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Abstract 

The evolution of domain walls in the early universe is studied via two-dimensional 

computer simulation. The walls are initially configured on a triangular lattice and then 

released from the lattice, their evolution driven by wall curvature and by the universal 

expansion. The walls attain an average velocity of about 0.3c and their surface area per 

volume (as measured in comoving coordinates) goes down with a slope of -1 with ~espect 

to conformal time, regardless of whether the universe is matter or radiation dominated. 

The additional influence of vacuum pressure causes the energy density to fall away from 

this slope and steepen, thus allowing a situation in which domain walls can constitute a 

significant portion of the energy density of the universe without provoking an unacceptably 

large perturbation upon the microwave background. 
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I. Introduction 

Phase transitions in the early universe, brought about by the breaking of sy=etries 

in physical interactions as the universe cooled, could have produced topologically stable 

soliton configurations such as monopoles, strings, and domain walls. These configurations 

are created when a gauge or Higgs field settles into its vacuum state during the cooling 

process. Due to the existence of degeneracies in the minimum of the potential of the field, 

the universe may develop regional differences in the value of the vacuum state of the field 

which may not respect the sy=etry of the original physical interactions thus producing 

these sorts of objects. Monopoles, which are point-like defects, and strings, which are 

1-dimensional line-like objects, have been investigated quite thoroughly (see Ref. 1 for a 

review) whereas domain walls, which are sheet-like defects, have not been so scrutinized 

due to their cosmological undesireablity. Domain walls arose, for instance, in studies of 

CP violation from spontaneous sy=etry breaking but these walls, if produced at high 

temperatures, would greatly perturb the cosmic microwave background beyond the current 

observed limits: Due to surface tension, domain walls with finite surface area contract and 

are unstable to collapse on relatively short time scales (little more than the light travel 

time across the bubble). The stable infinite walls would be conformally stretched by the 

universal expansion and their energy densities would fall off much slower than those for 

matter and radiation and thus the infinite walls would then shortly come to dominate the 

energy density of the universe. The inhomogeneities of the wall induce anisotropies in the 

microwave background of the same order of magnitude, oT /t - op/ p and one finds that 

walls heavier than 10-2 GeV cause the universe to be much more inhomogeneous than 

could be acco=odated by the constraints from the microwave background radiation.2 

There has been, however, recent activity in the investigation of domain walls due to 

a number of proposals which circumvent this difficulty. One possibility is a biasing of the 

field potential. This was originally suggested by Zel'dovich,2 but more recently, in looking 

for an explanation for the creation of so-called nontopological solitions or soliton stars,3 •4 

Frieman, Gelmini, Gleiser, and Kolb 5 have considered the situation in which infinite walls 

are destablized due to biasing of the potential. The resulting vacuum pressure causes the 
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walls to intersect, breaking them up into finite bubbles which do not disappear as usual -

they are supported by pressure from particles trapped inside and are thus stablized from 

total collapse. These configurations persist and may form a large fraction of the mass 

density of the Universe. 

Hill, Schramm, and Fry6 (further discussions are given in Ref. 7) have proposed that 

certain physics models can lead to the formation of domain walls after the decoupling 

of the microwave background, thus avoiding the constraint associated with the domain 

walls formed at higher temperatures. Though of low energy density, these walls possess 

nonetheless a large density contrast so that they can i=ediately grow nonlinearly, leading 

to the possibility that such "soft" domains walls may provide an ideal source of fluctuations 

for structure formation. In addition, it has been proposed6 that a single such wall may be 

responsible for the bulk motions seen of our local galaxies. 

Although little is know so far about the wall dynamics upon which these theories 

rely upon so much, one can outline the forces which influence domain wall evolution. The 

surface tension of the walls cause irregularities in the walls to straighten out. This causes 

vacuum bags to collapse and disappear and causes oscillations in small-scale irregularities 

in larger walls. These motions are subject to the cosmological expansion which damps 

motion on the Hubble scale. The walls may also experience interactions due to particle 

and gravitational radiation and also due to friction with particles. 

