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Abstract 

Experiment E-594 in Lab C at Fermi lab used the capabi I ity of 
the fine grain neutrino calorimeter to measure hadron shower 
angles ~s wel I as energies, and the energy-radius 
correlation in the Fermi lab di chromatic neutrino beam, to 
reconstruct the. Bjorken sealing variable x for neutral 
current deep inelastic scattering events. The neutral 
current data were unfolded to correct for resolution and 
acceptance, and analyzed in the context of the quark-parton 
model to yield quark distributions. The charged current 
data were analyzed without using the muon information to 
provide a measure of systematic errors. By comparing the 
quark distributions observed in the charged and neutral 
current processes, we simultaneously test both the 
electroweak and hadronic struc~ure sectors of the Standard 
Model. No systematital ly significant difference between 
neutral and charged current quark distributions was found. 

Thesis supervisor: J. I. Friedman 
Title: Professor of Physics 
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1. Introduction 

1.1. Motivation 

Our understanding of hadron physics 1n terms of quarks 

and gluons has been acquired relatively recently. The 

verification of the existence of weak neutral current 

coup Ii ngs is even more recent. The purpose of this analysis 

1s to simultaneously test the quark model of hadronic 

structure, and the detai Is of the neutral current couplings 

by measuring the neutral current structure functions, or 

equivalently the quark distributions as observed through the 

neutral current. We wi I I compare them to those observed in 

other processes to test the prediction that the quark 

distributions are universal. 

In-the current Standard Model of high energy physical 

processes, deep inelastic lepton scattering from nucleons is 

described by quark distributions and the coup I ings of the 

electroweak effective Lagrangian. The probing leptons can 

be electrons, muons, or neutrinos. The quark distributions 

themselves cannot be calculated from first principles, 

although some detai Is of their Q2 dependence are calculable. 

The quarks have different coup! ings to different probes, but 

the same quark distributions appear in the predicted cross 

sections for electromagnetic, weak charged current, and weak 

neutral current scattering. 
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The experimental evidence that quark distributions are 

universal 1s actually surprisingly poor. There are 

persistent discrepencies at the 10 percent level between the 

integrals and x-dependence of the quark distributions 

measured in the charged current and electromagnetic 

processes [9]. While the discrepencies are not greatly in 

excess of the quoted systematic normalization differences 

between the experiments, it 1s important to verify the 

universality 1n al I accessible processes. 

Currently, the ratio of the neutral current to charged 

current cross section (NC/CC) in deep inelastic scattering 

provides one of the best measures of the mixing parameter in 

the electroweak theory, sin28 . While in the future, direct 
w 

measurements at the z0 resonance 1n + -e e col I iding beams 

wi I I grve more precise information, the lower Q2 

measurements 1n neutrino beams wi I I remain an important 

consistency check, and also a test of the radiative 

corrections to the theory. Even sma 11 differences between 

the quark distributions for charged and neutral currents 

would be of importance for the measurement of . 2e Sin 
- w 

1.2. Overview 

The basic process of deep inelastic lepton scattering 

involves a lepton L scattering from a nucleon N at rest in 
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the target mass to produce a final state lepton L, and a 

system of hadrons H. 

L + N + L, + H Eq.1.1 

Al I possible final state hadron systems are included in the 

measurement. The initial lepton energy is divided between 

the final lepton and the hadron system. We measure the 

differential cross section as a function of the kinematic 

variables of the process: the final state lepton energy and 

angle. 

In the quark-parton model, the cross section for the 

above process is calculable 1n terms of phase space, spin-

dependent angular distributions, quark distributions, and 

coupling constants. In the electromagnetic process, the 

incomin~ and outgoing leptons are electrons or muons, and 

the coup I ing constant 1s a. For the charged current 

process, the incoming lepton 1s a neutrino or antineutrino 

and the outgoing lepton 1s its charged counterpart (µ- for 

+ -vµ, µ for vµ• and a is replaced by the Fermi coup I ing Gf. 

The neutral current deep inelastic scattering process 

IS 

Eq.1.2 

In the standard electroweak model of neutral currents, Gf 1s 

supplemented by an additional coup I ing, . 2(} sin . w 
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It 1s necessary to assume a value of sin28 in order to 
w 

extract the neutral current quark distributions from the 

data. Of course, if it 1s assumed that the quark 

distribution~ are universal, it 1s possible to extract the 

value of sin28 from the neutral current data. This can be w 

done without measuring the hadron shower angles, and has 

been done by many other collaborations. As a consistency 

check, we wi I I extract a value for sin28 from our data. w 

Experimentally, the neutral current structure functions 

are relatively difficult to measure. Since the incoming 

neutrino cannot be observed directly, its energy must be 

inferred from the process used to create it. Since the 

outgoing neutrino 1s also invisible, we must infer its 

energy and angle from the observable hadron system. 

We use what 1s known as a narrow-band or dichromatic 

neutrino beam, 1n which the distance of a neutrino 

interaction from the central axis of the beam serves as a 

measure of its energy. We measure the hadron system energy 

by a total absorption calorimeter. These techniques are in 

commo.n use to meas_u re -the charged current structure 

functions, with the final state muon angle measured by track 

chambers in the calorimeter, and its momentum measured by 

track chambers in a magnetic field. 

The novel requirement of the neutral current structure 

function analysis is the need to measure the hadron system 
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angle as we I I as its 

calorimeter segmention, 

unconventional detector 
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energy. This requires very fine 

which in turn requires somewhat 

elements. This unconventional 

detector must be very wel I understood, because detai Is of 

calorimeter construction and response can cause non-trivial 

biases in the shower angle measurement. 

Individual hadrons are not distinguishable in the 

calorimeter; we observe only a shower of secondary and 

tertiary interactions. The diffuse nature of a hadron 

shower intrinsically I imits the shower angle resolution to 

be much poorer than typical muon track angle resolution. 

This results 1n relatively poor resolution 1n the sealing 

variable x. The raw data must be corrected for the finite 

resolution. Such corrections are inherently unstable, and 

careful -mathematical analysis of the general resolution 

problem 1s required to apply them properly. 

Given the difficulty of the neutral current quark 

distribution analysis, it is important to have a check of 

the systematic errors. This is available by analyzing the 

charged current events collected along with the neutral 

current events, as if they were neutral currents. We ignore 

the muon information and use only the shower information to 

reconstruct charged currents. We can compare this charged 

current analysis to the muon-based charged current analysis 

of other experiments for a measure of the systematic errors . 
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Also, most systematic errors are common to neutral currents 

and charged currents analyzed without muons, so a direct 

comparison of the neutral current and charged current 

analyses 1s subject to smaller systematic errors than either 

analysis alone. 

1.3. Organization 

This introduction serves to give a statement of 

purpose. Chapter 2 is a brief summary of the theory of 

neutral current deep inelastic scattering. Chapter 3 

describes the data reconstruction chain, from the neutrino 

beam and detector, event processing and reconstruction, 

calibration, and final data selection. Chapter 4 describes 

the Monte Carlo calculation of the physics and simulation of 

the detector that is necessary to extract_ results from the 

data. 

Chapter 5 1s the analysis of the NC/CC ratio for 

. 2ll sin 11 • w There is a discussion of the theory behind the 

NC/CC ratio as a measure of sin2e , and the experimental w 

systematic aspects of the ratio measurement. The process 

and results of fitting the ratio for sin2e are presented, 
w 

with a discussion of systematic errors, and comparison to 

similar experiments. 

Chapter 6 contains the formulae used to reconstruct x 

and y for neutral currents, and a discussion of the 
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resolutions. It also shows the raw x distributions for 

neutral and charged currents analyzed as neutral currents, 

and the NC/CC ratio as a function of raw x. Chapter 7 

describes the method used to extract the fully-corrected 

quark distributions from the raw data. 

Chapter 8 presents the results of the unfolding in 

terms of a parameterization of the valence and sea quark 

distributions. There 1s also a discussion of systematic 

errors and a comparison to previously pub I ished parameter 

fits on the same data using a different method, and the 

parameter fits of other experiments. 

Chapter 9 describes a method of extracting quark 

without relying on distributions from 

parameterization. 

tabulated quark 

the 

The 

unfolded 

method 

distributions 

systematic error estimates. 

data 

IS then used to present 

with statistical and 

Chapter 10 presents the conclusions of the parameter

free analysis. The charged current quark distributions are 

compared to more conventional charged current analyses to 

verify the error estimates. The parameter-free method 1s 

also used in a direct comparison of the difference between 

our neutral currents and charged currents analyzed I ike 

neutral currents, 1n which most systematics should cancel. 

Finally, the neutral current results are compared to 

measurements of the neutral current structure functions by 

other experimental groups. 
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The appendices describe some aspects of the analysis in 

greater detai I. Appendix A contains some kinematic 

calculations about the sealing variables x and y. Appendix 

B contains the a discussion of the traditional structure 

function cross section formulae, the less traditional F and 
+ 

F_, and the quark-parton model. Appendix C discusses 

electromagnetic radiative corrections. 

The narrow-band neutrino beam is discussed in Appendix 

0. Appendix E describes the muon toroid and chamber system, 

and muon momentum reconstruction, which is important for 

calibration purposes. Misclassification of neutral and 

charged current events 1s the subject of Appendix F. 

Appendix ·c discusses the energy scale calibration, and 

Appendix H discusses the shower energy resolution. The 

systematics of shower angle measurement are the subject of 

Appendix I. The shower angle calibration 1s covered 1n 

Appendix J, and the shower angle resolution in Appendix K. 

The general mathematical and practical problem of 

unfolding strongly smeared data 1s dealt with in Appendix L. 

Appendix M contains an analysis of some other unfolding 

techniques applied to the neutral current structure function 

problem and other similar problems. 
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2. Theory 

2.1. Minimal quark-parton model 

2.1.1 Constituents 

The minimal quark-parton model [10] presumes that deep 

inelastic lepton scattering is actually elastic scattering 

from moving constituents of the nucleon cal led partons. The 

partons are quarks and anti quarks: I ight spin 1/2 

constituents of the nucleon which carry electric and weak 

isospin charges. The quantum numbers of the nucleon are the 

sum of the quantum numbers of the partons. The motion of a 

parton is described by the fraction of the nucleon momentum 

which it carries, {. The probabi I ity of encountering a 

parton with a given momentum fraction { is not predicted 1n 

the model, but is presumed to be independent of the type of 

the probing lepton. In the most minimal versions of the 

model, the probabi I ity 1s also independent of any other 

2 kinematic variable, such as energy or Q . 

The proton contains tw6 u~ q~arks with charge +2/3, and 

one down quark with charge -1/3; the neutron contains two 

down quarks and one up quark. These are the valence quarks. 

There are also antiquarks 1n the nucleon, balanced by an 

equal number of non-valence quarks. This is cal led the sea. 

The sea need not have the same { distribution as the valence 
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quarks. The ratio of up and down quarks in the sea should 

be unity. Heavy quark-antiquark pairs are presumed to be 

present, but in reduced number. Other constituents which 

carry momentum but do not interact with leptons, the gluons, 

also exist. 

2.1.2 Kinematics 

There is a simple relation between the quark momentum 

fraction ~ and the observable kinematics of an event. For 

lepton four vectors PL . 
1 In and PL,out' the conventional 

Lorentz invariant momentum transfer variable is 

Q2= _ (P . _ p )2 
L,1n L,out Eq.2.1 

The labo-ratory energy transfer is 

II = E . - E L,1n L,out Eq.2.2 

In the I imit of negligible quark masses, the momentum 

fraction ~ is identical to the Bjorken sealing variable, x 

xBjorken = x-
2Mv = ~ Eq.2.3 

There is another important dimensionless variable, 

y=v/E, the ratio of the energy transfer to the beam energy. 

It is related to the scattering angle of the lepton in the 

lepton-quark center of mass system, 9* 
I and the boost 
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parameter p between the laboratory and the neutrino-quark 

center of mass. 

y = v/E = P(l-cos8*)/(l+P) ~ (1-cos8*)/2 Eq.2.4 

Thus, y=O is forward scattering, y=l is backward scattering, 

and the y distribution maps out the distribution in cos8*. 

Isotropic scattering produces a flat cos8* distribution, and 

therefore a flat y distribution. 

These kinematic formulae are derived 1n Appendix A. 

2.1.3 Electromagnetic and weak charged current interactions 

Deep inelastic scattering at currently avai I able Q2 is 

dominated by single boson 

2.1. The electromagnetic 

from the photon propagator. 

exchange, 

interaction 

i I lustrated in Figure 

-4 has a Q dependence 

The weak interactions have no 

significant propagator effects at these energies and are 

described wel I by 4-fermion effective couplings. There is a 

lepton beam energy times quark momentum fraction factor in 

the cross section due to phase space. Weak interaction 

cro~s sections grow with bei~ energy at current fixed target 

energies, but electromagnetic cross sections decrease with 

beam energy because the photon propagator dominates. 

Electromagnetic scattering has a vector coup I ing to the 

quark charges, and with unpolarized beams gives a 1+(1-y) 2 

y-distribution. The charged-current weak interactions are 
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pure V-A, or purely left-handed, and couple to weak isospin. 

The correlation between weak isospin and charge implies that 

neutrinos interact only with negatively charged quarks and 

antiquarks, and antineutrinos interact only with positively 

charged quarks and antiquarks. Neutrinos always have left-

handed helicity, and antineutrinos always have right-handed 

hel icity. Neutrino-quark and antineutrino-antiquark 

scattering have flat y-distributions, and anti neutrino-quark 

and neutrino-antiquark scattering have y-

distributions. 

2.1.4 Neutra~ current couplings 

In the standard electroweak mixing model [11], there is 

also a neutral current weak interaction. At high energies, 

the electroweak Lagrangian has an SU(2) weak isospin 

interaction and a U(l) hypercharge interaction. The 

spontaneous symmetry breaking in the Higgs sector mixes the 

third component of the isospin coupling with the hypercharge 

coupling in the low-energy effective Lagrangian. 

A single parameter, - usually denoted as . 28 Sin , 
w 

describes the mixing between the weak and electromagnetic 

interactions. In terms of the weak isospin T3 and the 

electric charge Qem' the left- and right-handed neutral 

current coup I ings are written 

. 2e sin w Eq.2.5 
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Q · 2n - sin r7w Eq.2.6 

The total cross sections depend on the sum of the 

integrals over the y distribution of the squares of the 

left-handed and right-handed coup I i ngs. The integral of 

(l-y) 2 over y gives 1/3. We can define e+ and e as the 

neutrino quark and antineutrino quark couplings integrated 

over y. 

Table 2.1 

coup I i ngs for 

calculated with 

world average. 

Table 2.1 

Neutral current 

Q T 
em 3 

1.1 0 +1/2 

µ -1 -1/2 

u +2/3 +1/2 

d -1/3 -1/2 

e 2 2 1 e2 
+ = el + 3 R 

2 1 e2 = ER + 3 L 

shows the magnitudes 

neutrinos, muons, and 

Eq.2.7 

Eq.2.8 

of the neutral current 

up and down quarks, 

sin28 =0.225, consistent with the current w 

coup Ii ngs 

2 2 2 2 
e e e e e e 

L R L R + 

.500 .000 .250 .000 .250 .083 

-.275 .225 .076 .051 .093 .076 

.350 -.150 .123 .023 .131 .064 

-.425 .075 .181 .006 .183 .066 
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2.1.5 Cross section formulae 

In the minimal quark-parton model of deep inelastic 

scattering, the cross sections are calculable from the quark 

momentum fraction distributions. In the formulae below, the 

notation q(x) refers to the x distribution of the quarks, as 

distinct from xq(x), the distribution of the cross section. 

Anti quarks are indicated by q(x). We include both valence 

and sea, and al I flavors. The sum over positive partons 

means include u, c, and t quarks and a, s, and 6 antiquarks. 

We neglect al I mass terms. M refers to the nucleon mass, E 

is the laboratory lepton beam energy, Q2 is the absolute 

value of the four-momentum transfer, and Q is the em 

electromagnetic charge of a quark. 

Electromagnetic 

x E (Q2 q(x) + Q
2 q(x)J 2

1 (1+[1-y] 2) 
al 1 em em 

Neutrino charged current 

2x E ( q(x) + q(x) [1-y] 2) 
neg 

Anti neutrino charged current 

--
1" 

2x E ( q(x) + q(x) [1-y] 2) 
pos 

Eq.2.9 

Eq.2.10 

Eq.2.11 



41 

Neutrino neutral current 

( 
2 2 - 2 2x E el q(x) + el q(x) [1-y] 

a 11 

+ e~ q(x) + e~ q(x) [1-yJ
2

) Eq. 2 .12 

Antineutrino neutral current 

2x E (eR2 q(x) + e 2 q(x) [1-y] 2 
a I I R 

+ eE q(x) + eE q(x) [1-yJ
2

) Eq.2.13 

2.1.6 Quark distributions 

It is common to use simple power law parameterizations 

for the quark distributions. There are some theoretical 

conjectu-res about the high-x and low-x behavior that can be 

easily expressed as predictions about the powers. They also 

fit the avai I able data reasonably wel I. 

We write the valence quark contribution to the cross 

section as 

x q ( x) I = V( x) = A x'} ( 1..- x) /3 va Eq.2.14 

We expect a~.5 from Regge-pole arguments [12]. The relate 

the Regge prediction about the energy dependence at fixed t 

to the x dependence at fixed Q2 . We expect /3~3 from 

constituent counting arguments [13] , and a I so the Dre I I -Yan-

West relation between high-x inelastic scattering and the 

elastic form factor [14]. 
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The Gross--Llewel lyn-Smith sum ru I e [15] , usu a I I y 

expressed in terms of the structure function xF3 , is simply 

the statement that there are 3 quarks. 

J dx 
1 
x V(x) = 3 Eq.2.15 

The sea quarks are expected to behave I ike a 

bremsstrahlung distribution convoluted twice with the 

valence distribution, and not vanish at x=O. 

x[q(x) + q(x)] = S(x) = C (1-x)1 sea Eq.2.16 

We expect 1~7 from constituent counting and bremsstrahlung 

spectrum arguments. 

2.2. Corrections 

2.2.1 Sealing violations 

The minimal quark parton model 1s a simplification of 

QCD, the quantum chromodynamics theory of strong 

interactions and hadron structure [16]. QCD 1s a field 

theory of fermion quarks and vector boson gluons, based on 

the non-Abelian gauge group SU(3) for an interaction cal led 

"co Io r. " The quarks are colored, the antiquarks are 

anticolored, and the gluons carry both color and anticolor. 

Quarks and antiquarks can be created in pairs by gluons, and 

can annihilate into gluons. 
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The non-Abel ian nature of the QCD theory results in a 

property known as asymptotic freedom. This means that the 

effective strength of the interactions, when higher order 

k . h . . Q2 diagrams are included, becomes wea er wit 1ncreas1ng . 

The interactions become stronger at low Q2 , and it is widely 

conjectured that this explains the apparent confinement of 

quarks into hadrons. However, the strength of the 

interaction at low Q2 precludes reliable perturbative 

calculations. In particular, the bound-state problem of 

calculating the quark distributions from first principles is 

not yet soluble. However, some non-perturbative method, 

e.g., lattice calculations, may one day do so. 

In QCD, the quark momentum distributions are not 

invariant. They evolve with the logarithm of Q2 . At higher 

Q2 , which corresponds to smaller distances, a single quark 

at some momentum may be resolved into a quark and a gluon 

whose momenta sum to the original quark momentum. Likewise, 

a gluon can be resolved into quark-antiquark pairs sharing 

the original gluon's momentum. Thus, the probabi I ity of 

encountering a quark with a - lirge fraction of the nucleon's 

momentum decreases with Q2 . 

At high X I the quark distributions decrease as 

increases, because when a quark shares its momentum, it 

appears at a lower x value. At low x, the quark 

distributions increase with Q2 , because the loss of quarks 
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to sti I I lower x is more than balanced by the accumulation 

of quarks from higher x. Thus, as Q2 increases, the valence 

quark momentum distribution shifts to lower values of x. 

The normalization of the sea of quarks and anti quarks 

. . h Q2 increases wit as a result of gluon radiation splitting 

into quark-antiquark pairs. 

There should also be some deviations from the minimal 

quark-parton model due to finite. quark masses, finite quark 

transverse momentum inside the nucleon, final-state 

interactions, and target-mass effects. These cannot in 

general be quantitatively described within perturbative QCO. 

Unfortunately, practical measurements of neutral 

current deep inelastic scattering cannot yet be I imited to 

the range of Q2 where perturbative QCO applies. The 

avai I able charged current measurements at low Q2 appear to 

continue the smooth evolution of the structure functions 1n 

log Q2 that is observed in the perturbative region [17]. 

2.2.2 Slow resealing 

Charged current· ·interactions mix quark 

generations, as i I lustrated by the decays of strange 

particles into non-strange particles. In a model with 2 

generations, the mixing is described by a 2 by 2 matrix with 

a single parameter cal led the Cabbibo angle 8 [18]. With 3 c 

generations, the mixing is described the Kobayashi-Maskawa 
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matrix, with 3 m1x1ng angles and a potentially CP-violating 

phase [19]. Experimentally, the m1x1ng angle governing the 

first 2 generations 1s important, but the angles for the 

other generations are substantially smaller [20]. 

The 2-generation Cabbibo model IS a very good 

approximation for our purposes. Charged current scattering 

from strange quarks usually results in 

charmed quarks, with rate proportional to 

the production of 

cos28 . Charged c 

current scattering from down quarks also produces charmed 

quarks, with a rate proportional to sin 2B . Strange quarks c 

can be produced from up quarks, suppressed by sin28 . c 

Bottom quark production would either be suppressed by one 

mixing angle from the tiny charmed sea, or suppressed by an 

even smaller mixing angle from up quarks, and is thus 

neg I igible. Similar arguments hold for top quarks. 

The mixing matrix is unitary in the conventional model, 

so the sum of the squared coup I ings is independent of the 

mixing angles. However, the quark masses also enter into 

the cross section. The strange quark mass is smal I compared 

to ty~ical center of mass energies, but the large mass of 

the charmed quark cannot be neglected. 

There is a minimum neutrino-quark center of mass energy 

needed to produce a charmed quark from a I ight quark. If 

this is not avai I able, the strange sea quark contribution to 

the cross section is reduced to sin28 of normal, and the c 
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is reduced to cos29 of normal. c 

Even if the center of mass energy is avai I able, the charmed 

quark mass reduces the final state phase space, and changes 

the dynamics at the neutrino-quark vertex. These effects 

are known as slow resealing [21]. 

It 1s necessary at this point to recognize a 

distinction between the fraction of the nucleon momentum 

carried by the struck quark, ~' and the observable variable 

2 xaj=Q I 2Mv. We presume the incoming quark is light, but 

the outgoing quark is heavy with mass m. This changes the 

kinematic equations to 

Eq.2.17 

Eq.2 .18 

For v less than m2/ 2M, there can be no charm 

production at a I I. For 2 zr-m I 2M, charm production is 

possible only for ~~1, where the quark distributions are 

very smal I. As v increases, the kjnematic I imit of momentum 

fraction moves from ~=1 down toward {=O, increasing the 

number of quarks that contribute to the cross section. 

Even though as the energy is increased, charm 1s first 

produced from {~1, when events are reconstructed from the 

muon energy and angle, charm production first appears at 

x8j=O. At v much larger than m2/(2M), ~and xBj coincide. 
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In addition to the kinematics of heavy quark 

production, there are also dynamics issues. These are 

accounted for by modifying they distributions for neutrinos 

and antineutrinos 1n a way which depends on both XBj and e. 

[ f I at y ] .. [ x (f I at) + ce-x) (1-y) ] I e Eq.2.19 

Eq.2.20 [ (1-y) 2 J .. [ x (1-y) 2 
+ ce-x) (1-y) J I e 

The mass effects suppress the normal y distribution by a 

factor x/e, and add a (1-y) term with a factor of 1-x/e. 

This reduces the cross section for the flat y distribution 

case, and increases it for the (1-y) 2 case. Near 

threshhold, where x 1s nearly zero, both neutrino and 

anti neutrino y distributions become (1-y). Far above 

threshhold, x=e, and the usual y distributions are restored. 

Neutrinos always produce charm from down or strange 

quarks. Antineutrinos always produce charm from down or 

strange antiquarks. Thus, only the flat y case is relevant 

for charm. 

2.2~3 Radiative corrections 

There are significant, although wel I understood, 

electromagnetic radiative corrections to the neutral and 

charged current cross sections. 

fully in Appendix C. 

These are discussed more 
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One important correction is the box diagram for charged 

currents, where the final state muon exchanges a photon with 

the struck quark [22,23]. There is no corresponding diagram 

for neutral currents, since the final lepton is neutral. 

This diagram raises the charged current cross section by 

about 2 percent. 

The next most important effect is internal 

bremsstrahlung by the final state muon in charged currents 

[24]. This effect, to the extent that it can be isolated 

from the other corrections, does not change the total cross 

section, but it does transfer energy from the observable 

muon to the observable hadron system. This can alter the 

neutral current to charged current ratio if energy cuts are 

made. 

There is also internal bremstrahlung from the struck 

quarks. For some purposes, it is most convenient to absorb 

this into the definitions of the structure functions. While 

the charges of the struck quarks are different for charged 

and neutral currents, the sum of initial state and final 

state radiation for the two -processes is almost equal. 

There are also very smal I higher order weak 

corrections, and potentially interesting radiative 

corrections to the Z boson propagator from new heavy objects 

or heavy Higgs bosons. 
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2.3. Structure functions 

2.3.1 Cross section formula 

The deep inelastic neutrino scattering cross section 1s 

conventionally written in terms of structure functions. A 

complete structure function analysis of neutrino data 

involves extracting 3 structure functions. 

+ 2 ) - [ y - ~ ] xF3 

Eq.2.21 

The functions _F
1

, F2 and F3 are functions of x and Q2 . xF3 

enters with the + sign for neutrinos and the - sign for 

antineutrinos. The same formal structure functions appear 

for neutral curr~nts as for charged currents. 

At high energy, the M/E term becomes neg I igible. The 

Cal Ian-Gross relation [25], which asserts that at high Q2 

Eq.2.22 

al lows us to eliminate F1 1n favor of F2 . This makes the 

cross section reduce to 

(<F2 + Eq.2.23 
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2.3.2 Relation to quarks 

In the minimal quark-parton model, the 3 structure 

functions are calculated from quark and antiquark momentum-

fraction distributions. The relation between F2 and F3 and 

the quark distributions for charged currents 1s 

F2 = 2x E [ q (x) + q (x) ] Eq.2.24 
neg 

(pos) 

xF3 = 2x E 
neg 

[ q (x) - q (x) ] Eq.2.25 

(pos) 

The sum is over negative quarks for neutrinos, and positive 

quarks for antineutrinos. For a target with equal numbers 

of positive and negative quarks, cal led an isoscalar target, 

only hal~ the quarks contribute to either cross section, 

which cancels the factor of 2 1 and the neutrino and 

anti neutrino structure functions are equal. 

E [ q (x) + q (x) ] 
a 11 

E [ q (x) - q (x) ] 
a I I 

Eq.2.26 

Eq.2.27 

The difference between quarks and antiquarks is the valence 

quark distribution, which we see is xF3 . 

quarks and antiquarks is F2 . 

The sum of a I I 

For the neutral current, the left and right handed 

coup I ings €L and €R enter the cross sections. The relation 
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between the quarks and the structure functions for neutral 

currents is the same for neutrinos and antineutrinos. 

Eq.2.28 

xF3 = 2x E [(e 2-e 2) q(x) - (eL2-eR2) q(x)] 
a 11 L R 

Eq.2.29 

The traditional structure function formulae are 

discussed more fully in Appendix B. 
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3. Reconstruction 

3.1. Apparatus 

3.1.1 Accelerator and beam 

This experiment was performed at Fermi National 

Accelerator Laboratory near Batavia, II I inois. The original 

non-superconducting Main Ring proton synchrotron provided 

the 400 GeV protons used to make the the narrow band or 

dichromatic neutrino beam. The primary protons were 

about a mi I I isecond and 

Secondary particles and 

extracted from the machine over 

struck a beryl_I ium oxide target. 

degraded protons entered a system of magnets and col I imators 

designed_ to accept a momentum bite of about 10 percent and 

direct it toward an evacuated decay pipe. The decay pipe 

was about 350 meters long, and the detector was about 1000 

meters downstream of it. Primary targetting was at a finite 

angle relative to the 

beam was not aimed at 

selection, to m1n1m1ze 

neutrino detector, and the secondary 

the detector unti I after momentum 

neu~rino flux from particles not 

momentum selected. The beam was diffused over a radius of 

order 1 meter at the detector. 

To reconstruct the sealing variables it is necessary to 

know the neutrino energy. While for charged currents the 

neutrino energy can be reconstructed from the sum of the 
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visible hadron and muon energy, for neutral currents some 

other technique must be used. In the narrow band neutrino 

beam, there is a correlation between the neutrino energy and 

the vertex radius in the detector. For a secondary meson of 

mass M with laboratory energy E0 , which decays 1n its rest 

frame to a neutrino with momentum 
... 

p , the laboratory 

neutrino energy Ev may be calculated from the laboratory 

neutrino angle relative to the secondary beam direction 8v. 

E = v Eq.3.1 

Since p* -and Mare different for pions and kaons, there 

1s one correlation for pion decay, one from 2-body kaon 

decay, a.nd a range of energies from 3-body kaon decay where 

• there is a range of p values. 
... 

The very low value of p /M 

for pions makes the maximum neutrino energy only 43 percent 

of the secondary beam energy for p1ons, while it is 96 

percent of the beam energy for kaons. However, the 

neutrinos from pion decay dominate the neutrino flux, 

particularly at low vertex radius. 

The neutrino energy resolution 1s I imited by the 10 

percent momentum bite of the secondary beam, the uncertainty 

of the decay position 1n the decay pipe, and the 200 

microradian divergence of the secondary beam, to about 15 

percent. A Monte Carlo simulation of the secondary particle 
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spectrum and decays was used to find the average neutrino 

energy as a function of radius at the detector for physics 

analysis. 

Further detai Is about the neutrino beam and Monte Carlo 

may be found in Appendix D. 

3.1.2 Target material 

The low neutrino cross section and large dimensions of 

the neutrino beam require a large and massive target. Ours 

was located in Lab C of the Neutrino Area at Fermi lab, and 

is i I lustrated 1n Figure 3.1. The discussion in this 

chapter centers on the calorimeter. There is also a system 

of toroidal magnets and proportional planes for muon 

reconstruction downstream of the calorimeter. Since the 

muon system is not used 1n this physics analysis, but is 

used for some calibration purposes, it is discussed more 

fully in Appendix E. Figure 3.2 shows a typical charged 

current event, and Figure 3.3 shows a typical neutral 

current event. 

To reconstruct the neutral current sealing variables, 

we must measure the energy and direction of the recoi I 

hadrons 1n a neutrino event. Our detector combined the 

functions of target material and hadron energy and angle 

measurement into a calorimeter. The target material was 

divided into thin planes with finely segmented flash chamber 

particle detectors in between. 
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The target material was alternating layers of si I icon 

dioxide sand and steel shot contained in multiple-eel led 

Lucite plastic extrusions, which was 5/8 inch thick and 

about 12 feet square. An assembly of 2 sand planes and 2 

shot planes, along with 4 flash chambers, was hung by cables 

from a 4 inch (10 cm) wide steel box beam. Four such beams 

plus an extruded aluminum trigger plane form a module. The 

support superstructure has cross members which divide the 

stack into bays about every 5 modules, or 80 flash chambers 

(there are short bays at the front and back of the detector 

which are less than 80 chambers). There were liquid 

scinti I lator counters 1n the gaps between bays which have 

iron wal Is containing about the same mass as a single beam. 

The calorimeter was 18.3 meters (61 feet) long, and 3.6 

meters (12 feet) square. It contains 608 flash chambers, 

and 37 trigger planes. Including the scinti I lators, trigger 

planes, and flash chambers along with the target material 

planes, and assuming 80 chamber bays, the detector had a 

sectional density of 325.0 gm/cm 2 for 251.3 cm deep bay, a 

and a· volume density ·of 1-; 293 gm/cm 3 The mean Z/A IS 

.4888, or a neutron excess of 2.24 percent, compared to pure 

aluminum with Z/A=.4818. The radiation length was 14.22 cm, 

or 0.221 per flash chamber and 3.53 per trigger plane. The 

critical energy was about 40 MeV. The absorbtion length was 
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85.15 cm, or 3.69 percent per flash chamber and 59.04 

percent per trigger plane. 

For our fiducial volume of a 1 meter radius cylinder 

with depth of 392 chambers, the total sectional density was 

1592.5 gm/cm3 , and the total mass was 50.03 metric tons. 

3.1.3 Flash chambers 

The primary energy and angle measurement devices in 

this experiment were the flash chambers. Flash chambers are 

direct descendents of the original Conversi glass flash 

tubes, and of spark chambers [26]. Flash chambers are 

finely segmented, are cheap to construct in the necessary 

large numbers, and have good multiple track efficiency for 

shower measurements. They have I imited rate capability, but 

for a neutrino experiment this is not a severe handicap. 

More detai Is about our flash chamber system may be found in 

reference [27]. 

The chambers were constructed from sheets of extruded 

multiple-eel I polypropylene plastic. The eel I size was 

about 4 by 5 mi I I i meters, an-d -the sheets we re about 16 feet 

long. The active length was 12 feet, with a foot of plastic 

near each end left bare to prevent the plasma 1n one eel I 

from igniting the next. Each chamber was made of 3 sheets 

of plastic about 4 feet wide taped together at their edges, 

for a total of about 600 eel Is per chamber. A polypropylene 
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helium-neon spark chamber 

Aluminum foi I was glued to 
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each end of each sheet to al low 

gas to flow through the eel Is. 

both faces of the polypropylene 

with latex-based rubber cement. For an 18 inch region near 

one manifold, the ground foi I was peeled back and 

photoetched capacitive pickup strips were glued to the 

polypropylene, one for each eel I. 

There were 4 different chamber types. Half were X-

chambers, one quarter were 

Y-chambers. The X-chambers 

and Y-chambers had eel Is at 

U-chambers, and one quarter were 

had horizontal eel Is. The U

zlO degrees from the vertical 

for a smal I-angle-stereo view. 

Pulse forming networks (PFNs) were mounted directly to 

each chamber. The PFNs contained several stages of 

capacitors and inductors and a spark gap. The gap was made 

from Champion L20V marine spark plugs, with annular gaps and 

center electrodes, discharging to steel bolts with tungsten 

inserts in a Lucite cylinders flowing with dry nitrogen. 

The PFNs were charged to 9 kilovolts. The trigger discharge 

for the spark gaps was sup~I i~d by thyratron pulsers. The 

total delay between the event and high voltage appearing at 

the chamber was about 800 nanoseconds. The high voltage 

pulse was roughly flat 

al low the plasma time 

to the readout region. 

I ived and reliable. 

and about a microsecond long, to 

to propagate from the ignition point 

The 608 spark gaps proved very long-
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Particles traversing flash chamber eel Is ionized the 

gas, and the pulsed high voltage produced a glow discharge 

1n the struck eel Is. The plasma coupled capacitively 

through the polypropylene to the pickup strips. Current in 

the pickup strips flowed to ground past a magnetostrictive 

wire, where the magnetic field from the strip current caused 

a magneto-acoustic pulse to travel both directions down the 

wire. Pickup coi Is wound around the magnetostrictive wire 

near smal I permanent magnets at both ends of the wand 

converted the magneto-acoustic pulses back to electrical 

pulses. Amp I ifiers at both ends of the wand send the pulse 

trains to dis~riminator-memory boards. A clock running at 

2.4 counts per eel I-to-eel I delay incremented the address of 

1024 bit memories for each amp I ifier channel, and bits were 

set as the pulses arrived. The event was stored as the 

pattern of bits in the wand memories. The set bits rn the 

memories were transferred to a central double buffer memory 

in a CAMAC crate to be read in by the central computer. 

3.1.4 Proportional plane t~igg~r counters 

The trigger signal for the flash chambers, and 

provided by the supplemental calorimetry information, was 

proportional planes. These were made from 12-foot long 

aluminum extrusions with 8 1-inch-square eel Is. There was a 

welded gas manifold of 1 inch square aluminum extrusion on 
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both ends of each extrusion, with glued end plugs and a gas 

fitting. There was a 50 micron gold-plated tungsten wire 

strung down each eel I through a brass pin in a nylon bolt. 

methane flowed into each eel I 

nylon bolt, which was glued into 

one side and fitted loosely 

the eel I on the other. High 

Argon gas with 10 percent 

through the threads of the 

the manifold extrusion on 

through the manifold into 

voltage of 1725 volts was applied to the wires, providing a 

proportional mode gas gain of about 1000. Maximum drift 

time was about 200 nanoseconds. 

Planes were assembled from 18 extrustions, each 12 feet 

long, for a 12 foot square active area with 144 wires. The 

proportional planes alternated between horizontal 

vertical wires, one plane for each 16 flash chambers. 

were 37 planes in the calorimeter. 

and 

There 

Groups of 4 wires were ganged together into channels. 

There were 36 channels per plane, each covering a 10 

centimeter by 12 foot swath. The front end amplifier for 

each channel was mounted directly on the plane. The first 

stage was a current integrator· based on a junction field

effect transistor, with a rise time of about 50 nanoseconds 

and a decay time of tens of microseconds. The output went 

to a differential amplifier for use as a trigger signal, and 

through a delay I ine. The signal was tapped at 150 

nanoseconds to subtract from the trigger signal. 
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The 36 fast analog trigger signals of a plane were 

summed on a control board for use outside the plane in the 

trigger. This plane 

outside the plane for 

sum was discriminated and latched 

the trigger. The sum signals from 

each plane were themselves summed externally for a whole

detector analog sum for the trigger. 

After 600 nanoseconds in the delay I ine, the signal 

went through dual CMOS switches into dual holding capacitors 

for each channe I . One 

trigger just before the 

and the other after the 

switch was 

event signal 

event signal 

opened by the event 

left the delay line, 

rise time. CMOS op-

amps buffered the capacitor voltages into a differential 

amp I if ier base I ine subtractor for digitizing. The control 

board mentioned above also contained the timing and fanout 

circuits to control the CMOS switches, and a multiplexer for 

the signals to be digitized. 

Central scanner/digitizers were connected to the 

planes. They requested the signal from a given channel 

number of each plane 1n para I lei through the multiplexers. 

They then scanned througli the· planes, digitizing that 

channel and storing it in a buffer memory for each plane. 

This process was repeated for each channel. There were 1332 

total analog channels. A digitizer memory was I imited to so 

two scanner/digitizers were used in para I lel. 
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Each plane also had a circuit known as the Electron 

Logic Board (ELB). This board had a programmable low

threshhold discriminator for each of the 36 trigger signals. 

