in the efficiency as a function of N;J,TC is taken into account by defining separate 

efficiency functions e;(PT ), for each multiplicity bin, and convoluting them with the 

trial spectrum function. 

First, lest us specify some common notation which will be used in the the rest 

of this Appendix. Since our measurements are broken into PT bins and multiplicity 

bins it is convenient to distinguish them. In the following the subscript a will be 

used for PT bins and the subscript i for multiplicity bins. 

a. dud dpt is the differential cross section for a given associated multiplicity i; 

b. du / dpt is the overall differential cross section; 

c. J.L;_p is the expected average content of bin ai of the signal plus background 

histogram; a similar definition holds for J.L~. 

d. N!B is the content of bin ai of the signal plus background histogram; a 

similar definition holds for N~. 

e. vV~B is the average weight of bin ai of the signal plus background histogram; 

a similar definition holds for lV~. 
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f. jj will in general represent a set of--unknown parameters to be determined 

with the fit. 

g. In the following whenever referring to histogram contents summed over one 

index that index will be dropped in the notation (e.g. L.;N!;_B = N!B). 

h. The symbol fa fdpt will indicate the integral of J, the trial function for the 

spectrum, over the ath PT bin. 

1. f;(Pt) will indicate the efficiency function for the ith multiplicity bin. 

We will assume that our input data are the uncorrected contents of two 2-

dimensional histograms: that of signal plus background data and that of back-

ground only, as a function of PT and associated CTC multiplicity. It is worth 

noting that the contents of the two histograms are totally uncorrelated, since they 

contain data relative to two different mass windows. 

What we intend to do is to fit the differential cross section without making any 

special assumption about its dependence on the associated CTC track multiplicity. 

We would also like to do it in a way which is statistically sound. \Ve will start 

with a simpler example to prove that our first assumption cannot be met, and that 

however the problem can be reduced to that of finding a suitable averaging scheme. 

After this is clarified we will show the natural way to do our fit. 

D.3.1 Simplest Case Let us assume we have no background and efficiency 100% 

over the whole range of PT and multiplicity. Then the only histogram we need 

is that of the signal, with N!_ as contents. In this case we would know what to 

do without any problems: we would fit the contents summed over the multiplicity 
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index, with the.following expected averages: 

5 "" 1 dui j du J.La = AL....· -d dpt =A -d dpt 
' a Pt a Pt 

We will show that this is formally equivalent to fitting each dud dpt with the 

same functional form except for the normalization constant. 

N! log Jl.;) be the log-likelihood function, where the factorial terms have been ne-

glected since they affect neither the determination of the parameters nor that of 

their errors. By simple differentiation we can now determine the equations to be 

solved for the parameters: 

8>..j8A = 0 yields: 

A= '£af!J 
'£a fa J(8,pt)dpt 

(D.I) 

while a>..;ai = 0 yields: 

(D.2) 

D.3.3 Fitting both PT and multiplicity bins According to our previous assump-

tions about the functional form, we will define J.L;i = Ai fa f( i, Pt )dpt and, just 

for convenience of notation, A = '£iAi· We can now write a similar loglikelihood 

function to that of the previous case with the sum extended over both PT and 

multiplicity bins and calculate the derivatives with respect to the parameters i 

8>..j 8Ai = 0 yields: 

(D.3) 
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therefore 

(D.4) 

which is formally identical to the result obtained in the previous case. Differenti-

ating ). with respect to 8 yields too the same equations as in the previous case. 

\Ve can therefore state the following conclusion: 

fitting the PT dependence on a 1-D histogram obtained by summing over the mul-

tiplicity bins is formally equivalent to fitting the 2-D histogram \vith the same 

functional form for each multiplicity bin with a different constant factor for each 

multiplicity bin. The sum of these constant factors yields the same factor as that 

obtained in the 1-D fit. 

So, even if the differential cross section had a different shape for different mul-

tiplicity bins, the above conclusion gives us a prescription on how to average these 

different shapes in order to obtain the overall PT dependence from the fit. 

D.3.4 Our case \Ve can now apply what we've learned to our case. In the fol-

lowing we list the various steps needed for the fit: 

1. A fit to the background is made with any arbitrary function which gives a 

reasonable x2 ; let it be Yi(~,pt) and J.L! = faYi(a.i,pt)dpt be our estimate 

of N:i. As in the past the fitting function with the most limited number of 

parameters will be preferred. 
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2. A maximum likelihood fit to the signal plus. background histogram is made 

with the following expectation value for N!;8 : 

3. A global maximum likelihood fit to both histograms can then be performed 

after suitable starting points have been determined from steps 1. and 2. 
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Appendix E:- Calculating K /1r and the-Strangeness-Suppression Factor 

E.l The K j1r Ratio 

The "K /1r ratio" quoted above is the ratio 

where K~ stands for p(O) for K~ and 1r± stands for p(O) for 1r±. Since CDF has 

not directly measured p(O) for pions, we must calculate it from quantities that 

we have measured. We start from the CDF estimate [14] of dN / dT/ for charged 

hadrons: dNfdTI = 4.19 ± 0.09 at 1800 GeV and dN/dT! = 3.2 ± 0.3 at 630 GeV. 