As these forces come to play on a wall, one would like to know such things as the 

typical wall velocity, the scaling of the energy density of the walls as the universe expands, 

and the likelihood of the universe of being eventually dominated by a single wall across the 

horizon. To answer these questions and motivated by these new proposals, I investigate 

in detail the possible roles of domain walls in the early universe using a new domain wall 

simulation program. The approach is along the lines of the early simulations in the study 

of cosmic strings: To set up the initial configurations of the domain walls, space is divided 

up into a lattice and each unit cell of the lattice is randomly assigned the value of either 

ground state of the two-fold degenerate potential. The infinitely thin walls thus formed are 

then subjected to a curvature term which determines their subsequent evolution; effects 

due to gravitational and particle emissions and interactions are not taken into account. 
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This approach is thus complementary to that taken by Press, Ryden, and Spergel9 in which 

they evolve the field equations instead. 

The structure of the paper is given as follows: In section II, I give a short summary on 

the basic description and equations of domain walls and elaborate further on the proposals 

of Frieman et al.5 and of Hill et al. 6 In section III, the nature and the details of the 

computation scheme are discussed and the results of the computation are given in section 

IV. Finally, I conclude with a discussion of the results with their implications for the 

domain wall models in section V. 

II. A Short Discussion of Domain Walls 

Domain walls are created when a discrete symmetry is spontaneously broken. The 

simplest case involves two-fold symmetry and an example of this is the model with a ¢4 

potential: V(,P) = V0 [,P2 -772 ]2. Its Lagranian is given as 

(2.1) 

in which ¢ is a real scalar field. The symmetry involved is the reflection ¢ -+ -.P and 

the minima of the potential V( ¢) are at ±77. Above a critical temperature Tc - 77, the 

field has a zero expectation value. Below this temperature, the field acquires a vacuum 

expectation value (</>) = +77 or (¢) = -77. As one goes from a region of(¢) = 77 to a region 

where(¢)= -77, one necessarily encounters a region where(¢)= 0: a domain wall of false 

vacuum. This domain wall is characterized by a width 8 = ,x-1 / 2 77- 1 and surface energy 

density f7 - >.. 112 773 • More details can be found in Vilenkin's paper. 1 

In addition to this case, another potential which occurs naturally in the context of 

some of the high energy physics models is the sine-Gordon potential which has an infinite 

number of degenerate minima: V(¢) = Vo[l/2+ l/2cos(1T"c/>/77)]. The walls are produced in 

a manner analogous to the case mentioned previously and the walls themselves are quite 

similiar with the exception in that the behavior of a ¢ 4 wall and that of a sine-Gordon wall 

differ when the walls collide: the ¢ 4 walls intercommute whereas the sine-Gordon walls can 

generally pass through one another. Further investigations of these wall properties have 

been made by Widrow. 10 
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In light of these descriptions, elucidations can be made on the two proposals mentioned 

previously. In biasing something like the the ¢ 4 potential, one adds in additional terms 

to skew it so as to produce a true and false vacuum minima and (thus induce vacuum 

pressure); the skewed potential destablizes the domain walls, causing infinite walls to 

break up as all of space seeks to be in the true vacuum. Frieman et al. 5 add an additional 

term which introduces interactions with another field. This interaction stablizes the finite 

bubbles that are produced via the pressure of particles trapped within the bubbles. The 

objects are thus stable to collapse and may persist, resulting in their interest as candidates 

of dark matter or as gravitational wells to attract matter and form structure. 

In the proposal put forth by Hill, Schramm, and Fry,8 the theoretically favored poten

tial is the sine-Gordon which appears naturally in their symmetry-breaking scheme. With 

these sine-Gordon walls one would expect behavior in which wall collisions result in the 

walls simply passing through one another. Furthermore, since the walls are produced at 

low temperatures (- 10-2 e V) in this case, the width of the walls is nonneglible and is 

comparible to the radius of curvature of the walls. 