The discriminator outputs were ORed together for one 

external trigger signal, and an analog signal proportional 

to the number of channels was also avai I able. The 

discriminators were also internally latched and could be 

read out through the control board along with the analog 

signals. 

The ELBs were originally intended to provide a shower-

width trigger signal for neutrino-electron elastic 

scattering. The ELB was self-triggered on either a single 

or coincidence of channels over threshhold. After an 

externally-programmable delay for 

were latched. The shower width 

using priority encoders to find 

channels, subtracting them, and 

externally-programmed maximum. A 

the shower was wider than the 

drift times, the signals 

was measured digitally by 

the lowest and highest hit 

comparing the width to an 

veto pulse was issued if 

threshhold. The width 

information was not used for- th-is· experiment. 

The ELBs also had a calibration mode, 1n which the 

planes were self-triggered on pulses from Cd-109 sources 

mounted on the extrusions. After each neutrino event was 

read out, a gate al lowed each plane to trigger itself on the 

next source pulse. The planes were gated, self-triggered, 
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read, and cleared repeatedly unti I the main buffer memory 

was fu I I . Only channels with their latch bit set were 

stored in the memory, except 1 cycle in 10 where al I were 

kept for pedestal calculations. On the average, one source 

pulse per channel was written to tape per neutrino event. 

3.1.5 Triggers 

The two principal triggers were the hadron energy 

trigger and the muon trigger. They both had in common a 

veto signal from I iquid scinti I lator muon veto counters in 

the front of the detector, a beam gate opened by muon 

scinti I lators far upstream in the beam I ine, and a timing 

signal from a coincidence of two trigger planes at minimum 

threshhold. 

The hadron energy trigger required a minimum total 

proportional tube pulse height. Since there were about 10 

cosmic rays passing through the detector during the neutrino 

spi I I, and we could record only a single event per spi I I due 

to the flash chamber recovery time, the trigger threshhold 

was·set above the typtcal cosmic ray pulse height. Since 

most of the cosmic rays were single muons, the trigger also 

required at least two 10 centimeter wide trigger channels 

over minimum ionizing in at least 2 trigger planes, which 

was almost always satisfied by showers and almost never by 

single tracks. This trigger had some efficiency for showers 
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of less than 1 GeV, was about~ercent efficient at 5 GeV, 

and was essentially fully efficient at 10 GeV. 

The muon trigger had neither a requirement nor a veto 

on the calorimeter pulse height. It simply required 

evidence of a muon in the toroid system behind the 

calorimeter. The toroid system 1s described 1n Appendix E. 

A coincidence of 2 out of 4 of the front 12-foot toroid 

planes and 2 out of 4 in the back 12-foot toroid planes, 

along with the timing signal from the calorimeter, was 

required. This had a I imited sol id angle coverage, but 

event kinematics ensured that if the muon angle was large 

enough to miss the last plane, the shower energy was large 

enough to satisfy the hadron energy trigger. The drift 

times in the toroid planes were long enough that the timing 

was marginal unless fast cables to the central trigger 

electronics were used. However, events from the muon 

trigger alone wi I I only be used for calibration purposes, so 

the possibly uncertain efficiency wi I I not be an issue. 

By using events that were taken with the muon trigger, 

we co~ld measure the effici~~ci ~~ the hadron energy trigger 

as a function of shower energy. The efficiency proved to be 

essentially 100 percent for shower energies above 10 GeV, 

and 50 percent at about 5 GeV. There was some efficiency 

even at zero shower energy, but since the muon also 

contributes pulse height to the trigger, this should not be 
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interpreted as the trigger functioning for neutral currents 

at zero energy. The effect of the muon on the trigger was 

studied by measuring the threshhold for events with 

different vertex longitudinal positions, and thus different 

muon track lengths 1n the trigger. The efficiency was 

surprisingly independent of position, which imp I ies that the 

efficiency is governed more by the requirement of multiple 

hits 1n multiple trigger 

pulseheight requirement. 

planes than by the analog 

The trigger I ivetime losses due to cosmic rays, the 

front veto wal I, and reading out of triggered events were 

al I smal I and monitored. However, this analysis wi I I be 

normalized to the reconstructed charged current event 

sample, so these I ivetime losses wi I I be irrelevant. 

3.2. Data reconstruction 

3.2.1 Tape hand I ing 

The first step in reconstruction was reformatting. In 

this step, the flash chamoer hits from each end of each 

chamber were collected into ordered arrays with the fiducial 

hits suppressed. Pedestals were subtracted from 

proportional tube channels in both the calorimeter and 

toroids. Channels less than 5 ADC counts above the 

pedestal, roughly half of single minimum ionizing 1n the 
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calorimeter and much less than single minimum in the 

toroids, were suppressed. Al I the data was repacked from 

the on-I ine PDP-11 format into a format suitable for the 60 

bit CDC CYBER computers at Fermi lab. 

Next, these tapes were stripped down to the triggers of 

interest. Hadron energy triggers provided the physics 

sample, and muon triggers were retained to have a sample of 

charged current events below the hadron trigger threshhold. 

Due to address space I imitations on the CYBERs, it was 

necessary to break the data processing into several steps. 

Each step read in a reformatted tape, and wrote out a tape 

with al I the i_nput information, and new information appended 

after each event. These output tapes were the input to the 

next step, with the information appended 1n the previous 

step unpacked and used to process the event further. The 

initial set of tapes were made only half ful I to al low large 

amounts of intermediate information to be written. Of 

course, many non-neutrino events failed early steps of the 

process and so could not be fully analyzed. However, no 

events were removed from tne tapes in these steps, except 

some runs that were erroneously included in the original 

splitting stage. 
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Only the 

scanners. The 
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hadron energy 

scanning was 

triggers 

done by 

went 

the 

to the human 

Fermi lab Fi Im 

Analysis Faci I ity. The scanners used a modified version of 

the on-I ine computer program, especially the detector event 

display. This required the reformatting procedure to be 

inverted. However, the deformatting step applied the flash 

chamber shifts that were determined off-I ine, so the 

scanners saw approximately the same hit configuration as the 

off-I ine programs did. There were also modifications to the 

on-I ine program so the scanners could move a cursor 1n the 

event picture and record the vertex chamber and flash 

chamber clockcount in al I 3 views. They could also type in 

a 2 character event classification. 

The on-I ine program contained a vertex finding and 

event classifying routine, so some garbage triggers were 

rejected before the scanners saw them. The scanners were to 

classify each event from the predefined categories, e.g., 

cosmic ray muon, muon from upstream, no visible shower, 

clean charged current, crea~ neutral current, ambiguous 

between charged and neutral current, etc. 

The scanners were required to digitize the vertex for 

the neutrino induced classes, although not the other 

classes. The cursor was initialized at the computer-

estimated vertex for events the computer classified as 
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neutrino-induced. The scanners often did not move the 

cursor from this point, but simply accepted the computer 

vertex. 

The scanner class, scanner vertex, program class, 

program vertex, scanner name, date, etc. were al I written to 

files on the scan computer, then to tape. These tapes were 

merged back with the reformatted events on the CYBER 

computers. Some events were not scanned, particularly the 

muon-only triggers. 

3.2.3 Vertex finding 

The first step 1n processing was vertex finding. 

Several different vertex programs were run on each event, 

for red~ndancy and comparisons. The most important were 

VRTDRV, the shower vertex program, QFIND, a routine designed 

for finding the origin of charged current muons, 

particularly quasi-elastic events, and TXVDRV, which was a 

more general track-vertex program. The scanner vertex, and 

as many program vertices as were avai I able were put into a 

summary block. Any 

further processing. 

of tnese 

The order 

TXVDRV, QFIND, scanner. 

vertices could be used for 

of preference was VRTDRV, 

VRTDRV is the primary vertex used for neutral current 

physics, and deserves a ful I 

cal Is VRTSHR, whose first step 

description. VRTDRV first 

1s to look at the trigger 



plane latch bits to find 

least 2 consecutive hit 

shower position estimate. 

total hits in each flash 
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the most upstream collection of at 

planes for 

It then 

chamber 

a crude longitudinal 

searches the array of 

longitudinal position estimate. 

histogram of flash chamber hits 

near this to get a vertex 

Then, the peak of a 

1n this zone is used to 

estimate the transverse shower position 1n each view. A 

I ine is fit to the shower axis using a road of typical 

shower width. 

At this point, control passes to subroutine FNLVTX. 

Given a longitudinal position inside the shower and a 

transverse window, it examines the hits upstream. It uses a 

window whose width 1s dynamically adjusted on the basis of 

hits in the chambers downstream, and stores hit counts, 

centroids, and widths for each chamber. The upstream 

progress is halted when the hit density becomes low. A 

I ine is fit to the 

this fit 1s used 

compared to their 

stored centroids with equal weights, and 

to reject centroids far from the line 

width. The retained centroids are fit 

again, this time weighting ~arrow parts of the shower more 

heavily. The vertex chamber 1s the most upstream chamber 

with a centroid used 1n the last fit, and the vertex 

transverse position is the intercept of the fit I ine with 

that chamber in each view. 
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If FNLVTX or VRTSHR fai I to find a vertex, VRTDRV cal Is 

QVRTLS, which is intended to find low shower energy charged 

current events by looking for muon tracks. It 1s much like 

VRTSHR, but with lower hit count threshholds to be sensitive 

to single tracks. QVRTLS does not cal I FNLVTX. 

For charged current events, VRTDRV was cal led again 

after hits belonging to the muon were removed from the flash 

chamber hit arrays, and the resulting vertex was stored in 

the summary block along with the original VRTDRV vertex. 

The efficiency of VRTDRV can be measured by testing it 

on ful I shower Monte Carlo events. For charged currents, 

VRTDRV is 90 ~ercent efficient at zero shower energy, and 

essentially 100 percent efficient above 5 GeV. For neutral 

currents~ the efficiency is about 50 percent at 3 GeV, 90 

percent at 5 GeV, and essentially 100 percent above 10 GeV. 

We can also estimate the VRTDRV neutral current 

efficiency by removing the muons from charged current events 

that were found by the track-vertex ~rograms. The results 

agree with the shower Monte Carlo simulation. 

We can also compa·re VRTDRV to the scanners on the data. 

The program efficiency on the scanner neutral currents is 

somewhat better than the program efficiency on the Monte 

Carlo below 10 GeV. Presumbly this imp I ies that the 

scanners miss some of the less prominant neutral currents in 

the data that VRTDRV also misses. 
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3.2.4 Event classification 

The next step 1n processing was event classification. 

Al I events in which any of the vertex programs or the 

scanner could find a vertex were processed through the 

routine NCCC, which classified them as neutral current or 

charged current. The human scanner event classification was 

not used. A more complete description of NCCC and the event 

classification problem is given in Appendix F. 

NCCC first cal Is MUSH2, which accumulates density

fi ltered flash chamber hits into a histogram of angles from 

the vertex in each view. A histogram peak in each view, 

usu a I I y the l_a rgest, 1s selected for further processing. 

NCCC then uses MUFFIT to make a series of fits with 

decreasi~g road sizes and constrained to match in space 

between views is performed. The hits in the track road are 

counted, and a series of selection criteria involving the 

hit density, number of hits, and consistency with the shower 

vertex are applied. If the track passes any of the 

criteria, the event is cal led a charged current. If not, 

the process is repeated using a somewhat different filter 

before fi I I ing the angle histogram. If no adequate track 

candidate is found in either pass, the event is cal led a 

neutral current. 

In NCCC, events cou Id be ca I I ed charged currents if 

there were enough hits in the toroid chambers, even if there 
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was no calorimeter track found. This correctly classifies a 

few charged current events where the track 1s at large 

angle, leaves the calorimeter side, and hits the large 24 

foot toroid chambers. However, due to noise in the toroids, 

it was required that the human scanners also agree the event 

was a charged current. Since the shower Monte Carlo data 

used to measure the misclassification was not scanned, the 

toroid-only criterion was not used for this analysis. 

3.2.5 Muon removal 

To make the shower energy and angle algorithms handle 

charged currents and neutral currents equivalently, it was 

necessary to compensate for the presence of the charged 

current muon hits in the flash chambers. This was done on a 

chamber by chamber basis by the routine ELIMU2. The 

intention was to remove al I hits from the muon, but not hits 

that would exist even if the muon were not present. 

Starting 5 chambers from the vertex, ELIMU2 counted the 

hits in a road of zlO clock counts, which included 10 eel Is 

per chamber. If there were - 5 ~r more hitsJ it did nothing. 

If there were 3 or 4 hits, it removed the one closest to the 

track I ine. If there were 1 or 2 hits, both were removed. 
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3.2.6 Shower energy 

Hadron shower energies were derived from the flash 

chamber hits. Repetitive noise hits contained 1n run

dependent tables were removed before the energy measurement. 

Charged current muon hits were also removed, as dicussed 

above. Subroutine ESHOWER used tables of local flash 

chamber efficiency and multiplicity 

corrections for saturation, producing a 

corrected hits. The corrected hits were 

to make local 

quantity cal led 

summed for the 

entire transverse width of the detector, and from 8 chambers 

upstream of the vertex to a conservatively estimated end of 

the shower. The final shower energy 

polynomial function of the corrected hits. 

The ESHOWER algorithm was based 

was a quadratic 

on independent 

corrections for 10-cel I-wide regions of every flash chamber. 

The intention was to make the response uniform despite 

regional variations in the chambers, to I inearize the 

response, and to improve the resolution. Corrected hits 

were intended to represent the number of tracks which, given 

the tabulated efficiency and multiplicity of the region, 

would produce on the average the number of hits that were 

observed, including the saturation effects of finite eel I 

size. It was assumed that regions with efficiency less than 

80 percent had some dead or unreadable eel Is, with the I ive 

eel Is having 80 percent efficiency. The regions with 
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efficiencies greater than 80 percent were assumed to have 10 

I ive readable eel Is. Regions of known poor efficiency were 

not used, since they would have very large corrections. 

Instead, they were fi I led in using the hits in the chambers 

downstream. 

The tables were made from cosmic ray muon events. 

There was a special cosmic ray trigger to accumulate cosmic 

rays in accelerator spi I Is with no neutrino event (most of 

the spi I Is), and special cosmic ray only runs periodically 

and during accelerator down times. There were several 

different tables to track changes 1n the flash chamber 

parameters. The efficiency was defined as the probabi I ity 

of at least one hit for a cosmic ray muon traversing the 

region. The multiplicity 1s the mean number of h1ts given 

any hits at al I, and is therefore at least 1. 

3.2.7 Shower angle 

Shower angle measurement 1s the unique feature of our 

detector necessary for the neutral current structure 

function analysis. The - projected shower angles were 

measured by the flash chamber hit patterns in each view. To 

provide cross-checks on the systematics, the results of 3 

different shower angle algorithms were stored for each 

event. The algorithms were HADFLO, SHWANG, and RGLDRV. Al I 

required the shower vertex as input. The fastest algorithm, 
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RGLDRV, was also run using al I the avai I able vertices as 

starting points. The charged current muon hits were removed 

before the angle measurement. Due to systematic effects 

discussed in Appendix I, it shou Id not be expected that 

shower angles in a detector such as ours wi I I be unbiased. 

Therefore, the shower angles used 1n the final physics 

analysis were multiplied by an energy-dependent calibration. 

HADFLO was based on weighted fits to the centroid of 

the hits in each flash chamber. It made several passes 

through the chambers with varying weights and roads, and 

attempted to make saturation corrections. SHWANG was based 

on finding the mean of a histogram of hits versus angle with 

saturation corrections, and cutting out the large angle 

tai I. RGLDRV was much I ike SHWANG, but used no angle cuts 

and no saturation corrections. None of the routines used 

the efficiency and multiplicity tables, or rotation and 

curvature tables. 

By comparing the VRTDRV vertex with the muon present, 

and the VRTDRV vertex with the muon absent, it was found 

that there was a systematic -ve~~ex bias from the presence of 

muon hits. This would cause a systematic difference in the 

angle scale between charged and neutral currents. To 

minimize the difference, charged current angles measured 

from the VRTDRV vertex after muon removal. Since only 

RGLDRV was run using this vertex, the RGLDRV angle was used 
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for physics analysis. The RGLDRV angle resolution was 

slightly better at low energy than the other routines, 

although at energies beyond the y cut of this analysis, the 

saturation corrections in HADFLO and SHWANG cause them to 

have better resolution. 

3.3. Calibration 

3.3.1 Shower energy 

It is necessary to calibrate the hadron shower energy 

scale, because the response of the detector and algorithm to 

a given energy cannot be calculated from first principles to 

the required accuracy. This is conventionally done by 

reconst~ucting events from a momentum-selected hadron beam. 

In our hadron beam data, we discovered that the mean 

number of flash chamber hits decreased as a function of the 

number of calibration beam events since the magnetostrictive 

readout wires were magnetized. 

the wires were automatically 

This was surprising, since 

remagnetized every 200 events, 

and there had never been ari~ ~~idence of demagnetization in 

extensive cosmic ray muon data. There was also no evidence 

of demagnetization in neutrino data. Our hypothesis is that 

the demagnetization was not due to pulsing the chambers, but 

due to the currents in the readout fingers demagnetizing the 

wires. A given flash chamber eel I apparently cannot be read 
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out many times between magnetizations. Since calibration 

beam events al I occur 1n the same smal I part of the 

detector, the same eel Is are 

events and cosmic ray muons 

volume, so the probabi I ity of 

I it on each event. Neutrino 

occur randomly throughout the 

the same eel I being I it many 

times between magnetizations was negligible. 

To interpret the hadron beam data for calibration, we 

extrapolated of the observed mean response trend back to 

zero events since magnetization. We estimate the systematic 

error in the extrapolation process as 5 percent. 

To obtain a better energy calibration, we used charged 

current neutrino events with reconstructed muons and the 

energy-radius correlation of the narrow band beam. The 

hadron e~ergy scale and I inearity was adjusted to make the 

sum of hadron energy and muon energy match the predicted 

neutrino energy at that radius. It should be noted that 

this makes no assumptions about the differential neutrino 

cross section, only that energy is conserved. Thus, there 

1s no circularity involved 1n using the energy fit for 

charged current analyses. - The energy scale fitting 

procedure and results are described more fully in Appendix 

G. 

The results of the energy scale fit are consistent with 

the extrapolated hadron beam calibration results, within the 

systematic uncertainties of the extrapolation. The 
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nonlinear term IS important at the 10 percent level for 

energies above 100 GeV, but less so 1n the energy range of 

this analysis. We estimate the systematic uncertainty 1n 

the hadron energy scale to be 1 percent. 

It is also necessary to know the energy resolution of 

the detector to unfold the physics from the raw data. Since 

the neutrino energy resolution from the energy-radius 

correlation of the neutrino beam 1s poorer than the expected 

hadron energy resolution, it 1s difficult to use the 

neutrino data to measure the resolution. However, by the 

same token this imp I ies that the hadron energy resolution is 

not dominant in the sealing variable resolutions. The best 

measure of the energy resolution 1s provided by the hadron 

beam data, and is presented in Appendix H. 

3.3.2 Shower angle 

It 1s necessary to calibrate the shower angle scale as 

wel I as the shower energy scale. The distribution of shower 

energy in the detector, and the detai Is of the response of 

the detector enter into the - angle algorithms in complex 

ways. There is no reason to expect a given algorithm to 

produce an unbiased angle in our detector. Since the square 

of the shower angle appears in the formula for neutral 

current x, biases in the angle lead to larger biases in 

reconstructed x. The systematics issues 1n shower angle 

measurement are discussed in Appendix I. 
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Ideally, one could calibrate the angle scale by using a 

hadron beam at varying angles. However, we were constrained 

to a single calibration beam angle of zero in one projection 

and 70 mi I I iradians in the other. The zero angle projection 

is obviously not sensitive to angle scale errors. The 

results of the 70 mi I I iradian view are consistent with a 

bias toward smaller angles of about 5 percent, but 

statistics and systematics are inadequate to say much more. 

Using charged current neutrino events with 

reconstructed muons, and assuming that transverse momentum 

is conserved, we can calibrate the shower angle scale. The 

shower transverse momentum should balance the muon 

transverse momentum event by event. Note that this does not 

require ~ny assumptions about the charged current cross 

section, only that momentum is conserved. Thus, calibrating 

using Pt balance to calibrate the angle scale does not 

compromise the charged currents as a control for the neutral 

current structure function analysis. We have not forced the 

charged current shower angle distribution to match any 

calculated distribution; we- have simply chosen the angle 

scale that makes the mean reconstructed shower Pt match the 

mean reconstructed muon Pt. 

The results of the fit show an energy dependent bias 

toward zero angle of order 10 percent for the angle from 

RGLDRV using raw hits shower energies 1n the pion band, 
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decreasing at higher energies. The parameterization was 

used to re-scale each shower angle before the physics 

analysis. 

The hadron beam data and charged current Pt balance 

data on the shower angle scale are discussed in Appendix J. 

The shower angle resolution of our detector is only 

moderately better than the expected angle distribution from 

physics. The resolution has a large effect on the 

distribution of reconstructed angles, and must be understood 

to extract physics from the data. The angle resolution may 

be measured by reconstructing hadron beam events of known 

angle. It is also possible to measure the angle resolution 

1n charged current events by reconstructing the projection 

of the s~ower angle out of the neutrino-muon plane, which 

should be zero independent of both the shower energy and the 

muon energy. Al I measurements of the angle resolution are 

in agreement at the 10 percent level. The resolution 

improves roughly as 1/Eh toward a constant of order 20 

mi I I iradians. Expressed in terms of Pt, the resolution ts 

about 1 GeV at low energy anc degrades I inearly with energy. 

The shower angle resolution analysis is discussed more fully 

in Appendix K. 



81 

3.3.3 Muon removal 

We attempt to analyze both charged and neutral current 

events equivalently. This requires that we remove the 

charged current muon hits. 

removal algorithm can be 

The effectiveness of the muon 

measured in several ways. 

Calibration beam muons, or charged current muons downstream 

of the shower, can be used to test the algorithm at zero 

shower hit density. The result is an average residue of 

about 0.2 hits per chamber. In some events, the residue is 

clearly a smal I electromagnetic shower along the muon. The 

rate of these smal I showers, and the total residual energy, 

1s completely consistent with the cross section for 

energetic delta ray production in the calorimeter material. 

Electrons of 5 MeV or more can penetrate our target planes, 

and above the critical energy of about 20 MeV, shower 

behavior is expected. Beyond a few GeV, bremsstrahlung 

photon showers become more important that delta rays, but do 

not make a large contribution to the mean residue. 

However, this zero shower hit density measurement of 

the muon remova I systematics d-oes not necessa r i I y app I y to 

finite density showers. The calorimeter is intrinsically 

non I i near at the f I ash chamber ce I I I eve I , the energy 

algorithm is non I inear in an attempt to compensate. The 

muon removal a Igor i thm IS also non I inear, and the 

electromagnetic energy deposited by delta rays is known to 
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have a different calibration than hadronic energy. It is 

necessary to measure the net effect of the presence and 

removal of a muon on the analysis chain, rather than simply 

correcting post facto. 

This was done in a special pass through the charged 

current data. Al I charged current events whose muons were 

visible in the calorimeter outside the shower for at least 

their length inside the shower were used. A ~10 clockcount 

region around the muon was cleared of hits for the length of 

the shower, the hits from ~(10 to 20) clockcounts were 

copied into the cleared zone, and the energy algorithm was 

run on the modified shower. This gives a synthetic no-muon 

shower and its energy. Then, hits from a road of ~100 

clockcounts around the part of muon track wel I downstream of 

the shower were translated along the track I ine and 

superposed on the shower, 

closer together than the 

remove the muon hits, 

again. This simulates 

tra~k plus real delta ray 

difference between the 

effectiveness of the muon 

being careful not to create hits 

eel I spacing, ELIMU2 was used to 

and the energy algorithm was run 

the same shower, but with a muon 

~1ti ~dded then subtracted. The 

two energies- measures the 

remova I in the f u I I y non I i near 

situation. 

The distribution of the energy difference as a function 

of the shower energy was analyzed. The mean energy 
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difference was about 500 MeV, which 1s completely consistent 

with the calculated delta ray energy above the cutoff of the 

target plane thickness, summed for the length of the shower. 

The shape of the distribution is also 1n agreement with the 

2 1/E spectrum expected from delta rays. The peak of the 

energy difference is essentially zero, with the mean being 

due to the tai I. There is also a component of gaussian 

smearing of about 1 GeV convoluted with the 1/E2 component. 

This is expected, since the ELIMU2 algorithm can only be 

correct 1n a mean sense, and not hit by hit and chamber by 

chamber. This extra smearing 1s much less than the normal 

flash chamber _resolution, and 1s only visible since most of 

the hits in each synthetic event are exactly the same for 

the muon-absent and muon-added-then-removed cases. 

3.4. Data selection 

3.4.1 Fiducial volume cuts 

Fiducial volume cuts on the vertex position are 

necessary to ensure that tne hadron shower energy is fully 

contained in the calorimeter. They are also necessary to 

al low charged current muons to be visible outside the shower 

region for event classification. There are also showers 

from neutrino interactions 1n material upstream of the 

detector, and cosmic rays can enter from the top and sides 
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of the detector and could be mistaken for neutrino 

interactions. Fiducial cuts help remove them. 

The cuts used were that the vertex was downstream of 

chamber 8, and upstream of chamber 400 out of 608 chambers. 

The vertex also was required to be at least 200 clockcounts 

(50 centimeters) from the nearest flash chamber edge. For 

the neutral current physics analysis, but not for charged 

current calibration analysis, there was also a cut on the 

vertex radial distance from the neutrino beam center. The 

radius was required to be less than 100 centimeters, which 

is a more restrictive cut than the 200 clockcount cut, 

except for a smal I region at the bottom of the detector. 

This cut was intended to minimize the contamination from 

kaon band neutrinos, whose energy-radius correlation is 

different from pion neutrinos, and also to minimize electron 

neutrino contamination. 

3.4.2 Trigger cut 

We need to minimize the difference between the detector 

response to charged and neutral current events. \\e 

therefore use only the hadron energy trigger for neutral 

current physics, although the muon triggers are used for 

calibration analyses. Since there is a contribution to the 

pulseheight 1n the hadron energy trigger from the muon 

dE/dx, this can make a difference in the trigger efficiency 
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between charged and neutral currents. The vertex finding 

program is also more efficient for low energy showers when a 

muon is present. A minimum reconstructed shower energy of 

10 GeV was required to minimize sensitivity to the trigger, 

and to differences in the trigger efficiency between charged 

current and neutral current events. As noted above, by 

comparing the hadron and muon triggers on the same event, 

the efficiency at 10 GeV is essentially unity. 

3.4.3 Y cut 

For neutral current physics, it is clearly essential to 

have an uncontaminated neutral current event sample. The 

probability of misclassifying a charged current event as a 

neutral current event increases rapidly at high values of 

the sealing variable y=Eh/Ev. This 1s because high y 

corresponds to low muon energy and large muon angle, both of 

which make a muon track hard to find. There is essentially 

zero efficiency for correctly classifying a charged current 

event at y~l. 

To minimize the s rze of the correction from 

misclassified charged current events, we exclude from the 

neutral current physics analysis al I events where y 1s 

greater than 0.7. The neutrino energy Ev 1s inferred from 

the mean energy of neutrinos from pion decay at the radius 

of the event vertex. High y events from kaon band neutrinos 
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are at even higher shower energies, and thus are also cut. 

In fact, the majority of kaon band events are cut, but this 

1s only a smal I loss of statistics. Electron neutrinos from 

kaon parents are also high 

the final state electron 

shower energy. Thus, they 

energy, and for charged currents 

energy appears as part of the 

cut also is highly efficient at 

removing electron neutrino charged currents from the neutral 

current sample. 

3.4.4 Scanner classification 

The neutrino flux per accelerator cycle produced much 

less than one ~vent per cycle. This was particularly true 

for antineutrino running, due to the lower flux of negative 

secondaries and the lower antineutrino total cross section. 

While the hadron energy trigger rejected the bulk of the 10 

cosmic rays that traversed the detector per beam spi I I, some 

did satisfy the trigger. Most cosmic ray triggers were 

classified as neutral currents by NCCC. Even after the 

vertex fiducial cuts and the 10 GeV energy cut, there is 

sti1 I contamination from cosmic rays. Therefore, the human 

scanner classification information was used to reject cosmic 

rays. However, neither the scanner vertex position nor the 

scanner neutral current or charged current decision was used 

in the analysis otherwise, to ensure that the hand I ing of 

data and ful I shower Monte Carlo was as similar as possible. 
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3.4.5 Data set statistics 

There were 4 different settings of the secondary beam 

momentum for this analysis. One was negative particles at 

165 nominal 165 GeV for antineutrinos. The other settings 

were positives at 165, 200, and 250 GeV nominal for 

neutrinos. The statistics on the number of hadron energy 

and muon triggers, and events left after the above cuts, are 

given in Table 3.1. 

Table 3.1 

Event statistics 

-165 

44263 

15318 

9098 

7831 

6163 

4933 

3527 

2588 

1882 

706 

.3751 

.0165 

.0441 

+165 

33510 

18962 

15877 

13613 

10812 

8602 

7224 

4134 

3167 

967 

.3053 

.0112 

.0367 

+200 

26768 

13566 

10336 

8929 

7077 

5768 

5048 

2754 

2126 

628 

.2954 

.0134 

.0454 

+250 

34110 

15493 

11324 

9663 

7624 

6094 

5494 

2705 

2041 

664 

.3253 

.0145 

.0447 

Secondary Momentum 

Triggers 

Vertex contained 

Human scan class OK 

Ful I reconstruction 

In z fiducial cut 

In r fiducial cut 

Eh at least 10 GeV 

y'lr less than 0.7 

Charged current 

Neutral current 

NC/CC 

Statistical error 

Fractional error 
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FMM NEUTRINO DETECTOR 

I• 12.2m ----------- 18. 3m -------i 
MUON SPECTROMETER TARGET-CALORIMETER 

7.3m DIA. 

3 . 7m DIA. Fe TOROIDS 
Fe TOROIDS 

DOD 
8 3.7 x3.7m 2 

PROPORTIONAL 
PLANES 8 7.3 x 7.3m2 

PROPORTIONAL 

LIQUID 
SCINTILLATOR VETO 

u 

BEAM 

37 PROPORTIONAL PLANES 
I 608 FLASH CHAMBER PLANES 

PLANES 
__ ___.~--3-4-0 TONS SANO/STEEL SHOT 

4 3 2 1 

_....---11---+--+--+--+-~4S.7cm+--+--+---+----11---+--+----.4 

SANO 
STEEL 
SHOT 

Figure 3.1 
Detector layout 

u y u y u y u 

~---

Beam enters from right, through scinti I lator veto wal I and 
into calorimeter, constructed from 38 modules. Behind 
calorimeter are 24-foot and 12-foot diameter toroidal 
magnets with proportional planes for muon reconstruction. 
Inset shows a calorimeter module made of a proportional 
trigger counter, and alternating U-X-Y-X flash chambers and 
sand and steel shot target planes. 
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Figure 3.2 
Typical charged current event 

Neutrino incident from left interacts producing shower of 
hadrons and a penetrating muon. Flash chamber X view is 
from side, and Y and U are zlO degrees from vertical. 
Proportional trigger counter pulseheight histograms are 
plotted above and below. Muon is bent toward-axis of 
toroids, as shown by hits in toroid planes. 
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Figure 3.3 
Typical neutral current event 

Neutrino incident from left interactes producing a hadron 
shower with no penetrating tracks. 



4. Monte Carlo 

4.1. Introduction 

The physics of deep 

comp I icated. The cross 
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inelastic neutrino scattering is 

section 1s a double-differential 

distribution 1n x and y, and 1s a function of the beam 

energy, which covers a wide range. In the quark-parton 

model, the cross section 1s a function of the evolving quark 

distributions of different flavors with radiative 

corrections and slow resealing. The physics itself is 

intrinsically probabi I istic event by event, even when the 

ave rage behav i_or is known. 

The combination of apparatus and programs used to 

collect ~nd analyze the data 1s also complex. While the 

individual components of the system are understood, it is 

necessary to fold together the influences of many components 

of the system at once. There is also a random component to 

the measurement errors of the system. A simulation of the 

entire chain of physics to observables to fit results is 

necessary to understand, ca rib r·ate, and check the ana I ys is, 

and this is usually done by Monte Carlo techniques. 

The components of the Monte Carlo simulation for this 

experiment are computer 

positions at the detector 

parameterization of the 

files of neutrino energies and 

representing the neutrino beam, a 

deep inelastic scattering cross 
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section, an event 4-vector generator, and a model of the 

detector and program acceptance and smearing. 

The neutrino files are themselves made by a Monte Carlo 

program simulating the decay of secondary particles in the 

beam I ine. This program is discussed in Appendix D. There 

is also another important Monte Carlo which includes ful I 

model I ing of the hadron shower development and detector hit 

generation. As this program 1s used 1n this analysis 

pr i mar i I y for parameterizing the misclassification of 

charged and neutral currents, it is discussed in Appendix F. 

However, the results of that parameterization are used in 

the Monte Carlo discussed here. 

The general philosophy of this analysis is to include 

all the_"physics" corrections to the minimal quark-parton 

model 1n the same Monte Carlo with al I the detector 

acceptance and resolution effects. This is necessary for 

self-consistency since many of the "physics" corrections are 

model-dependent. The same Monte Carlo framework is used for 

b th h . 28 I . o t e srn ana ys1s 
w 

and the neutral current structure 

function analysis. SI i~htlj ·different information is 

extracted from the Monte Carlo to do the two analyses. 

4.2. Quark distributions 

The Monte Carlo uses simple power law parameterizations 

for the structure functions. We parameterize the valence 
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quark contribution to the cross section at some Q2 value as 

xq(x) 
1 

= V(x) =A xa(l-x){J va Eq.4.1 

We parameterize the sea contribution to the cross 

section as 

x[q(x) + q(x)]sea = S(x) = C (1-x)1 Eq.4.2 

If one plots logarithms of the measured structure 

functions at fixed values of x as functions of Q2 , one finds 

that the dependence 1s close to I inear in log Q2 , with a 

smooth trend of the slope versus x. The slopes fol low the 

QCD prediction of positive slopes at low x and negative 

slopes at high x. See Figures 4.1 and 4.2, showing the data 

of the CCFRR charged current structure function experiment 

[28] . The derivatives of the structure functions, 

d(lnF)/d(lnQ2), are close to Ii near 1n x, with perhaps 

somewhat faster evolution at very low x. See Figure 4.3. 

Since the valence and sea evolve 1n different ways in QCD, 

and the sea is concentrate~ a~ low x, this should not be 

surpr1s1ng. 

The functional form that produces a linear log-log plot 

1 s a pow e r I aw . This suggests that we parameterize the Q2 

dependence of the quark distributions as 

2 2 F(x,Q ) = F(x,Q0) [ ~i] 
p (x) 

Eq.4.3 
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Eq.4.4 

2 2 At Q =Q0 , the term containing Q2 
IS unity. The function 

p(x) is independent of Q2 and I inear in x. The parameter Po 

1s the evolution at x=O, and the parameter p is the value c 

of x where the evolution 1s zero. 

The valence quark content is half up and half down for 

a perfect isoscalar target, with the same x distribution for 

both. Our target has about a 2 percent neutron excess, 

which gives us a slight down quark excess. We assume the 

minority quark x distribution 1s .57(1-x) of the total 

valence x distribution. 

The sea 1s necessarily symmetric between quarks and 

antiquaN<:s. It is also assumed that the anti-up and anti-

down contents are equal. However, the strange sea 1s 

probably somewhat suppressed by mass effects, and we take 

the anti-strange sea to be 45 percent of of the anti-up or 

anti-down sea. We neglect the charmed sea. 

4.3. Quark coup I ings and y distributions 

For the charged current, neutrinos couple only 

negatively charged quarks and antiquarks, and antineutrinos 

couple only to positively charged quarks and antiquarks. 

They distribution for neutrino-quark scattering is flat, 

dn 
dy = 1 Eq."!_.5 



95 

and the y distribution for neutrino-antiquark scattering is 

dn 
dy = 2 (1-y) Eq.4.6 

The charged current also couples across generations. 

These cross-generation coup I ings are proportional to the 

squares of elements of the Kobayashi-Maskawa matrix. We 

neglect the third generation couplings, and let 

When charm is 

altered by the large 

IU I = .947 cs 

produced, the 

charm mass, 

event 

and the 

reduced. We take the charm mass m =1.5 

momentum fraction { and 

{ = x + 

the kinematic 

m2 / 2Mv c 

c 

x are 

Eq.4.7 

Eq.4.8 

kinematics are 

cross section IS 

GeV. The quark 

related by 

Eq.4.9 

We evaluate the quark distributions at{, but evaluate the 

kinematics and smearing at x. 

Charmed quarks can be -prod-uced by neutrinos from down 

or strange quarks, or by anti neutrinos from down or strange 

anti quarks. Both of these cases wou Id norma I I y have a f I at 

y distribution. The charm mass modifies they distribution 

to 

dn x + ({-x) (1-y) dy = _ ____........_{..,_....._.........__~ Eq.4.10 
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The neutral current neutrino-quark coup I ing and 

antineutrino-antiquark coup I ings give a y distribution of 

Eq.4.11 

For antineutrinos, this is 

Eq.4.12 

The conventional structure function definition includes 

a term -Mxy/2E 1n the y-dependence of the cross section. 

For massless quarks, there 1s no such term in they 

distribution in the quark-parton model. However, if a quark 

with momentum fraction x had an invariant mass of Mx, and 

the mass was not neglected, the term would appear. In 

perturbative QCD, it 1s expected that transverse momentum 

from gluon radiation wi I I create an effective mass. This is 

usually expressed 1n terms of the longitudinal structure 

function FL, related to the difference between F2 and 2xF1 , 

or R, defined to be the ratio of the cross section for 

longitudinal and transverse photons in electromagnetic 

scattering. 

The measurement of R requires fitting the y 

distribution at fixed x and Q2 , which in turn requires 

understanding the relative flux and acceptance at different 

beam energies, which is very difficult. The values of R 

measured by other experiments are not very different from 
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zero, or from the mass term in the cross section, which is 

always less than .01 for 50 GeV neutrinos. Since 

experiments with higher statistics than ours and better 

resolutions do not find large values for R, we neglect both 

the mass term and R in the Monte Carlo. 

Radiative corrections to both charged and neutral 

currents are included partly by modifying the above coupling 

weights, and partly by exp I icit final-state photon 

generation. 

4.4. Fit for parameters 

The para~eter values for the above parameterization 

were derived from a chi square fit to structure function 

data from the CCFRR collaboration, the low x and low Q2 data 

of the CDHSW collaboration, the total cross section, the 

ratio of valence to sea, and the Gross--Llewel lyn-Smith sum 

rule. 