For simplicity, in what follows, we will use dNh/ dT/ to represent HALF of dNch/ dT/; 

that is, dNh/dT/ is the pseudo-rapidity density for (h+ + h-)/2. 

Charged hadrons consist primarily of pions, kaons and protons: 

The number we want to calculate is dN.,.fdy, not dN.,./dT/, so we must figure out 

how to convert one to the other. Let us define the ratio 

dN .. 
_-;I;/ 

a.,.. = dN .. ' 
dY 

and aK and aP similarly. Then 

We may assume that (K+ + K-)/2 Is the same as K~. \Ve don't know what 

fraction of charged hadrons are protons and anti-protons, but we can guess (as do 

UA5 [22], based on UA2 particle-ID data [19]) that the K/p ratio is 1.48. Changing 
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this number over a reasonable range _will affect the K /1r result little, since protons 

form only a few percent of the charged hadrons. \Vith these assumptions, we may 

write 

or 

Plugging this result into our expression for the K /1r ratio, we find 

K 
dN dNKo( 1). 
~ - ~ a K + aP 1.48 

To get dNK~fdy, we use the mr extrapolation with transition at 0.4 GeV. We 

get dNh/dTJ from numbers published in [14] for dNeh/dTJ at 630 GeV and the ratio 

of dNeh / d17 at 1800 Ge V to that at 630 Ge V. 

Now we must calculate a.,., aK, and aP. Each of these numbers depends on the 

spectrum of the particles and the rapidity interval of interest, which is jyi < 1. Note 

that the difference between y and 17 is most pronounced in the low-momentum part 

of the spectrum. \Ve'll assume that all the particle spectra follow an exponential 

in transverse mass below PT = 0.4 GeV. We will assume that shape of the pion 

spectrum is the same as that for charged hadrons, that the shape of the charged 

kaon spectum is the same as that for K~, and that the shape of the proton spectrum 

is the same as that for K~. The assumption about the proton spectrum probably 

isn't right, but again, the proton contribution is small enough that a ballpark 

number for the correction is sufficient. In fact, varying the K fp ratio between 1 and 

2 changes the K/1r ratio estimate by 0.03 and the strangeness-suppression factor 
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by 0.01. Given the spectra, we use a small Monte-Carlo program to determine a.,.., 

aK and ap· The program generates pions according to their assumed PT spectrum 

and flat in y, calculates the y value for each pion, and finally calculates the ratio 

between the number of pions that fall within 1J of ±1 and the number of pions that 

we generated in jyj < 1. The same calculation is also done for kaons and protons. 

E.2 The Strangeness-Suppression Factor 

The strangeness-suppression factor A represents the ratio of the probability of 

producing a strange quark from the vacuum to that of producing an up or down 

quark from the vacuum. \Ve have used two models to calculate A; in the tables 

above, A1 indicates the value from the model of Anisovich and Kobrinsky [27j, 

while A2 indicates the value from the model of Shekhter and Shchlegova [28]. 

E.2.1 The Model of Anisovich and Kobrinsky In [27], Anisovich and Kobrin-

sky give formulas in terms of A for relative probabilities for production of various 

hadrons in the central region. They use a statistical quark model, and their calcu-

lations include the effects of resonance production and decay. In this model, the 

relative probability of producing 7r+ or 7r- is 

where 

4 + 4A + A2 

while the relative probability of producing K 0 or r is 
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Thus, we can set 

equal to the ratio of the above expressions for the relative production probabilities, 

and solve the equation for .A. The resulting equation is quite complicated, so we 

solve it numerically. The error on ). may be readily calculated ftom the error on 

The model also predicts the relative probability for producing A or A, which 

is 8..A;. Using this expression and the relative probability for producing K 0 or~ 

above, we can in principle calculate ). from our measured A/ K ratio. However, 

since both the A and the K~ contain a s-trange quark, the model's prediction of 

this ratio is only weakly dependent on )., and the dependence comes entirely from 

the contribution of resonances to the production of A and K~. Thus, this ratio 

does not provide a very sensitive way to determine ).. 

On the other hand, the ratio (A+ A)/(h+ +h-) is more sensitive to the value of 

)., since the denominator is dominated by pions, which of course are not strange. 

As noted above, in the model, the relative probability for producing A is 8).;. We 

will treat the relative probability of producing charged hadrons as the sum of the 

probabilities for producing charged pions, charged kaons, and protons. This sum 

is: 

E.2.2 The Model of Shekhter and Shchlegova In [28], Shekhter and Shchlegova 

use a somewhat more sophisticated statistical quark model than that of Anisovich 

and Kobrinsky. In particular, their model includes a parameter a which is the 
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ratio of production of S-wave and P-wave qij meson states. They recommend using 

the value a = 0.13, based on the experimental numbers of the day, and that is the 

value that we use to compute the numbers for ~2 shown in the tables. 

In this model~ the relative probability of producing 71"+ is 

9.8 + 4~ + 0.7~ 2 + (47.3 + 27.4~ + 2.7~ 2 )a, 

while the relative probability of producing K 0 is 

~(4 + ~) + (0.4 + 12~ + 5.5~ 2 )a. 

Again, given our value of the K j1r ratio, we can solve numericaly for ~­

Unfortunately, the model does not include formulas for baryon production, so 

we cannot calculate ~ from our (A+ A)j(h+ +h-) or A/ K ratios. 
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