In the present work, the focus is on walls which result from a potential with two 

discrete minima such as the ¢4 potential; therefore, the wall evolution will be somewhat 

inexact with regard to the model of Hill et al. 8 The walls are created initially when all 

of space are in either of two degenerate minima and during the wall evolution, walls 

intercommute whenever they intersect. Furthermore, the simulation is done using the thin 

wall approximation in which the walls are seen as two-dimensional membranes foliating 

three-dimensional space and are evolved according to the action analogous to that of the 

Na.mbu action for strings. 11 This is in contrast to the possibility of evolving the field 

equations with no particular attention pald to the presence of walls. Press, Ryden, and 

Spergel have taken this approach and have taken into account the thickness of the walls. 

In the thin wall approximation, the equations of motion can be derived analytically.12 

The motion of the walls is given by the action 

S = -u J dV (2.2) 

which is proportional to the volume of the wall hypersurface in spacetime. In minimizing 
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the action, one arrives at the Euler-Lagrange equation 

(2.3) 

in which the wall is described by a map ;z;I' = ;z;I' (ea) which takes the coordinates ( e0
' e 'e) 

of a 3-dimensiona.l space and maps them into the wall hypersurface in the 4-dimensiona.l 

spacetime. In addition, ;z;;,. = 8;z;" I aea' L = -O'a3 [-det(h.b)J112 is the Lagrangian of the 

wall, a is the sea.le factor, and hab = 9,.v;z;'.'00 ;z;~13 is the induced metric on the 3-dimensiona.l 

wall hypersurface. (I have chosen here to work in conformal time dT = dt/a(t). Physically, 

the conformal time measures the comoving distance travelled by light since the time of 

the formation of the walls.) For a wall with cylindrical sy=etry, we can make the gauge 

choice of the map ;z;" = ( T, p, ¢, z ): 

to get the result 

_ tO 
T - ~ ' P = R(e0

), <P=e, z =e2 (2.4) 

(2.5) 

This shows that the acceleration of a wall segment with a curvature of characteristic radius 

R is driven by an amount inverse to this radius (times a relativistic factor) and is damped 

by the expansion by a term consisting of the expansion factor a/ a times the velocity of 

the wall times another relativistic factor. This can be slightly rewritten 

R + 3( dlna) .!:, R[l - _k2J = - [1 - _k2J 
dlnT T R 

(2.6) 

The factor (dlna/dlnT) is equal to 2 for a matter dominated universe and 1 for a radiation 

dominated universe. For most of the runs, this quantity was set to 2 but as we shall see, 

this change in the expansion rate made no significant difference in the final results. 

The wall simulation utilizes equation (2.6) to evolve the domain walls. The walls 

themselves do not possess cylindrical sy=etry on a global sea.le but locally, the wall 

curvature can be fitted to a circle and thus equation (2.6) can be applied to determine its 

acceleration. 

The gauge choice made in (2.4) assumes the gauge condition 

8;z;" 8;z;I' 
aeo aea = 0 
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w:ith o: = 1, 2 which means that the velocity of the wall at a particular point must always 

be perpendicular to the wall surface. As this is an additional constraint to the motion 

already described by (2.5), this condition (2.7) must be continually enforced during the 

simulation run. 

III. Computer Simulation of Domain Walls 

The simulation of the domain walls is done with only two spatial dimensions (it 

assumes translational invariance in the third dimension). The movement of the walls 

is driven by its curvature and retarded by the universal expansion and in some instances, 

influenced by vacuum pressure. 

The initial wall configuration is set down as follows. All of space is divided up into a 

lattice (a triangular lattice in this case) and is given periodic boundary conditions, resulting 

in 11. toroidal topology. The configur11.tion of ground states right after a phase transition is 

created by giving each triangular region a vacuum expectation value of either +11 or -17. 

The boundaries between the areas with the +'7 vacuum and the areas with the -17 vacuum 

are then the domain walls. 