Charged current data for xF3 and F2 as a function of x 

and Q2 are conventionally presented as being corrected to 

isoscalar valence and -i sosca I ar valence plus sea 

respectively, rather than being the xF3 and F2 that appear 

in the conventional cross section formula. They are also 

extracted assuming a specific form for R, and include 

corrections for the charm mass and radiative corrections. 

The total cross section 1s also conventionally corrected to 
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an isoscalar target. The measured total cross section 

should not be exactly consistent with the integrals of F2 

and xF3 due to the corrections. However, the total cross 

section may be calculated from the structure functions and 

the assumptions about the strange sea, charm mass, etc., 

used elsewhere in the Monte Carlo. 

The fit was for the parameter values that minimize the 

chi square between the differential cross sections predicted 

by our simple no-mass-term, R=O differential cross section 

expression 1n the Monte Carlo and the cross sections 

calculated from the CCFRR structure functions and the 

parameterizat~on of R under which they were extracted. 

The total neutrino and antineutrino cross sections were 

entered into the fit as pseudo-measurements rather than 

constraints. The errors assigned were not the CCFRR 

statistical or systematic errors, but rather a device to 

constrain the parameter values to produce nearly the correct 

total cross sections. The total cross sections calculated 

from the Monte Car lo parameter values for E,..,=50 GeV and 

compared to the CCFRR · tota r -

cross sections of .67-J:.01 and 

.34-J:.005 in units of 10-38 cm2/GeV [29]. Since the CCFRR 

cross sections are already corrected to the values for an 

isoscalar target, the non-isoscalar parts of the Monte Carlo 

parameterization were suppressed. The sma I I (2 percent) 

radiative corrections to the total cross section needed for 

the NC/CC analysis for sin2e analysis were neglected; w 
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ratio analysis for sin29 requires 
w 

input structure functions al I the way down to zero Q2 for 

low x. The x resolution precludes cutting the low Q2 region 

out of the neutral current structure function analysis. As 

the CCFRR data does not cover this region wel I, we also 

included the F2 and xF3 at x=0.015 from the CDHSW 

co I I aborat ion [17] . The earlier disagreement about the 

total cross section and the shape of F2 between CCFRR and 

CDHS data does not appear in thi~ data. However, the points 

used 1n the fit are sti I I not formally pub I ished at this 

date. It should be noted that there 1s sti I I some 

disagreement about the value of xF3 at low x between the two 

groups. 

The-global NC/CC ratio analysis for sin29 1s sensitive 
w 

to the relative amounts of valence and sea quark content. 

The CDHSW group made assumptions about the relative 

integrals of the valence and sea quark distributions 1n 

their extraction of sin29 [30]. The ratio of valence to w 

sea actually depends on Q2 or v, and they quote only the 

average over their accepted sample with a 10 GeV cut on Eh 

and including almost equal numbers of pion and kaon 

neutrinos in a 160 GeV narrow band beam. Combining the 

various sea species, their ratio of sea to valence is .3765. 

The ratio of sea to valence under the parameterization was 

calculated at Eh=20 GeV and included 1n the fit with an 

"error" of . 01. 



100 

The Gross--Llewel lyn-Smith sum rule constraint was 

included in the fit by requiring the GLS integral of the 

valence distribution at Q2=10 to be 3~.1. The constraint 

was not put in more strongly it cannot be true at al I Q2 in 

our simple parameterization. 

4.5. Parameter fit results 

Table 4.1 gives the results of the fit for the 

parameters. 

Table 4.1 

Quark distribution parameter values 

A 
a 
p 
c 
7 

valence 
valence 
sea Po 
sea Pc 

4.10 
.583 

2.93 
1.63 
8.61 

.132 

.210 

.265 

.115 

The calculated total cross sections for a range of 

neutrino energies are given 1n Table 4.2, along with the 

measured cross sections. The calculations are for an 

isoscalar target. The second set of calculated cross 

sections includes the radiative corrections necessary for 

the NC/CC calculation but excluded from the fit. 
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Table 4.2 

Total cross sections 

( 10-38 cm2/GeV) 

Ell ll ll 

CCFRR .670 .340 
CDHSW .696 .334 

50 .688 .332 
100 .682 .333 
200 .676 .336 

50 RC .701 .336 
100 RC .693 .337 
200 RC .686 .340 

Table 4.3 shows the ratio of integrated sea to 

integrated valence for the parameterization at various 

values of Eh. 

Table 4.3 

Sea to valence ratios 

Eh 

CDHSW 
10 
20 
50 
100 

sea/valence 

.3765 

.3758 

.3894 

.4154 

.4407 

Duke & Owens 

.3765 

.3118 

.3594 

.4160 

.-4552 

with Q2 cutoff 

.3765 

.3842 

.4079 

.4424 

.4701 

The Duke and Owens parameterization of the quark 

di str i but ions [31] is a I so common I y used. They fit the data 

of many experiments, particularly the older CDHS data which 

has been contradicted by the newer CDHSW results. It should 

2 be noted that Duke and Owens did not fit any data be~ow Q =4 
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2 GeV , so the information at low Q2 . I . 1s pure extrapo at1on, 

although their fit does agree wel I with the avai I able low Q2 

data. For later reference, the second column of Table 4.3 

is the Duke and Owens parameterization integrated like the 

present parameterization. The third column is the Duke and 

Owens parameterization integrated assuming there 1s no 

evolution below Q2=4 GeV2 , also for later reference. 

Table 4.4 shows the value of the Gross--Llewel lyn-Smith 

sum rule integral for some values of Q2 . These are 

calculated without the electromagnetic radiative 

corrections. 

Table 4.4 

Gross--Llwel lyn-Smith integrals 

Q2 Integral 

5 2.818 
10 2.914 
20 3.024 
50 3.193 

The chi square for the fit 1s 235.5 for 149 

measurements and 9 parameters, for a chi square per degree 

of freedom of 1.68. This is rather poor for so many degrees 

of freedom. However the CCFRR group itself, using more 

sophisticated models of Q2 evolution, obtains a chi square 

per degree of freedom of 1.38 in the fits used to evaluate 

their smearing and physics corrections [32]. 
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If we remove the total cross section, CDHSW data, 

valence/sea ratio, and sum rule pseudo-measurements, fix the 

Q2 evolution to the above parameter values, and also fix 7=7 

(as was done for the previous analysis of this data for the 

neutral current structure functions), the CCFRR data fits to 

A=3.27z.174, a=.500z.025, P=2.71z.061, and C=l.42z.035, with 

a chi square per degree 

LI ewe I lyn-Smith sum rule 

of freedom 

i ntegra I 1 s 

of 1.53. The Gross--

2.994 for Q2=5 GeV2 . 

The ratio of sea to valence at Eh=20 GeV is .427, which 

implies a ratio of antiquark to quark plus antiquark content 

of 1.50. 

4.6. 4-vector generation 

Fi~st, a neutrino energy and transverse position in the 

detector 1s read from a file generated by a separate 

neutrino beam Monte Carlo program. The distribution in 

energy and position of these neutrinos should match the 

neutrino flux in the detector. The neutrinos are accepted 

or rejected with a probabi I ity I inear in their energy. The 

res~lt of this proc~ss 1s a distribution of neutrinos 

weighted by energy. 

A momentum fraction is generated with 3 a (1-0 

distribution between 0 and 1, and a y value is generated 

with a flat distribution between 0 and the kinematic I imit 

for the given ~ value. From the neutrino energy, y, and ~' 
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the lepton and hadron 4-vectors can be calculated. It only 

remains to calculate the event weight. 

The value of Q2 is then computed from Ev, e, and y, and 

the valence and sea parameterizations are evaluated at the 

given e and Q2 . They are divided into up, down, and strange 

quark and antiquark components, including the neutron excess 

effects on the valence, and the strange sea fraction. These 

quark distributions have the prescribed Q2 dependence. 

They-dependent weights for each quark type for normal 

charged currents, including radiative corrections to the 

total cross section, and quark mixing, are then calculated. 

Neutral current weights are calculated as a function of 

sin28 for each quark type for the same kinematic variable w 

values, including the quark radiative corrections. 

A separate calculation 1s done for charged current 

charm production. The value of x 1s calculated from 

equation 4.9, and the event has zero cross section if this 

is beyond the kinematic I imit. Otherwise, the weight is 

calculated from equation 4.10 and the quark mixing matrix 

ele~ent. Both x and fare fetiined for later use. 

Radiative corrections due to final state muon radiation 

are implemented by calculating the effective radiator 

strength given the neutrino-quark kinematics, and the photon 

energy above which the mean number of integrated photons is 

one, always a very low energy. A photon energy is generated 
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with the appropriate spectrum, and that energy is subtracted 

from the lepton 4-vector and added to the hadron 4-vector. 

The final event weight is the sum over quark types of 

the quark content and the event weight. These weights are 

nearly independent of neutrino energy, since the neutrinos 

are weighted by rejection as they are read in. The weights 

are almost independent of { and y for neutrinos, since { and 

y are generated with roughly the correct frequency 

distributions. For antineutrinos, the (1-y) 2 distribution 

means that events generated at high y have lower weights 

than events at low y. 

The combination of the frequency distributions in Ev, 

{, and y, when multiplied by the cross section weights, 

produces a weighted distribution that represents the physics 

model. The same neutrino energy, {, and y are used to 

generate weights for normal charged current, charm 

production charged current, and neutral current events. 

For charged current calibration analysis, we use the 

weights to choose each event to be either normal or charm 

production by rejection, arid perform a rejection filtering 

on the kinematics that produces unit-weight events. For the 

· 2n 
Sin~ w analysis, each generated 4-vector is accumulated as 

both charged and neutral current, with appropriate weights, 

to remove the statistical error 1n the ratio that would 

exist if the charged current and neutral current samples 
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were uncorrelated. For unfolding the neutral current and 

charged current quark distributions, the weights are also 

used when the matrices are accumulated. 

4.7. Event smearing 

The measurable quantities for this analysis are the 

vertex position, and from it the neutrino energy, the shower 

energy, the shower projected angles, the presence of a muon, 

the projected muon angle if present, and the muon energy if 

it 1s 1n the toroid acceptance. 

The vertex position resolution 1s of order 3 

centimeters transversely and one chamber longitudinally. 

The resolution is neglected, except events which occur 1n 

the material of the scinti I later tanks between the bays are 

moved to the next chamber downstream. The neutrino energy 

resolution is dominated by the width of the energy-radius 

correlation of the beam, and not the vertex resolution. The 

same lookup table for mean neutrino energy as a function of 

radius is used for reconstructing Monte Carlo events as data 

events. 

The visible shower energy is taken from the kinetic 

energy of the hadron system 4-vector. It is smeared by a 

log-normal distribution to simulate the flash chamber energy 

resolution. The log-normal distribution was chosen to avoid 

fluctuations below zero, which cannot occur 1n the real 
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detector. The fractional resolution was taken to be the 

larger of .10 or .05+.50/Eh5 . 

There is an important shift and degradation of the 

energy response of the calorimeter due to energetic delta 

rays on charged current muons. This was model led by 

2 generating delta ray energies with a 1/E6 spectrum from 10 

MeV to the muon total energy 1n longitudinal steps 

calculated to have on the average 1 delta ray in that energy 

range. This was done for the number of such steps included 

in the shower length at the Monte Carlo event energy, 

parameterized as 120+2Eh flash chambers or the range of the 

muon in the detector if less. The sum of these energies is 

added to the smeared shower energy. 

The_shower angle resolution 1s model led by calculating 

the shower momentum direction 1n both projections, and 

smearing both by .0144+0.9/Eh radians. The delta ray energy 

influence is added to the shower angle in both projections 

for charged currents. 

Charm production charged currents are treated by 

calculating the hadron and -lep~on 4-vectors using x instead 

of e, but with no change 1n y. Thus, the shower and muon 

energy for charm production remain the same, but the angles 

are different. The production of a second muon and missing 

neutrino from semi leptonic decay of charm is neglected. 
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Electron neutrino charged currents are identified as 

neutral currents 1n the data, because there is no muon 

track. This is treated by adding the final state electron 

4-vector to the hadron 4-vector before smearing it. Thus, 

electron neutrino events reconstruct to a single shower at 

the entire neutrino energy, and their angles differ from 

zero only by the smearing. 

Misidentification of 

implemented by lookup 

charged 

tables. 

and 

The 

neutral currents is 

lookup tables were 

generated from ful I shower Monte Carlo simulations of events 

in the detector, after analysis through the same programs 

used for the data. The lookup tables express the 

misclassification probabi I ity as a function of true 

variabl~s, rather than smeared ones. Misclassification of 

neutral currents was a function of shower energy, invariant 

mass, vertex z position, and vertex distance from the edge 

of the detector. Misclassification of charged currents was 

a function of muon angle, muon energy, muon visible length 

in the detector, and shower energy. Misclassified events in 

the d•ta have either a muon not removed from the shower 

energy, or a shower track removed improperly. This is 

model led by changing the shower energy and angle in the 

Monte Carlo. Misclassification 1s discussed more fully in 

Appendix F. 
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5. Weinberg Angle 

5.1. Elementary NC/CC ratio 

5.1.1 Introduction 

Since it is simple for a detector to be sensitive to 

both charged current and neutral current events, and the 

systematic errors of absolute cross section normalization 

between different detectors are much larger than within a 

single detector. sin2e 1s always measured by the neutral w 

current to charged current event count ratio (NC/CC) rather 

than by the _absolutely normalized neutral current cross 

section. 

The total 

· 2n sin ~ . w In the 

neutral 

I imit 

current cross 

of no m1x1ng 1 

section depends on 

2 sine =0. the total w 

neutral current cross section 1s half of the total charged 

current cross section due to the weak isospin Clebsch-Gordon 

coefficient. For a target which 1s an equal mix of up and 

down quark types. an isoscalar target, and no antiquarks. 

the cross section contributio~s from the left- and right

handed coup I ings are simple to calculate for any sin2e . w 

The left-handed neutral current coupling strength is 

1/2 - · 2n sin ~ w + 5/9 · 4n sin ~ w Eq.5.1 
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The right-handed neutral current coupling strength 1s 

5/9 . 48 Sin 
w Eq.5.2 

For neutrinos, the right-handed contribution is associated 

with a (1-y)
2 

factor, which integrates to 1/3 in the total 

cross section. 

In this normalization, the charged current coupling 

strength is 1 for neutrinos. The NC/CC cross section ratio 

for neutrinos and an isoscalar target of quarks is then 

1/2 - . 28 sin 
w 

+ 20/27 . 48 sin w Eq.5.3 

For anti.neutrinos, the right-handed neutra I cur rent 

contribution has ful I strength, and both the left-handed 

neutral current and the charged current contribution have 

the (1-y) 2 factor of 1/3, so the antineutrino NC/CC ratio 1s 

R_ = 1/2 -
JI 

. 28 sin 
w + 20/9 . 48 Sin 

w 
Eq.5.4 

Both neutrino and antineutrino ratios are quadratic 

I . I . . 28 po ynom1a s 1n sin , so ~he formulae have m1n1ma. The 
w 

minimum for the neutrino case occurs for sin28 greater than 
w 

1, so 

. 28 Sin . 
w 

the neutrino ratio decreases monotonically with 

The anti neutrino ratio has a minimum at sin28 =9/40 w 

or 0.225. Since this 1s close to the actual value of 

. 28 sin , w the anti neutrino ratio is insensitive to sin28 . w 
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The fractional change in the value of sin29 w 

1s about twice 

neutrino ratio. 

the fractional change in 

T · 2n hus, to measure sin ~ w 

for sin29 =.225 w 

the measured 

to 2 percent 

requires a measurement of the neutrino ratio to about 1 

percent. 

5.1.2 Paschos-Wolfenstein relation 

These formulae are only approximately correct, since 

they neglect the antiquark content of the nucleon. The 

antiquark content of the nucleon can be measured by 

compar 1 ng charged current neutrino and antineutrino 

scattering. Extraction of the antiquark structure functions 

is a large project which need not be pursued fully. Paschos 

and Wo I f--enste in [33] pointed out that for an isoscalar 

target of any composition, the information about the 

antiquark content needed for t · • 2n ex ract1ng sin ~ w is avai I able 

through the ratio of sums and differences of the 

anti neutrino and neutrino NC and CC cross sections. This is 

true for any values of the sealing variables, or integrated 

over any range. Onli the relative flux of neutrinos and 

antineutrinos need be known, which is much better known than 

the absolute flux, since many poorly-known calibrations 

cancel in the flux ratio. 
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For the cross section sums, we define R+, and its 

relation to sin28 
w 

= ( 

as 

1/2 -

) I ( 

. 29 sin w + 9/10 . 49 Sin w 

Eq.5.5 

Eq.5.6 

For the cross section differences, we define R-, with a 

different relation to sin28 . 
w 

1/2 - . 2il sin 17 w 

5.1.3 Llewellyn-Smith formula 

Eq.5.7 

Eq.5.8 

Llewellyn-Smith [34] has pointed out that for an 

isoscalar target, there 1s an even simpler relation that 

corrects for the antiquark content involving only the ratio 

of the antineutrino to neutrino charged current cross 

sections. If we define the antineutrino to neutrino cross 

section ratio within the experi-mental cuts as 

Eq.5.9 

the Llewellyn-Smith formula for the neutral current to 

charged current cross section ratio 1s 

1/2 - . 2Ll sin 17 
w + 5/9 . 4Ll Sin 17 

w 
[ 1 + r ] Eq. ~.10 
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The analogous formula for antineutrino neutral currents is 

R = 1/2 --
. 28 

Sin w + 5/9 . 49 sin w [ 1 + 1/ r ] Eq.5.11 
11 

5.2. Corrections to NC/CC ratio 

5.2.1 Neutron excess 

High statistics neutrino experiments require a heavy 

target, which tends to have an excess of neutrons. Since 

neutrons have two valence down quarks, and protons have only 

one, a neutron excess leads to a down quark excess. The 

neutral current coup I ings of up and down quarks are only 

slightly different, but the charged current couplings are 

very different. The result is that the observed NC/CC ratio 

f .- . 2e d d h or a given sin epen son t e neutron e~cess. w 

The cross sections depend not on the quark 

distributions q(x), but are weighted by the quark momentum 

fractions, xq(x). While it 1s possible to know the 

elemental composition of a detector wel I, and thus the down 

to up quark ratios, it is much more difficult to know the 

relative motion of the up and down quarks, and thus their 

cross section contributions. 

The valence contribution to the neutrino charged 

current cross section is proportional to the number of down 

quarks. The down quark excess is about 1/3 of the neutron 

excess. For iron, the neutron excess is about 7 percent of 

the number of nucleons. Our detector mass has a neutron 
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excess from the part that 1s iron, but di luted by the part 

which is isoscalar si I icon dioxide sand, and the proton 

excess from the plastic extrusions which contain the sand 

and shot. The difference between neutrons and protons is 

about 2 percent of the sum. 

5.2.2 Strange sea 

The strange quark content of the sea is not matched by 

an equal charmed quark content, which violates the 

assumptions 1n the LI ewe I lyn-Smith and Paschos-Wolfenstein 

formulae of equal numbers of charge 2/3 and -1/3 quarks. 

The strange sea contributes more strongly to both neutrino 

and antineutrino charged current cross sections than the 

isoscal~r valence or sea. The neutral current couplings are 

about the same for al I quarks and antiquarks. Thus, the 

strange sea contributes more to the charged current cross 

section than to the neutral current cross section, causing a 

reduction of both neutrino and antineutrino ratios. 

The strange sea is difficult to measure directly from 

neutrino and antineut~ino c~arged current data. It 1s most 

directly accessible through opposite sign dimuon events, 

where the second muon is the result of a strange quark being 

converted to a charmed quark, which can decay into a muon of 

opposite sign. Such analyses suggest that there are about 

half the number of strange antiquarks as up antiquarks or 
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down antiquarks in the sea. The uncertainty in the strange 

sea is an important contributor to the uncertainty is the 

neutral current to charged current ratio as a function of 

. 2.ll 
Sin 17 • 

w 

5.2.3 Quark mixing and charm mass 

Unitary coupling between generations, which implies 

that the sum of the squared coup I ings is unity, would not 

alter the NC/CC ratio if al I the quarks were I ight compared 

to the avai I able center of mass energy of the interactions. 

The charm mass, about 1.5 GeV if estimated from the mass of 

the charmoniu~ bound state, is not neg I igible when compared 

to the neutrino-quark center of mass energy of (2MEvx)· 5 , or 

5 GeV for a 50 GeV neutrino at x=0.25. For sufficiently 

smal I values of x, it is kinematical ly impossible to produce 

charm, which reduces the charged current cross section. 

This effect may be seen 1n Figure 5.1, where the production 

of charm at low y, which corresponds to low center of mass 

energy, is suppressed in the Monte Carlo. 

The neutral current conserves flavor, and the charm 

content of the nucleon is neg I igible, so there is no charm 

production. Thus, the NC/CC ratio depends on the charm 

mass. There is another indirect effect of the charm mass on 

the calculated NC/CC ratio: the evaluation of the strange 

sea through dimuons is also influenced by the suppression of 
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charm production by mass effects. The uncertainty in the 

charm mass is the largest contribution to the uncertainty in 

the NC/CC ratio. It should be noted that the entire concept 

of the mass of an object that is confined in QCD is somewhat 

problematic. 

There 1s also a third 

and as-yet undiscovered top. 

generation of quarks, the bottom 

These quarks are so heavy that 

their direct production is negligible at available energies, 

but the cross sections for the I ighter quarks are sti I I 

influenced by mixing with the heavy quarks. However, the 

mixing-matrix elements are known to wekk enough that they do 

not make a m~JOr contribution to the uncertainty of the 

NC/CC ratio calculation. 

5.2.4 Radiative corrections and p 

There are significant, although wel I understood, 

radiative corrections to the Standard Model cross sections 

1n the usual Born approximation. Since the final state muon 

1s charged, the corrections are different for charged and 

neutra I cur rents. The - ra-d i at i ve corrections may be 

different in theories other than the minimal standard model, 

and in fact may be infinite 1n models other than gauge 

theories. There are also very smal I higher order weak 

corrections, and potentially interesting radiative 

corrections to the Z boson propagator from new heavy objects 
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or heavy Higgs bosons. Radiative corrections are discussed 

more fully in Appendix C. 

Deviations from the minimal standard model are often 

characterized by the parameter p. Both the neutrino and 

antineutrino neutral current cross sections are written as 

being proportional to 2 
p I and the charged currents are 

independent of p. Our convention is that p=l in the minimal 

Standard Model, not the p=.9915 convention that puts the 

charged current radiative corrections into p. Since the 

neutrino and antineutrino ratios depend differently on 

· 2n sin 17 , w by simultaneously measu r 1 ng the neutrino and 

antineutrino neutral current to charged current ratios, we 

can solve for both sin28 and p. w 

5.3. Experimental effects on ratio 

5.3.1 Energy reconstruction 

The Paschos-WolfeQstein and Llewellyn-Smith formulae 

are constructed such that kinematic cuts drop out of the 

· 2n sin 17 w calculation. Howev-er, ·.the physics and apparatus 

corrections to the formulae do depend on the kinematics. 

Direct calculations of the NC/CC ratio as a function of 

· 2n sin 17 w also require consideration 

energy cuts, and energy resolution. 

of the beam spectrum, 
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While the NC/CC ratio is basically flat in y, 'f . 2~ 1 sin Q w 

1s nonzero the right-handed component of the neutral current 

causes some y dependence. The integrated ratio thus depends 

on the cuts. We require a minimum shower energy of 10 GeV 

to ensure that the trigger is efficient for both charged and 

neutral current events. We also require y < 0.7 to minimize 

misclassification of charged current events. 

The muon in a charged current event deposits of order 2 

GeV of its energy by ionization 1n the shower volume. We 

compensate for this extra energy by removing muon hits from 

the charged current showers before running the energy 

algorithm. Tests of the algorithm show that it removes the 

muon energy accurately, on the average, but that it leaves 

behind ~nergetic delta ray showers. This effect was 

simulated in the Monte Carlo by explicitly generating the 

energy distribution of delta ray fluctuations and adding the 

energy to the shower energy. 

While the absolute neutrino beam flux drops out of the 

calculation of the expected NC/CC, some neutrino beam 

detai Is are important. Electron neutrinos 1n the beam 

contribute to misclassification, although they are largely 

removed by the y cut. Wide band background from decay 

before momentum selection can contribute antineutrinos in 

the neutrino beam, and vice versa, which changes the 

observed ratio. Neutrino beam issues are discussed 1n 

Appendix D. 
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5.3.2 Event misclassification 

No neutrino detector can identify events as charged 

current or neutral current with perfect accuracy. It is 

necesssary to compensate for the events which are 

misclassified in order to extract sin28 and p from the w 

NC/CC ratio. This compensation depends on the detai Is of 

the apparatus, algorithms, neutrino spectrum, and cross 

section assumptions, and is discussed more fully in Appendix 

E. 

We have evaluated the misclassification of neutral 

current and charged current events by detailed Monte Carlo 

calculations of shower development and detector response. 

Files of Monte Carlo events were generated with realistic 

cross section assumptions and neutrino beam conditions, and 

particle by particle shower and detector simulation 

including decays in f I ight inside the shower. The same 

reconstruction programs used for the real data were applied 

to the simulated data. Lookup tables of the probabi I ities 

for neutral current events to be classified as charged 

currents and vice versa wer~ ca-I cu lated from the Monte Carlo 

files, as functions of the unsmeared event properties. The 

charged current to neutral current table was a function of 

muon angle, muon visible length, muon energy, and shower 

energy. The neutral current to charged current table was a 

function of shower energy, shower invariant mass, distance 
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of the vertex from the edge of the detector, and distance of 

the vertex from the rear of the detector. There was a 

different table for each beam setting. After the same cuts 

were applied to the Monte Carlo as the data, about 1 percent 

of the accepted charged currents were cal led neutral 

currents, and about 4 percent 

cal led charged currents. 

of the neutral currents were 

The detailed shower Monte Car Io was also used to 

evaluate the change in shower due to 

misclassification. Misclassified 

energy 

charged currents 

reconstruct to higher shower energy because the muon track 

1s not rem~ved, and misclassified neutral currents 

reconstruct to lower shower energies because a track which 

1s actu~I ly part of the shower is removed in error. 

Electron neutrino contamination was not included 1n the 

tables, but was simulated by misclassifying al I electron 

neutrino charged current events in the high statistics Monte 

Carlo as neutral currents, and including the final state 

electron energy as part of the hadron shower energy. 

Electron neutrino events afe ~l~ost completely removed by 

they cut, since they generally have higher energies than 

neutrinos from pion decay, and al I the energy appears in the 

shower. 

Figure 5.1 shows the Monte 

amount of misclassification as 

Carlo calculation of the 

a function of y, as 



calculated from the smeared 

Note the different vertical 
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shower and neutrino energies. 

scales. Misclassified charged 

currents are concentrated near y=l, while misclassified 

neutral currents have about the same y distribution as 

correctly classified events. The electron neutrino charged 

currents have a broad distribution mostly at high y. 

5.4. Method of fitting 

5.4.1 Philosophy 

We lack adequate anti neutrino charged current data to 

take advantage of the Paschos-Wolfenstein or LI ewe I lyn-Smith 

formulae to compensate for the antiquark content of the 

nucleon~ Instead, this analysis relies on the measurements 

of other experiments for the antiquark content. Since those 

experiments extracted the antiquark information from the 

same neutrino and antineutrino cross section differences and 

ratios used in the LI ewe I lyn-Smith and Paschos-Wolfenstein 

formulae, there is no real difference in principle between 

our iridirect method a~d th~ conventional formulae. Either 

the data or the formulae require corrections for 

misclassification, experimental conditions, and deviations 

from the physics assumptions in any case. 

We model al I the physics and experimental detai Is in a 

Monte Carlo program used to calculate the expected NC/CC 
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ratio as a function of . 29 Sin w 
and p for our experimental 

conditions. Since our cuts and beam conditions are not 

identical to those of any other experiment, our raw ratio 

would not be expected to be the same as another neutrino 

experiment, even if we corrected for detector specific event 

misclassification. 

The weighted number of Monte Carlo charged current 

events is independent of sin28 or p. The weighted number w 

of neutral current events is described by a quadratic 

polynomial . . 28 1n sin . If event classification were perfect, 
w 

the only information needed from the Monte Carlo to do the 

fit for s i n28 · and p wou Id be the tota I number of charged 
w 

current events, 

ca I cu I at-ion of the 

events for any 

and the 3 coefficients that al low 

corresponding number of neutral current 

va I ue of s i n28 . With imperfect 
w 

classification, we also need the number of charged current 

events classified as neutral current, and the 3 coefficients 

for the number of neutral current events classified as 

charged current. 

Table 5.1 gives the Monte Carlo accepted event weights 

used to calculate the NC/CC ratio as a function of sin2e , 
w 

including al I the detector and physics corrections. The 

same x and y values, and same shower energy smearing, are 

used to generate a CC event and an NC event, so the 

statistical error on the ratio is sma I I er than the 
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statistical error of either the numerator or denominator of 

the ratio. The events were generated assuming the value 

sin28 =.225, but the coefficients al low the ratio to be w 

calculated for any value. 

Table 5.1 

Monte Carlo Events for fitting sin28 
w 

-165 +165 +200 +250 Secondary Momentum 

11507 

11480 

27 

4188 

4062 

22772 

22595 

177 

7336 

1015 

23083 

22897 

186 

7429 

7116 

22050 

21825 

225 

7163 

6817 

Total CC events 

CC-+CC 

CC-+NC 

Total NC events 

NC-+NC 

5546 11004 11150 10651 · (sin28 )O coefficient 
w 

-10775 -21666 -21956 -20965 (sin28 ) 1 coefficient w 

18570 17502 17890 17426 (sin28 ) 2 coefficient w 

126 321 313 347 NC-+CC 

168 509 492 546 (sin28 )O coefficient 
w 

-324 -1005 -970 -1075 (sin28 ) 1 coefficient w 

617 756 761 847 (sin28w) 2 coefficient 

These numbers were stored by the Monte Carlo program, 

and read 1n by the fitting program. 

parameters sin28 and 
w p by minimizing 

We fit for the 

the chi square for 

agreement between the predicted NC/CC ratio for trial values 

of the parameters and the measured ratios using the program 
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MINUIT. Fitting using the stored coefficients takes only 

seconds of computer time. 

5.4.2 Monte carlo tests 

The assumptions about the physics of the NC/CC ratio 

may be tested by comparing the measured NC/CC ratio of 

another experiment to the ratio that our Monte Carlo 

calculates from their extracted value of . 2e sin and their w 

experimental conditions. 

The CDHSW group [30] measured Rv=.3074 for an iron 

detector in a 160 GeV narrow band beam with a 10 GeV hadron 

energy cut, after correcting for backgrounds and 

misclassification. They make no y cut, and about half of 

the even~s are from kaon neutrinos. From this value of Rv, 

they extract sin28 =.225, w including corrections for a non-

isoscalar target, the strange sea, the charm mass, and 

radiative corrections. 

If we take sin28 =.225 w as input for our Monte Carlo, 

and calculate the ratio expected for our +165 GeV beam and 

an iron target, with a 10 GeV Eh cut, a 1 meter radius cut, 

and perfect classification, we find Rv=.3072. The largest 

difference in conditions between their data and this Monte 

Carlo calculation is that our radius cut removes most of the 

kaon neutrinos. The neutrino energy spectrum changes 

somewhat the amount of the sea and the kinematic suppression 

of charm production. 
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5.4.3 Misclassification tests 

One of the largest experimental effect on the ratio is 

misclassification of charged currents. This occurs mostly 

at y=l, for both pion and kaon neutrinos. The y=l region is 

also smeared out by the shower energy resolution. We can 

check to some degree that the misclassification of charged 

current events is accurately model led by the Monte Carlo by 

comparing the NC/CC ratio 1n the data and the Monte Carlo 

beyond the y cut. 

Figure 5.2 i I lustrates the NC/CC ratio as a function of 

y, as reconstructed from the smeared shower energy and the 

energy-ratius correlation for pion neutrinos, both with 

perfect classification and the expected amount of 

misclassification. Comparing the ratio in data and Monte 

Carlo in the y=l region tests the normalization of the 

misclassification. It also tests whether the energy scale 

and resolution, which could shift or broaden the peak in 

misclassification, are accurately model led. 

Figure 5.3 compares the data and Monte Carlo ratios, 

both before and after the cuts. The data ratio is low at 

low y because the Monte Carlo does not attempt to simulate 

the effect of the trigger threshhold. As expected, both 

data and Monte Carlo show a large increase in the NC/CC 

ratio 1n the y=l region. There is another increase in the 

ratio for the y=l region for neutrinos from kaon decay, 
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which have about twice the energy as pion neutrinos. There 

is also a region where the ratio 1s high due to 

misclassified Ke3 charged currents. The comparison shows no 

important disagreement between data and Monte Carlo, even 

beyond the y cut. After the Eh cut and y cut are made, the 

ratio is essentially flat 1n the accepted y region in both 

data and Monte Carlo. 

5.5. Results 

5.5.1 Observed ratios 

There was 1 anti neutrino data set and 3 neutrino data 

sets for this experiment. Table 5.2 presents the event 

counts and ratios without corrections for misclassification. 

Table 5.2 

Event statistics and NC/CC ratios 

-165 +165 +200 +250 Secondary Momentum 

1882 3167 2126 2041 Charged current 

706 967 628 664 Neutral current 

.3751 .3053 .2954 .3253 NC/CC 

.0165 .0112 .0134 .0145 Statistical error 

.0441 .0367 .0454 .0447 Fractional error 
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5.5.2 Fit results 

The results of fitting al I 3 neutrino data sets, 

ignoring the antineutrino data, and fixing p=l, 1s 

sin29 =.238lz.013 with a chi square of 1.85 for 2 degrees of w 

freedom. The error is purely statistical. Systematic 

errors wi I I be discussed below. 

p=l, 

If the anti neutrino data is included, but we sti I I fix 

we find sin29 =.2355z.013 and a chi square of 4.12 for w 

3 degrees of freedom. The measured antineutrino ratio is 7 

percent higher than predicted 1n the fit. This is 1.5 

standard deviations, so the antineutrino ratio contributes 

2.2 units of chi square. 

Fitting the 3 neutrino data sets and the antineutrino 

data set for . 2Ll sin 17 w and p gives sin29 =.2825z.029 and w 

p=l.043z.024. The errors are larger than in the single-

parameter fits because of correlations between the 

parameters. The correlation coefficient between the errors 

is .883. The chi square is 1.78 for 2 degrees of freedom. 

5.5.3· Systematic sens-itivit-y 

An important quantity for 

is the change in the value of 

estimating systematic errors 

sin2e due to a change in the 
w 

NC/CC ratio. This was measured by altering the data ratios 

by sma I I amounts and re-doing the fits. 
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When fitting the neutrino data only, and fixing p=l, 

the value of sin29 is .2381. w If we increase the NC/CC 

ratio by 1 percent, · 2n Sin ~ w becomes .2328. The fractional 

h · · 2n c ange 1n sin ~ w IS -2.2 times the fractional change in the 

neutrino NC/CC ratio. 

If we fit both neutrino and antineutrino data for 

. 29 sin , w fixing p=l, the value of . 29 Sin w is .2355. If the 

anti neutrino NC/CC ratio is decreased by 5 percent, but the 

neutrino ratio 1s 

fractional change in 

unchanged, 

. 29 Sin w IS 

. 29 Sin becomes .2374. The w 

+0.16 times the fractional 

change in the antineutrino ratio. The fit is much less 

sensitive to the antineutrino ratio partly because the 

neutrino statistics dominate, and partly because the 

anti neutrino ratio is not very sensitive to sin2ew. 

In the two parameter fits, the situation 1s a bit more 

complex. 

as before. 

Changes in the neutrino ratio wi I I change sin29 w 

However, the predicted antineutrino ratio is 

almost independent of sin29 , so the fit value of p wi I I not w 

be changed by changes in the neutrino ratio. If we fix the 

ant1neutrino NC/CC ratio 1n ~he two parameter fit, and 

increase the neutrino ratio by 1 percent, the value of 

sin2e changes from .2825 to .2766, which 1s a fractional w 

change -2.1 times the fractional change 1n the ratio. The 

value of p remains 1.043. 
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Changing the anti neutrino ratio changes p. However, 

the predicted neutrino ratio depends on both . 29 and p, Sin w 

so the value of . 29 wi 11 also change If we fix the Sin w 

neutrino ratio in the two parameter fit, but decrease the 

anti neutrino ratio by 5 percent, p changes from 1.043 to 

1.013, which 1s a fractional change of +.58 times the 

fractional change 1n the antineutrino ratio. The value of 

sin28 changes from .2825 to .2511, which is a fractional w 

change of +2.2 times the change in the anti neutrino ratio. 

5.5.4 Systematic errors 

Our basi~ approach to systematic error analysis wi I I be 

to estimate the change 1n the NC/CC ratio in the data 

analysis_ or Monte Car lo prediction due to some uncertainty, 

then the above sensitivities of . 29 and to changes use sin p w 

in the ratio to calculate the systematic uncertainty in 

terms of sin28 and p. 
w 

The systematic uncertainties may be divided somewhat 

a rb i t ra r i I y into uncertainties about the data 

reconstruction, and uncertarnti~s about the detai Is of the 

physics models used to calculate the ratios as functions of 

sin 28 and p. The latter are largely common to al I neutrino w 

experiments. 

The experimental systematic uncertainties are 

principally due to event misclassification. If a fraction 
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f of charged current events are misclassified as neutral 
c 

currents, the NC/CC ratio changes according to 

R' = 

R = NC/CC 

NC + f CC c 
cc - f cc c 

= NC [l+f c/R] 

cc [1-f c ] 
Eq. 5 .12 

Eq.5.13 

The corresponding formula for misclassified neutral currents 

is 

R' = NC - f NC 
n 

CC + f NC 
n 

=NC [1- f c] 

CC [l+Rf n] 

~ R [1-f n(l+R)] 

Eq.5.14 

Eq.5.15 

Thus, since R~0.3, the fractional error 1n R is about 4.3 

times the error 1n f 1 and the error in R is about 1.3 times c 

the error in f . Both of these sensitivities should then be 
n 

multiplied by -2.2 to find the change in sin28 . 
w 

The sources of error 1n f are c 
. . 1naccurac1es 1n 

model I ing the effectiveness of the y cut 1n reducing 

misclassification, and ina-ccu-racies in the Monte Carlo 

model I ing of the efficiency of the muon track-finding 

program. 

The table below shows the NC/CC ratio for the +165 

Monte Carlo, with al I physics corrections and our cuts, and 

the changes 1n the ratio from changes in the energy 
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reconstruction assumptions that alter the effectiveness of 

they cut, calculated for sin28 =.225. w 

Table 5.3 

cc~Nc assumption effects on NC/CC 

R 6R/R Condition 

.3138 ----- Nominal observed ratio 

.3161 1.007 Half energy shift from unremoved muon 

.3144 1.002 1.2 times Eh resolution 

The above estimates do not include the uncertainty in 

the shower Monte Carlo calculation of the lookup table 

probabi I ities f . c The Monte Carlo calculated value for f c 

is about 5 percent before the y cut, and about 1 percent 

after they cut. Assuming an error of 1/5 of the after-cut 

misclassification, 1 .e., .002 on f , propagates to an error c 

on R of .9 percent, and 

or 0.0045 

an error on sin28 of 1.9 percent, w 

Another source of experimental systematic uncertainty 

is muon hit removal. If the ~nergy lost by the muon in the 

shower region is not compensated for, the effective energy 

cuts are different for charged and neutral currents. Since 

the neutrino y distribution is roughly flat, about as many 

events move across the 10 GeV cut as move across the y cut 

if there 1s a constant energy shift. However, if the energy 

shift is not a constant, or if the y distribution is not 
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flat, the energy shift can have a net effect on the ratio. 

Studies of the muon removal algorithm used in this analysis 

I imit the slope of the energy shift to less than 100 MeV 

across the energy range of interest, about 40 GeV wide. 

Thus, the acceptance difference from muon removal should be 

less than .25 percent, for a .5 percent systematic error in 

. 29 Sin . w This 1s a substantial reduction from the systematic 

error estimate for muon removal of the previous analysis of 

this data. 

The Monte Carlo calculation of f depends heavily on 
n 

the detai Is of the hadron shower and detector response 

model. Some of f 1s due to decay muons, and the bulk is 
n 

due to penetrating hadrons. The track finding program only 

require~ that muon candidates travel in a straight line for 

a large distance, but does not require that they not 

interact. The value off is about 0.04, to which we assign 
n 

an error of 0.02. This leads to an error on R of 2.6 

percent, and an error on sin28 of .0057. 
w 

The largest "theoretical" error . th . 28 I . 1n e sin ana ys1s w 

1s due to charm production: - Al I experiments now use the 

same slow resealing prescription for calculating charm 

production, with a fixed charm mass of 1.5 GeV. However, 

the prescription is based on treating the incoming and 

outgoing quarks as on-she I with neg I igible . . 1ncom1ng mass 

and fixed outgoing mass. This probably oversimplifies the 



136 

ful I QCD description of heavy quark production. The 

treatment of the charm mass also affects the corrections to 

the structure function analyses that measure the sea, and 

especially the strange sea. 

The uncertainty of the strange sea 1s also an important 

source of theoretical error. The difference in shape 

between majority up and minority down quark distributions in 

the proton causes a systematic uncertainty due to the 

neutron excess. Radiative corrections are important in 

extracting sin28 , but contribute I ittle to the uncertainty. w 

Table 5.4 gives the calculated NC/CC ratio, and the 

change in the _ratio, with our cuts and misclassification for 

some changes in the theoretical assumptions. The ratios are 

for the +165 beam, with sin28 =.225. w 

Table 5.4 

NC/CC changes from physics assumptions 

R liR/R Condition 

.3138 ----- Nominal observed ratio 

.3115 1.005 Charm mass 1.2 rather than 1.5 GeV 
-

.3158 1.006 No neutron excess correction 

.3145 1.002 Strange sea .55 rather than .45 

.3143 1.002 1. 1 times normal sea 

.3192 1.017 No radiative corrections 
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Theoretical systematic errors tend to be the same for 

al I neutrino NC/CC experiments. Since we do not use the 

LI ewe I lyn-Smith formula, we are not insensitive to the sea 

quark content, but it is also not a large source of error. 

Excluding the high-energy neutrinos of the kaon band tends 

to increase the sensitivity to the charm mas. Our target is 

more nearly isoscalar than iron, which reduces the error due 

to the neutron excess. 

5.6. Comparison with other experiments 

5.6.1 Our previous results 

This data set has been analyzed previously for . 2e Sin - w 

and p (35] I as presented in Table 5.5. 

Table 5.5 

NC/CC from previous analysis 

RAW CORRECTED 
E R {cor) 

11 NC cc R NC cc R err R (raw) 

-165 723 1945 .372 740 1928 .384 .017 1.032 

+165 950 3235 .294 966 3219 .300 .011 1.020 

+200 638 2184 .292 647 2175 .298 .013 1.021 

+250 656 2093 .313 677 2072 .327 .014 1.045 
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These results were fit with radiative corrections to 

sin28 =.246~012~.013 w in a 1 parameter fit, and 

sin28 =.279~.027~.019 w and p=l.027~.023~.026 in a 2 parameter 

fit. 

These pub I ished results differ somewhat from the 

present analysis. Some of the difference is due to Monte 

Carlo differences. The previous analysis neglected the non-

isoscalar correction, which if included changes sin28 from w 

.246 to .244. The previous analysis used the Duke and Owens 

structure function parameterization [31], but did not al low 

any Q2 evolution below Q2 of 4 GeV2 . Since the the sea is 

largely at low x and thus at low Q2 , the sea content was 

evaluated at a higher was appropriate which 

overestimated the sea content. Al lowing evolution down to 

2 2 2 Q =.4 GeV changes sin 8 from .244 to .242. The quoted w 

systematic error of the previous result due to QCD does not 

represent the effect of this evolution cutoff, but rather 

the result of changing the QCD A parameter without changing 

the cutoff. 

There is also a systematic difference of a few percent 

1n the raw NC/CC ratios, before any misclassification 

correction. This is due to muon removal. The previous 

analysis of this data used a slightly different muon removal 

algorithm that always removed a hit from each flash chamber, 

even at high hit densities. This removed too much energy 
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from high energy showers, by about 500 MeV. The algorithm 

was the same at low densities as the newer algorithm, and so 

left behind about 500 MeV of delta ray energy. The net 

effect of delta ray residue in low energy showers and over-

removal of energy in high energy showers was to make the 

accepted true shower energy region about 1 GeV wider for 

charged currents than neutral currents, which made the NC/CC 

ratio lower. 

If the old data set is reanalyzed with a post facto 

correction for the mean muon removal error as a function of 

energy, the value of sin28 changes from .246 to .222. The w 

quoted systematic error due to muon removal for the old 

analysis represented the effect of a uniform over- or under-

removal _?f the muon energy by 500 MeV, but not the effect of 

a non-uniform muon removal error. 

The previous analysis corrected the raw data ratios for 

misclassification, and used a Monte Carlo calculation of the 

t . . 2~ ra 10 versus sin~ w with no misclassification for the fits. 

This method neglects the effect of the energy deposited by 

muons for misclassified charged current events. The extra 

energy pushes events across the y cut and out of the charged 

current sample, but does not cause them to enter the 

accepted neutral current sample. An analogous but smaller 

effect occurs when misclassified neutral currents have a 

hadron or decay muon track removed from the shower energy 
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measurement in the data but not in the old Monte Carlo. The 

net effect is to raise the ratio 1n the data by about 2 

percent relative to the Monte Carlo. This effect nearly 

cancels the non-uniform muon removal effect. These effects 

are discussed in Appendix E. 

There was also a slight change 1n the event 

classification criteria between the old and new analyses. 

Previously, events could be 

hits even 

cal led charged currents if they 

if no calorimeter muon track had enough toroid 

could be found. The same criteria were applied in the Monte 

Carlo analysis to find the misclassification corrections. 

In the new analysis, toroid-hit-only events were cal led 

neutral current in both data and Monte Carlo. There was 

also a mi Id difference, consistent with Monte Carlo 

statistics, 1n the misclassification of +250 GeV charged 

currents. 

Some difference 1n the raw number of charged and 

neutral current events is possible purely from statistics. 

There was a difference 1n the beam center used for the 

radius cut and the n~utrino energy determination for they 

cut, and a difference in the shower energy scale, which 

moves events across both the Eh cut and the y cut. Event by 

event comparisons show that about 10 percent of the accepted 

events in one analysis were cut from the other. This al lows 

a difference of the square root of 20 percent,or 44 percent, 

of a statistical sigma difference in the ratios. 
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5.6.2 Other neutrino experiments 

The CDHSW collaboration [30] measured the NC/CC ratio 

for events with shower energy above 10 GeV in an iron target 

in a 160 GeV narrow band beam. They did not make a y cut, 

and classified events purely on the basis of length, with no 

attempts to find muon tracks exp I icitly. They corrected the 

ratio for backgrounds and misclassification. They also 

measured r, the charged current antineutrino to neutrino 

cross section ratio above 10 GeV. They used the LI ewe I lyn-

Smith formula with corrections for a non-isoscalar target, 

the strange sea, charm mass, radiative corrections, etc. 

The result was Rv=.3072z.0025z.0020 after corrections 

for backgrounds and misclassification. The first error is 

systematic. This leads to statisti~al, the second 1s 

sin28 =.225z.005z.003, where w the first error is experimental 

statistics and systematics, and the second is theoretical 

systematics excluding the charm mass. A charm quark mass of 

1.Sz.3 GeV gives a systematic error of .004 . 29 1n sin . w 

The latest result from the CHARM group [36] is for data 

taken simultaneously·· with - th-e CDHSW group. The major 

difference is that CHARM attempts to find muon tracks 

exp I icitly rather than using the event length. This results 

in fewer misclassified charged currents, but many more 

misclassified neutral currents. 

sin28 =.236z.005z.003z.004, 
w 

where 

Their result IS 

the errors are 
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experimental statistics and systematics, theoretical 

systematics excluding .the charm mass, and a charm mass of 

1.5z.3 GeV. 

The CCFRR collaboration has also presented results for 

· 2n Sin 17 w in a narrow band beam [37] . They used length to 

classify events, but made a a radius-dependent y cut which 

made the charged current misclassification much smaller than 

CDHSW. Their result was sin29 =.239z.008z.006z.006, where 
w 

the errors are statistical, experimental systematic, and 

theoretical including the charm mass. For a 2 parameter 

fit, they find p=l.005z.023z.010z.012, with no statement 

about the cor~esponding value of sin29 or its error. w 
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6. Sealing Variables 

6.1. Formulae for x and y 

The observables for a neutral current event in our 

detector are the vertex position and the number and pattern 

of flash chamber hits. The neutrino energy is reconstructed 

from the vertex radius and the energy-radius correlation of 

the narrow band beam. The neutrino energy Ev is taken as 

the mean energy of al I neutrinos from pion decay at that 

distance from the beam center, according to the neutrino 

beam Monte Carlo, weighted by the cross section dependence 

on energy, a smal I effect. The shower energy Eh is measured 

by the flash chamber hit count, after corrections for 

efficiency, mu I tip I icity, and saturation, and using a non-

I inear mapping of corrected hits to energy. The shower 

energy should not be confused with the energy component of 

the hadron system 4-vector, which contains the rest mass of 

the initial nucleon. The shower angle eh is reconstructed 

from the hit pattern and vertex position in the 3 flash 

chamber views, and an energy-dependent angle scale factor. 

The sealing variable y is found from the shower energy 

Eh and the neutrino energy Ev. 

Eq.6.1 
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When the y variable 1s computed using the reconstructed 

muon and hadron energies to find the neutrino energy, as is 

normally done in charged current neutrino experiments, it 1s 

mathematically impossible for the value of y to exceed the 

kinematic I imit of 1. The neutral current y variable can 

exceed 1 due to smearing. The neutrino energy may be less 

than the average at that radius, or the shower energy may 

smear beyond the neutrino energy. Neutrinos from kaon decay 

have about twice the pion neutrino energy, so about half of 

the kaon neutrino events have neutral current y greater than 

1 if the pion neutrino energy-radius correlation is used. 

Since the hadron system in deep inelastic scattering 

does not have a constant, neg I igible mass, the relation 

between the shower angle and the sealing variables is more 

comp I icated than the relation of the lepton angle to the 

sealing variables. The derivation may be found in Appendix 

A. 

Neglecting only the lepton mass, the exact relation of 

the shower angle to the sealing variables is 

2Mx(l-y - xMy/2E) 

( 1 + xM/E ) 2 
Eq.6.2 

The terms involving M/E are of order 3 percent or less for 

neutrinos of 30 GeV or more, and smaller sti I I for the 

typically low values of x. If we neglect them, we find the 



148 

simple nearly-exact formula 

Eq.6.3 

Solving this for x, we find 

x = Eq.6.4 

The errors in the approximations are much smaller than the 

resolutions of the quantities in the formula. 

6.2. Shower energy and x variable 

The sensitivity of x to the shower energy at fixed 

shower angle may be derived from 

6x = tiEh + ...Ai_ 
x Eh (1-y) 

Eq.6.5 

The shower energy contributes directly, and also indirectly 

through the y variable. Using 6y=6Eh/E
11

, we find 

6x 6Eh 6Eh 
(1 + _L_ ) 

fl Eh 
Eq.6.6 = -- + E

11
(l-y) = Eh x Eh 1-y 

Thus, the shower energy contribution to x 1s the fractional 

shower energy change times a y-dependent factor which ranges 

from 1 at y=O, to 2 at y=.5, and is 5 at y=.8. Given the 

typical 10 percent energy resolution (see Appendix H), this 

generates an x resolution of about 20 percent. 
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6.3. Neutrino energy and x variable 

The neutrino energy contributes to x only through they 

variable. The relation between neutrino energy errors and y 

errors 1s 

In the formula for x, this imp I ies 

11 x 
x = ~ 1-y 

Eq.6.7 

Eq.6.8 

At low y, neutrino energy errors cause very smal I fractional 

errors 1n x. At y=.5, the fractional x error is equal to 

the fractional neutrino energy error. At y=.8, the x error 

becomes 5 times the neutrino energy error. 

The neutrino energy resolution 1s determined by the 

momentum spread of the secondaries, the secondary beam 

divergence, and the decay pipe length, and is of order 15 

percent for the pion band. See Appendix D. For kaon 

neutrino events analyzed as pion neutrino events, the 

reconstructed y va I ue used - in the 1/ (1-y) pa rt of the x 

formula is about twice as large as the true y value. For 

low reconstructed y, this makes I ittle difference in the x 

value. For reconstructed y=.5, with true y of .25, the 

reconstructed x va I ue 1 s 1. 5 times too large. For 

reconstructed y of .8 with true y of .4, the reconstructed x 
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1s 3 times too large. The radius cut reduces the kaon 

neutrino background, and the y cut reduces it further, so 

only about 10 percent of the accepted events are from kaon 

neutrinos. 

6.4. Shower angle and x variable 

From the formula relating x to the shower angle we find 

/1x 
x = 

2 
2 cos 8 

MJ 
9 Eq.6.9 

Unlike the shower or neutrino energy cases, where the energy 

is always much larger than the resolution, the hadron shower 

angles are not necessarily large compared to the angle 

resolution. 

The transverse momentum, Pt, of the_hadron shower is 

equal to the muon Pt. 

we find 

Using the approximate formula above, 

Eq.6.10 

Th . P t -5 d . (ME
11

x/2) · 5 . F 50 e. maximum t occurs a y=. , - an 1s or a 

GeV neutrino, this is about 5 GeV at x=l. At y=O and y=l, 

the Pt goes to zero for al I x. Thus, at low and high y, 

finite Pt resolution would 

resolution. 

completely dominate the x 

The shower angle resolution of our detector is 

discussed 1n Appendix K. It 1s I imited by ~ultiple 
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scattering of hadrons 1n the shower, calorimetry 

fluctuations, and vertex resolution. Empirically, the angle 

resolution seems to have a component independent of energy, 

and a component proportional to 1/Eh. The product of shower 

energy and the shower angle resolution appears to become a 

constant for low shower energies. This product is similar 

to a finite transverse momentum resolution for low shower 

energies, and is of order 1 GeV for pion band energies. 

The 1 GeV shower Pt resolution of the detector 1s 

comparable to the typical shower Pt due to physics. This 1s 

the dominant problem for the neutral current structure 

function analysis. 

6.5. Sh~wer angle resolution x bias 

While the measured shower angle quantities are the two 

projected angles, the interesting physics quantity is the 

shower polar angle. There 1s a bias in the computation of 

the shower polar angle from the projected angles, even if 

the polar angles are unbiased. The relation between the the 

po I a r ang I e and the project i-ons- rs 

2 2 = tan ehx + tan ehy Eq.6.11 

Even unbiased projected angles have biased squares if the 

resolution is finite. If we describe the angle resolution 
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by a transverse momentum resolution of u, for angle 

resolution in each of two independent orthogonal projections 

2 of u/Eh in radians, the bias in tan eh may be approximately 

calculated. 

Eq.6.13 

Inserting the bias in tan2eh into the x formula gives a 

shift in the x value. 

2 2 
Ax = Eh A / 2M(l-y) = Eh 2(u/Eh) / 2M(l-y) 

2 2 = u I MEh(l-y) = u I ME y(l-y) 
v 

Eq.6.14 

This can be large at high y or at low y, where true angles 

are smal I compared to the resolution. For physics, it can 

be dealt with by including the angle resolution in the Monte 

Carlo, and smearing both projected angles before 

reconstructing x. 

6.6. Y resolution 

The y resolution 1s determined by the shower energy 

resolution and the neutrino energy resolution. The 

fractional y resolution is just the quadratic combination of 

the fractional Eh resolution and the Ev resolution. A flat 
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true y distribution maps into a smeared y distribution which 

is almost flat unti I about 1 sigma below y=l. At y=l, the 

height of the smeared y distribution 1s about half the 

height of the true y distribution, and there is a tai I which 

extends about 1 sigma beyond y=l. In the narrow band beam, 

the kaon neutrino component at about twice the pion neutrino 

energy causes events with Eh up to twice the Ev value 

calculated for the pion component. Thus, there is also a 

tai I of events out to y=2 or more if the pion neutrino 

energy is used to reconstruct y. 

6.7. Comparis_on to charged current resolutions 

It is useful to compare these resolution contributions 

to charged current analyses using reconstructed muons. For 

charged currents~ the muon energy is measured by magnetic 

deflection, I imited by multiple scattering to about 10 

percent resolution. The shower energy is measured by hadron 

calorimetry, with resolution similar to ours. The neutrino 

energy 1s obtained by adding the shower and the muon 

energies, which gives somewnat- better resolution than the 

energy-radius correlation resolution, but not dramatically 

so. There is of course no pion-kaon ambiguity for charged 

currents analyzed with fit muons, but with our cuts the kaon 

background 1s not large. Thus, if the shower angle 

resolution were as good as the muon angle resolution, the 
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neutral current x resolution would be comparable to the 

resolution obtained using by charged current experiments. 

Muon angle resolution 1n neutrino calorimeters 1s 

typically I imited by multiple scattering. The deflection 

from multiple scattering is proportional to 1/P, so the 

product of energy and angle remains roughly constant. 

Scattering produces a transverse kick of about 20 MeV per 

square-root of a radiation length, and a few radiation 

lengths are required to get out of the shower and register 

1n enough chambers to measure the angle, so the pt 

resolution IS of order 50 MeV. In contrast, the shower pt 

resolution IS of order 1 GeV. 

6.8. Bi_nning and cuts 

To minimize the contribution from regions of the beam, 

detector, reconstruction, or physics where there are 

uncertainties, the raw data 1s cut before analysis. To 

ensure containment of hadron showers and good muon 

identification, the event vertex was required to I ie 

downstream of flash chamber 8, upstream of flash chamber 

400, and at least 50 cm from the edge of the flash chambers 

i n a I I 3 v i ews . To minimize kaon neutrino contamination, 

the vertex was required to be less than 1 meter from the 

neutrino beam center. The shower energy was required to be 

larger than 10 GeV to ensure the trigger was efficient, and 
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also to remove the low y region with poor x resolution. The 

y value derived from the shower energy and the mean pion 

neutrino energy at the vertex radius was required to be less 

than 0.7 to minimize charged current misclassification, and 

to remove the high y region with poor x resolution. 

The data was divided into 20 bins of smeared x. The 

high edge of the Ith bin was given by 

2 [ 1 - (1 - I/20) · 25 ] 

The high edge of the first bin is thus about x=.025, and the 

low edge of the last bin 1s about x=l.05. Al I events at 

higher smeared x were kept 1n the last bin. These bins are 

roughly equally populated, and would be exactly equally 

populated if the smeared x distribution were (2-x) 3 ~ 

6.9. X distributions 

Figure 6.1 shows the raw x distribution for neutral 

currents for the 4 different neutrino beam settings. The 

bin width is 0.1, which 1s narrower than the x resolution 

for most of the kinematic ra-nge. ·The data set I abe I I ed -165 

is antineutrinos from negative secondaries with a nominal 

momentum of 165 GeV. The other data sets are from positive 

secondaries at 165, 200 and 250 GeV. The x distributions 

are not normalized, or corrected for the acceptance of the 

cuts, or for misclassification, and are not unfolded. The 

distributions extend beyond x=l due to resolution. 
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Figure 6.2 shows the analogous raw x distributions for 

charged currents, and Figure 6.3 shows the NC/CC ratio as a 

function of raw x. The errors are purely statistical. 

Figures 6.4-6.6 show the same data, except the binning 

has been changed from fixed-width bins to the varying width 

bins described above, with approximately equal statistics. 
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7. Unfoldirng Method 

7.1. Conventions 

It is conventional for charged current neutrino 

experiments to present their data 1n a form which is 

"corrected" to the simple quark model. It is a reasonably 

good approximation to assume that a nuclear target has an 

equal number of up and down valence quarks, and that the sea 

is composed of equal numbers of up and down quarks and 

antiquarks, wJth no other quark flavors present. It is also 

a good approximation that al I quark masses are neg I igible, 

and that elec~romagnetic radiative corrections to the tree

level weak interaction are smal I. Under these 

circums~ances, the relation between the charged current 

structure functions and the quark distributions are trivial. 

However, deviations from an isoscalar target, the 

strange sea, the charm quark mass, and radiative corrections 

cause differences between the structure functions as they 

appear 1n the cross 

distributions. We wi I 

section, and the quark momentum 

~al r bhese differences "physics 

corrections" to the simple quark-parton model. 

The quantities presented by charged current experiments 

as F2 and xF3 are not simply derived from sums and 

differences of neutrino and antineutrino cross sections. 

Rather, the values reported are the values for the valence 
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plus sea distribution, and the valence distribution which, 

if inserted into the quark-parton model cross section, 

including al I the "physics corrections," would reproduce the 

measured cross sections. 

For our neutral current analysis, we prefer to extract 

the valence and sea quark distributions directly rather than 

The 

distributions and the 

relationship 

structure 

between the quark 

functions 1s more 

comp I icated for neutral currents than for charged currents 

or electromagnetic scattering even 1n the minimal quark

parton model. Also, the corrections to the naive relation 

between the structure functions and the quark distributions 

are different for the different processes. It is the quark 

distributions which should be identical for electromagnetic, 

charged current, and neutral current scattering, not the 

structure functions. As noted above, the convention for 

charged current experiments IS to present quark 

distributions in fact if not in name. 

7.2. Objectives 

The goal for this analysis is to extract the valence 

and sea quark x distributions for the neutral currents. The 

distributions should be extracted on a bin-by-bin basis, and 

not only in the form of a parameterization. They should be 

absolutely normalized. They should also be fully corrected 
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for al I experimental conditions, including neutrino beam 

spectrum, reconstruction resolution, misclassification, and 

acceptance. 

By the valence distribution, we mean the sum of the 

valence up and down quark distributions for a nucleon, which 

should be the average of the proton and neutron 

distributions. This requires corrections for the 

nonisoscalar target. By the sea, we mean the sum of 

antiquarks and an equal number of quarks, with a fraction of 

the sea being strange quarks and antiquarks. Radiative 

corrections are to be included. We wi I I take the neutral 

current coupl_ings into account, such that the neutral 

current quark distributions can be compared directly with 

our own_charged current quark distributions, or those of 

other experiments. 

As an important consistency check, the charged current 

data wi I I be analyzed using neutral current methods, in 

para I lel with the neutral currents. The charged current 

quark distributions wi I I also be fully corrected for 

exp~~imental effects and th~ p~ysics differences between the 

observable cross section and the underlying quark 

distributions, including the effect of the charm quark mass. 

The muon energy and angle information wi I I not be used 

except to classify the charged current events, and the x and 

y variables wi 11 be reconstructed from the shower energy, 

angle, and vertex radius. 
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7.3. Assumptions 

Rather than normalizing our data to the neutrino beam 

flux and detector mass, we wi I I assume that the charged 

current total cross section 1s known, and normalize to our 

observed charged current event count. This does constrain 

the integral of our extracted charged current structure 

functions, but does not constrain their shapes. The value 

for the total cross section we assumed may be found in the 

Chapter 4 discussion of the Monte Carlo. It is of course 

trivial to renormal ize our results to any other total cross 

section. 

While the neutral current structure functions are 

defined without reference to sin29 , the relation between w 

the observed cross section and the underlying quark 

distributions does involve sin29 . w It is the underlying 

quark distributions which should agree between different 

processes, and not the structure functions. Thus, the true 

tests of the Standard Model interpretation of deep inelastic 

neutral current scattering can only be made by knowing the 

values of sin28 . We wi Ir eitr~ct the quark distributions w 

using our own value of sin29 =.238. Since sin28 was w w 

extracted assuming the neutral currents interact with the 

same quark distributions as the charged currents, this 

effectively constrains the integrals of our neutral current 

quark distributions, but not their shapes. It is simple to 
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renormal ize the extracted quark distributions for smal I 

h . h d I f . 28 c anges 1n t e assume va ue o sin . w 

We assume that p=l, as is true in the minimal Standard 

Model, and is consistent with other experiments. Our 2-

parameter fits give sin28 =.283z.03 
w 

and p=l.04z.02. The 

parameter values are strongly correlated, so this is only 

about 2 standard 

sin28 =.238. w 

deviations different from p=l and 

It is conventional for experiments to assume a value or 

form for the longitudinal structure function, or 

equivalently R, and use the assumption to eliminate F1 1n 

favor of F2 . In the spirit of the quark-parton model, we 

wi I I assume that the mass term in the cross section can be 

neglecte_d, and the Cal Ian-Gross relation, F2=2xF
1

, is val id 

for both charged currents and neutral currents. 

The structure functions, and the 

distributions, are functions not only of 

underlying quark 

2 x but also of Q . 

It is conventional to analyze charged current structure 

functions by binning separately in x Since the 

neutral current x and y f~s6lutions are so poor, it is 

inappropriate for us to bin in both x and Q2 . We therefore 

bin only in x and average over Q2 . 

However, we do not ignore the evolution. We assume 

that the Q2 evolution of each x bin is the same for neutral 

currents and charged currents, and known from other 
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experiments. The parameterization of the evolution may be 

found in Chapter 4 on the Monte Carlo. This evolution 

assumption is bui It into the unfolding process, so the 

result is the quark distribution evaluated at some chosen 

2 2 Q , even though the mean Q of each x bin is different from 

that chosen Q2 . We choose to present results at Q2=10 GeV2 . 

Once we have decided not to 2 bin 1n Q , we have a large 

range of y avai I able for each x bin. They distribution 

contains information that can be used to help separate the 

structure functions. As our anti neutrino statistics are 

weak, they distribution information is quite useful. Since 

Q2 evolution also contributes to they distribution, we must 

assume it is understood if we wish to use they information, 

but we would need to make some assumptions about evolution 

even if we were not separating the structure functions. 

Of course, by entering the anti neutrino data into the 

same unfolding procedure as the neutrino data, with y 

information for both, we implicitly use the difference 

between neutrino and antineutrino data. We are simply using 

they distribution informatf6n ~s an extra constraint. 

7.4. Resolution corrections 

The largest experimental effect to be compensated for 

1s the x resolution, which 1s much worse when shower angles 

are used than when muon angles are used. The raw 
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reconstructed x distributions wi I I be badly smeared. Since 

the x resolution is so much poorer than is typical for 

charged current experiments, we wi I I use a different 

approach to the resolution corrections than is typical for a 

charged current experiment. The unfolding problem 1s 

discussed more thoroughly in Appendix L. 

For a given narrow bin 1n true x, we can compute the 

corresponding distribution 1n smeared x by Monte Carlo 

simulation of the detector resolutions. This 1s the 

resolution function for that bin. From these resolution 

functions, we can compute the distribution in smeared x from 

an arbitrary distribution 1n true x. The smeared 

distribution 1s simply a Ii near combination of the 

resolution functions. 

For a true x bin denoted by x., the probabi I ity of an 
J 

event reconstructing to smeared x bin b. may be cal led A ... 
I I J 

The A .. are the elements of a matrix. The fact that they 
IJ 

represent probabi I ities imp I ies 

0 ~ A .. ~ 1 
IJ 

I: A .. = 
lj 

1 

Eq.7.1 

Eq.7.2 

The elements of A .. for fixed j are the resolution function 
IJ 

for true x bin j. It should be emphasized that A .. does not 
IJ 

depend on the true x distribution at al I. It depends only 

on the detector resolution. 
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elements of A .. at once from a 
I J 

Monte Carlo simulation of the detector and an arbitrary 

assumed distribution x .. We simply accumulate a scatterplot 
J 

of smeared x versus true x. We then slice the scatterplot 

once for each bin of true x, and normalize the slices 

independently. This normalization divides out the assumed 

true x distribution, leaving only the 'resolution 

information. Each slice represents the i elements of A .. 
IJ 

for some value of j. 

Figure 7.1 shows such a Monte Carlo scatterplot of 

smeared x versus true x for neutral currents in our 

detector. S~earing from shower angle resolution, shower 

energy resolution, and neutrino energy resolution are 

included. The distributions are integrated over they and 

radius cuts. For perfect resolution, the scatterplot would 

be a diagonal I ine. The resolution smears events away from 

the diagonal. However, the mean smeared x is sti I I strongly 

correlated to true x. 

Figure 7.2 shows slices of the same scatterplot. Each 

slice is the resolution func-tio-n ·for a given region of true 

x. The non-gaussian nature of the x resolution at low x is 

largely due to the shower angle resolution being comparable 

to the shower angle at low x. 
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We can write the I inear relation between the smeared 

distribution and the true x distribution as 

E A .. x. = 
I J J 

b. 
I 

Eq.7.3 
J 

For a square matrix A, we can solve for the true 

distribution by multiplying the data vector b. 
I 

by the 

inverse of A. However, 1n order to calculate the errors of 

the solution, and for later generality, it 1s useful to 

calculate the chi square for the data to match a smeared 

hypothetical true x distribution. 

The chi square 1s the sum over bins of data of the 

squared di ff e r-ence between the observed 

the predicted event count under the 

event count b. and 
I 

distribu-tion * X • I divided by the variance 

hypothetical true 

2 of the data u . . 

x2 = 

J 

E 1 
(J~ 

I 

* 2 ( b. - [EA .. x. ] ) 
I IJ J 

J 

I 

Eq.7.4 

We minimize the chi square by taking derivatives with 

* respect to xk and setting them to zero, which yields 

* A .. A.k) x. 
I J I J 

= Eq.7.5 

We can rewrite this 1n terms of a new matrix Wand a new 

vector R 

WJ. k= E _1_ 
a~ 

I 

A .. A. k 
I J I 

Eq.7.6 
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u~ 

I 
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If we construct a matrix written 

Eq.7.7 

as 1/u~, with the 1;6 on 
I 

the diagonal and otherwise zero, then Wand R may be written 

in matrix notation. 

Eq.7.8,9 

The W matrix is constructed from the A matrix, which 

contains al I the smearing information, and the 1;6 matrix, 

which contains al I the statistical error information. Thus, 

the W matrix contains al I the information about the 

resolution of the experiment. The R vector contains the 

data, ina somewhat transformed fashion. 

square occurs at the solution of 

E 
J 

= 

The minimum chi 

Eq.7.10 

For a square A matrix, there 1s an exact solution to 

Ax=b, so the solution to Wx=R produces the same solution and 

zero chi square. Since we have made the I inear algebra 

problem into a fitting problem, we know how to calculate the 

errors of the solution. The errors are related to the 

second derivatives of the chi square function with respect 

to the true x bins, which are simply the elements of W. The 

conventional error interval of 1 unit of chi square is found 

from the elements of the inverse of W. 
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7.5. Error amp I ification and correlations 

An inevitable effect of unfolding smeared data is 

amp I ification of errors. Since smearing attenuates sharp 

features of any distribution, the inverse of smearing must 

amplify features of the smeared data. The statistical 

fluctuations of the data are amp I ified along with the 

genuine physics features. 

It should be emphasized that the fluctuation 

amplification is not due to numerical difficulties 1n matrix 

inversion. It can be easily verified that A- 1A=I or w-1W=I 

to the desired precision. The amp I if ication is due to the 

mathematical properties of smearing, not the numerical 

implementation of the solution. 

If _properly calculated, the statistical errors of the 

unfolded solution are perfectly consistent with the 

amplified fluctuations. While the fluctuations of a bin in 

the raw smeared data are governed by the statistics of that 

bin, the fluctuations 1n the solution are more comp I icated. 

The simplest way to see the origin off luctuations in 

the unfolded solution ts to invert the smearing matrix 

directly, and view the elements of A-las coefficients in a 

formula for calculating the solution from the data bins. 

Poor resolution means non-zero off-diagonal elements of the 

A matrix. Off-diagonal elements of A lead to off-diagonal 

elements in A-1 . The elements of A-l alternate 1n sign, and 
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tend to be larger than the elements of A, particularly when 

the resolution is poor. 

function of al I the bins 

Each bin of the solution 1s a 

of the data, times large 

coefficients with alternating signs. Thus, each bin of the 

solution is subject to the statistical errors of al I the 

bins of the data. 

Another effect of the unfolding 1s to cause the errors 

of bins of the unfolded solution to be correlated. In the 

raw data, errors on different bins are uncorrelated, because 

the events are statistically independent. Any two bins of 

the unfolded solution, however, are both functions of al I 

bins of the raw data, and are thus not statistically 

independent. We could calculate the covariance of two bins 

of the solution from the elements of A-l in a way similar to 

propagating the errors of the data to the error on a single 

bin of the solution. 

It is simpler however to calculate the variances and 

covariances of the bins of the solution from the W matrix 

and its inverse. The W matrix was derived from viewing the 

unf6lding process as·· a fi~ti~g process--finding the true 

distribution which, after smearing, best matches the raw 

data. The errors on the resulting solution give the range 

of possible true distributions which smear into 

distributions with a chi square less than 1 unit larger than 

the minimum. It is important to note that the error usually 
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quoted is the maximum range a bin of the solution can vary 

without increasing the chi square by more than 1 unit, with 

al I other bins al lowed to float to minimize the chi square, 

rather than the range a given bin can vary with al I other 

bins remaining fixed. 

A large positive fluctuation in 

be nearly cancel led out by smearing 

large negative fluctuation nearby. 

one bin of true x can 

if there 1s an equally 

From the fitting point 

view, the fluctuation and error amp I ification process 1s due 

to the possibi I ity of these correlated fluctuations 1n the 

"true" distribution producing a smeared distribution that 

matches every _fluctuation in the data. The absolute minimum 

chi square solution usually involves large positive and 

negative_ fluctuations, which nearly cancel themselves out in 

the smearing, unti I they match the statistical fluctuations 

in the data. 

7.6. Acceptance and normalization 

The acceptance for reconstructing events is determined 

prima~i ly by the show~r energy cut and the y cut. We can 

include the acceptance corrections 1n the same matrix 

formal ism as the resolution corrections. We need only 

normalize the A matrix 

bin, rather than to 

to the 

unity. 

acceptance for each true x 

This simply changes the 

interpretation of A to include both smearing and acceptance, 
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but does not change any of the above derivations. The 

acceptance can be easily calculated in the same Monte Carlo 

program used to calculate the resolution functions. 

By another redefinition of A, we can include the 

normalization corrections to go from event counts to quark 

distributions. The flux and detector mass, in combination 

with the GfEv part of the cross section, determine the 

number of events in each x bin expected per unit of quark 

distribution. By including this constant 1n the 

normalization of the Monte Carlo scatterplot to the A 

matrix, the x. 
J 

1n the solution wi 11 become quark 

distributions instead of resolution and acceptance corrected 

event counts. 

Since we are normalizing to the known charged current 

cross section and quark distributions, there 1s a very 

simple way of implementing the normalization. We use the 

known charged current quark distributions 1n the Monte 

Carlo, and form the smearing and acceptance scatterplot for 

charged currents. We count the number of Monte Carlo 

accepted charged current ev~nt~, ~nd form the ratio of total 

accepted events in the charged current data and the 

corresponding Monte Carlo. The A matrix for charged 

currents is derived from the scatterplot by multiplying each 

scatterplot bin by this ratio. This makes the solution x. 
J 

represent the ratio of the quark distributions as observed 
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1n the data to those assumed 1n the Monte Carlo. The 

physical quark distributions are the product of the assumed 

distributions and the x .. 
J 

To extract the neutral current quark distributions, the 

normalization involves the sin28 -dependent coup I ings as w 

wel I as Gf. We accumulate a scatterplot of smeared accepted 

neutral current events with neutral current coup I ing weights 

in paral lei with the charged currents 1n the same Monte 

Carlo. We normalize the neutral current scatterplot with 

the same ratio used for the charged currents to obtain a 

neutral current A matrix. This matrix represents the 

expected number of neutral current events versus smeared x 

for the assumed quark distributions. Using this matrix to 

construct the neutral current W matrix and R vector gives a 

neutral current x vector which 1s the ratio of the quark 

distributions implied by the data to the assumed 

distributions. 

7.7. Separating valence and sea 

In the convention wh~fe the A matrix contains the 

normalization, it is simple to combine different data sets. 

We simply run a Monte Carlo and make a normalized A matrix 

separately for each neutrino data set. The different data 

sets are combined into a longer data vector b., and the A 
I 

matrices are combined into a single rectangular A matrix. 
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We cannot invert this A matrix, but we can sti I I construct 

the W matrix and R vector, and solve for the x. that 
J 

minimizes the chi square for the combined data set. 

The most important reason to combine data sets 1s to 

use the antineutrino data to help separate the valence from 

the sea. We do this by doubling the length of the vector 

x., such that half its elements are the valence, and half 
J 

are the sea. We also double one dimension of the A matrix, 

so it represents the number of events per unit valence quark 

1n one half, and the number of events per unit sea quark 1n 

the other half. The data vector b. 1s doubled so half 1s 
I 

neutrino and half 1s antineutrino. The solution then 

simultaneously includes the resolution, acceptance, 

normal iz~tion, and separates the valence from the sea. 

7.8. Using y and radius information 

Using y information to help 1n separating the valence 

and sea is similar to combining data sets. We extend the 

data vector b to include the smeared x distribution for 

sev~ral bins of y. w~ ext~d th~ A matrix to represent the 

distribution in both smeared x and y of events from both 

valence and sea quarks. Since the dimension of Wand Rare 

the same as the x vector, even though both b and A become 

larger, the matrix to be inverted does not become larger 

when y information 1s used. The difference in they 
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distribution shapes for valence and sea can be detected even 

with rather wide y bins. 