Whether or not one encounters an infinite wall depends upon the probablity of being 

in one of the minima (say +17 for which the probability is P+)· In two dimensions, from 

probability P+ = 1 down to P+ =Pc, Pc some critical probability, the +11 regions percolate 

and form an infinite region; from probability P+ = Pc down to P+ = 1 - Pc• neither the 

+11 regions nor the -17 regions percolate and only finite walls develop; from probability 

P+ = 1 - Pc down to zero probability, the -17 regions percolate. Since the percolation 

of the +11 and -17 regions do not occur for a co=on set of values for P+• one may not 

expect any infinite walls to develop; however, in the scheme employed here, infinite walls 

do develop around P+ = Pc as walls are defined as the boundary around the +11 regions 

whose connectedness is defined by triangles sharing a common side. The +11 triangles 

connected only at a vertex are not considered to be connected and thus, it is possible to 

have infinite domain wall even though only the +11 region is considered to have percolated. 

In three dimensions, Pc is less than 0.5 so that between 1 - P+ = Pc and P+ =Pc• both the 
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+11 and -17 regions percolate and form infinite domain walls. (For complete details on the 

theory of percolation, see Ref. 13). In the present simulation, the ground state values are 

assigned to the centers of the triangles and these points form the verticies of a hexagonal 

lattice for which the critical percolation probablity is Pc = 0.698. 

This pattern of assigning entire triangles vacuum values of ±11 assumes a correlation 

length roughly the size of the triangle. The correlation length can extend in size out to 

the horizon but can also be much smaller, determined by the details of the microphysics. 

Recent work involving a general study of the emergence of topological defects in phase 

transitions has been done by Hodges.14 

The configuration is then released from the lattice and is allowed to evolve freely with 

the dynamics of the evolution being driven by the curvature of the walls. The wall evolution 

is performed by keeping track of a number of points on the wall, namely those that formed 

the vertices of the triangles in the initial configuration. These points start with zero initial 

velocity but quickly develop velocities a few tenths of c due to the curvature of the walls. 

This curvature is determined by taking the inverse of the radius of the circle which passes 

through the a point of interest and the point's two nearest neighboring points. With the 

radius of the circle determined, the acceleration of the point is given by equation (2.6) and 

the determinations of the new velocity and new position follow. Since no special attempt 

is made to increase the order of the accuracy of this determination, the new position is 

accurate to 2nd order in the time step. 

There are a number of computational details concerning the time step, the gauge 

condition, and the wall intersections which require further explicating. The time stepping 

of the program is governed in the following way. A potential value for the next time step 

is computed for all points on all of the walls according to the equation 

dt· < eR; . - v; 
(3.1) 

in which e is a dimensionless parameter. This is basically a requirement that the movement 

of the point not overshoot the circle with which its acceleration was computed. Then all 

of the values of dt; are compared and the smallest is chosen as the next time step. 

This requirement on the time step can cause the computation to bog down if the 
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radius of even one point becomes small relative to its velocity. Thus, to facilitate the 

computation, points on the walls are removed if they get too close together. Furthermore, 

if a wall bubble is well on its way to collapse - as indicated by a small surface area and 

large velocities - then the entire bubble is removed from the computation if its surface area 

dips below a given threshold. The surface area of a wall (which is actually just the length 

of the wall in the simulation) is computed by adding up straight-line distances between 

the points which are being evolved. The surface area is proportion to the energy density 

as the wall has constant rest-mass energy-density. 

The gauge condition expressed by equation (2. 7) is explicitly enforced by the program. 

When the new direction of acceleration of the point is to be determined, the velocity from 

the previous time step is adjusted so as to assume this new direction but with the same 

speed so that the full value of this velocity is put into equation (2.6) to compute the 

magnitude of the acceleration. This enforcement of the gauge condition alters the direction 

of the velocities by less than a fifth of a degree on average. 

The possibility of wall intersections is taken care oiwith an algorithm to detect possible 

intersections and to interco=ute walls which have been determined to have intersected. 