There is 1 ittle exp I icit quark distribution information 

1n the neutrino energy or radius distribution, but the 

resolution in x and y, and the accepted range in y, does 

depend on neutrino energy. By also binning in radius, we 

obtain some extra sensitivity by using the appropriate 

resolutions for each energy int~rval. Again, rather wide 

radius bins wi I I suffice to saturate the avai I able 

information. 

The price of binning in 3 dimensions is poor statistics 

1n each bin. This 1s not a problem in itself, but does 

violate the assumption of gauss1an errors imp I icit in the 

chi squ~re analysis. However, maximum I ikel ihood methods 

using the ful I Poisson distribution are legitimate for any 

level of statistics. There is a Poisson maximum I ikel ihood 

analog to the W matrix and R vector, which roughly speaking 

involves replacing the error derived from the binned data 

with the fluctuations expected in the hypothetical theory. 

The d~tai Is may be found iri App~ndix L. We use the ful I 

Poisson maximum I ikel ihood method for this analysis. 

7.9. Misclassification 

Event misclassification 1s less important in the quark 

distribution analysis, given the statistical errors of the 
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binned and unfolded data, than it 1s for the global NC/CC 

ratio analysis for sin29 . w 

for misclassification. 

However, we must sti I I correct 

Charged current misclassification 1s due to low energy 

or large angle muons. The loss from the charged currents is 

therefore from the high y region where muon energies are 

smal I and angles are large. The misclassified charged 

currents become high y neutral currents. They cut removes 

the kinematic region where the misclassification is most 

severe. 

Misclassified charged current events may not be removed 

by the y cut if they have fluctuated to much lower 

reconstructed y than true y. Since the reconstructed x is 

proporti~nal to 1/(1-y), as calculated by the reconstructed 

y, the misclassified charged currents reconstruct to lower 

values of x as neutral currents. Paradoxically, larger x 

values cause larger muon angles, which increase the charged 

current misclassification probabi I ity. Thus, the loss of 

charged currents 1s from high x, but the background to the 

neutral currents 1s at low ~: 

Neutral current misclassification is less concentrated 

1n any particular kinematic region. Thus, the loss of 

neutral currents, and the background in the charged 

currents, is relatively flat in x and y. 
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Misclassified events have altered energies and angles, 

since either the hits from a charged current muon are not 

removed before finding the energy and angle, or the hits 

from a spurious muon candidate are removed when they should 

be counted as part of the shower. This causes misclassified 

events to reconstruct into different x and y bins than they 

would reconstruct into if correctly classified. 

Misclassification corrections fit naturally into the 

matrix formal ism. The loss of events from either class is 

simply another part of the acceptance, and is automatically 

incorporated along with the other acceptance corrections. 

The background 1n either class can be calculated by the 

Monte Carlo, and subtracted from the data before the 

unfoldi~g. In the maximum I ikel ihood case, the proper 

treatment of background is to add it to the theory side, 

rather than subtract it from the data, since it is the 

signal plus background which obeys Poisson statistics. This 

also avoids any possibi I ity of data bins being driven 

negative by background subtraction, which makes the 

I ikelihood undefined. 

We can accumulate Monte Carlo scatterplots for cc~Nc 

and Nc~cc versus al I the binning variables as wel I as 

scatterplots for cc~cc and NC~Nc. The extra matrices al low 

the background to be calculated for arbitrary quark 

distributions, and could even be used 1n a joint 
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simultaneous fit for both NC and CC quark distributions with 

fully self-consistent backgrounds. However, we simply use 

the Monte Carlo input quark distributions to calculate both 

backgrounds, without actually using the matrices. 

7.10. "Physics corrections" 

The difference between the minimal quark model cross 

sections and the cross sections for the actual non-isoscalar 

target, with the strange sea, charm production, and 

radiative correctons can also be incorporated into the 

matrix formal ism. We simply f i I I the Monte Carlo 

scatterplots ~ith weights calculated including the physics 

corrections, and versus e rather than x. The scatterplots 

then contain the ful I information about the expected number 

of events 1n smeared variables per unit of quark 

distribution in each true e bin, subdivided between species 

as in the Monte Carlo. The radiative corrections and slow 

resealing effects which alter the relation between the 

2 observed Q and x, and the true momentum fraction e, are 

simply another form o~ smeafin~, · which is dealt with 1n the 

same way as smearing due to experimental resolution. There 

is no need for further corrections to the unfolded quark 

distributions. 
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7 .11. Summary 

To summarize, extracting the quark distributions from 

the raw data was done as fol lows. The values of x and y for 

the charged and neutral current events were calculated using 

the shower energy, the neutrino energy derived from the 

vertex radius assuming the neutrino was from pion decay, and 

the angle of the hadron shower, even for the charged current 

events. The events were binned in x, y, and vertex radius, 

and separately for each 

settings. The value of 

of the neutrino beam energy 

• 2LI 
Sin 17 w needed to calculate Monte 

Carlo neutral current event weights was extracted from the 

data using th~ same cuts. 

A Monte Carlo program was used to calculate the 

resolution functions of the experiment. It included valence 

and sea quark distributions from a fit to the CCFRR F2 and 

xF3 data and the ful I physics of neutral and charged 

currents. It also model led the neutrino beam, the detector 

resolutions, event misclassification, and the analysis cuts. 

Each neutrino beam energy setting was model led separately. 

The output of the Mont"e -Carlo was scatterplots of the 

expected distribution in x, y, and vertex radius for each x 

bin of the valence and sea quark distributions. Charged and 

neutral currents were accumulated separately. The 

misclassification background to both event types was also 

calculated. 
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For each neutrino beam setting, an A matrix for charged 

currents and for neutral currents was created by normalizing 

the scatterplots. They were normalized by the ratio of data 

charged currents to Monte Carlo charged currents. The 

resulting A matrices al low us to calculate the expected 

number of events in each bin of the smeared variables as a 

function of the ratio of arbitrary quark distributions to 

the distributions assumed in the Monte Carlo. The A 

matrices are a complete summary of the detector and 

experimental conditions. 

The neutral and charged current data are unfolded 

separately. The A matrix, misclassification background, and 

data are combined in a maximum I ikel ihood fit to produce the 

unfolded solution and the W matrix. Half of the bins of the 

solution represent the valence quark distribution, and half 

represent the sea. The variances and covariances of the 

bins are the elements of the inverse of the W matrix. The 

physical quark distributions are the product of the unfolded 

solution and the quark distributions assumed in the Monte 

Carlo used to create the A rnat~i~es. 
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Distribution in 
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8. Parameter Fits 

8.1. Smoothing by parameter fits 

While the unfolded solution is the absolute minimum chi 

square or maximum I ikel ihood solution, it is I ikely to have 

large bin to bin fluctuations. The errors on each bin are 

I ikely to be large because they reflect the large 

correlations induced by the poor resolution. Presumably, 

the smeared data is also consistent within its statistical 

errors with some smooth distribution, 1 .e., there is a 

solution with smaller bin to bin fluctuations which gives a 

chi square whi~h is only slightly larger. 

Such a smooth solution is usually expressed 1n terms of 

a parame~erization. Parameter values for some expression 

are found that minimize the chi square of the match between 

the data and the expression. For multiple parameters, the 

process of searching for the appropriate va I ues is usu a I I y 

done by a fitting program which evaluates the 

parameterization for each data point for many values of the 

parameters to find the chi squa-re mini mum. 

In principle, we could do such a fit directly to the 

raw data. One way to do so would be to put the entire Monte 

Carlo smearing program into the inner loop of the fitting 

program, and re-smearing for each set of parameter values. 

A more efficient way wou Id be to create a f i I e containing 
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the cross section weights, true variable values, and smeared 

variable values for a large set of Monte Carlo events, and 

re-weight the events according to the changing parameter 

values inside the fitting program. This is the technique 

used for our previous analysis of this data set. 

However, a sti I I more efficient method 1s to first 

unfold the data, and then fit the unfolded data to a 

parameterization. While the matrix manipulation required 

for the unfolding is somewhat involved, it is very efficient 

because the problem 1s essentially I inear. The only 

information needed by the iterative non I inear fitting 

program 1s the compact solution and covariance matrix. 

It 1s important to retain the ful I correlated errors of 

the unfolded solution. This 1s done by writing the chi 

square as a function of the parameters in terms of the W 

matrix and the difference ~x between the bins of the 

unfolded solution x f and the bins of the parameterization un 

x prm 

~x.(a,(J, ... ) 
J 

2 x<a,{3, ... ) 

=x.1 f-x.(.a,(J, ... )1 J un _ J- p rm 

= x2
. + E E ~x. WJ.k ~xk 

min J k J 

8.2. Parameterization choice 

Eq.8.1 

Eq.8.2 

A common parameterization of the quark distributions is 

to use a power of 1-x to characterize the sea, and a beta 
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distribution to characterize the valence distribution. This 

is the parametrization used 1n the Monte Carlo. 

xq (x) 1 = V (x) = A xa (1-x) P va 

x[q(x) + q(x)]sea = S(x) = C (1-x)1 

Eq.8.3 

Eq.8.4 

The integral of the valence parameterization is 

calculated from the beta function, which is a combination of 

gamma functions: 

A r (a+l) r (/j+l) 
r (a+/j+2) Eq.8.5 

The Gross-Llewellyn-Smith (GLS) sum rule states that 

f dx ! V(x) = 3 Eq.8.6 

This imp I ies a relation between a, p, and the normalization 

constant A: 

A = 3 
r (a+/j+l) 

r (a) r (/1+1) 
Eq.8.7 

A subtle consequence of- assuming the GLS sum rule is 

the correlation it imposes on a and p. The normalization of 

the sea is fixed largely from the y distribution and 

neutrino-anti neutrino difference, and the sea does not 

contribute much to the cross section. Thus, the total cross 

section alone determines the integral of the valence rather 

,,,......_ wel I. The GLS sum rule constrains a slightly different 
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integral of the valence. If we fix the valence integral to 

some value E, and also the GLS integral to 3, we find 

A r (a+l} r (~+12 
E r (a+{J+2) r (a+l) r (a+Jj+l) 

= = Eq.8.8 
3 A r (a} r (~+12 

r (a+{J+l) 
r (a) r (a+{J+2) 

E = a Eq.8.9 
3 a+{J+l 

f3 = -1 + a (3-E) /E Eq .8.10 

In other words, the two constraints are satisfied anywhere 

along a I ine 1n a-{J space which intersects a=O at {J=-1. The 

slope of the I ine is determined by E. 

The poor -resolution of the data 1s propagated through 

to the unfolded solution, which makes a simultaneous fit for 

al I the ~bove parameters unreasonable. Thus for some fits 

we fix a=.5 and fit for A and {J, or assume the GLS sum rule 

and fit for a and {J. For the sea, we fix 7=7, and fit only 

for the normalization of the sea, C. Since the value of C 

depends strongly on the assumed value of 7 1 or in general on 

the assumed shape of the sea, we wi I I quote our result as Z, 

the ratio of the 

integrals. 

qbar 
z = 

q+qbar 
= 

anti quark to quark-plus-antiquark 

1/2 J dx S (x) 

Jdx [V(x)+S(x)] 
Eq.8.11 
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8.3. Parameter results 

We fit the unfolded neutral and charged currents to the 

parameterization separately. The fits involve 24 bins of 

unfolded data, for either 3 or 4 parameters, leaving 20 or 

21 degrees of freedom. The chi square thus should be about 

20, with a standard deviation of about 6.5. The errors 

quoted below are statistical only, with systematics treated 

1n another section. 

We expect to find a~.5 and p~3. For these values, the 

GLS sum rule is satisfied by A=3.28. The amount of sea, as 

represented by Z, wi I I depend on the assumptions about Q2 

evolution, but we expect a value between .13 and .15. 

Perhaps more importantly, we expect the same parameters 

for chaiged and neutral currents. Even if there are 

systematic errors the analysis, they should be 

predominantly common to both charged and neutral currents. 

In principle, al I of the physics differences in the relation 

between the quark distributions and the cross sections for 

charged and neutral currents have been removed in the 

analysis, so parameter difrerences should represent quark 

distribution differences. 

The valence parameters A, a, and p, are highly 

correlated, such that an excursion of any parameter by 1 

standard deviation causes the others to change by almost one 

unit of their standard deviations. The Z parameter is also 
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somewhat correlated to the valence parameters. The quoted 

errors are the extreme changes in each parameter, letting 

al I other parameters float to minimize the chi square. 

Table 8.1 presents the results when the valence 

normalization is constrained by the GLS sum rule. 

Table 8.1 

GLS-constrained fit 

Parameter NC 

Q .502 :.I: 

f3 2.681 :.I: 

z .172 :.I: 

x2 42.09 I 21 

.080 

.414 

.019 

cc 

.494 :.I: 

2.230 :.I: 

.128 :.I: 

33.73 / 21 

.035 

.167 

.0093 

Table 8.2 is the result from a fit for the valence 

normalization A with the valence shape at low x constrained 

by Q=.5. 

Table 8.2 

Q=.5-cons~rained fit 

Parameter NC cc 
A 3 .108 :.I: .444 2.784 :.I: .171 

f3 2.658 :.I: .253 2.175 :.I: .102 

z .174 :.I: .022 .134 :.I: .0098 

x2 42.08 I 21 32.94 I 21 
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Both of these fits are consistent with expectations 

about the parameters, and consistent with the same 

parameters for charged and neutral currents. The chi square 

values are somewhat larger than expected. However, our 

choice of parameterization was somewhat arbitrary, and 

fitting the same parameterization to the charged current 

data of other experiments also produces chi square values of 

order 2 per degree of freedom [32]. Also, the chi square 

can be sensitive to systematic errors 1n analysis 

assumptions. 

Table 8.3 shows the results if we relax the GLS sum 

rule constraint, and fit for A, a, p, and Z simultaneously. 

·"" 
Table 8.3 -

Unconstrained fit 

Parameter NC cc 

A 4.025 :I: 2.248 21.362 :I: 11.183 

a .616 :I: .243 1.448 :I: .264 

p 2.910 :I: .608 4.083 :I: .508 

z .177 :I: .023 -~ 14-9 :I: .010 

x2 41.97 I 20 20.21 I 20 

The neutral current parameters and chi square do not change 

appreciably when the constraints are relaxed, although the 

errors on the valence parameters increase due to 
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correlations. The value and error of Z 1s determined 

largely by the total cross sections, and thus is less 

sensitive to the shape constraints. The unconstrained 

charged current fit has a substantially better chi square, 

but different valence parameter values, than the constrained 

fits. 

8.4. Systematic errors 

The two components of a systematic error analysis are 

the sensitivity of the result to the assumptions, and the 

uncertainty of the assumptions. The relevant assumptions 

for the unfolded x distributions are the normalization, the 

x reconstruction scale, and the x resolution. 

We have normalized to the charged current event count, 

calculated with a total cross section and quark 

distributions taken from other experiments. The absolute 

normalization of the assumed quark distributions and cross 

section is quoted by the experimenters at about 5 percent, 

which becomes a component of our absolute normalization 

error. The neutral current no~mal ization is coupled to the 

charged current normalization by using our value for sin2e . w 

The neutral current normalization changes by about 1 percent 

for a 2 percent change . 2~ 1n sin~ . w 

Systematic errors 1n the x reconstruction scale should 

be largely common to both charged and neutral currents. The 
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x scale is determined by the shower angle scale, the shower 

energy scale, and the neutrino energy scale. A 1 percent 

angle scale change causes roughly a 2 percent x scale 

change. A 1 percent shower energy scale change causes a 1 

percent x scale change at low y, and a 3.3 percent x scale 

change at the cut at y=.7. A 1 percent neutrino energy 

scale change causes a -1 percent x scale change at low y, 

and a -2.3 percent change at y=.7. Actual scale errors may 

wel I be non I inearities, and also need to be averaged across 

y appropriately. 

However, due to uncertainties 1n muon hit removal, it 

1s possible that there is some difference between the angle 

and energy scales for charged and neutral currents. It is 

known th_at about 500 MeV of de I ta ray energy is I eft behind 

by the algorithmi which IS about 1 percent of the shower 

energy at high y, and 5 percent at the 10 GeV cut. This IS 

corrected by including the excess energy in the charged 

current Monte Carlo. 

The presence of the muon makes the vertex bias 
-

different for charged and neutral currents, which would 

cause an angle scale difference. For charged currents, the 

difference between the angle scale with the muon present and 

removed before vertex finding 1s about 3 percent. See 

Appendix I. We measure charged current shower angles from 

the vertex found after removing the muon, which should 
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eliminate the difference. However since no hits are removed 

in the first 5 chambers of the shower, there may be some 

residual angle scale difference, and therefore some x scale 

difference. 

We can measure the sensitivity to the x scale by 

multiplying each smeared raw x value by .95, then unfolding 

the resulting data. This corresponds to reducing the angle 

scale or shower energy scale, or increasing the neutrino 

energy scale, by about 2.5 percent. Table 8.4 is the result 

of performing the GLS-constrained fit on the unfolded result 

after altering the raw x scale. 

Table 8.4 

.95 x s~ale GLS fit 

Parameter NC cc 
a .573 z .100 .573 z .044 

p 3.307 z .541 2.817 z .219 

z .179 z .020 .134 z .0095 

x2 37.78 I 21 26.77 I 21 

The chi squares are smaller than the original fits, and the 

a and p parameters have changed by more than the statistical 

errors. 

The other large systematic uncertainty 1s the x 

resolution. The x resolution 1s dominated by the shower 
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angle resolution. Measurements of the angle resolution in 

calibration data, and by using charged current events, 

disagree at the 10 percent level. See Appendix K. 

There could also be a difference in angle resolutions 

between charged and neutral currents. The vertex resolution 

also appears to be affected by the presence of the charged 

current muon, and thus the angle resolution. The muon is 

removed before finding the vertex used for the shower angle, 

but there 

difference. 

IS uncertainty about residual resolution 

We can measure the sensitivity of the result to angle 

resolution by _unfolding the data using A matrices derived by 

changing the assumed resolution 1n the Monte Carlo. Table 

8.5 is the fit results when the shower angle resolution 

assumed in the Monte Carlo is degraded by 10 percent. 

Table 8.5 

Degraded u8h GLS fit 

Parameter NC cc 

a .730 :t .141 -. 635 :t .054 

f3 4.477 :t .792 3.274 :t .282 

z .173 :t .021 .136 :t .010 

x2 65.13 I 21 41.86 I 21 

With the degraded resolution, the chi squares are somewhat 
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larger, and the a and p parameters change by much more than 

the statistical errors. The Z parameter is much less 

sensitive to the angle resolution. 

8.5. Comparison with previous results 

A previous analysis of this data set for the neutral 

current x distribution has already been published [38]. 

Fits were done to the NC/CC ratio as a function of smeared 

x, with no unfolding. 

created files of events 

probability of generating 

Instead, a Monte Carlo program 

with weights representing the 

the event, the true variable 

values the event was generated with, and smeared variable 

values, including smeared x. These files were used to 

calculate the NC/CC ratio versus smeared x by re-weighting 

the Monte Carlo events according to the ratio of the event 

weights under arbitrary parameter values to the weights with 

which the events were generated. It was assumed that the 

parameters of the charged currents were known. The results 

should be interpreted as I imiting the difference between the 

neutra I and charged cur rent- p-a ramete rs. The fits assumed 

that 7=7 for both neutral and charged currents. 

Table 8.6 gives the results of a fit assuming the GLS 

sum rule. The first error is statistical, the second is 

systematic. 
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Table 8.6 

Pub Ii shed GLS fit 

Parameter NC cc assumptions 

A GLS constraint 3.28 

a .48 :t . 10 :t .10 .50 

{3 3.38 :t .62 :t .54 3.00 

z .17 :t .04 :t .03 .136 

x2 32.0 I 37 

Table 8.7 1s the results of a fit assuming that a=.5. 

Table 8.7 

Pub Ii shed a=.5 fit 

Parameter NC cc assumptions 

A 3.59 :t .63 :t .62 3.2·8 

a .50 fixed .50 

{3 3.54 :t .40 :f: .41 3.00 

z .16 :t .04 :f: .03 .136 

x2 32.0 I 37 

These parameter values are essentially the same as 

those found in the present analysis, when fitting with the 

same constraints (there was no fit pub I ished with neither 

the GLS constraint nor the a=.5 constraint.) In particular, 

the difference between neutral current parameters quoted and 
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the charged current parameters assumed 1n [38] are almost 

identical to the difference between the neutral and charged 

current parameters in the present analysis. This confirms 

that the reconstruction and unfolding of both charged and 

neutral currents is understood. 

The energy and angle scales used in [38] are different 

from those used 1n the present analysis. The shower 

energies are lower, and the angles are larger, than before. 

The larger angles dominate the smaller energies, and the net 

effect 1s that the average x value increases. The beam 

center is also different, which makes some neutrino energies 

higher and some lower than before. 

The x, 8h, and Eh values of events in the previous 

analysi~ are sti I I avai !able, and 

and parameter fitting analysis 

we can do the unfolding 

with them. To avoid 

inconsistencies due to different samples, the radius, 

energy, and y cuts, and the radius and y binning, wi I I be 

done with the present beam center and energy scales. Thus, 

the event sample wi I I be exactly the same as for Tables 8.1-

5, and slightly different- f~om the published results in 

Tables 8.6-7. 

Table 8.8 gives the results of unfolding with x 

calculated from both the old angles and old energies, then 

fitting with the GLS constraint. 
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Table 8.8 

Uncorrected x scale GLS fit 

Parameter NC cc 
a 1.322 ::t .327 1. 115 ::t .106 

f3 9.519 ::t 1.987 6.638 ::t .580 

z .190 ::t .022 .135 ::t .010 

x2 53.71 I 21 75.51 I 21 

Table 8.9 shows the results if we use the old angles 

but the new energy scale. The GLS-constrained fits run into 

bound at {3=60 used to keep the gamma functions finite. 

Table 8.9 

Uncorrected eh scale GLS fit 

Parameter NC cc 

a 7 .013 ::t .408 8.456 ::t .176 

f3 60. bounded 60. bounded 

z . 212 ::t .016 .135 ::t .010 

x2 62.02 I 21 171.73 I 21 

Table 8.10 presents the fit results under the same 

conditions, but fixing a=.5. 
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Table 8.10 

Uncorrected 9h scale a=.5 fit 

Parameter NC cc 

A 2.167 :t .652 1.458 :t .812 

f3 12.677 :t .709 9.271 :t .306 

z .168 :t .020 .143 :t .011 

x2 63.80 I 21 246.96 I 21 

Table 8.11 contains the results using the old energy 

scale but the new angle scale. 

Table 8.11 

Uncorrected Eh scale GLS fit 

Parameter NC cc 
a .347 :t .046 .387 :t .023 

f3 1.391 :t .200 1.420 :t .102 

z .154 :t .016 .112 :t .0087 

x2 43.69 I 21 33.21 I 21 

Some comments can be m~de ~bout the extreme values of a 

and f3 for the fits with the old energy and angle scales. 

First, the old scales are different from the new ones by of 

order 10 percent in energy and angle, which becomes of order 

20 percent in x. Second, the uncertainty in the new scales 

1s much less than the difference between the old and new 
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scales. The uncertainty 1n the new scales is of order 1 

percent 1n energy and 2 percent in angle. It was simply not 

understood at the time of the previous analysis that the 

hadron energy calibration data was flawed, or that it was 

even possible for shower angles to be reconstructed with a 

bias. 

Finally, parameter fits are very sensitive to negative 

bins. The xa(l-x)P parameterization cannot reproduce 

negative values for any values of a and p. It can best fit 

negative data at high x with a very large value of p, which 

makes (1-x)P nearly zero for a wide region at high x. 

However, the unfolding process can result in negative values 

for bins of the quark distribution, particularly if there is 

a systematic scale error. If the reconstructed x values are 

systematically too smal I, the high raw x bins wi I I be 

underpopulated. This underpopulation wi I I be amplified by 

the unfolding, and can produce negative bins at high 

unfolded x. 

8. 6; Comparison with CHARM -co 1-1 aborat ion 

The CHARM collaboration has also presented parameter 

fits to their neutral and charged current data [39,40]. 

Their beam, detector, and resolution are very similar to our 

own. They have 6549 vCC, 1967 vNC, 2689 vCC, and 1021 vNC 

events, which is also comparable to our statistics. They 
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also have done a two-step process of unfolding and parameter 

fitting to the same parameterization using the ful I 

covariance matrix. 

There are some significant differences, however. 

Rather than unfolding directly to bin contents, the CHARM 

co I I aborat ion unfolded their data by finding the 

coefficients of 7 B-spl ines representing the structure 

functions, then integrating the B-spl ine representation back 

bins for the parameter fit. They fit their neutrino and 

anti neutrino data separately for F+ and F_, and assumed a 

ratio of sea to valence versus x, rather than directly 

separating the valence from the sea as we do. They fit 

their distributions In vertex radius, E · 5 and 
h ' 

u=8h(Eh/3M) · 5 rather than radius, x, and y. The relation 

between u and the sealing variables 1s approximately 

u 2~x(l-y). They fit the distributions independently, rather 

than binning the data in 3 dimensions. 

Table 8.12 contains the CHARM results presented in a 

1982 conference proceeding, assuming 7=4.55, and the GLS sum 

ru I e [39] . 
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Table 8.12 

CHARM 1982 fit 

Parameter NC cc 
a .36 z .12 .61 z .09 

fJ 2.03 z .70 4.37 z .65 

z .119 z .036 .149 z .023 

x2 7.8 I 9 6.9 I 9 

The .charged and neutral current a and fJ parameters do not 

agree with each other particularly wel I compared to the 

errors. It 1s not specified whether the errors are 

statistical only or include systematics. 

In 1983, CHARM pub I ished another analysis of the same 

data set_ [40]. It was essentially the same as the above, 

but with the addition of a technique they ca I I 

regularization, which was used to m1n1m1ze bin to bin 

fluctuations [41]. The CHARM unfolding and regularizing 

method is discussed more fully 1n Appendix M. 

The regularizing term was an arbitrary weight factor r 

times the sum of the squared second differences of the B

spl ine coefficients. The regularizing term was added to the 

chi square, and the unfolding was done by minimizing the 

sum. The covariance matrix from the unfolding step was the 

input to the parameter fit step. 
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The regularizing term breaks the usual relationship 

between the derivatives of the chi square and the 

statistical errors of the unfolded result. In the I imit of 

smal I r, the solution and errors wi I I be the same as the 

unregularized case. For large r, the solution and errors 

wi I I be dominated by the regularizing term rather than the 

data. The quoted errors wi I I be smaller for large values of 

r, and can be reduced essentially without I imit by a large 

enough value of r. 

The CHARM collaboration 

of the regularization or the 

enough for us to be able to 

does not specify the strength 

regularization on their errors. 

spline forms they used wel I 

evaluate the effect of their 

The value of r was not 

specif i e_d, a I though it was c I aimed that "the resu It i ng 

parameters 1n a fit of a parameterized expression to the 

distributions show only smal I variations if the value of the 

weight 1s changed by an order of magnitude 1n both 

directions." However, it was not claimed that the parameter 

errors were independent of the regularization, and indeed 

the a and p parameter e~~ors 1n [40] are substantially 

smaller than in [39]. 

The smaller errors in the covariance matrix of the 

unfolding step wi I I be propagated into smaller errors in the 

parameter fitting step. Some form of regularization is 

probably an acceptable method of smoothing the amp I if ied bin 
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to bin fluctuations inevitable when unfolding badly smeared 

data. However, the parameter fitting process itself also 

performs the smoothing function, so it should not be 

necessary to regularize before doing the parameter fit if 

the ful I covariance matrix is retained. One should view any 

unexplained reduction of parameter errors when 

regularization is introduced with caution. 

Table 8.13 is the results of the parameter fit to the 

regularized unfolded data in [40]. The GLS sum rule 

constraint was applied as before, but the sea shape was 

constrained by 7=6.18. Also, it was specified that the 

splines used 1n unfolding vanished at x=l, which was not 

mentioned in [39], and seems inconsistent with the claim 

that th~ splines were standard 8-spl ines. 

Table 8.13 

CHARM 1983 fit 

Parameter NC cc systematic 

a .44 :I: .05 .45 :I: .05 .05 
-

/3 2.79 :I: .24 2.97 :I: .16 .09 

z .13 :I: .03 .17 :I: .03 .02 

The chi square was not reported. The agreement between 

charged and neutral current parameters is much better than 

previously. The errors on a and f3 are also very much the 



208 

total cross sections and should be less sensitive to 

regularization, is not substantially different. 
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9. Eigenvector Analysis 

9.1. Method 

9.1.1 Introduction 

One of our analysis goals was to extract the quark 

distribution shapes in a way which 1s independent of any 

model or parameterization. So far, we have incorporated al I 

the detector-dependent corrections and physics corrections, 

and found the unfolded bin-by-bin solution vector and the 

matrix describing the errors. However, it was noted that 

the poor resolution of the data resulted in large and 

correlated errors 1n the solution, and corresponding large 

bin to bin fluctuations. 

We introduced parameterization as an interim method of 

describing the unfolded solution because it smoothed out the 

fluctuations. However, there may be features of the data 

which cannot be represented by the chosen parameterization 

with any values of the parameters. To reach our goal of a 

model-independent ana I ys is,-
-

we need some other way to 

describe the solution. 

We can accomplish this through an eigenvector analysis 

of the solution. It wi I I require some further discussion of 

the nature of correlated errors, and of I inear algebra, to 

make it clear what this means. A more complete discussion 

may be found in Appendix L. 
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9.1.2 Diagonalizing the chi square 

The A matrix contains the ful I summary of the smearing 

and acceptance contributions to the uncertainty of the 

unfolded solution. The W matrix 1s constructed from the A 

matrix and the statistical errors of the smeared data. The 

W matrix thus contains information about al I sources of 

uncertainty in the solution. Since the W matrix was 

invented to describe the chi square as a function of the 

assumed distribution, the solution vector x and the W matrix 

are al I that we need to fully summarize the data and errors, 

and which distributions are consistent with the data. 

Our goal _now is to summarize 

somewhat different and more useful 

the data and errors 1n a 

form than the W matrix. 

In matri_x notation, we can write the variation of the chi 

square near the minimum as 

Eq.9.1 

where ~x is the vector difference between some hypothetical 

distribution and the minimum chi square solution. 

Diagonalizing th~ matrrx W means finding a matrix U and 

a diagonal matrix A such that 

W = u-l A U Eq.9.2 

A = U W u-l Eq.9.3 
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The eigenvectors u and eigenvalues ~ of W satisfy the 

matrix equation 

w u = ~ u Eq.9.4 

There are as many~ and u as the order of the matrix. The 

normalization of the u is 

orthogonal. The columns of 

eigenvectors u, and the 

arbitrary, but al I the u are 

the matrix U are the normalized 

diagonal elements of A are the 

corresponding eigenvalues~. 

If we now define a transformed vector 

hx' = u hx = ~x u-1 Eq.9.5 

we can simplify the chi square to 

2 
~X = hx' A ~x' Eq.9.6 

We have replaced the non-trivial matrix W with a matrix A, 

whose only nonzero elements are the eigenvalues~. which 

appear along its diagonal. 

We have also performed a unitary transformation on the 

error vector 6x. Each element - of hx' 1s a function of each 

element of the untransformed vector 6x. The matrix U is 

just the collection of the eigenvectors u. When we multiply 

6x by U, we are projecting ~x onto each eigenvector. The 

elements of 6x' are thus the expansion coefficients of the 

vector 6x in the basis provided by the vectors u. Since 

they a re eigenvectors, the set of a I I u is a comp l_ete and 
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orthonormal set, so any vector can be represented as a 

I inear combination of the u. 

In this transformed basis, due to the diagonal nature 

of A, we can write the chi square function as a simple sum. 

Thus, by diagonalizing W, we have an expression for the 

chi square as a simple sum, rather than as a double sum 

involving a matrix. The eigenvalues~- play the role rn the 
I 

sum that norma I ly taken by 2 The elements of the IS 1/a . . 
I 

vector /lx' play the role 1n the sum that IS usu a I I y taken by 

the residuals ·between the measurements and some hypothesis. 

9.1.3 ~xpanding the solution 

We can expand an arbitrary vector as a sum of 

coefficients and the eigenvectors. In particular, we can 

expand the unfolded solution bins x. 
J 

with the matrix ujk' 

whose columns are the normalized eigenvectors, and a set of 

coefficients ck. 

Eq.9.7 

We can calculate the ck by exploiting the orthonormality of 

the eigenvectors. 

E U . 
J mJ 

x. = E 
J k 

Eq.9.8 
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E U . x. = 
J mJ J 

Eq.9.9 

The coefficients ck are just the elements of the vector 

x' which we defined above. The statistical error of the kth 

coefficient 1s given by the kth eigenvalue of the W matrix. 

Eq.9.10 

A crucial point is that we can think of the elements of 

a given eigenvector u as representing the bin contents of a 

distribution. The set of eigenvectors 1s then a set of 

distributions. The special property of these distributions 

1s that if we decompose the vector representing the 

deviations from the m1n1mum chi square ~x into a sum of 

these vectors 1 then we can associate an independent chi 

square contribution with each expansion coefficient. The 

coefficients of each eigenvector thus have uncorrelated 

errors given by the corresponding eigenvalues. 

The set of eigenvectors and eigenvalues is analogous to 

a sequence of orthogonal functions. The eigenvectors are 

analogous to the functions 1 and the corresponding 

eigenvalues determine the sequence of functions. It is 

common 1n such expansions that only a few functions are 

needed to approximate an arbitrary distribution very wel I 1 

and the coefficients of most of the functions are very 

smal I. This is because the first functions in the sequence 
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are usually smooth, and later functions have osci I lations at 

higher and higher frequency. 

This property is also 

eigenvalue of an eigenvector 

the chi square 1s to the 

true of the eigenvectors. The 

1s determined by how sensitive 

eigenvector after it has been 

smeared. An eigenvector with al I positive components smears 

into a distribution which is al I positive. A change 1n the 

coefficient for the such an eigenvector thus changes the 

normalization of the smeared distribution, which leads to 

the largest possible chi square change. Thus, the first 

eigenvector wi I I typically be one with only positive bins. 

Since an eigenvector is sti I I an eigenvector when multiplied 

by an arbitrary constant, we could just as wel I have a first 

eigenvector with al I negative components. Expanding a 

positive function with such an eigenvector would give a 

negative expansion coefficient. 

No other eigenvector can have only positive components, 

or it could not be orthogonal to the first eigenvector. If 

an eigenvector has adjacent positive and negative bins, 

after smearing the bins te-nd - to cance I each other. For 

alternating sign bins that are closely spaced compared to 

the resolution, the smeared result 

al I bins. Adding a large amount 

may 

of 

produces only a smal I chi square 

corresponding eigenvalue wi 11 be smal I. 

be nearly zero for 

such a component 

change, so the 
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Thus, if we order the eigenvectors according to their 

eigenvalues, we expect that the first eigenvector wi I I be 

al I positive, and the last eigenvector wi I I have alternately 

positive and negative bins. Presumably, the number of zero

crossings wi I I increase through the eigenvector sequence. 

9.1.4 Truncating the expansion 

These properties suggest that we decompose the unfolded 

solution in terms of the sequence of eigenvectors. The 

coefficients of the decomposition describe the solution as 

completely as the original binned version. However, the 

description of the errors of the solution is much simpler. 

While the bins of the solution have correlated errors, the 

eigenvec~or expansion coefficients have uncorrelated errors. 

When the coefficients are determined from experimental 

data, eventually the statistical errors on the coefficients 

become as large as the coefficients themselves. Continuing 

the expansion wi I I not improve the chi square per degree of 

freedom significantly. However, there 1s no guarantee that 

the coefficients of the lat~r lunctions wi I I be smal I, only 

that they wi I I be consistent with their errors. In fact, 

the coefficients of the later functions can be quite large, 

with large errors. The 

past the statistically 

introduce large amounts of 

result of continuing the expansion 

significant eigenvectors 1s to 

"noise" into the expansion, with 

mini ma I improvements in the chi square. 
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The situation 1s different when we expand a smooth 

theoretical distribution in terms of the same eigenvectors. 

We expect that the coefficients of the later, higher 

frequency, eigenvectors wi I I be very smal I, and most of the 

information about the distribution w1 I I be in the 

coefficients of the smooth, low frequency eigenvectors. 

Thus, if we truncate the expansion of the theoretical 

distribution, we loose I ittle. In contrast, if we truncate 

the expansion of the unfolded solution, we eliminate the 

high-frequency fluctuations which contribute I ittle to the 

chi square. 

9.1.5 Statistical errors 

When the reconstruction resolution 1s good compared to 

the bin size used, the fractional error on the physics 

result is the same as the fractional error on the raw data, 

and the errors on different bins are uncorrelated. It 1s an 

unfortunate fact that when the resolution is poor compared 

to the bin s1ze 1 the statistical errors on the unfolded 

solut~on are comp I icated. Th~re are at least 3 different 

numbers which may be used to express the error on a bin of 

the unfolded solution, each of which 1s appropriate for a 

different usage. 

One error (type 1) is defined by the largest change a 

given bin of the solution which increases the chi square by 
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1 unit, al lowing al I other bins to float to minimize the chi 

square. This is the kind of error normally quoted for a 

multi-parameter fit. It is the square root of the diagonal 

element of the covariance matrix, which is the inverse of W. 

Most of the effect of changing a given true variable 

bin can be undone by changing the neighboring bins in the 

opposite direction and then smearing, if the resolution is 

poor compared to the bin size. Thus the change in the chi 

square, which 1s calculated by comparing the smeared 

distribution to the smeared data, w1 I I be smal I, and the 

data would be consistent with rather large changes in the 

true variable bin contents. The type 1 error thus becomes 

larger as the resolution degrades. 

An~ther error (type 2) is defined by the I argest change 

1n a given bin which changes the chi square by 1 unit, 

fixing the other bins to their values at the chi square 

m1n1mum. This error 1s the reciprocal of the square root of 

the diagonal element of the W matrix. The type 2 error also 

increases as the resolution degrades, because the data are 

less sensitive to the ~onte~ts -of a true variable bin as it 

spreads across more smeared variable bins. 

The type 1 and type 2 errors are identical when the 

resolution is good. When the resolution is degraded, the 

type 2 error grows less rapidly than the type 1 error 

because it ignores the correlation between neighboring bins. 
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Yet another error (type 3) can be defined in the 

context of the truncated eigenvector expansion. Each bin of 

the solution is a sum of contributions from the 

eigenvectors, with independent errors on the expansion 

coefficients. 

Eq.9.11 

If we keep al I the eigenvectors, the resulting error is 

precisely the same as the type 1 error. If we truncate the 

sequence, the calculated error becomes smaller. 

If our primary interest ts 1n a particular bin, and 

there is no ·information available about the other bins 

except the evidence of the experiment, the type 1 error 

correct!~ summarizes our knowledge. However, if we presume 

that the true distribution 1s smooth, the type 1 error 

probably overstates our uncertainty, since it includes cases 

of extreme fluctuations of the given bin with the adjacent 

bins fluctuating in the opposite direction, contrary to the 

assumption of smoothness. 

The type 2 error clearly represents a lower limit to 

the uncertainty about a bin taken by itself. However, the 

type 2 error overstates our uncertainty about local but 

smooth changes in the true distribution. Changes in 

adjacent bins of the true distribution with the same sign 

add coherently after smearing, and produce a larger change 
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in the chi square than the sum of the chi square changes 

from each of the bins taken separately. 

If we had a priori knowledge that the true distribution 

could be represented by a finite sum of functions times 

fit the data for those coefficients, coefficients, and we 

the appropriate error 

distribution would be 

coefficients through to 

analogous to the type 3 

to quote for a bin of the true 

to propagate the errors of the 

the error on the bin. This is 

error. The only difference is the 

lack of a pr1or1 knowledge about what the functions are, and 

how many functions are necessary. 

The eigenvectors are a complete set of vectors, and can 

be used to represent any theoretical distribution. The 

sequenc~ starts with smooth functions and progresses to 

higher frequencies, so we expect that smooth theoretical 

distributions can be represented by relatively few 

eigenvectors. While we do not know a priori how many are 

needed, we do know from their chi square contributions how 

many of them contain usef u I information about the data. 

We conclude, therefor~, ~hat the type 3 error, as 

calculated by truncating the eigenvector sequence at the 

point where further eigenvectors are not statistically 

significant, gives the most reasonable error estimate for a 

given bin, provided that we can assume that the true 

distribution is smooth. 
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9.1.6 Accelerating convergence 

We have made heuristic arguments that few eigenvectors 

would be needed to represent any function reasonably wel I. 

In fact, it 1s possible to arrange for one of the 

eigenvectors to be a chosen arbitrary function. We can use 

the freedom to choose a representation to make one of the 

eigenvectors approximately equal to the expected solution. 

The coefficient of this eigenvector 1n the expansion 1s not 

dictated, and could be zero or even the opposite sign if the 

data does not agree with the expected solution. However, if 

the data does agree reasonably wel I with expectation, the 

expansion of the ful I solution w1 I I require very few 

eigenvectors. 

We recal I that we can represent the smearing problem by 

Ax=b, where A is a matrix containing the model-independent 

smearing information, x is the true distribution, and b is 

the smeared distribution. We have also noted that we can 

redefine both A and x in a variety of ways which are 

physically equivalent but numerically different. We can 

express this fact by introd~cirig ~diagonal matrix F, we can 

write 

A x = A F F-1 x = A' x' = b Eq.9.12 

A' A F x' -1 Eq.9.13,14 = = F x 

(the primes i n this expression are not to be confused with 

the primes in the eigenvector analysis above.) 
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In the new representation, the solution x' is different 

from the original solution x. However, the physical 

solution is the product of F and x', which is identical to 

the original x. 

We can now rewrite the matrix W and the vector R for 

the chi square problem as 

W' = A'T .!. 
0'2 

A' = (A F) T .!. A F 
0'2 

= F W F Eq.9.15 

R' A'T 1 b (A F) T 1 b F R = 
;2 

= 
0'2 

= Eq.9.16 

In general, the eigenvectors and eigenvalues of the matrix 

FWF are different from the eigenvectors of W. 

An expected solution x* 1n the original basis becomes 

x*'=F-l~• in the new representation. If the transformed 

expected solution is to be an eigenvector of the transformed 

problem, then 

w, x 
,. 

= R'* = A x 
,. 

Eq .9.17 

F R* = A F-1 • Eq. 9.18 x 

F2 = A x*/ R* Eq. 9 .19 

In other words, if we se I ect the e I ements of F to be the 

square roots of the bin by bin ratio of x* to R*, then x* 

would be an eigenvector of the hypothetical problem. 

It should be emphasized that this is only employing a 

particularly good choice for the representation of A and x 
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in Ax=b, and does not I imit the generality of the unfolding. 

The choice is made before looking at the data. The data 

sti I I determines the coefficients of al I the eigenvectors, 

even if the shape of one eigenvector has been altered. 

To exploit this, in the data analysis, we go through 

the steps of unfolding using Monte Carlo data, and find the 

F factors that make the Monte Carlo expectation exactly an 

eigenvector of the Monte Carlo chi square. The same 

representation of A is then used to form the data W matrix 

and R vector for unfolding. Since the errors of the data 

wi I I not be precisely those of the Monte Carlo, the data W 

matrix wi I I be slightly different from the Monte Carlo W 

matrix. Thus, the transformation factors F wi I I not make 

the exp~cted solution exactly an eigenvector of the real 

problem, although one eigenvector of the data W matrix wi I I 

be very close. 

9.1.7 Summary 

The final physical quark distributions xq(x.) are 
I 

xq(x.) = F. Q~C E c. U .. 
I I I J I J 

J 
Eq.9.20 

The sum is over the eigenvectors, which may be truncated. 

In our case, the first 12 xq(x.) 
I 

quarks, and the last 12 to the sea. 

refer to the valence 

F. 1 s the adjustment 
I 

factor for bin 1, Q~C 1s the quark distribution assumed 1n 
I 
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the Monte Carlo used to generate 

the matrix of eigenvectors. 

the A matrices, and U .. 1s 
IJ 

The coefficient c. 
J 

1s the coefficient of the jth 

eigenvector in the expansion of the solution. In terms of 

the ful I solution to the transformed unfolding problem, x', 

c. =I:: U .. x? 
J I J I 

Eq.9.21 

The statistical error of c. 
J 

1s given by the jth eigenvector 

of the transformed matrix W': 

2 a c. = 1 I A.. 
J J 

Eq.9.22 

The orthonormal ity of the eigenvectors makes finding 

whether a parameterization matches the data quite easy. We 

evaluat~ the parameterization for each bin of valence and 

sea, and denote the I ist of 12 valence and 12 sea values as 

xq(x.)prm. We first divide the parameterization by the Q 
I 

and F factors, then project the transformed function onto 

the eigenvectors U.. to find the coefficient c. for the 
IJ J 

parameterization. 

xq(x.)prm 
--==--....,',,...--- u . . 

F. Q. IJ 
I I 

Eq.9.23 

We form the chi square by summing the squares of the 

differences between the expansion coefficients of the 
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parameterization and the unfolded solution, multiplied by 

the eigenvalues. 

Eq.9.24 

If we wish to fit a parameterization, we simply minimize the 

chi square with respect to the parameters. 

It should also be noted that if we wish to fit a smooth 

parameterization to the unfolded data, there is no need to 

suppress the later eigenvectors. They are almost orthogonal 

to smooth functions, and make insignificant contributions to 

the parameter values or chi square. In fact, the quoted 

errors from s~ch a parameter fit wi I I be somewhat larger if 

higher eigenvectors are suppressed. This is because the 

higher eigenvectors do represent independent measurements, 

however poor, and more measurements always decrease the 

quoted error. This does not mean, however, that the chi 

square per degree of freedom in a parameter fit wi I I be 

smaller if more eigenvectors are used; the opposite may be 

true. 

9.2. Quark distribution results 

9.2.1 Eigenvector tables 

The neutral and charged current results are presented 

separately. These results are implicitly interpolated or 
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extrapolated to Q2=10 GeV2 , using the parameterization of 

the Q
2 

evolution in the Monte Carlo. The bins are those of 

the CCFRR and CDHS groups, and are substantially narrower 

than our x resolution. The bin centers repeat after 12 

bins, because the first 12 bins are for the valence, and the 

second 12 bins are for the sea. 

Table 9.la-9.lc give the neutral current unfolding 

results in the form of the eigenvectors and eigenvalues. 

There are 24 eigenvectors, arranged in columns with 8 

eigenvectors given in each table section. At the top of 

c.unf for that 
J 

each column are the expansion coefficient 

eigenvector, 1-abel led COEF. The statistical error of the 

eigenvector expansion coefficient, >. -.5 
j I 

1s label led ERR. 

The expa--nsion coefficient prm c. 
J 

of the Monte Carlo input 

parameterization in the eigenvectors 1s also presented for 

convenience, I abe I I ed as QMC. The 24 numbers in each co I umn 

below are the eigenvector 

between -1.0 and +1.0. 

components u • • I 
IJ 

which a re a I I 

The most significant eigenvector 1s the first column. 

Al I its elements are negative, but its expansion coefficient 

is also negative, so the product 1s positive. Since the 

result of multiplying an eigenvector by -1 is sti I I an 

eigenvector with the same e i genva I ue, it 1 s i rre I evant that 

the elements of the first eigenvector are al I negative 

rather than a I I positive. 
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By construction, the errors on the eigenvector 

coefficients are monotonically increasing. After the first 

few eigenvectors, we see that the error on the expansion 

coefficient is comparable to the coefficient. 

The expansion coefficients of the Monte Carlo input 

parameterization behave quite differently. In absolute 

value, the first coefficient is the largest, the second is 

an order of magnitude less, with nearly monotonic decreases 

afterward. 

The Monte Carlo expansion coefficients and the unfolded 

data expansion coefficients agree within the errors of the 

coefficients. Thus, the neutral current data is consistent 

with the Monte Carlo. 

Table 9.2 gives the Monte Carlo Q. 
I 

factors for the 

neutral currents in the column label led QMC. The column 

label led F is the basis adjustment factors F. 
I 

used to 

accelerate the convergence of the eigenvector sequence. 

Both these columns are needed to construct the solution from 

the eigenvectors. Table 9.2 also gives the x bin centers 

and high edges. 

Tables 9.3a-9.3c give the unfolded charged current 

eigenvectors. The ratio of the eigenvector coefficients to 

their errors is larger than for the neutral currents because 

of the higher statistics. The eigenvectors are not 

identical those of the neutral currents, because the F 
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factors are different due to the different fluctuations in 

the data. The F factors for the charged currents are found 

in Table 9.4. 

9.2.2 Truncated eigenvector sum tables 

The purpose of the eigenvector expansion 1s to isolate 

those parts of the ful I unfolded solution which contain 

useful information from the parts reflecting only 

statistical noise. Our rule wi I I be to truncate the 

eigenvector sequence when the next two consecutive expansion 

coefficients give a chi square contribution of less than 

one. This requires only a single eigenvector for the 

neutral currents, but 4 for the charged currents. We wi I I 

retain 4_ eigenvectors in both for consistency. 

The systematic errors of the eigenvector analysis are 

the same as for the parameter analysis. Some of the sources 

of uncertainty are the factors that determine the x scale: 

the neutrino energy, shower energy, and shower angle scales. 

Other sources are the factors that determine the x 

resolution, primarily the sh-owe-r angle resolution. There 1s 

also the global normalization uncertainty 1n using the 

charged current total cross section of other experiments to 

norma Ii ze this data of about 5 percent. While event 

misclassification IS an important issue for the . 2e sin w 

analysis, it IS much less important here relative to the 

other uncertainties. 
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We let it suffice, then, to simply 

difference between the data analyzed with 

present the 

a different x 

scale and the normal scale, and the difference between the 

data analyzed with normal shower angle resolution and with 

degraded resolution in the Monte Carlo, as a measure of the 

systematics. 

Tables 9.5-9.7 are the neutral current valence, sea, 

and valence+sea results from the truncated eigenvector sum. 

The quark distribution value, label led VALENCE, SEA, or 

VAL+SEA, is the sum of the first 4 eigenvectors of the 

unfolded solution. The first error column, label led ERR, 1s 

the type 3 statistical error propagated from the errors of 

the first 4 eigenvectors, but suppressing al I the other 

eigenve~tors. The column label led FIX 1s the type 2 

statistical error, fixing al I other bins of the valence and 

sea. The column label led FLOAT 1s the type 1 error, where 

al I other bins are al lowed to change to minimize the chi 

square. 

The next two columns are systematic errors. The errors 

quoted are signed because - th-ey were ca I cu I ated making a 

signed change in assumptions. If the sign of the assumption 

change were reversed, the systematic change presumably would 

also be reversed. The column label led SCALE is the change 

in the sum of the first 4 eigenvectors if the raw x value of 

each event is multiplied by 0.95 before unfolding. The 
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column label led RESOL 1s the change 1n the sum of the first 

4 eigenvectors if the shower angle resolution in the Monte 

Carlo is degraded by 10 percent. 

The column label led QMC is simply the evaluation at the 

bin centers of the parameterization used in the Monte Carlo, 

presented for comparison convenience. The unfolding 

procedure 1s analytically independent of the assumed quark 

distribution shapes. 

The statistical errors for Table 9.7, the sum of 

valence and sea, require some further explanation. Since 

there are large correlations between the separated valence 

and sea, the error of the sum is not trivially related to 

the errors of the components. Each eigenvector has a 

component for each bin of valence, and each bin of sea. The 

column label led VAL+SEA is the sum for the first 4 

eigenvectors of the valence and sea contribution in each 

eigenvector times the coefficient of the eigenvector. The 

column label led ERR 1s the error propagating the expansion 

coefficient errors through this sum. The FIX error 1s 

calculated fixing al I othe~ ~ins of valence and sea, and 

also the valence to sea ratio for the given bin. The FLOAT 

error 1s calculated with 

the valence to sea ratio 

systematic errors from 

difference between the 

al I other bins floating, and also 

for the given bin floating. The 

scale and resolution are the 

sum of valence and sea from 4 
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eigenvectors with the different analysis assumptions. There 

is also an extra statistical error column for the sum of 

valence and sea, label led FXSFLD. This error 1s the result 

of fixing the sum of valence and sea for al I bins, but 

letting the differences float. 

Tables 9.8-9.10 give the charged current valence, sea, 

and valence plus sea results retaining the first 4 

eigenvectors. 

9.2.3 Figures 

Figures 9.la-9.lc show the neutral current eigenvectors 

times the Q and F factors and the expansion coefficients of 

the unfolded data, plotted as functions of x. The sol id 

I ine is the valence, the dotted I ine 1s the sea, and the 

dashed I ine is the sum of valence and sea. While the 

eigenvectors are actually each represented by discrete 

points, for visual clarity the points are connected by cubic 

spline curves. The curves show the expected behavior of 

increasing numbers of zero crossings for the later vectors. 

There are 24 eigenvectors, with- 8 i I lustrated per page. 

The vertical scale for each box indicates the size of 

that vector in the solution. Some of the later eigenvectors 

have coefficients that make them numerically comparable to 

the earlier eigenvectors. The chi square contribution of 

each eigenvector 1n the upper right corner of each box 
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shows, however, that it is the first few eigenvectors which 

contribute the bulk of the chi square, with the rest 

consistent with statistical fluctuations. 

Figures 9.2a-9.2c show the running sum of the neutral 

current eigenvectors. As before, the valence points are 

connected by a sol id cubic spline curve, the sea with a 

dotted cubic spline curve, and the sum with a dashed curve. 

The first box is the first eigenvector alone, the next is 

the sum of the first two with the appropriate coefficients, 

the next is the sum of the first 3, etc. The error bars 

drawn are the type 3 error calculated for the eigenvectors 

which have been kept. The error on the valence plus sea 

combines the errors on both including the appropriate 

correlation. 

As more eigenvectors are added, the solution develops 

larger bin to bin fluctuations, first at low frequencies, 

then at higher frequencies. The error bars on the points 

grow at the same rate as the fluctuations. The sum of al I 

24 eigenvectors is barely recognizable. 

Figures 9.3a-9.3c are -th~ charged current eigenvectors 

analogous to figures 9.la-9.lc. Figures 9.4a-9.4c are the 

charged current running eigenvector sum analogous to Figures 

9.2a-9.2c. 
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Table 9.la 
Neutral current eigenvectors and eigenvalues 

VECTOR 1 2 3 4 5 6 7 8 

COEF -.5592 -.8687 -.3606 -.3390 -.2231 -.8222 -.6828 .3379 
E+03 E+Ol E+02 E+02 E+03 E+03 E+03 E+03 

ERR .1058 .2160 .5705 .7160 .1894 .2500 .3552 .3899 
E+02 E+02 E+02 E+02 E+03 E+03 E+03 E+03 

QMC -.5565 -.8710 .8141 .7519 -.1612 -.7806 -.9934 .2102 
E+03 E+Ol E+Ol E+Ol E+Ol E+OO E+OO E+OO 

BIN 
1 -.1197 .1669 -.0024 .3243 .0416 -.3715 .0969 .0457 
2 -.1754 .2054 .0535 .3551 .1095 -.3133 .0205 .0434 
3 -.2365 .2120 .1492 .3109 .1769 -.1103 -.0465 -.0269 
4 -.2881 .1625 .2656 .1780 .2114 .0922 -.0164 -.0189 
5 -.2953 .0656 .3110 .0332 .1358 .2138 -.1426 -.2453 
6 -.2919 -.0276 .3036 -.0624 -.0086 .2250 -.0903 .0283 
7 -.2773 -.1122 .2514 -.0937 -.1500 .1408 .2885 .2339 
8 -.3534 -.2913 .1823 -.1175 -.3459 -.0719 .1068 .4117 
9 -.2876 -.3784 -.0536 .0058 -.2885 -.2316 -.1330 -.7167 

10 - -.2174 -.3831 -.2345 .1447 -.0404 -.0846 .1397 .0849 
11 -.1762 -.3896 -.4017 .3137 .3268 .228~ -.4511 .2763 
12 -.0478 -.1327 -.1935 .1639 .3090 .3285 .7506 -.2368 
13 -.2089 .3238 -.3782 .1334 -.4041 -.0302 .1188 .0461 
14 -.2258 .2971 -.3232 -.0213 -.2245 .1077 -.0185 .0258 
15 -.2434 .2549 -.2604 -.1914 -.0336 .2183 -.0941 -.0497 
16 -.2316 .1643 -.1607 -.3331 .1816 .0996 -.0165 -.0098 
17 -.1820 .0649 -.0871 -.3457 .2505 -.0643 -.0723 -.1250 
18 -.1377 .0040 -.0565 -.3012 .2350 -.1914 -.0134 .0388 
19 -.0991 -.0297 -.0477 -.2263 .1932 -.2733 .1458 .1171 
20 -.0849 -.0595 -.0644 -.1860 .2012 -.3848 .0905 .1206 
21 -.0390 -.0471 -,0514 -,066-7 .1156 -.2361 .0292 -.0740 
22 -.0158 -.0263 -.0332 -.0151 .0664 -.1025 .0356 .0101 
23 -.0055 -.0112 -.0159 .0003 .0335 -.0307 -.0058 .0123 
24 -.0002 -.0005 -.0009 .0004 .0021 .0000 .0033 -.0012 



233 

Tab I e 9. lb 

VECTOR 9 10 11 12 13 14 15 16 

COEF -.3183 -.6439 .1388 .5516 -.6277 .2029 .2405 .4466 
E+03 E+03 E+03 E+02 E+03 E+03 E+04 E+04 

ERR .4026 .4155 .4350 .4416 .4820 .5714 .8799 .2077 
E+03 E+03 E+03 E+03 E+03 E+03 E+03 E+04 

QMC -.8765 -.4827 -.3949 .8631 -.3662 -.1727 .2137 .9523 
E-01 E+OO E-01 E-02 E+OO E-02 E+OO E-01 

BIN 
1 -.0966 -.0138 .0746 -.0271 .0161 .2517 -.4390 -.4047 
2 -.0738 -.0069 .0578 .1164 -.0867 -.4582 -.1889 -.1250 
3 .1989 .0058 -.2060 -.0892 .5017 .0059 .0930 .5383 
4 .1837 .0708 -.1355 -.3662 -.4749 .0778 .2465 -.0161 
5 -.1482 -.0440 -.1057 .6055 -.1064 .2244 .1291 -.0960 
6 -.0284 .2388 .7127 -.1263 .1919 -.0340 .0555 -.1145 
7 -.0779 -.7401 -.0086 -.0912 .0545 -.0474 -.0435 -.0527 
8 -.1740 .4810 -.3640 .0344 .0240 -.0308 -.1087 .0246 
9 -.1090 -.0767 -.0492 -.2474 .0077 -.0876 -.0449 .0399 

10 - .7340 -.0210 .1782 .3205 -.1090 .0545 -.0010 .0165 
11 -.3029 -.1172 -.0201 -.1001 .0084 .0382 -.0011 -.0025 
12 -.2023 .2023 -.0206 -.0218 .0798 -.0540 -.0272 .0064 
13 -.1911 -.0153 .1858 -.0057 -.0860 .5347 .1613 .2094 
14 -.0973 -.0111 .0778 .1866 -.1718 -.5942 .1821 .0908 
15 .2389 .0058 -.2512 -.0914 .5083 -.0084 .0073 -.4803 
16 .1777 .0480 -.1116 -.3090 -.3642 .0393 -.2826 .0230 
17 -.0938 -.0229 -.0662 .3611 -.0308 .0916 -.2957 .1553 
18 -.0476 .0869 .3449 -.0706 .1174 -.0061 -.1459 .1977 
19 -.0849 -.2687 .0247 -.0363 .0388 -.0068 .1105 .1361 
20 -.1089 .1129 -.0566 .0180 .0237 .0281 .4115 -.0732 
21 - .0554 - .0070 .0003 --;0211 .. 0130 .0204 .4062 - .2903 
22 .0366 -.0018 .0187 .0312 -.0058 .0228 .2455 -.2008 
23 -.0156 -.0044 .0049 .0009 .0024 .0096 .1063 -.0891 
24 -.0012 .0008 .0001 .0001 .0001 .0000 .0046 -.0041 
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Table 9.lc 

VECTOR 17 18 19 20 21 22 23 24 

COEF -.2766 .4046 .5473 .4777 -.3148 -.8908 .5814 -.5860 
E+04 E+04 E+02 E+04 E+04 E+02 E+04 E+05 

ERR .2325 .2480 .2593 .2771 .3126 .6509 .1289 .8950 
E+04 E+04 E+04 E+04 E+04 E+04 E+05 E+05 

QMC -.3824 .6709 - .1417 .6259 -.3823 -.2881 .2943 -.3854 
E-01 E-01 E-01 E-01 E-01 E-02 E-02 E-05 

BIN 
1 -.1029 -.0293 -.3004 -.4031 -.0337 -.0155 -.0034 -.0001 
2 .1860 .0437 .3228 .5034 -.0060 .0188 -.0001 -.0002 
3 .0508 -.2599 -.1183 -.0926 .0271 -.0157 .0008 .0007 
4 -.3943 .2828 .0979 -.0431 .0554 .0274 .0032 -.0006 
5 .3678 .1147 .0349 -.1635 -.0160 -.0087 -.0031 -.0006 
6 -.0302 -.0905 -.2665 .1954 -.0616 -.0197 -.0030 .0006 
7 -.0756 -.1882 .1651 -.0484 -.1238 -.0116 .0070 .0002 
8 .0083 .0079 .0136 -.0041 .1668 -.0079 .0048 .0004 
9 .0034 .0435 -.0136 .0025 -.0501 .0751 -.0018 -.0001 

10 - -.0046 .0354 -.0023 -.0043 -.0218 -.0548 -.0301 -.0007 
11 .0004 -.0073 -.0038 .0027 -.0064 -.0069° .0275 -.0008 
12 -.0001 .0081 .0062 .0012 .0045 .0024 -.0036 .0041 
13 .0379 .0126 .1556 .2228 .0168 .0073 .0028 .0001 
14 -.1217 -.0338 -.2275 -.3877 .0055 -.0148 .0003 .0003 
15 -.0408 .2634 .1138 .0919 -.0262 .0187 -.0012 -.0010 
16 .4829 -.3530 -.1307 .0488 -.0661 -.0351 -.0074 .0009 
17 -.6018 -.1905 -.0676 .2803 .0327 .0129 .0035 .0013 
18 .0560 .1886 .5813 -.4338 .1389 .0379 .0139 -.0015 
19 .1938 .5213 -.4734 .1689 .3345 .0316 -.0169 -.0007 
20 .0063 -.0234 -.0280 -.0039 -.7280 .0578 -.0181 -.0028 
21 - . 0234 - . 3632 . 0871 -. 0006 . 4054 - . 5965 . 0072 . 0036 
22 .0143 -.3087 .0129 -.0131 .2990 .7202 .4167 .0088 
23 -.0051 -.1511 .0293 -.0136 .1526 .3265 -.9073 .0264 
24 -.0007 -.0099 .0001 .0004 .0098 .0126 -.0202 -.9996 
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Table 9.2 
Neutral current bins and factors 

BIN CENTER EDGE QMC F 

1 .015 .030 .3390E+OO .1480E-01 
2 .045 .060 .5875E+OO .lOlOE-01 
3 .080 .100 .7365E+OO .7519E-02 
4 .125 .150 .8248E+OO .6163E-02 
5 .175 .200 .8447E+OO .6012E-02 
6 .225 .250 .8143E+OO .6082E-02 
7 .275 .300 .7528E+OO .6375E-02 
8 .350 .400 .6292E+OO .4996E-02 
9 .450 .500 .4465E+OO .6112E-02 

10 .550 .600 .2788E+OO .8097E-02 
11 .700 .800 .9782E-01 .9960E-02 
12 .900 1.000 .4524E-02 .3880E-Ol 
13 .015 .030 .1431E+Ol .8926E-02 
14 .045 .060 .1097E+Ol .8285E-02 
15 .080 .100 .7951E+OO .7725E-02 
16 .125 .150 .5163E+OO .8110E-02 
17 .175 .200 .3111E+OO .1029E-01 
18 .225 .250 .1816E+OO .1360E-Ol 
19 .275 .300 .1023E+OO .1876E-01 
20 .350 .400 .3994E-01 .2183E-01 
21 .450 .500 .9478E-02 .4727E-Ol 
22 .550 .600 .1684E-02 .1163E+OO 
23 .700 .800 .5131E-04 .3342E+OO 
24 .900 1.000 .3984E-08 .9838E+Ol 
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Table 9.3a 
Charged current eigenvectors and eigenvalues 

VECTOR 1 2 3 4 5 6 7 8 

COEF -.9882 -.2620 -.6557 .1639 .1049 -.2691 -.2403 -.3069 
E+03 E+03 E+02 E+03 E+03 E+02 E+03 E+03 

ERR .1053 .2260 .4866 .7506 .1802 .2614 .3411 .3669 
E+02 E+02 E+02 E+02 E+03 E+03 E+03 E+03 

QMC -.1002 -.7212 .2025 -.4035 .3498 .8821 -.7465 -.1897 
E+04 E+02 E+02 E+Ol E+Ol E+OO E+OO E+OO 

BIN 
1 -.1289 .1529 .1373 -.3053 -.1155 -.3409 .1245 -.0812 
2 -.1872 .1837 .2076 -.3180 -.1446 -.2599 .0556 -.0315 
3 -.2484 .1819 .2837 -.2451 -.1659 -.0644 -.0264 .0069 
4 -.2983 .1264 .3306 -.0709 -.1553 .1028 -.0906 .0425 
5 -.2995 .0276 .2968 .0948 -.0761 .2318 -.0729 .0809 
6 -.290-7 -.0602 .2455 .1833 .0402 .2463 -.1097 .1240 
7 -.2724 -.1407 .1711 .2085 .1630 .1082 .1227 .0225 
8 -.3400 -.3167 .0892 .2070 .2742 -.0941 .1781 -.2435 
9 -.2718 -.3924 -.0841 -.0097 .2264 -.3153 -.0851 -.3867 

10 - -.2018 -.3806 -.1890 -.2211 .0398 -.1503 .2465 .7912 
11 -.1602 -.3803 -.2776 -.4581 -.2521 .2486 -.5454 -.1482 
12 -.0404 -.1215 -.1218 -.2291 -.2592 .5078 .6962 -.2829 
13 -.2033 .2996 -.2520 -.2280 .2983 -.1481 .1512 -.0983 
14 -.2258 .2933 -.2720 -.1166 .3042 .0904 -.0059 .0032 
15 -.2523 .2815 -.3041 .0225 .1856 .2041 -.0870 .0495 
16 -.2435 .2047 -.2798 .1975 -.1228 .0843 -.0769 .0306 
17 -.1903 .1012 -.2214 .2635 -.2817 -.0180 -.0325 .0355 
18 -.1426 .0362 -.1716 .2454 -.3119 -.1024 -.0175 .0280 
19 -.1022 -.0033 -.1350 .1957 -.2798 -.1794 .0821 -.0158 
20 -.0868 -.0333 -.1293 .1562 -.3122 -.2670 .1031 -.0958 
21 -.0393 -.0334 .... 0110 -.0533-.1718 -.1644 .0368 -.0754 
22 -.0157 -.0196 -.0345 .0088 -.0838 -.0664 .0420 .0306 
23 -.0053 -.0088 -.0136 -.0033 -.0373 -.0177 -.0055 -.0096 
24 -.0002 -.0004 -.0007 -.0006 -.0020 .0006 .0024 -.0011 
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Table 9.3b 

VECTOR 9 10 11 12 13 14 15 16 

COEF .1862 .2173 .5871 .4655 -.8588 -.9618 .2402 -.9878 
E+03 E+03 E+03 E+03 E+03 E+03 E+03 E+02 

ERR .4014 .4122 .4499 .4786 .4871 .5193 .8833 .1274 
E+03 E+03 E+03 E+03 E+03 E+03 E+03 E+04 

QMC -.2752 -.5946 .3153 -.6125 -.2901 -.2662 .1671 - .1493 
E-01 E-01 E+OO E-01 E+OO E+OO E+OO E-01 

BIN 
1 -.0591 .0145 -.1423 .0206 -.0606 -.1215 .1945 -.5866 
2 -.0407 .0122 .0257 -.0425 .3900 .1584 .3509 -.0086 
3 .0807 -.0548 .3151 .3077 -.1104 -.3396 -.0261 .5686 
4 -.0241 -.0344 .0637 -.0045 -.3480 .5865 -.2857 -.0652 
5 .1299 -.0151 .0339 -.6759 .0519 -.3119 -.1683 -.1105 
6 .2494 .3928 -.4592 .3862 .2148 -.0544 -.0380 -.0960 
7 -.3316 -.7135 -.2237 .1597 .1037 -.0611 .0712 -.0137 
8 -.4772 .4516 .2859 -.0237 -.0710 -.0179 .1269 .0202 
9 .6256 -.1981 .0368 -.0371 -.0428 .1055 .0250 .0348 

10 - .0700 .0244 .0629 -.0327 -.0573 .0394 -.0046 .0170 
11 -.2826 -.0073 -.1091 .0018 .0288 -.068l -.0058 -.0141 
12 .1518 .0076 -.0023 .0251 .0116 .0385 .0319 -.0020 
13 -.1045 .0815 -.5312 -.1317 -.3514 -.1873 -.2075 .2132 
14 -.0352 .0190 .0911 -.1158 .6117 .2787 -.1654 .1477 
15 .1042 -.0801 .4240 .3044 -.0965 -.2973 -.0424 -.4292 
16 .0038 -.0226 .0102 -.0018 -.3062 .3830 .2944 .0225 
17 .0649 .0012 .0041 -.3218 -.0067 -.1604 .3249 .1042 
18 .0816 .1377 -.1816 .1794 .0894 -.0522 .1383 .0964 
19 -.1281 -.2133 -.0655 .0779 .1031 -.0280 -.1264 .0379 
20 -.1388 .0952 .0656 .0345 .0836 -.0226 -.4194 -.0157 
21 .0457 -.0212 .0460 .032• .1006 -.0037 -.4008 -.1401 
22 -.0043 -.0022 .0266 .0199 .0541 -.0043 -.2390 -.0936 
23 -.0094 -.0006 .0058 .0095 .0268 -.0039 -.1041 -.0477 
24 .0006 -.0003 .0005 .0004 .0013 .0003 -.0053 -.0024 
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Table 9.3c 

VECTOR 17 18 19 20 21 22 23 24 

COEF -.1423 -.3281 .2269 -.2547 .2082 .9466 -.4494 -.1788 
E+04 E+04 E+04 E+04 E+04 E+03 E+04 E+06 

ERR .1501 .2195 .2320 .2381 .2981 .5946 .1189 .9942 
E+04 E+04 E+04 E+04 E+04 E+04 E+05 E+05 

QMC .7068 -.5920 .1166 -.2294 .1292 .1250 -.2397 -.3374 
E-01 E-01 E-01 E-01 E-01 E-01 E-03 E-02 

BIN 
1 .5062 .1045 .0080 .0033 -.0654 -.0003 .0020 .0004 
2 -.6209 -.0286 -.0044 -.0142 .0556 -.0050 -.0057 -.0002 
3 .2142 .1664 .0465 -.0031 .0369 .0008 .0032 -.0002 
4 .0456 -.4115 .0394 .0717 -.0321 -.0030 .0050 .0002 
5 -.0438 .1513 -.2702 -.1665 -.0014 .0009 -.0039 .0001 
6 -.0405 .1503 .1044 .2347 -.0418 .0050 .0000 .0001 
7 -.0077 .0090 .1837 -.1672 -.0539 .0151 -.0095 -.0005 
8 .0263 -.0369 -.0380 .0148 .1365 .0075 -.0009 -.0002 
9 .0028 -.0200 -.0332 .0152 -.0601 -.0620 .0087 .0000 

10 - .0033 .0006. -.0079 -.0012 -.0222 .0480 .0180 .0007 
11 .0020 .0027 -.0003 .0034 -.0019 .0026 -.0235 .0005 
12 .0008 -.0105 -.0052 .0025 -.0062 .0010 .0037 -.0030 
13 -.1919 -.0818 -.0018 .0058 .0470 .0035 -.0011 -.0001 
14 .3845 -.0030 -.0034 -.0063 -.0481 .0017 .0028 .0000 
15 -.2554 -.1808 -.0588 .0251 -.0516 -.0022 -.0005 .0003 
16 -.0249 .6336 -.0631 -.1190 .0626 .0071 -.0073 -.0007 
17 .1033 -.2839 .5458 .3373 .0004 -.0067 .0090 -.0001 
18 .1237 -.4029 -.2787 -.6212 .0929 -.0101 -.0068 .0001 
19 .0217 -.0232 -.5839 .5842 .1685 -.0413 .0337 .0016 
20 -.1542 .1757 .1504 -.0915 -.6748 -.0554 .0097 .0024 
21 -.0618 .1326 .. 2772 -.0947 .. 5266 .5807 -.0896 -.0029 
22 -.0288 .0928 .2032 -.0772 .3867 -.7819 -.3102 -.0134 
23 - .0223 .0487 .1052 - .0655 .1799 - .1994 .9449 - .0246 
24 -.0010 .0029 .0069 -.0037 .0126 -.0136 .0188 .9996 
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Table 9.4 
Charged current bins and factors 

BIN CENTER EDGE QMC F 

1 .015 .030 .3390E+OO .8232E-02 
2 .045 .060 .5875E+OO .5589E-02 
3 .080 .100 .7365E+OO .4130E-02 
4 .125 .150 .8248E+OO .3375E-02 
5 .175 .200 .8447E+OO .3292E-02 
6 .225 .250 .8143E+OO .3333E-02 
7 .275 .300 .7528E+OO .3494E-02 
8 .350 .400 .6292E+OO .2737E-02 
9 .450 .500 .4465E+OO .3337E-02 

10 .550 .600 .2788E+OO .4417E-02 
11 .700 .800 .9782E-Ol .5439E-02 
12 .900 1.000 .4524E-02 .2138E-01 
13 .015 .030 .1431E+Ol .5597E-02 
14 .045 .060 .1097E+Ol .4975E-02 
15 .080 .100 .7951E+OO .4399E-02 
16 .125 .150 .5163E+OO .4495E-02 
17 .175 .200 .3111E+OO .5651E-02 
18 .225 .250 .1816E+OO .7432E-02 
19 .275 .300 .1023E+OO .1022E-Ol 
20 .350 .400 .3994E-01 .1182E-Ol 
21 .450 .500 .9478E-02 .2547E-01 
22 .550 .600 .1684E-02 .6260E-Ol 
23 .700 .800 .5131E-04 .1797E+OO 
24 .900 1.000 .3984E-08 .5369E+Ol 
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Table 9.5 
Neutral current valence quark distribution 

BIN x VALENCE ERR FIX FLOAT SCALE RESOL QMC 

1 .015 .2738 .1181 .3455 .8442 .4238 -.2181 .3390 
E+OO E+OO E+OO E+Ol E-01 E-01 E+OO 

2 .045 .4886 .1546 .2992 .1034 .7467 .2000 .5875 
E+OO E+OO E+OO E+02 E-01 E-01 E+OO 

3 .080 .6339 .1351 .2217 .7724 .9291 .9749 .7365 
E+OO E+OO E+OO E+Ol E-01 E-01 E+OO 

4 .125 .7326 .1034 .1765 .6467 .9736 .1802 .8248 
E+OO E+OO E+OO E+Ol E-01 E+OO E+OO 

5 .175 .7730 .9255 .1771 .5565 .8194 .2074 .8447 
E+OO E-01 E+OO E+Ol E-01 E+OO E+OO 

6 .225 .7658 .8994 .1756 .5111 .5605 .1912 .8143 
E+OO E-01 E+OO E+Ol E-01 E+OO E+OO 

7 .275 .7207 .7815 .1764 .4148 .2475 .1281 .7528 
E+OO . E-01 E+OO E+Ol E-01 E+OO E+OO 

8 .350 .6211 .4794 .8663 .1979 -.2038 .2019 .6292 
E+OO E-01 E-01 E+Ol E-01 E-01 E+OO 

9 .450 .4526 .2526 .8410 .1705 -.5513 -.1129 .4465 
E+OO E-01 E-01 E+Ol E-01 E+OO E+OO 

10 .550 .2900 .4284 .8179 .1459 -.6456 -.1650 .2788 
E+OO E-01 E-01 E+Ol E-01 E+OO E+OO 

11 .700 .1030 .. 3237 -.3743 · . . 4347 -.3502 -.1095 .9782 
E+OO E-01 E-01 E+OO E-01 E+OO E-01 

12 .900 .5147 .2874 .1908 .8664 -.2569 -.8829 .4524 
E-02 E-02 E-01 E-01 E-02 E-02 E-02 
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Table 9.6 
Neutral current sea quark distribution 

BIN x SEA ERR FIX FLOAT SCALE RESOL QMC 

13 .015 .1573 .3156 .4944 .1201 .9757 -.3605 .1431 
E+Ol E+OO E+OO E+02 E-02 E+OO E+Ol 

14 .045 .1236 .1792 .3485 .1217 .1345 -.1376 .1097 
E+Ol E+OO E+OO E+02 E-01 E+OO E+Ol 

15 .·080 .9200 . 1296 .2323 . .8010 .1189 - . 7130 .7951 
E+OO E+OO E+OO E+Ol E-01 E-02 E+OO 

16 .125 .6079 .1085 .1755 .6478 .6089 .5664 .5163 
E+OO E+OO E+OO E+Ol E-02 E-01 E+OO 

17 .175 .3718 .8119 .1753 .5599 -.1456 .4928 .3111 
E+OO E-01 E+OO E+Ol E-02 E-01 E+OO 

18 .225 .2203 .5396 .1786 .5220 -.5120 .3093 .1816 
E+OO E-01 E+OO E+Ol E-02 E-01 E+OO 

19 .275 .1249 .3161 .1887 .4248 -.6286 .1157 .1023 
E+OO . E-01 E+OO E+Ol E-02 E-01 E+OO 

20 .350 .4936 .1212 .9511 .2067 -.4730 -.1108 .3994 
E-01 E-01 E-01 E+Ol E-02 E-03 E-01 

21 .450 .1179 .2559 .9638 .1909 -.1907 -.2596 .9478 
E-01 E-02 E-01 E+Ol E-02 E-02 E-02 

22 .550 .2115 .4428 .9183 .1428 -.5118 -.1016 .1684 
E-02 E-03 E-01 E+Ol E-03 E-02 E-02 

23 .700 .6383 .. 1610 - . 2057 . . 2081 -.2058 -.5246 .5131 
E-04 E-04 E-01 E+OO E-04 E-04 E-04 

24 .900 .5249 .2469 .9556 .3506 -.2518 -.7843 .3984 
E-08 E-08 E-03 E-02 E-08 E-08 E-08 
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Table 9.7 
Neutral current total quark distribution 

BIN x VAL+SEA ERR FIX FLOAT SCALE RESOL QMC FXSFLD 

1 .015 .1846 .3821 .4840 .5922 .5214 -.3823 .1770 .2240 
E+Ol E+OO E+OO E+Ol E-01 E+OO E+Ol E+Ol 

2 .045 .1725 .2221 .3418 .5195 .8812 -.1176 .1684 .1480 
E+Ol E+OO E+OO E+Ol E-01 E+OO E+Ol E+Ol 

3 .080 .1554 .8866 .2326 . . 3388 .1048 .9036 .1532 .9045 
E+Ol E-01 E+OO E+Ol E+OO E-01 E+Ol E+OO 

4 .125 .1341 .6675 .1797 .2583 .1035 .2368 .1341 .5745 
E+Ol E-01 E+OO E+Ol E+OO E+OO E+Ol E+OO 

5 .175 .1145 .1031 .1794 .2319 .8048 .2567 .1156 .5096 
E+Ol E+OO E+OO E+Ol E-01 E+OO E+Ol E+OO 

6 .225 .9861 .1100 .1775 .2201 .5093 .2221 .9958 .4940 
E+OO E+OO E+OO E+Ol E-01 E+OO E+OO E+OO 

7 .275 .8455 .9206 .1780 .1969 .1846 .1396 .. 8551 .5109 
E+OO E-01 E+OO E+Ol E-01 E+OO E+OO E+OO . 