Wall intersections are detected in a manner similar to that of Albrecht and Turok15 for their 

string simulations. At every time step, the two-dimensional space of wall configurations is 

divided into a lattice of squares. The program then goes through wall by wall to place the 

wall points into their appropriate boxes. As these points are put into a box, the program 

catalogues the portions of walls which pass through the box. If there are other points in 

the box when a point is put into the box, then the point is checked for intersections with 

wall segments formed by those other points. 

The detailed checking occurs as follows: The current point is evolved according to its 

present velocity for the duration of 2.5 time steps. Then the program goes through all 

of the points already in the box and checks all the wall segments formed by these points. 

These wall segments are likewise evolved and ii the trajectory of any of the wall segments 

and that of the point cross paths, an intersection is to be anticipated. If an intersection 

is determined, then the interco=utation of the walls is performed by removing the point 

that intersects the wall segment and reconnecting its two nearest neighboring points to the 
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two points which had formed the wall segment. 

There are several sources of systematic uncertainties. One is that the scheme for com

puting the radius of curvature at a point is somewhat flawed. As stated before, to compute 

the radius of curvature, a circle is drawn through the point in question and through its 

two neighboring points. This scheme works well enough except when the two neighboring 

points are located fairly close to one another with respect to the distance separating them 

from the point in question (the three points thus forming a narrow triangle). One would 

expect that the point would be subjected to a large acceleration due to its displacement 

with respect to its neighbors; however, a circle drawn encompassing these points will not 

have a small radius of curvature. 

Secondly, properly measuring the surface areas of the walls has a number of difficul

ties. For one thing, points are removed at various times during the simulation, resulting 

in a sudden reduction in the total surface area. In addition, the scheme to detect inter

sections is not perfect. In string simulations, missed intersections would not be of any 

great consequence as long as their numbers were small but in wall simulations involving 

vacuum pressure, such could be disasterous. A missed intersection could result in a wall 

bubble being pinched off with its inside inverted to the outside. This means that, although 

the bubble may be traveling in a part of space that is the true vacuum, the bubble will 

continue to expand. If the bubble does not eventually contract, then it poses problems for 

properly measuring the surface areas of the walls. Some of the simulations had to be cut 

off when these difficulties arose. 

An attempt at a three-dimensional simulation involved using a 14-sided (8 hexagons, 

6 squares) polyhedron as the unit cell (analogous to the triangle as the unit cell for the two

dimensional case) which corresponded to BCC lattice with Pe = .245. This configuration 

was chosen so that any point would have at least 3 nearest neighbors but no more than 

4; this allowed the extension of the method of computing acceleration. In this case, the 

acceleration was computed by drawing a sphere through 4 points or drawing 2 spheres 

colinear with the point for which the acceleration was being computed for the case of 5 

points. However, it was found that points tended to converge together, causing the time 

step, which was regulated in a similar fashion to equation (3.1), to become smaller and 
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smaller. Unlike the two-dimensional case, it was not trivial to remove points to speed the 

simulation along; with the requirement that all points have 3 or 4 nearest neighbors, no 

general point removal scheme could be found and the effort was abandoned. 

However, I will mention in passing that there were certain interesting hints gleaned 

from the runs that were managed in the three-dimensional simulation. In the two

dimensional case, the cosmological expansion damped out small-scale motion, allowing 

for motion on large scales to take place; this was not what was observed in the three

dimensional case. Small-scale oscillations were not damped out and thus, not much coher

ent large-scale motion developed, leading to a much slower decrease in the energy density 

was compared to the two-dimensional simulation. It is not apparent that these effects 

were not due to numerical problems but this may be an indication that a properly done 

three-dimensional simulation may not yield the same results seen for the two-dimensional 

simulation here nor for the simulations done elsewhere, a problem also encountered in the 

study of cosmic strings where there have been some disagreements which have originated 

in the treatment of string curvature on very small scales. 