8 . 350 .6704 .5397 .8694 .1153 - . 2511 .2008 .6692 .2810 
E+OO E-01 E-01 E+Ol E-01 E-01 E+OO E+OO 

9 .450 .4644 .2617 .8417 .1011 -.5704 -.1155 .4560 .3458 
E+OO E-01 E-01 E+Ol E-01 E+OO E+OO E+OO 

10 .550 .2921 .4304 .8180 .8231 -.6507 -.1660 .2805 .4276 
E+OO E-01 E-01 E+OO E-01 E+OO E+OO E+OO 

11 .700 . 1031 ... 3238 -.3743 . .2912 -.3504 -.1095 .9787 .2117 
E+OO E-0} E-01 E+OO E-01 E+OO E-01 E+OO 

12 .900 .5147 .2874 .1908 .8408 -.2569 -.8829 .4524 . 7197 
E-02 E-02 E-01 E-01 E-02 E-02 E-02 E-01 
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Table 9.8 
Charged current valence quark distribution 

BIN x VALENCE ERR FIX FLOAT SCALE RESOL ~MC 

1 .015 .7899 .6742 .1869 .3157 .1553 -.8894 .3390 
E-01 E-01 E+OO E+Ol E-01 E-01 E+OO 

2 .045 .2336 .8641 .1600 .3369 .4423 -.7695 .5875 
E+OO E-01 E+OO E+Ol E-01 E-01 E+OO 

3 .080 .4230 . 7153 .1177 .2833 .7450 .1087 .7365 
E+OO E-01 E+OO E+Ol E-01 E-01 E+OO 

4 .125 .6358 .4862 .9364 .2877 .9752 .1349 .8248 
E+OO E-01 E-01 E+Ol E-01 E+OO E+OO 

5 .175 .7920 .4565 .9522 .2562 .9597 .2039 .8447 
E+OO E-01 E-01 E+Ol E-01 E+OO E+OO 

6 .225 .8605 .5028 .9566 .2187 .7765 .2119 .8143 
E+OO E-01 E-01 E+Ol E-01 E+OO E+OO 

7 .275 .8654 .4797 .9716 .1900 .4325 .1676 .7528 
E+OO E-01 E-01 E+Ol E-01 E+OO E+OO 

8 .350 . 7699 .3101 .4859 .9471 -.8476 .6038 .6292 
E+OO E-01 E-01 E+OO E-02 E-01 E+OO 

9 .450 .5594 .1520 .4766 .8076 -.6249 -.9088 .4465 
E+OO E-01 E-01 E+OO E-01 E-01 E+OO 

10 .550 .3391 .2579 .4722 .5951 -.8208 -.1723 .2788 
E+OO E-01 E-01 E+OO E-01 E+OO E+OO 

11 .700 .1069 .2020 -.2190 .2019 -.4896 -.1219 .9782 
E+OO E-01 E-01 E+OO E-01 E+OO E-01 

12 .900 .4082 .1779 .1156 .4130 -.3870 -.1011 .4524 
E-02 E-02 E-01 E-01 E-02 E-01 E-02 
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Table 9.9 
Charged current sea quark distribution 

BIN x SEA ERR FIX FLOAT SCALE RESOL QMC 

13 .015 .8134 .1780 .3297 .4771 -.4712 -.3990 .1431 
E+OO E+OO E+OO E+Ol E-01 E+OO E+Ol 

14 .045 .7912 .9471 .2112 .3973 -.2259 -.1862 .1097 
E+OO E-01 E+OO E+Ol E-02 E+OO E+Ol 

15 .080 .6967 .5741 .1259 .3017 .1852 -.2666 .7951 
E+OO E-01 E+OO E+Ol E-01 E-01 E+OO 

16 .125 .5518 .4830 .9045 .3457 .2721 .8636 .5163 
E+OO E-01 E-01 E+Ol E-01 E-01 E+OO 

17 .175 .3854 .3994 .8985 .2947 .1921 .9266 .3111 
E+OO E-01 E-01 E+Ol E-01 E-01 E+OO 

18 .225 .2468 .2739 .9254 .2548 .1006 .6601 .1816 
E+OO E-01 E-01 E+Ol E-01 E-01 E+OO 

19 .275 .1492 .1685 .9860 .2169 .2986 .3839 .1023 
E+OO E-01 E-01 E+Ol E-02 E-01 E+OO 

20 .350 .6069 .6307 .5085 .1029 - . 8750 .1197 .3994 
E-01 E-02 E-01 E+Ol E-03 E-01 E-01 

21 .450 .1471 .1293 .5340 .9753 -.1151 .7959 .9478 
E-01 E-02 E-01 E+OO E-02 E-03 E-02 

22 .550 .2570 .1968 .5311 .6559 -.4155 -.4106 .1684 
E-02 E-03 E-01 E+OO E-03 E-03 E-02 

23 .700 .7326 .6808 -: 1218 .1068 -.1994 -.3508 .5131 
E-04 E-05 E-01 E+OO E-04 E-04 E-04 

24 .900 .5113 .1148 .6028 .2126 -.2986 -.6346 .3984 
E-08 E-08 E-03 E-02 E-08 E-08 E-08 
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Table 9.10 
Charged current total quark distribution 

BIN x VAL+SEA ERR FIX FLOAT SCALE RESOL QMC FXSFLD 

1 .015 .8924 .2264 .3235 .3292 -.3160 -.4879 .1770 .1670 
E+OO E+OO E+OO E+Ol E-01 E+OO E+Ol E+Ol 

2 .045 .1025 .1424 .2052 .2773 .4197 -.2632 .1684 .9768 
E+Ol E+OO E+OO E+Ol E-01 E+OO E+Ol E+OO 

3 .080 .1120 .6409 .1266 .1993 . 9301 - .1578 .1532 .5293 
E+Ol E-01 E+OO E+Ol E-01 E-01 E+Ol E+OO 

4 .125 .1188 .3351 .9528 .1759 .1247 .2212 .1341 .3230 
E+Ol E-01 E-01 E+Ol E+OO E+OO E+Ol E+OO 

5 .175 .1177 .6008 .9623 .1497 .1152 .2965 .1156 .2846 
E+Ol E-01 E-01 E+Ol E+OO E+OO E+Ol E+OO 

6 .225 .1107 .6656 .9667 .1344 .8770 .2779 .9958 .2795 
E+Ol E-01 E-01 E+Ol E-01 E+OO E+OO E+OO 

7 .275 .1015 .5972 .9802 .1186 .4623 .2060 .8551 .2862 
E+Ol E-01 E-01 E+Ol E-01 E+OO E+OO E+OO 

8 .350 .8306 .3559 .4876 .6614 -.9351 .7235 .6692 .1586 
E+OO E-01 E-01 E+OO E-02 E-01 E+OO E+OO 

9 .450 .5741 .1570 .4771 .5918 -.6364 -.9008 .4560 .1991 
E+OO E-01 E-01 E+OO E-01 E-01 E+OO E+OO 

10 .550 .3416 .2583 .4723 .4362 -.8250 -.1728 .2805 .2332 
E+OO E-01 E-01 E+OO E-01 E+OO E+OO E+OO 

-
11 .700 .1070 .2020 .2190 .1407 -.4898 -.1220 .9787 .1063 

E+OO E-01 E-01 E+OO E-01 E+OO E-01 E+OO 

12 .900 .4082 .1779 .1156 .3987 -.3870 -.1011 .4524 .3573 
E-02 E-02 E-01 E-01 E-02 E-01 E-02 E-01 
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Figure 9.la 
Eigenvectors for neutral currents 

Eigenvector components of unfolded neutral current quark 
distributions. Sol id I ine is valence quark distribution, 
dotted I ine is sea quark distribution, and dashed line is 
sum of valence and sea. Chi square contribution of 
eigenvector is in corner of each box. 
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Figure 9.3a 
Eigenvectors for charged currents 

Eigenvector components of unfolded neutral current quark 
distributions. Sol id I ine is valence quark distribution, 
dotted line is sea quark distribution, and dashed I ine 1s 
sum of valence and sea. Chi square contribution of 
eigenvector 1s in corner of each box. 
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10. Conclusions 

10.1. Charged current discrepency 

The primary reason for analyzing the charged currents 

using the shower angle to reconstruct x was to provide a 

check on the systematic errors for the neutral current 

analysis. Charged currents have been measured by other 

experiments using the muon to reconstruct x with much better 

statistical and systematic accuracy than this analysis. The 

Monte Carlo input parameterization 1s a fit to precisely 

such data. The charged current analysis using shower angles 

should reproduce these results. 

While the neutral current analysis agrees remarkably 

wel I with the Monte Carlo, the charged current analysis does 

not agree as wel I. In the sum of 4 eigenvectors, the sea 

appears much too smal I at low x, as does the valence. The 

sum of valence and sea peaks at x~.2, and is almost a factor 

of 2 less than the expectation at x=O. 

The first comment to make is that the statistical 

significance of the charged current discrepency is not as 

large as it may appear. The statistical errors are highly 

correlated between adjacent bins, so the chi square is not a 

simple sum of independent contributions from each bin. 
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Another comment is that the eigenvector truncation rule 

tends to select statistical fluctuations. Eigenvector 

coefficients that fluctuate upward cause us to extend the 

sequence 

distorts 

to 

the 

include them, even 

unfolded solution. 

though the fluctuation 

A large part of the 

discrepency is due to eigenvector 4 in the charged currents, 

the last one retained. The coefficient of eigenvector 4 is 

nearly zero in the input parameterization, but is far larger 

(and of the opposite sign) in the data. However, it is only 

2.2 standard deviations from zero. If we use only 3 

eigenvectors, the neutral current result 1s nearly 

identical, bu~ the charged current result agrees much better 

with expectation. 

Another comment is that the coefficient of eigenvector 

4, and the discrepency at low x, seems to be rather 

sensitive to the assumed shower angle resolution. The 

discrepency at low x is even worse with 10 percent degraded 

resolution. Presumably, using 10 percent better resolution 

in the Monte Carlo would remove most of the discrepency. 

This is consistent with the uncertainty 1n the angle 

resolution. It appears, however, that x scale systematics 

do not cause large effects at low x where the problem seems 

to be, and would have difficulty explaining the discrepency. 
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10.2. NC-CC difference 

We would expect the neutral and charged currents to 

agree with each other, even if neither matched expectation 

due to systematic errors, because most systematics should be 

common to both. However, the statistical error on the NC-CC 

difference is larger than either statistical error alone. 

We should test the hypothesis that the difference between 

the neutral current quark distribution xqNC and the charged 

current quark distribution xqCC 1s consistent with zero. 

We define the difference 6 as 

NC CC 6. = q (x.) - q (x.) 
I I I 

Eq.10.1 

The covariance matrix VNC for the neutral currents is 

derived ~rom the weight matrix WNC' and correspondingly for 

charged currents. 

-1 = Wee Eq .10. 2, 3 

Just as there is are covariance matrices for the separately 

unfolded neutral and charged currents, there 1s also a 

covariance matrix V~ for the difference, and a corresponding 

weight matrix for the difference, w6 . 

v~ = VNC + Yee 

w~ = v~ 1 

Eq.10.4 

Eq.10.5 
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We can write the chi square for the hypothesis that the 

distributions are identical as 

x2 = r: 
IJ 

fJ. fJ. • w. . fJ. • 
I I J J 

Eq .10. 6 

We can evaluate this chi square for any number of 

eigenvectors. 

There are 12 bins each of valence and sea, so a chi 

square of order 24 indicates agreement within statistics. 

If we keep al I 24 eigenvectors, the chi square is 48.2. 

Keeping 12 eigenvectors gives a chi square of 28.2, and 

keeping 4 eigenvectors gives a chi square of 12.9. Thus, 

the NC-CC difference when 4 eigenvectors are retained is 

actually consistent with zero difference. 

The weight matrix also has eigenvectors and 

eigenvalues. We can expand the NC-CC difference fJ. in terms 

of the eigenvectors of WfJ., just as we expanded the neutral 

and charged current unfolded solutions in the eigenvectors 

of their W matrices. Each eigenvector component has a 

separate chi square contr i but i o_n .. This expansion shows us 

which parts of the x range have significant NC-CC 

differences. 

Figure 10.la-c show the running sum of the expansion of 

the NC-CC difference in the eigenvectors fJ. of W . The so Ii d 

curve is the valence, the dotted curve is the sea, and the 

dashed curve is the sum. The chi square contribution of the 
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added eigenvector is in the upper right corner of each box. 

The first two eigenvectors 1n the expansion have chi 

square contributions of 2.6 and 5.0, which are statistically 

significant. However, their coefficients are close to zero, 

such that they represent differences of at most order 0.2 in 

the quark distributions. Later eigenvectors have larger 

contributions to the difference, but I ittle statistical 

significance. The eigenvector analysis of the NC-CC 

difference also suggests that the apparent difference for 

the sum of 4 eigenvectors is not significant. 

10.3. NC-CC systematics 

It is also possible that 

resolution difference between 

there 1s an actual angle 

the charged and neutral 

currents. Part of the angle resolution 1s due to vertex 

resolution. See Appendix K. Because charged current muon 

hits influence the vertex resolution, and thus the angle 

resolution, the muon hits are removed, and the vertex found 

again without them, before charged current shower angles are 

determined. The angle re~ol~tfon using the muon-removed 

vertex is about halfway between the resolution using the 

muon-present vertex and the resolution when using the 

extrapolated muon track to determine the vertex. 

However, the muon hit removal algorithm does not remove 

any hits in the first 5 chambers of the shower, on the 
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assumption that the track density 1s so high that al I eel Is 

would have been I it regardless of the muon. This assumption 

has never been tested. Hits near the vertex have a very 

large weight in the vertex program, and it may wel I be that 

the part of the muon that has the largest influence on the 

vertex resolution is precisely the part that is not removed. 

If the muon is being underremoved, the sign and magnitude of 

the effect seems adequate to explain the difference 1n 

charged and neutral current shower angle resolution that 

would be required to make the charged and neutral current 

results both agree with expectation. 

There are also possible x scale differences between 

charged and neutral currents. There 1s a known bias in the 

vertex toward the direction which reduces the shower angle, 

which is known to be larger when the muon hits are removed 

than when they are not. See Appendix I. If the muon 1s 

underremoved, the charged and neutral current angle scales 

would be different. The angle scale difference between no 

removal and the removal algorithm as used was of order 3 

percent. An ang I e sea I e - d rf f erence causes an x sea I e 

difference roughly twice as large. 

It is also possible that the muon residue in charged 

currents makes the effective shower energy scale or angle 

scale different than for neutral currents. The delta ray 

residue for charged currents affects both the shower energy 
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and angle, and is incorporated into the Monte Carlo. Adding 

muon and delta ray hit patterns from real muons to real 

showers via software, then removing them, and measuring the 

energy difference I imit the residue to a smal I fraction of 

the delta ray contribution of about 500 MeV. A 100 MeV 

excess residue would be a 1 percent energy scale effect at 

10 GeV, and less at higher energy. 

However, x scale differences seem to show up mostly at 

large x, and have I ittle influence 1n the smal I x region 

where the charged current disagreement is largest. 

10.4. Comparison with other experiments 

The CHARM collaboration has reported unfolded x 

distributions for neutral currents. Their unfolding method 

was discussed in Chapter 8 on parameter fits, and also in 

Appendix M. They do not unfold directly to the quark 

distributions, but rather to the structure functions F+ for 

neutrinos and F for antineutrinos. See Appendix B. These 

are essentially equivalent to integrating d2u/dxdy over the 

y distribution and dividing ~u~ the GfEv and y-distribution-

integral factors. In the minimal quark-parton model, the 

relation between the valence and sea distributions and F+ 

and F for an isoscalar target is 

F 
+ 

4 
= 2 V(x) + 3 S(x) Eq.10.7 
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F 2 4 = 3 V(x) + 3 S(x) Eq.10.8 

It is conventional to leave the neutral current 

coup I ing factors in the definitions for neutral current F 
+ 

and F_, so they are different from the charged current case. 

For an isoscalar target, taking el and eR to mean the sum of 

left-handed and right-handed coup I ings for both up-type and 

down-type quarks, the relation between valence and sea and 

neutral current F+ and F 1s 

Eq .10.9 

Eq.10.10 

The CHARM collaboration has reported on the neutral 

current structure functions from the same data set twice, 

once 1n 1982 in a conference proceeding [39], and once in 

1983 [40]. In [40], a technique they cal I regularization 

[41] was used to minimize bin to bin fluctuations, which in 

some ways is similar to our eigenvector truncation method. 

The bin by bin results disagree in some cases by nearly a 

ful I standard deviation, with most though not al I errors 

being sma I I er in [ 40] than in [39] . 

It is possible by simple sums and differences to 

extract the valence and sea from F+ and F However, the 

unfolded bins are highly correlated, so the treatment of 
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errors for the sums and differences requires information 

about CHARM>s correlations that we do not have. Therefore 

rather than calculating the valence and sea from CHARM, we 

calculate F and F from the above formulae and our neutral 
+ -

and charged currents. 

Figure 10.2 is F+ and F calculated from our unfolded 

neutral and charged current valence and sea, keeping the 

first 4 eigenvectors. Figure 10.3 1s the 1982 CHARM 

results, and Figure 10.4 is the 1983 CHARM results, plotted 

on the same scales. 

There have also been measurements of the neutral 

current structure functions in bubble chambers. The first 

was a 1980 pub I ication of 23 neutral current events in the 

Brookhaven low energy narrow band beam in the form of an 

unnormalized dN/dx distribution [42]. The second was a 1984 

pub I ication of 151 events from the Fermi lab narrow band beam 

1n a heavy neon-hydrogen mix, with no external muon 

identification [43]. While most photons and some neutral 

hadrons convert or interact inside the chamber, the energy 

and angle resolutions ar~ tjuite comparable to our own 

resolutions. 

The unfolding was done by event weighting. See 

Appendix M. Each event was distributed from its bin of 

reconstructed x into al I bins of true x according to the 

calculated probabi I ity that it came from each true x bin. 
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These probabi I ities were evaluated by comparing the x values 

for charged current events reconstructed using the muon 

energy and angle, and independently the neutrino energy from 

the vertex radius and the hadron angle. However, these 

probabi I ities depend not only on the resolution, which 

should be the same for neutral currents and charged currents 

analyzed I ike neutral currents, but also on the true x 

distributions. Using the probabi I ities measured from the 

charged currents to analyze the neutral currents is 

equivalent to assuming that the true neutral current x 

distribution is identical 1n shape to the charged current 

distribution. 

Figure 10.5 1s the unfolded F+ for neutral and charged 

current~ from [43]. Only neutrino data was taken, so only 

F is presented, and not F 
+ 
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A. Kinematics 

A.1. Momentum fraction and Bjorken x 

There is a simple relation between the quark momentum 

fraction ~ and the observable kinematics of an event. For 

lepton 4-vectors PL . and PL t' and quark 4-vectors P . 
, 1 n , ou q, 1 n 

and Pq t' we write conservation of 4 momentum as ,ou 

PL . + p . 
1 1n q,1n 

- p + p 
- L,out q,out Eq.A.1 

Using the square of the 4-momentum transfer Q2 , 

Q2= _ (P . _ p ) 2 
L,1n L,out Eq.A.2 

we can rearrange the conservation equation and find 

PL . 
1 I n 

- p = p 
L,out q,out 

- p . 
q 1 In 

Eq.A.3 

Q2= - [ p2 + p2 . - 2 ( p ) • ( p ) ] 
q,out q, 1n q,out q, in 

Eq.A.4 

The squares of the quark 4-vectors are simply the 

masses squared, which we presume are neg I ible. The dot 

product is best evaluated 1n the laboratory system. If the 

incident quark is I ight compared to the neutrino quark 

center of mass energy, and it carries momentum fraction ~, 

its four vector in that frame is (7€M,p7~M). In the lab its 

four vector is (€M,O). The final state quark four vector is 
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(v,P), where vis the energy transferred from the lepton to 

the hadron system, and P is the hadron system 3 vector 

momentum. So the dot product is just Mv~. 

Eq.A.5 

Thus, by measuring both Q2 and v, we can find the 

momentum fraction ~· This is 1s the sealing variable 

Bj orken x 

xBjorken = Eq.A.6 

A.2. Scattering angle and y variable 

There is another important dimensionless variable, 

y ~ v / E = (EL . - EL . ) I EL . ,1n 1 1n ,1n Eq.A.7 

They variable is the ratio of the energy transfer v to the 

beam energy E. It is related to the scattering angle of the 

lepton in the lepton-quark center of mass system, e*. 

In the derivation below, we work with only the energy 

and. I ong i tud i na I momentum 4--vector components, and neg I ect 

masses. 

Beam 1n lab = (E, E) Eq.A.8 

Beam in 
"I ( 1-/3) E (1, 1) Eq.A.9 center of = mass 

Scattered 
"I (1-/3) E * Eq.A.10 lepton CM = (1,cos9 ) 1n 

Scattered 
"I (1-/3) * cos~ +/3) Eq. A-.11 lepton lab = E "I (l+f3cose , In 
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Now we apply a kinematic identity and solve for the 

laboratory energy loss 

Energy of scattered 
lepton in lab = 

... 
E(l+pcos8 )/(l+p) 

Energy loss 
in lab v = E[(l+p)-(l+pcos8"')]/(l+P) 

v = EP(l-cos9"')/(l+P) 

Eq.A.12 

Eq.A .13 

Eq.A .14 

Eq.A.15 

From this, we can find the relation between the sealing 

variable y and the lepton quark center of mass scattering 

angle 

y = v/E = PC1-cos9"')/(l+p) ~ (1-cos9"')/2 Eq.A.16 

Thus, y=O is forward scattering, y=l is backward scattering, 

and they distribution maps out the distribution in cose"'. 

Isotropic scattering produces a flat cose"' distribution, and 

therefore a flat y distribution. 

A.3. Hadron angle and x variable 

The formula for the ~c~ling variable x 1s somewhat 

different when the hadron side variables are used 

exclusively, rather than the lepton side. We derive here 

the exact formula, and the approximate version used for 

s imp I i city. The difference between the exact and 

approximate formula is much smaller than the resolution, and 

can be considered as part of the resolution, to be dealt 

with in the same way at the same time. 
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In the derivation below, boldface type denotes 3-

vectors. Normal type means either 4-vectors, or components 

of 3-vectors. Initial and final lepton 4-momenta are P. and 
I 

Pf. Initial and final lepton 3-momenta are Pi and Pf. The 

final hadron 4-momentum is Ph. The final hadron transverse 

and longitudinal 3-momenta are Pth and Pzh' The incoming 

lepton energy is written as E, the final lepton energy is 

E', and we define v=E-E'. This usage of v is conventional, 

despite the risk of confusing v with the neutrino energy. 

There is a distinction between the 4-vector hadron system 

energy Eh=v+M, and the quantity measured by the calorimeter, 

which is the ~hower kinetic energy Eh=v. 

We can calculate the hadron system longitudinal 

momentu~ Pzh by starting with the initial neutrino 

longitudinal momentum P . , which is also the neutrino energy 
ZI 

E, and subtracting the final lepton momentum component in 

the z direction, Pzf' which we can find by the dot product 

of the initial and final lepton 3-momenta. 

p .-
ZI 

E Eq.A.17 

If we multiply by E and rearrange, we can change the 3-

vector result into a 4-vector result. 

Eq.A.18 

Eq.A.19 

Eq.A;20 
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Eq.A.21 

We recognize pi.pf as being related to the variable Q2 . 

p~ = p2 = 0 for massless neutrinos Eq.A.22 
I f 

Q2 = - ( p .• Pf)2 = -P~ - p2 + 2 p .• pf Eq.A.23 
I I f I 

Q2 = 2 p .• pf Eq.A.24 
I 

If we substitute v=E-E' and Q2 into the above result, and 

2 also use Q =2Mvx, we find 

2 
E Pzh= QI 2 + Ev Eq.A.25 

E pzh = 2Mvx I 2 + Ev = v ( E + xM ) Eq.A.26 

pzh = v ( 1 + xM/E ) Eq.A.27 

pzh = yE ( 1 + xM/E ) Eq.A.28 

The hadron system transverse momentum pt IS the same 

magnitude as the final lepton Pt, albeit 1n the opposite 

direction. To find it, we solve for the the lepton angle eL 
1n terms of sea Ii ng variables. 

Eq.A.29 

cos(el) = 1 - xMv / EE' Eq.A.30 
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We solve this for the square of the sine of the lepton angle 

sin2 (8L) = 1 -

sin2 (8L) = 2xMv I EE' 

2 
cos (BL) 

- [ xMv I EE, ] 2 

Eq.A.31 

Eq.A.32 

We can now write the lepton Pt 1 and therefore the hadron Pt. 

P2 = (E') 2 sin2 (8) = 2xMvE'/E - [xMv/E] 2 
t 

P2 = 2MExy(l-y) - [Mxy] 2 
t 

Eq.A.33 

Eq.A.34 

We can now solve for the square of the tangent of the hadron 

angle. 

. 2 
= pth = 

p2 
zh 

2MExy(l-y) - [Mxy] 2 

y2E2 ( 1 + xM/E ) 2 

2Mx(l-y)/(yE) - [xM/E] 2 

( 1 + xM/E ) 2 

Eq.A.35 

Eq.A.36 

We can obtain a useful form by multiplying this by yE=v=Eh 

= 

2Mx(l-y) - (xM) 2y/E 

( 1 + xM/E ) 2 

2Mx[(l-y) - Mxy/2E] 

( 1 + xM/E ) 2 

Eq.A.37 

Eq.A.38 

The terms involving M/E are of order 3 percent or less for 

neutrinos of 30 GeV or more 1 and smaller sti I I for the 
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typically low values of x. If we neglect them, we find the 

simple nearly-exact formula relating the shower energy and 

angle to the sealing variables. 

Eq.A.39 

This 1s trivially solved for the sealing variable x. 

x = Eq.A.40 
2M (1-y) 
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B. Structure Functions 

B.1. Introduction 

The concept of structure functions arises from the 

attempt to apply as many symmetries of nature and analogies 

to known processes as possible in order I imit the possible 

form of the deep inelastic cross sections. Structure 

functions are the inelastic analogs to the form factors of 

elastic scattering. Elastic form factors are 1n turn the 

relativistic quantum analogs of the classical Fourier 

transform form factors of x-ray diffraction and similar 

diffraction p~ocesses. 

The structure functions are functions of the two 

kinematic variables of inelastic scattering, most often 

taken to be 2 x=Q /(2Mv) The number of structure 

functions possible depends on the knowledge of beam and 

scattered lepton polarization, and target type and 

polarization. For unpolarized electromagnetic scattering 

there are two structure functions, while for the parity 

violating weak interactions ~h~re are three. 

Obviously there is a great deal of arbitrariness in 

which factors are absorbed into the definitions of the 

structure functions. The modern convention 1s such that 

analyzing elastic scattering from unit charge or unit weak 

coup I ing pointl ike targets would give structure functions 
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that were Dirac delta functions at x=l, within a factors of 

two or x. 

The structure function concept has I ittle predictive 

power by itself. We know that the cross section is a 

function of the beam energy and the two kinematic variables 

without inventing structure functions. What the structure 

functions do a I low us to predict IS the beam energy 

dependence of the cross section at fixed x and Q2. This may 

be used to norma Ii ze an experiment with poor I y known beam 

conditions to an absolutely norma I i zed experiment. For 

example, the low y events from the kaon band of a 

dichromatic neutrino beam can overlap 1n x and Q2 with the 

better-normalized pion band events. This al lows the kaon 

fraction to be determined, and thus normalizes the high y, 

higher Q2 kaon band events. Or, in a high energy wide-band 

neutrino beam with poor normalization but high flux, the 

part of the data that is 1n the same region of x and Q2 as a 

normalized narrow-band beam of lower energy can be used to 

normalize the high energy data. 

B.2. Cross section formulae 

In the formulae below, F
1

, F2 , and F3 should be taken 

as functions of x and Q2 . The factors of x and 2x are 

conventional. Without more theoretical input, there need be 

no relationship between structure functions for protons or 
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neutrons, or between electromagnetic, charged current, or 

neutral current structure functions. There 1s also no 

imp I ied relationship between the structure functions for 

neutrinos and antineutrinos. However, the form of the cross 

sections for charged currents and neutral currents are the 

same, even though the structure functions that appear in 

them need not be. 

Electromagnetic 

Eq.B.1 

Neutrino 

= 
2 

( 1... F [ - Mxy ] F 2 2 x 1 + l-y 2E 2 

2 
+ [ y - ~ ] xF3 J 

Eq.B.2 

Anti neutrino 

= 
2 

( ~ 2xF1 + [1-y 

2 
- [ y - ~ ] xF3 J 

Eq.B.3 

B.3. High energy formulae 

If we drop the terms involving M/E as being 

insignificant at high beam energies, and rearrange they 

factors, we can obtain the fol lowing cross section formulae. 
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Electromagnetic 

Neutrino 

G
2

ME 1 ( 2 = -'Ir- 2 (2xF1 + xF3) + [1-y] (2xF1 - xF3) 

+ 2 [1-y] (F2 - 2xF1) ) 