IV. Results of the Simulation 

Most of the runs were performed on a 64 x 32 triangular lattice. The conformal time 

was initially set to a value of 1 and were run until a time of T = 40 or until the walls had 

disappeared. For most of the runs, the factor ( '11.na/ '11.nT) in equation (2.6) was set to 2 for 

a matter-dominated universe and the probability P+ was set to 0.7, essentially the value of 

the critical percolation probability, Pc· At this value, one sees infinite domain walls and a 

distribution of smaller walls. For three dimensions, infinite domain walls can be achieved 

with a P+ = 0.5. 

Typical wall configurations of a run are shown in Figs. la-le. The walls are shown 

at times of T = 3 at the beginning of a run with the walls just becoming fully developed; 

T = 7 in the middle of the scaling of the wall; and T = 18 towards the end of the run 

when the walls are about the size of the lattice box itself. In this case, there were no 

infinite walls. In the simulation runs without vacuum pressure, the walls tended to avoid 
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one another and thus no wall collisions were seen. The velocity distribution of the walls 

were measured at these same times and are shown in Figs. 2a-2c. 

The result of seven runs is compiled in terms of the comoving surface area per comoving 

volume in Fig. 3 and in terms of the wall velocities in Fig. 4. The dip seen in Fig. 3 at 

about the time of T = 2 is due to the simultaneous removal of a number of similarily sized 

triangular wall bubbles. From Fig. 3, one sees a linear relationship between the comoving 

surface area per comoving volume and the conformal time. The slope of this relationship 

was measured between the times of T = 4 (when the walls have been scaling for awhile) 

and T = 10 (before the wall radii become on the order of the lattice box) and the slope 

obtained is 1.06 ± 0.11. A slope of -1 simply expresses the fact that there is only one 

wall on average is left to be found within a bubble distance after the surface tension has 

straightened out large walls and has shrunk small walls. Given that the walls move with 

some velocity v close to c, the volume is ( vt)3 and the one wall in that volume has surface 

area (vt) 2 • The energy density thus goes asp~ 1/(vt) and thus in conformal time this 

goes as -r-1 • 

From Fig. 4, one sees a constant velocity of about 0.25c during the scaling behavior 

of the walls. This is somewhat smaller than the average velocity of 0.4c seen by Press et 

al.9 

A number of runs were done varying the settings of some of the basic parameters. 

Setting the factor ( dlna/ dln-r) = 1 for expansion in a radiation-dominated universe made 

no detectable difference. The only role the expansion seemed to have on the wall motions 

was to damp away small scale oscillations, thus allowing bulk motions to occur. 

A number of runs were done varying the probability P+ of being in the +17 ground 

state. Fig. 5 shows the results of running at probablities of 0.5, 0.6, 0. 7, 0.8, and 0.9. The 

general trend is that as one goes away from P+ = 0.7, the slope steepens due to the fact 

that the walls become smaller and thus one expects them to smooth out and collapse on 

a shorter time scale. 

Eight runs were done with the addition of vacuum pressure and the results are depicted 

in Fig. 6 for the comoving surface area per comoving volume. The runs were done with 

values of the vacuum pressure of 0.0, 0.5, 0.8, 1.0, 1.1, 1.2, 1.5, and 2.0 (in units of the 
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inverse of the correlation length). Some of the runs had to be cut off due to computational 

difficulties that were described in the previous section but a simular series of runs on a 

smaller lattice (32 x 16) managed to avoid those difficulties and showed the surface areas 

dropping off rapidly. All of the runs were begun without vacuum pressure and without 

collisions so that the walls would have a chance to straighten themselves out; the vacuum 

pressure was i=ediately introduced at T = 1.3. 

From Fig. 6, we see that initially the walls scale as before, going down as T-
1 in 

surface area and velocity measurements show the walls having a constant average velocity 

of about 0.3c; at some certain time which depends upon the vacuum pressure the velocities 

go up and the walls collapse. This can be understood from the fact that the walls have 

an average radius of curvature which goes as R = (T - To+ Ro) in which Ro is the initial 

average curvature. This value is initially larger than the vacuum pressure so the walls scale 

as before. The vacuum pressure may shrink down some walls faster than before but may 

also retard the straightening out of some of the walls, leading to a zero net effect. However, 

as the value of the average radius of curvature drops below that of the vacuum pressure, 

the main contribution to the wall acceleration comes from vacuum pressure which forces 

the wall velocity to higher and higher values; the infinite walls intersect and fragment and 

the fragments quickly disappear under the force of the vacuum. 

V. Discussion and Conclusion 

The basic picture that emerges is that the wall density goes down as T-
1 (and as 

a-312 ), producing a single wall that extends across a horizon volume that is essentially 

devoid of any wall bubbles. During their evolution, infinite walls tend to straighten out and 

irregular bubbles tend to become more circular; all the while, the walls do not intersect 

unless vacuum pressure is applied. These observations are simular to those seen in the 

the studies of Press et al. 9 and confirm their basic findings in two dimensions. The two 

studies took different approaches and had differences in the thicknesses of the walls evolved 

but the basic conclusions which come out of the studies seem to be the same. Press et 

al. go on further to investigate the departure of the slope of the surface area from -1 but 
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this deviation does not show up in this study and indeed, the uncertainties here are large 

enough to mask such an effect. 

The implication for domain wall model of Hill, Schramm, and Fry6 from this is that 

the amount of matter to be found today in domain walls is very limited. Press et al. 9 

give an estimate of 6T /T - op/ p - !1,,,a11 which together with the limits on the cosmic 

microwave background give !1,,,au~ 10-4 • More specifically, Hill, Schramm, and Widrow7 

derive 

6T/T - (1 + -yv)GuR 
c 

(5.1) 

with v the wall velocity, -y the relativistic factor, G Newton's constant, u the wall surface 

energy density, and R the scale of wall structures produced. They note that for domain 

bubbles R - 6 ( 6 being the width of the walls) and the optimistic result of the original 

paper6 is reproduced. However, if the resultant structures are a few infinite walls as the 

simulations of Press et al.9 and this work appear to show, then R - Ra, Ra the horizon 

length, leading to the constraint on !1,,,a11 mentioned above. The walls, whose energy 

density decrease at a rate of a-1·5 , would have to have been even smaller relative to that 

of matter - which goes down as a-3 - at the time of structure formation, leaving the wall 

density too small to have attracted much matter to form large-scale structures. Although 

the present simulation does not explicitly test thick walls as found in the model of Hill 

et al., 5 the basic agreement of the results of this simulation with those of Press et al. 9 

show that these conclusions are not particular to the thickness of the walls. Furthermore, 

in simulations without vacuum pressure, the fact that the walls do not collide with one 

another means that the wall evolution really does not depend on whether the potential 

is t/>4 or sine-Gordon. However, this is not quite true as bubbles which simply collapse 

and disappear in the ¢>4 case may rebound and persist for the longer period of time in the 

sine-Gordon case, providing seeds for structure formation. 7 

Variations from this basic picture were addressed by these simulations. The simula

tions show that the additional presence of vacuum pressure gives rise to the situation in 

which infinite walls are chopped up into bubbles of finite size. This then allows the walls 

greater leeway in avoiding the microwave constraint but to be of any interest at all to the 

creation of large-scale structure, these bubbles must be around for more than a expansion 
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time to begin to accrete matter. Unfortunately, the finite bubbles seen in the simulations 

collapse with near light speed and do not have a long enough lifetime to be interesting for 

structure creation. However, if there is any impediment to their collapse such as particle 

pressure as suggested by Frieman et al.,5 then the lifetimes of these objects will be such 

to make structure formation possible. Also, as in the case without vacuum pressure, if 

collapsing bubbles do not i=ediately disappear but rebound and bounce a few times (as 

seen by Widrow for the sine-Gordon walls10 ) then this may also prove domain walls a 

viable process for producing perturbations for structure formation. 

A potential with P+ #Pc gives rise to steeper decreases of the energy density due to 

the fact that smaller wall structures are produced. The present simulation did not have 

the necessary resolution to see how steep the energy density could be made to go down 

but a slope of -2 would result in the wall density doing down no slower than the energy 

density in matter, thus preventing the domain walls from dominating the energy density 

of the universe. 

An important further step that needs to be taken is an investigation into the nature of 

curvature on very small scales and a three-dimensional simulation along lines of the two

dimensional simulation done here. It is of interest to investigate the nature of curvature 

on scales smaller than the correlation length as we have seen from the study with vacuum 

pressure that the behavior of the walls depends on the average curvature. If the walls are 

highly erratic on very small scales, they will possess a higher average curvature and the 

results derived by these simulations will not follow: walls will take longer to straighten 

out and thus, the drop-off in surface area will be even slower than T- 1 ; and the turn

off from scaling behavior due to vacuum pressure will occur at later times. This general 

question of the nature of curvature at scales below the correlation length seems to lie at the 

heart of the controversy surrounding the study of strings.19 The string model of Bennett 

and Bouchet11 utilizes a scheme which keeps track of kinks in strings whereas that of 

Turok and Albrecht 15 uses a numerical diffusion technique which results in strings that 

are not in general as highly curved on small scales. Thus, while the two simulation have 

agreement on string behavior on large scales, there is a divergence in the scaling trends 

for small strings, resulting in difference results in chopping efficiency, constraints due to 
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gravitational radiation, etc. Careful studies of small-scale curvature are necessary to truly 

understand the behavior of both strings and walls. 

As I noted in passing, the attempted simulation in three-dimensions seemed to hint 

at a different behavior (albeit one that is even less favorable for the domain wall models) 

than that seen for the two-dimensional case: the expansion term did not eliminate small 

scale oscillations, preventing movement on large scales and resulting in an energy density 

which scaled much slower with respect to the conformal time. At this point, it is difficult 

to tell whether this outcome is physically valid, the result of certain simplifications that 

were made, or the artifact of the initial lattice configuration. Wall thickness and particle 

emissions were two features left out of this simulation which were addressed by the other 

simulations; this feature seen in this simulation was perhaps not present in the work of 

Press et al. 9 because of their focus on thick walls and the consequent loss of resolution 

on small scales. The initial BBC lattice resulted in unit cell configurations which evolved 

rather awkwardly: for instance, a 2-cluster configuration had a narrow neck which persisted 

while the essentially unit cell configuration of points on either side of the neck collapsed 

freely resulting in a small tangle of points on either side of this neck. A workable three

dimensional simulation would be able to reliably indicate the precise features of the two

dimensional simulation attributable to its dimensionality and properly address the question 

of the behavior of realistic three-dimensional walls. 
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Figure Captions 

Fig. 1. Wall configuration for a. 64 x 32 lattice a.t conformal time a.) T = 3; b) T = 7; 

and c) T = 18. 

Fig. 2. Wall velocity distribution for a. 64 x 32 la.ttice a.t conformal time a.) T = 3; b) 

T = 7; and c) T = 18. 

Fig. 3. Wall comoving surface area. per comoving volume a.s a. function of the conformal 

time for 7 runs done on a. 64 x 32 lattice with P+ = 0. 7. 

Fig. 4. Average wall velocities a.s a. function for the conformal time for 7 runs with 

P+ = 0. 7. The velocity remains constant a.t a.bout 0.25c. The dip in velocities a.t time 

of T = 2 occurs because of the simultaneous removal of a. number of rapidly collapsing 

triangular bubbles. 

Fig. 5. Wall comoving surface area. per comoving volume a.s a. function of the conformal 

time for 5 runs with P+ set a.t 0.9, 0.8, 0. 7, 0.6, and 0.5. 

Fig. 6. Wall comoving surface area. per comoving volume a.s a. function of the conformal 

time for 8 runs with the vacuum pressure set to 0.0, 0.5, 0.8, 1.0, 1.1, 1.2, 1.5, and 2.0. 

The surface area turns downward sooner for larger values oi the vacuum pressure. 
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