Anti neutrino 

~~~y = G!ME ~ ·[(2xF1 - xF3) + [1-y] 2 (2xF1 + xF3) 

+ 2 [1-y] (F2 - 2xF1) ) 

8.4. Cal Ian-Gross relation 

Eq.8.4 

Eq.8.5 

Eq.8.6 

There is a conjecture cal led the Callen-Gross relation 

[25], which is that in the I imit of high Q2 and fixed x, 

2 = 2xF1 (x,Q) Eq.8.7 

This is true in the massless zero transverse momentum quark-

parton model, but is violated by quark masses and by the 

transverse momentum generated by gluon radiation in QCD. 

Measurements show the Ca I I en-Gross re I at ion to be near I y 

exactly statisf ied. Violations of the Callen-Gross relation 

are often presented as measurements of the longLtudinal 
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structure function FL, or of a quantity cal led R. 

Historically, R was defined as the ratio of longitudinal and 

transverse photon cross sections. The definitions are 

(1+2Mx/~) F2 = 2xF1 + FL 

R = FL/ 2xF1 

Eq.B.8 

Eq.B.9 

If we assume the Cal I en-Gross relation, we can replace 

2xF1 or F2 1n al I the formulae. It is conventional to 

replace 2xF1 by F2 . This al lows us to drop al I the [1-y] 

terms. 

EI ectromagnet i_c 

8~a2ME 1 ( 2 J = - [1+(1-y) ] F2 Q4 2 
Eq.B.10 

Neutrino 

Eq.B.11 

Anti neutrino 

Eq .B.12 

B.5. F+ and F 

Some analyses, particularly of the neutral current x 

distributions, present their results 

neutrinos and F for antineutrinos. 

In terms of F for 
+ 

These are simply the 
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cross section 

normalization. 

integrated over y divided by the 

We note that J(l-y2)dy=l/3. If we integrate 

the cross sections at high energy and assume the Callen 

Gross relation, we find 

Neutrino F + 

du = G
2

ME l F = 
dx 7r 2 + 

G2ME 1 4 2 
-w- 2 ( 3 F 2 + 3 x F 3) Eq .B.13 

Antineutrino F 

du = G
2

ME l F = 
dx 7r 2 - Eq.B.14 

B.6. Quark-parton model 

In the minimal quark-parton model, the deep inelastic 

scattering cross section is the incoherent sum of elastic 

scattering from moving quarks. The sealing variable x is 

the fraction of the nucleon momentum carried by the struck 

quark. 

In the formulae below, the notation q(x) refers to the 

x distribution of the· quarKs, as distinct from xq(x), the 

distribution of the cross section. Antiquarks are indicated 

by q (x) . We inc I ude both va I ence and sea, and a I I f I avers. 

The sum over positive partons means include u, c, and t 

quarks and a, s, and 6 antiquarks. We neglect al I mass 

terms. M refers to the nucleon mass, E is the laboratory 
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lepton beam energy, Q2 1s the absolute value of the four-

momentum transfer, and Qem is the electromagnetic charge of 

a quark. 

Electromagnetic 

8wa
2

ME ( 2 2 ) 1 2 x E Q q(x) + Q q(x) 2 (l+[l-y] ) 
Q4 al 1 em em 

Neutrino charged current 

=--w 2x E ( q (x) + q (x) [1-y] 2 ) 
neg 

Antineutrino charged current 

=--w 2x E ( q (x) + q (x) [1-y] 2) 
pos 

Neutrino neutral current 

( 
2 2 - 2 2x E el q(x) + el q(x) [1-y] 

a I I 

Eq .B.15 

Eq .B.16 

Eq .B.17 

+ . e~ q(x) + e~ q(x) [l-yJ 2] Eq.B.18 

Antineutrino neutral current 

=--w 2x E (e~ q(x) + e~ q(x) [1-y] 2 
a I I 

+ eE q(x) + eE q(x) [1-y] 2 J Eq.B.19 
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B.7. Isoscalar relations 

The majority valence quark type 1s different between 

the proton and neutron quark distributions. It is usually 

assumed that the majority quark x distribution is the same 

for protons and neutrons. It is also usually assumed that 

the up and down sea quarks and antiquarks are the same for 

protons and neutrons. We may write these assumptions as 

lup q(x) proton = I down 
q(x) neutron Eq.B.20 

I down 
q(x) proton = lup q(x) neutron Eq.B.21 

- I up q (x)_ proton = - I down 
q(x) proton 

Eq.B.22 

= - I up 
q(x) neutron = - I down 

q(x) neutron 

There is experimental support for this from deep inelastic 

electron and muon scattering off hydrogen and deuterium 

targets, where the quark charges and target types al low the 

separation of up and down. 

These relations imply the fol lowing relations 

(-) (-) 
I: [ ( 2/3) 

2 
( q (x) I~ + q (x) I~ J 

a I I 

2( <-) Id <-) Id J J + (-1/3) q(x) p + q(x) n 
(-) 

= 5/9 I: q (x) 
a I I 

Eq.B.23 
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(-) (-) 
E [ q (x) p + q (x) NJ 

pos 

(-) (-) (-) 
= E [ q (x) p + q (x) NJ = E q (x) Eq.B.24 

neg a I I 

It is common for pr act i ca I reasons for neutrino 

experiments to be done with dense targets. In that case, 

only a weighted average of the quark distributions of 

protons and neutrons 1s measurable. Usually the number of 

protons and neutrons is almost equal, which is cal led an 

isoscalar target. 

B.8. Isoscalar quark cross sections 

For an isoscalar target, we can then write the cross 

sections for charged currents as 

Electromagnetic 

x E (5/18) [q (x) + q (x) J (1+ [1-yJ 2) 
a I I 

Eq.B.25 

Neutrino charged current 

=-- x 
'Ir 

E ( q(x) + q(x) [1-y] 2) 
a I I 

Eq.B.26 
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Antineutrino charged current 

=--
1r 

x r: ( q(x) + q(x) [1-y] 2) 
a I I 

Eq.B.27 

The isoscalar relations do not simplify the neutral current 

cross sections, since the sums were already over al I quarks. 

We just interpret q(x) and q(x) to be the average of protons 

and neutrons. 

B.9. Relation to quark model 

It is now simple to relate the electromagnetic F2 to 

the quark x distributions and charges. 

= x E (Q2 q(x) + Q2 q(x)) a 
1 1 em em 

Eq.B.28 

For neutrino charged current interactions, we find two 

relations (the F2 appearing here 1s not the same as for 

electromagnetic scattering). 

1 
(F2 + xF3) = 2x r: q(x) 2 Eq.B.29 

n_eg 

1 
(F2 - xF3) 2x I: q (x) 2 = Eq.B.30 

neg 

We can add and subtract these to find two equivalent 

relations. 

F2 = 2x r: [ q(x) + q(x) J 
neg 

Eq.B.31 
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xF3 = 2x E [ q (x) - q(x) ] Eq.B.32 
neg 

For anti neutrinos, we obtain four analogous relations. 

1 
2 (F2 - xF3) = 2x E q (x) Eq.B.33 

pos 

1 
(F2 + xF3) 2x E q (x) Eq.B.34 2 = 

pos 

F2 = 2x E [ q (x) + q (x) ] Eq.B.35 
pos 

xF3 = 2x E [ q (x) - q (x) ] Eq.B.36 
pos 

The only difference between F2 and xF3 for charged current 

neutrinos and anti neutrinos 1n the quark model is the sum 

over positive versus negative quarks. 

The neutrino neutral current structure functions and 

quark distributions 

comp I i cated a bit by 

Note that the F2 and 

the charged current 

are related 1n a si mi I ar way, 

the left and right handed coup I ings. 

xF3 here are different from those 1n 

case. 

2x 

2x 

E [EE q(x) + E~ q(x)] 
a I I 

2 2 E [ER q(x) +EL q(x)] 
a 11 

Eq.B.37 

Eq.B.38 
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F2 2x E [ 2 2 q (x) 2 2 q (x)] Eq.B.39 = (el +eR) + (el +eR) 
a 11 

xF3 
2x · E [ 2 2 q (x) 2 2 q (x)] Eq.B.40 = (el -eR) - (el-eR) 

a I I 

For anti neutrino neutral currents, the expressions are 

s i mi I ar. 

1 
(F2 - xF3) 2x E [ e2 q (x) 2 q (x)] Eq.B.41 2 = + el 

a I I R 

1 (F2 + xF3) 2x E [ 2 q (x) 2 q (x)] Eq.B.42 2 = el + eR 
a I I 

F2 2x E [ 2 2 q (x) 2 2 q (x)] Eq.B.43 = (el +eR) + (el +eR) 
al I 

r-. 
(eE-e~) (eE-e~) q (x)] xF3 = 2x E [ q (x) - Eq.B.44 

a I I 

We notice that for the neutral current, F2 and xF3 are the 

same for both neutrinos and anti neutrinos. 

We can write F+ and F in terms of quark and antiquark 

distributions for charged currents as 

F = 2x E ( 
4 - 2 - -J 2x E ( 2q + 2 - ) 3(q+q) + 3 (q--q) = - q + 3 neg neg 

= 2x E [ 2 (q-q) + 8 - ) 3 q Eq.B.45 
neg 

F = 2x E ( 4 - 2 - ) 2x E ( 2 + 2q ) 3 (q+q) - 3 (q-q) = -q 3 pos pos 

= 2x E ( 
pos 

2 --(q-q) 3 
8 - ) + 3 q Eq.B.46 
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The neutral current formulae are comp I icated again by 

the left and right handed coup I ings. 

F = 2x ( 4 2 2 - 2 2 2 - ) Eq.B.47 E 3 [eL+eR] (q+q) + 3 [eL-eR] (q-q) + a I I 

= 2x E ( [6e2 
a 11 3 L 

2 2] [2 2 + 3€R q + SEL 6 2] + seR q ) Eq.B.48 

( [ 2 2 2] - 8 2 2 - ) Eq.B.49 = 2x E 2el + seR (q-q) + 3 [eL+eR] q 
a 11 

F = 2x ( 4 2 2 - 2 2 2 - ) Eq.B.50 E 3 [eL+eR] (q+q) - 3 [eL-eR] (q-q) - a I I 

2x E ([~E 6 2] [6 2 2 2] - ) Eq.B.51 = + seR q + 3el + SER q 
a I I 

= 2x E ( [2e2 
a 11 3 L 

2] - 8 2 2 -+ 2eR (q-q) + 3 [eL+eR] q ) Eq.B.52 

B.10. Isoscalar structure functions 

We recal I that for neutrino charged currents, only 

negative quarks and antiquarks interact, and only positive 

quarks and antiquarks for antineutrino charged currents. We 

can define what are cal led isoscalar structure functions as 

the average of the proton and neutron structure functions. 

Given isospin symmetry, summing over proton and neutron is 

equivalent to summing over both up and down x distributions 

for either proton or neutron. The average 1s half of the 

sum, and combining the 1/2 with the 2x factor 1n the charged 
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current formulae, we find for both neutrino and antineutrino 

x I: [ q (x) + q (x) J 
a I I 

x I: [ q (x) - q (x) J 
a 11 

Eq.8.53 

Eq.8.54 

The neutral current structure functions already involve the 

sum over al I quarks, so there is no simplification. 

B.11. Strange sea 

The isospin symmetry of protons and neutrons 1s broken 

by the strange quark-antiquark sea. While there are equal 

numbers of strange quarks and antiquarks, their weak 

interactions are different. Neutrinos interact via the 

charged -current only with strange quarks, and anti neutrinos 

interact only with strange antiquarks. In the process of 

averaging over protons and neutrons, quark-antiquark 

symmetry maintains the form of F2 as a sum over al I quarks 

and antiquarks, but there 1s a modification to xF3 , as we 

have written it. 

However, there 1s a somewhat confusing convention in 

charged current neutrino analyses that F2 and xF3 be defined 

as the averages of the above defined F2 and xF3 for 

neutrinos and antineutrinos. The modifications to xF3 are 

of opposite sign for neutrinos and anti neutrinos, so they 

cance I in the average. The modifications to F2 are of the 
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same sign, so they add. Thus, 1n the raw results usually 

quoted for charged currents experiments experiments, the 

strange sea causes F2 to deviate from the sum of al I quarks 

and antiquarks, but xF3 remains the difference. 

However, the experiments usually apply a "strange sea 

correction" to their raw F2 so the final quoted result 

represents the sum of al I quarks and antiquarks, including 

the strange sea. This 1s distinct from the convention for 

electromagnetic structure 

corrected for the strange 

relation between F2 

processes. 

for 

functions, where F2 1s not 

sea. This modifies the simple 

neutrino and electromagnetic 
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C. Radiative Corrections 

C.1. Introduction 

There are deviations from the Born approximation cross 

sections for charged and neutral currents due to 

electromagnetic radiation from accelerated charges, and from 

diagrams with vertex corrections. These modify the relation 

between the cross section and the quark distributions. The 

corrections can be different for different processes. This 

Appendix discusses the physics behind these deviations, the 

formulae governing them, and how the formulae were applied 

for the analy~is. 

The radiative corrections can appear to be infinite 

under some circumstances. Many of the infinities are 

artifacts of breaking the calculations into pieces which are 

not gauge invariant. Some of the corrections vanish if 

integrated for the total cross section. 

C.2. Corrections for total cross sections 

The most important -~adiative correction for the 

determination of sin2e 1s the box diagram for charged w 

currents, as i I lustrated 1n Figure C.l. For the charged 

current process, the incoming neutrino emits a W boson and 

becomes a muon. The W boson is absorbed by a quark. Both 

the final state quark and the muon are charged, so it is 
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possible for a photon to be exchanged as wel I as the W 

boson. This raises the total neutrino-quark charged current 

cross section relative to the purely weak Born approximation 

calculation. There is no corresponding diagram for neutral 

currents, because the outgoing lepton is a neutral neutrino, 

which has no electromagnetic coup I ings. 

In principle, there are also diagrams of the same 

electromagnetic order where the photon is exchanged between 

the muon and the W, or between either quark leg or the W. 

These are smal I because they involve an extra W propagator, 

rather than an extra quark and lepton propagator. There are 

also second order weak diagrams, where the photon 1s 

replaced by a Z, and the neutral current process 1s 

constructed with aw+ and aw-. These also involve an extra 

boson propagator, and are thus unimportant. 

There are also radiative corrections to the neutrino

quark cross section due to radiation of real photons into 

the final state, as 1n Figure C.2. These corrections cannot 

be cleanly separated from the box diagram, or gauge 

invariance is violated. 

radiate, or even the 

initial or final state 

Th~ final state muon or quark can 

initial state quark, although not 

neutrinos. These corrections make 

the kinematics of the final state fermions differ from the 

kinematics of the boson exchange, and thus "rearrange" 

events in kinematic variables as 

cross sections. 

wel I as changing the total 
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The correction depends of the fine structure constant a 

and the quark and lepton charges, since it 1s of 

electromagnetic origin. It also depends logarithmically on 

masses and energy scales. In principle, it is necessary to 

know the quark masses, which may not even be wel I-defined 1n 

a confined theory I ike QCD, to do the ful I calculation. 

Fortunately, it is possible to divide the correction into a 

part independent of quark masses, and a mass-dependent part, 

and the mass-independent part dominates. 

Sir Ii n and Marciano [22] have calculated the 

corrections to the total charged current cross section for 

neutrinos and down quarks, which dominate the cross section. 

Their result is 

u(obs) = K u(bare) Eq.C.1 

K = 1 + :([1n(M:/sd)+2] - ~ [;1n(sd/m~) + ~(~2- 1~ )JJ 
Eq.C.2 

Eq.C.3 

If we take Ev=SO GeV, x=0.25, and M=l GeV, then sd=S 
2 . 2 - 2 

GeV . Inserting (Mw) =(100 GeV) 

MeV into the second, both logs 

expression, we find 

K 1 + i( [ 7. 60+2] 
1 

[~ 7.60 = - 9 

= 1 + .00232 [ 9.60 - 0.66 

= 1.0207 

1n the first log and m =50 s 

are 7.60. Evaluating the 

1 
5. 12 JJ + -6 

J 
Eq.0-.4 
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The correction is about 2 percent. We note that the second 

term, which depends logarithmically on the quark mass, is 

only about a 10 percent correction to the correction. The 

correction factor must be integrated over the x distribution 

of the down quark to find the exact correction to the total 

cross section. 

Sir I in and Marciano also point out that higher order 

weak corrections can be incorporated by replacing M by M w z 
in the above expressions. 

LI ewe I lyn-Smith and Wheater [23] have also calculated 

the radiative corrections. Their formula for neutrino down 

quark scatte~ing 1s different only by the addition of 

a/(4~), or replacing the 2 by 9/4 1n the first square 

bracket, which changes the result to 1.0213. For 

antineutrino up quark scattering, they find 

K = 1 + :([1n(M:/su) + ~] - ~ [;1n(su/m~) + ~c~2- 4~ )]) 

Eq.C.5 

This 1s not very different from the neutrino case. 

Evaluating with the same masses, we find 

K = 1 + i ( [ 7 . 60+ 1 . 5] 

= 1 + .00232 [ 9.10 

= 1.0160 

~ [; 7.60 

- 2. 19 ) 

1 
+ -6 (-. 88)]) 

Eq.C.6 

Presumably neutrino antiquark scattering has the same 
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corrections as antineutrino quark scattering, so these two 

formulae wi I I suffice. 

Llewellyn-Smith and Wheater have also calculated the 

corrections to the neutral current cross section. These are 

clearly due purely to real photon radiation. For neutrino 

scattering of a quark of charge Q and left and right handed 

couplings L and R, the correction to the total cross section 

IS 

1 2 [2 2 1 2 43 ] ) + - R -ln(s /m ) + -(~ - ~) 3 3 q q 6 4 Eq.C.7 

This is similar to the smaller, mass dependent terms in the 

charged current case. Evaluating with the same 50 MeV quark 

mass assumption for 50 GeV neutrinos at x=0.25, and taking 

Q2=5/18, L2=1/3 and R2=.01 for approximate averages, 

K = 1 - : Q2 
( L

2
[ 5.92] + R

2
[ 1.64] ) 

= 1 - (. 00232) (0. 28) ( 1. 97 + . 02 J 
= 1.0013 Eq.C.8 

The correction is very smal I compared to the charged current 

corrections. For anti neutrinos, Land R should be reversed. 
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C.3. Corrections for structure functions 

The radiative corrections to charged lepton deep 

inelastic scattering are typically much larger than for 

neutrino scattering. This 1s because some of the important 

corrections are due to photon emission from the incoming 

lepton fol lowed by lepton scattering from the target. The 

t t · t d t I b so the Q2 '1n th arge 1s encoun ere a ower earn energy, e 

virtual photon propagator is smaller, which makes the cross 

section larger. This initial state radiative correction 1s 

absent in neutrino scattering, since the incoming lepton 1s 

neutral 1 and the propagator 2 1s almost independent of Q . 

For cha~ged current neutrino scattering, even when 

there is no significant momentum transfer from the neutrino 

to the t_a rget 1 the re is the sudden appea ranee of a moving 

charge, and a sudden change 1n the target charge. Both of 

these processes are divergent, and only the coherent sum of 

the radiation amp I itudes 1s gauge invariant and finite. 

When there is momentum transfer, the struck quark in the 

target nucleon 1s accelerated, and therefore radiates, as in 

Figure C.2. The amount of this radiation depends on the 

quark mass, which is somewhat I 1-def ined. 

However, De Rujula et al. [24] argue that to a large 

extent, the radiation from the quarks can be absorbed into 

the structure functions, which are already the average over 

many-particle final states. One of those particles can just 
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as wel I be a photon. This means that if one ignores the 

quark radiation, the measured structure functions are 

somewhat different from the quark distributions, but to the 

extent that the quark radiation is process independent, the 

distinction is unimportant. The size of the quark radiative 

correction depends of Q2 , but the evolution is predictable, 

independent of the quark mass, and smal I since it is ruled 

by aQED' rather than as. 

The charged current muon also radiates real photons, as 

1n Figure C.2. The muon radiation has been calculated by De 

Rujula et al. in a leading log approximation that is very 

similar to the peaking approximation sometimes used for 

charged lepton scattering corrections. In this 

approximation, and somewhat mixed variables for later 

clarity, the observed cross section to observe a final state 

muon of some energy and angle is related to the bare cross 

section by 

da(obs) = 
dEµdO 

1 
I = f dz 

0 

2 l+z 
1-z 

a 
+ -2?r 

2 
In s (1-y+xy) I 

µ2 
Eq.C.9 

.! 8 ( z _ z . ) da ( b a re) I 
z min dE' dO E' 

µ µ 
_ da(bare) ] 

dEµ dO 

E' = E I z µ µ 

Eq.C.10 

Eq. C. 11 

zmin = [Eµ/Ez) [l+EZl(l-cos8µ)/M] Eq.C.12 
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We can think of this as an effective radiator strength 

involving a and a kinematic logarithm, and an integral over 

the bare cross section. 

radiated photon energy by 

The variable z is related to a 

E =E'-E =E (1-z). 7 µ µ µ The integral 

sums the amount of cross section lost by muons radiating out 

of the given energy interval Eµ, and the amount of cross 

section gained by muons radiating down from the same angle 

but higher energy Eµ, weighted by the photon spectrum. The 

theta function involving z . min enforces the kinematic I imit 

on the maximum photon energy that sti I I al lows a muon to be 

observed at the given angle. Using this interpretation, the 

effects of muon radiation can be included in a Monte Carlo 

quite easily, by generating photons with the appropriate 

spectru~ and normalization, removing their energy from the 

muon, and adding it to the hadrons. 

From the above formula and the observed cross section, 

the bare cross section in the absence of muon radiation can 

be extracted. The variables can be changed from muon energy 

and angle to the sealing variables x and y for this purpose, 

but the physical interpreta~1o~ ln x and y is less clear 

than in muon energy and angle. The size of the corrections 

is less than 10 percent for typical neutrino energies. The 

observed cross section at high y is reduced, and the cross 

section at low y is increased. The observed x distribution 
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1s also altered, being increased at low x and reduced at 

high x. 

An important property of leading logarithm corrections 

1s that they do not change the total cross section 

integrated over the muon energy or y. They simply transfer 

energy from the muon to the shower. They do affect the 

neutral current to charged current ratio if parts of they 

distribution are cut before the ratio is taken, however. 

C.4. Application 

Al I the radiative corrections above are rather 

complicated f~nctions of the sealing variables x and y, and 

the neutrino energy. We have the choice of either applying 

them to the raw data to find the radiatively corrected data, 

or to incorporate them into the Monte Carlo calculation of 

the expected data as a function of the physics. 

We choose here to put the corrections into the Monte 

Carlo. The expressions are calculations of the observable 

cross sections as functions of true kinematic variables and 

quark distributions. In -

many ways, they are just another 

form of smearing, which we must deal with by including it in 

the Monte Carlo as wel I. The corrections also must 

generally be integrated over quark distributions and 

experimental cuts, and it is most natural to do this in the 

Monte Carlo. Even if we were to correct the data in a 
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separate step, we would be calculating the corrections by 

the Monte Carlo. 

The leading log muon radiation corrections were 

included by generating for each charged current muon a 

photon with energy k times Eµ from a spectrum 

dN 1+(1-k) 2 
dk = k 

a In s(l-y-xy)
2 

271" µ2 
Eq.C.13 

The mean energy radiated is 

Eq.C.14 

This is of ord~r 1 percent of the muon energy. The photon 

is taken to be in the muon direction. Its energy is added 

to the snower energy, and the photon transverse momentum is 

added to the shower Pt. The muon energy 1s reduced by the 

photon energy. The singularity at k=O is handled by 

calculating the k0 such that the integrated number of 

photons above k0 1s one. There is essentially zero energy 

carried in al I softer photons, although there should be an 

infinite number of them. It should be noted that this 

technique does not change the computed total cross section. 

it simply rearranges events in x and y. 

The Llewellyn-Smith and Wheater radiative corrections 

to the total neutrino quark scattering were included for 

both charged currents and neutral currents, although only 
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the box diagram charged current correction is significant. 

The corrections were applied for the kinematic variables of 

each neutrino quark scattering, so the integrals over the 

quark distributions were done at the same time as the rest 

of the cross section integrations needed for the ratio 

analysis and unfolding. 

Llewellyn-Smith and Wheater give complete radiative 

corrections to the y distributions of charged and neutral 

currents, which include the final state muon radiation. 

However, they note that the leading log muon leg radiation 

prescription of De Rujula et al. reproduces they dependence 

of the complete calculation, with the exception of the 

roughly 2 percent shift 1n the level of the total cross 

section. Since the ful I formula 1s quite comp! icated and 

involves logarithms, di logarithm or Spence functions, and 

has cancellations between large terms with different signs, 

we have taken a simpler, computationally quicker hybrid 

approach. We have multiplied the Born approximation y 

distributions by the radiative corrections to the total 

neutrino quark cross secti~ns~ then treated the internal 

bremstrahlung by exp I icit photon generation, which preserves 

the total cross section. 



Figure C.1 
Box diagram 
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309 

Figure C.2 
Real photon diagram 
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D. Neutrino Beam 

D.l. Fermi lab narrow band beam 

This experiment was performed 

band or di chromatic beam (44]. 

1n the Fermi lab narrow 

The shape of the neutrino 

spectrum and the energy-radius correlation are important for 

the analysis, but the absolute flux normalization is not 

used. The magnetic elements of the train are i I lustrated in 

Figure D.1. The overal I beam and detector layout is shown 

1n Figure D.2. 

The 400 GeV protons from the Fermi lab Main Ring struck 

a beryl I ium oxide target. Secondary particles were accepted 

with a momentum spread of about 10 percent, with the 

remainin_g particles dumped. The momentum selection was done 

with a combination of dipoles and offset quadrupoles with 

inserts to dump the off-momentum particles. This set of 

magnets and col I imators 1s cal led the train, since it 1s 

bui It on smal I carts that run on rai Is. There were also ion 

chambers and an RF cavity to measure the total secondary 

current in the beam, a 

particle fractions, and 

Flux monitoring in this 

Ch-ere-nkov counter to measure the 

other monitors for steering, etc. 

beam 1s discussed in [6], and the 

Cherenkov counter in [ 45] . After momentum selection, the 

meter long evacuated decay pipe. secondaries entered a 350 

After the decay pipe, there was 1000 meters of steel and 
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earth shielding to absorb hadrons and range out muons. The 

same neutrino beam ran through the CCFRR counter experiment 

and the 15-foot bubble chamber before entering our detector 

1n lab C. 

The secondary momentum settings for this experiment 

were nominally 165 GeV negatives for anti neutrinos, and 165, 

200 and 250 GeV positives for neutrinos. Figure 0.3 shows 

the sum of reconstructed charged current hadron shower and 

muon energies for the 4 different data sets. The lower 

energy peak is the pion band, and the higher peak is the 

kaon band. The kaon to pion ratio 1s smallest for the 

negative secon_da r i es, and increases with energy for the 

positive secondaries. The peak widths are partly due to the 

intrinsic energy range of the beam, particularly for the 

pion band, and partly due to smearing in charged current 

reconstruction. The sol id Ii ne histograms are Monte Car lo 

events reconstructed to simulate the smearing. These 

figures are for the entire fiducial volume of the detector, 

and therefore include more of the kaon band than is included 

by the 1 meter radius cu€ used for the neutral current 

physics analysis. 

D.2. Basic principles 

High energy neutrino beams are produced by al lowing 

high energy protons to strike a target and produce mesons 
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which can be manipulated and selected, then al lowed to decay 

into neutrinos and charged leptons. The principal mesons in 

such a beam are p1ons which decay into µvµ, with neg I igible 

branching ratio to ev e 
About 15 percent of the mesons are 

charged kaons which have 

µvµ, 3.2 percent to 

a 63.5 percent 

0 w µvµ, and 4.8 

branching ratio to 

0 percent to w ev . e 

Positive mesons produce positive leptons and neutrinos, and 

negative mesons produce negativ~ leptons and antineutrinos. 

The K~ decays into 27 percent of the time, and wev e 

38.8 percent of the time. 

The decay length for a meson 1s p7cr, or for P~l, 

crE/M. The er value for charged pions is 780.4 centimeters, 

and er 1s 370.9 centimeters for charged kaons. For a 

secondary energy of 200 GeV, the pion decay length 1s 11 

kilometers and the kaon decay length is 1.5 kilometers. By 

comparison, the muon decay length at 200 GeV 1s 1230 

kilometers, which justifies neglecting the neutrinos from 

muon decay. 

For a neutrino emitted with • momentum p and angle 8 in 

the rest frame of a sec6hdiry particle of mass M with 

laboratory energy E0 described by 7=E0/M, the laboratory 

neutrino energy Ev and transverse momentum Pt are 

• • • • Ev= 1P (l+pcose ) = (E0/M) p (l+pcose ) Eq.D.1 

P • . e* t = p sin Eq.D.2 
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The maximum neutrino then * For * energy IS 2E0 p /M. p1ons, p 

is 30 MeV, and for 2 body kaon decay it IS 236 MeV. For 3 

body kaon decays, P* has a range from zero to 215 MeV (228 

MeV for Ke3) due to the The sma I I * extra pion. p /M value 

for pion decay means that the maximum neutrino energy is 

only 43 percent of the secondary energy, while for 2-body 

kaon decay it 1s 96 percent. The minimum laboratory 

neutrino energy is apparently zero. However, if we include 

the masses neglected above, the minimum energy is not zero, 

and the minimum laboratory momentum is actually negative. A 

massless neutrino emitted backwards 1n the secondary rest 

frame must st i· I I be mov 1 ng backwards in the I ab, a I though 

with very low energy. 

Si~e the meson decays a re isotropic, the * cos8 

distribution is flat. This imp I ies a flat distribution in 

laboratory neutrino energy if 

secondary energy E0 is fixed. 

* p 1s a constant and the 

The neutrino spectrum from a 

mix of monoenergetic p1ons and kaons, has a flat component 

out to 96 percent of the secondary energy from kaons, and a 

flat component out to 43 percent from the pions. If we 

accept only a finite angle in the laboratory, there is a low 

energy cutoff for both components. For smal I enough angle 

acceptance, the pion and kaon components do not overlap. 

If we use the laboratory neutrino transverse momentum 

d t I for S ·1n8* an energy o so ve and * cos8 , and assume the 
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laboratory neutrino angle 8v is smal I, we find 

. 9* Sin 

Combining these into the identity, we find 

2 * . 2 * 1 =COS 8 +Sin 8 

* Cancel I ing the 1 and dividing out Ev/p , we find 

Eq.0.3 

Eq.0.4 

Eq.0.5 

Eq.0.6 

Eq.0.7 

From this, we obtain the energy-radius correlation 

* * 
Ev 

2Mp /E0 2E0p / M 
Eq.0.8 = 

8~ + M
2

/ E~ 
= 

+ 8~ E~ M2 1 I 

When the laboratory angl~ ev IS M/Eo, the neutrino 

energy is half of the maximum. Half of the flux is at 

larger angles. This angle is 0.7 mi I I iradians for a 200 GeV 

pi on, and 2. 5 mi I Ii radians for a 200 GeV kaon. Our detector 

covers about 2 mi I I iradians, so we accept most of the pion 

neutrinos, but less than half of the kaon neutrinos. With 

the 1 meter radius cut for neutral current physics, even 

more kaons are lost. 
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D.3. Beam Monte Carlo 

A series of Monte Carlo programs were used to generate 

files of neutrinos for use 1n the neutrino physics Monte 

Carlo, including the calculations for Figure D.3. The first 

step was the secondary particle Monte Carlo, which used a 

model of particle production at the target and the ray 

tracing program TIJRTLE to include the effects of the magnets 

and apertures of the narrow band train. It created files of 

secondary particle rays at the train exit. The decay Monte 

Carlo program contained the information about the decay pipe 

and detector geometry and took the secondary files as ·input. 

It calculated .the probabi I ity that a secondary would decay 

before striking the decay pipe wal Is or end dump, then 

selected.. a decay position with the appropriate distribution. 

The branching ratios for kaons to 2 and 3 body decays, and 

the p* distribution for 3 body decays, were included. The 

decay neutrino direction 

generated isotropical ly 1 and the 

the secondary frame was 

neutrino was boosted back 

to the laboratory. The position of the neutrino in the 

detector was computed, and stored along with the neutrino 

parent, decay type, energy and decay probabi I ity weight. 

These files were used to compute the mean neutrino 

energy weighted by the cross section (i .e. 1 by energy) 

versus radius 1n the detector for p1ons and 2 body kaon 

decays. The were also used to make unit-weight neutrino 
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included the wide 

above. 
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the physics Monte 

band background of 

Carlo. These files 

both signs as noted 

Figure D.4 shows the energy-radius correlation from the 

Monte Carlo. The sum of charged current hadron and muon 

energies 1n the ful I detector fiducial volume with 

reconstruction smearing 1s plotted as a function of radius 

from the beam center. The kaon band and pion band are 

clearly visible. Some of the events between the bands are 

3-body kaon decays, and some are simply smeared from the 

pion and kaon bands. Figure D.5 shows charged current data 

reconstructed with the same cuts. 

D.4. Be~m analysis 

The momentum spread and divergence of the secondary 

beam are determined mostly by the magnetic elements and 

apertures of the train, and are almost independent of the 

production spectrum at the target. The momentum spread is 

about 10 percent, and the divergence 1s about 0.2 

mi I 1 iradians. It is ra~he~ ·difficult to measure the 

divergence directly, although attempts were made using a 

moveable hole col I imator. The same is true for the momentum 

spread. It is possible to put upper I imits on both the 

momentum spread and divergence by the shape of the Cherenkov 

curves. It is also possible to use the slope of the 
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energy-radius correlation measured 1n the detector to put 

I imits on the divergence. Al I of these studies were 

consistent with the neutrino beam model. We therefore have 

simply assumed that a reasonable production spectrum at the 

target, after being propagated through the train as model led 

by the program TURTLE, adequately represents the beam phase 

space as it exits the train. 

Using the standard beam phase space, the neutrino 

energy resolution from the energy-radius correlation is 

dominated by the beam divergence for the pion band, since 

the divergence is not much smaller than the inherent angle 

scale for pion decay at our energy. The kaon neutrinos 

cover a wider angle, so the divergence 1s less important, 

and the ~nergy-radius correlation resolution is dominated by 

the momentum spread of the secondaries. 

The beam center was determined from the data separately 

for each data set, by averaging the vertex positions in both 

projections for charged current events whose total energy 

was close to the maximum possible pion decay neutrino 

energy. These events can ~nlj come from smal I angle pion 

decays, and are the best indicator of the beam center. The 

beam center was about 20 centimeters below the detector 

center, and about 10 centimeters west of it. The detector 

center corresponds to the toroid 

analysis of this data used a beam 

axis. The previous 

center that was about 5 
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centimeters different in both coordinates. It probably 

differs because no cut on neutrino 

the vertex position averaging, so 

mostly the center of the 1 meter 

"design" beam center. 

energy was made before 

the average reflected 

radius cut around the 

0.5. Particle fraction analysis 

The kaon to pion ratio at the target strongly 

influences the neutrino spectrum. The ratio was measured 

using a Cherenkov counter operated in current integrating 

mode, since the rate was high and the I ight per particle was 

low. There was an annular aperture I imiting I ight to the 

phototube, and the counter pressure was varied to change the 

Cherenk~v angle so I ight from protons, kaons, and p1ons 

could be collected separately. The counter was only a few 

meters long, so diffraction effects are important 1n 

determining the I ight yield versus 

spread and divergence also enter into 

particle. There were shutter-closed 

angle. The momentum 

the I ight yield per 

pressure curves to 

measure some kinds of background, and runs with extra 

material upstream of the counter to al low subtraction of 

background from off-momentum particles from upstream 

interactions. 

After subtraction of known backgrounds, the I ight 

versus pressure curves have a peak at low pressure from 
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pions, a large wide peak at high pressure from protons, and 

a smal I peak between from kaons. There is some residual 

background between the peaks as wel I. 

Light versus pressure curves were calculated by for the 

secondary particles generated by TURTLE, including 

diffraction effects. The diffractive formula predicts light 

even at zero pressure, due to transition radiation at the 

Cherenkov counter end wal Is. The I ight from kaons has a 

tai I at lower pressures than the kaon peak, which is due to 

the decay muons with higher velocities. The decay muons 

from pions are indistinguishable from the pions themselves. 

The mea~ured I ight versus pressure curves after 

background subtraction were fit to a I inear combination of 

the cal~ulated I ight versus pressure curves. There was also 

an empirical background function of I ight proportional to 

pressure in the fit. The 

region around the kaon peak, 

by hand to compensate for the 

fit 1s relatively poor in the 

and the K/~ ratio was adjusted 

mismatch. The results of the 

Cherenkov analysis are shown in Table D.1 below. They agree 

very wel I with an independe~~ analysis of the same data by 

the CCFRR group [46]. Al I errors are systematic. 
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Table D.1 

Particle fractions from Cherenkov analysis 

p1ons kao".'ls protons R=K/w uR/R 

-165 .900 :.I: .004 .059 :.t:.003 .120 :.t:.003 .066 .051 

+165 .292 :.I: .003 .042 :.1:.002 .666 :.I: .006 .144 .049 

+200 .189 :.I: .002 .0283 :.t:.0009 .782 :.1:.002 .150 .034 

+250 .0775 :.I: .0015 .0135 :.I: .0006 .909 :.I: .002 .174 .048 

The particle fractions can also be measured from the 

charged current event sample, if we assume we know the cross 

section. In fact, by using the overlap in x and Q2 between 

pion and kaon neutrinos, or by extrapolating to y=O, this 

can be done quite wel I. For our purposes, it wi 11 be 

sufficient to assume a model cross section. in a Monte Carlo 

with ful I muon acceptance simulation, and calculate the 

ratio of pion band to kaon band events in the Monte Carlo 

and the data, using the above Cherenkov analysis to set the 

K/~ ratio in the Monte Carlo. 

The results are consistent with the Cherenkov analysis 

for the -165 GeV data, within the 5 percent event counting 

statistics, and consistent within the 3 percent statistics 

for the +250 GeV data. However, the +165 GeV data has 12 

percent fewer kaon band events than the Monte Carlo 

predicts, and +200 GeV data has 15 percent fewer kaon band 

events than predicted. This is inconsistent with the quoted 
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errors on the Cherenkov analysis. It 1s also inconsistent 

with the data statistical error, and 1s not sensitive to 

changes 1n the data cuts to improve the acceptance. 

However, CCFRR also finds that their charged current event 

counts are inconsistent with the Cherenkov analysis [46]. 

D.6. Electron neutrinos 

4.8 percent of the kaon decays in the neutrino beam are 

0 3 body decays to w ev , which 1s cal led the Ke3 mode. The e 

electron neutrinos do not obey an energy radius correlation, 

and have somewhat lower energy than 2 body kaon decay 

neutrinos, but typically larger radius and energy than pion 

decay neutrinos. Electron neutrino charged current events 

have a hadron shower and an electron shower that cannot be 

distinguished in the detector. Essentially al I the neutrino 

energy appears as shower energy. Because there is no muon, 

al I electron neutrino charged current events are classified 

as neutral currents. However, the radius and y cuts we make 

to minimize misclassification of pion band charged current 

events exc I ude the bu-I k oT the - e I ectron neutrino events. 

The fraction of the beam that is electron neutrinos is known 

as wel I as the kaon to pion fraction is known. There 1s 

also a very smal I contribution from electron decay modes of 

the K~, which must occur before the first bend in the train, 

and would have to be at large angle and thus very low energy 

to reach the detector. 
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D.7. Wide band background 

Wide band background 1s the name given to neutrinos 

from decays before momentum selection. The primary proton 

beam is bent away from the detector direction before 

targetting, and the secondary beam is aimed at the detector 

only after momentum selection. However, there are decays of 

particles of both signs before and during the momentum 

selection process, so there is a smal I anti neutrino 

component of the neutrino beam, and a smal I neutrino 

component 1n the antineutrino beam. These neutrinos are of 

low energy, since the angle from the original secondary 

direction to the detector is large. 

The program NUADA was used to calculate the flux of 

wide band neutrinos per proton on target. The flux is 

calculated to be less than 1 percent of the decay pipe flux 

for neutrino energies above 25 GeV for the zl65 GeV data, 40 

GeV at 200 GeV, and 60 GeV for 250 GeV. However, the wide 

band flux exceeds the normal flux (at a very low level for 

both) at about 10 GeV neutrino energy. The right sign 

background is calculated to- b~ about 10 times larger than 

the wrong sign background for neutrino data, although the 

wrong sign background is larger than the right sign 

background for the anti neutrino data at low energies where 

most of the background is. 
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Data was taken with the collimator closed before the 

decay pipe to measure the wide band background normalized to 

the number of protons on target. The NUADA spectrum was 

used to calculated the acceptance for wide band events. The 

agreement with the number of closed col I imator events with 

shower energies above 10 GeV was within 15 percent on 

statistics of 10 to 20 events 1n the data. For the 

anti neutrino data, there were 66 events, which 1s 3 times 

the prediction. There 1s some concern that the col I imator 

was partially open for this data. However, those events 

which had reconstructable muons do not predominantly fal I 

into the normal pion and kaon bands. 

Wide band background neutrinos of both signs were 

generate~ with the NUADA spectrum and normalization, despite 

the disagreement for the antineutrinos, and included in the 

standard neutrino beam files. For anti neutrinos, the event 

rate from right sign wide band background, including the 

energy weighting of the cross section and with no energy 

cuts at al I, was .4 percent of the total rate, and .1 

percent from wrong sign background. For the neutrino data, 

the right sign background rate was .9 percent, and less than 

.1 percent for the wrong sign background. Since the wide 

band background spectrum peaks near or below the 10 GeV 

shower energy cut, the background after the cuts wi I I be 

even less. Even if' there 1s a substantial error in the 

NUADA normalization, the wide band background does not 

present a significant difficulty. 
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Figure D.1 
Magnetic elements of dichromatic train 

Accelerator protons enter from left, are deflected away from 
detector direction, and strike a target. Mesons from the 
target are momentum-selected in the magnet train, then 
directed toward the detector through the decay pipe to the 
right. 
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Figure 0.3 
Neutrino energy spectra 

Distribution of hadron plus muon energy for charged current 
events, for nominal secondary momentum settings of -165 
(negatively charged secondaries), +165, +200, and +250 GeV. 
Points with error bars are data, and sol id outlines are 
Monte Carlo. This Monte Carlo does not include the 
adjustment in the K/~ ratio used for the data analysis. 
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Figure D.4 
Monte Carlo energy-radius correlation 

Scatterplot of sum of charged 
energy in GeV versus distance 
in centimeters, for +165 GeV 
simulation of finite hadron and 

current event hadron and muon 
from center of neutrino beam 
Monte Carlo data, including 
muon energy reconstruction. 
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Scatterplot of sum of charged current event hadron and muon 
energy in GeV versus distance from center of neutrino beam 
in centimeters, for data with a nominal secondary energy of 
165 GeV. Lower band is from pion decay neutrinos, and upper 
band is from kaon decay neutrinos. 
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E. Muon Reconstruction 

E.1. Overview 

While the muon reconstruction does not enter directly 

into the neutral current physics analysis, the muon energies 

are needed for the calibration of the shower energy scale 

and the calibration of the shower angle scale by transverse 

momentum balance. Muon angles were measured by fitting 

I ines to the muon hits 1n the flash chambers. Muon energy 

measurements were done by deflecting the muons toroidal iron 

magnets with proportional chambers between them. 

This Appendix deals with the construction of the muon 

magnets 1 the construction and operation of the toroid 

proporti9nal planes, the programs used to find and fit the 

muon tracks in the calorimeter, and the programs used to fit 

the muon trajectories in the toroids. 

E.2. Magnets 

To achieve large magnetic fields over large areas at 

minim~m cost 1 the fact tha€ e~ergetic muons wi I I penetrate 

large amounts of material was exploited by making the 

magnets out of sol id iron. The magnets were large iron 

discs with smal central holes which were cal led toroids. 

There were 3 toroids that were 24 feet in diameter and about 

2 feet thick with 2 foot diameter central holes. There were 
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also 4 toroids that were 12 feet in diameter and about 4 

feet thick, with 1 foot diameter central holes. The total 

iron thickness was about 700 centimeters at normal 

incidence, spread over about 10 meters. The total energy 

loss of a minimum ionizing particle at normal incidence was 

8.1 GeV. Coi Is distributed around the periphery of each 

toroid and through the central holes excited them to 

saturation at about 16 kilogauss. 

The toroidal magnetic field 1s set to focus muons of 

the dominant sign, which improves the acceptance. The 

general muon trajectory in the absence of energy loss is an 

orbit around the toroid axis, with an osci I lation length 

proportional to momentum. In fact, high energy tracks are 

def lecte~ by only a few centimeters before they exit the 

last toroid, and low 

completing their orbits. 

last chamber is about 2000 

energy tracks range out before 

The magnetic deflection at the 

centimeters divided by the muon 

energy in GeV. 

Multiple scattering dominates the energy resolution for 

almost the entire energy range - of this experiment. At the 

end of the last toroid, the deflection due to scattering is 

about 200 centimeters divided by the muon energy in GeV. 

This I imits the resolution to about 10 percent. 

Each 12-foot toroid was constructed from 4 iron blocks 

with smal I uniform gaps between them. The field of the 12-
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foot diameter toroidal magnets has been 

probes in the gaps and 1s consistent 

calculated by the program POISSON. 

measured by Hal I 

with the field 

The 24-foot diameter toroids present a problem. They 

were constructed (by the previous experiment in Lab C) out 

of many slabs of flame-cut "distressed steel" of poorly 

known magnetic properties. The gaps between the blocks were 

irregular and there were inadequate provisions for magnetic 

measurements. The avai I able measurements are not consistent 

with POISSON calculations for uniform material for any 

reasonable assumptions about the gap sizes at the 5 to 10 

percent level. While these magnets provide less than a 

third of the total iron thickness, since they are upstream 

of the ~2-foot magnets, they have 

provide about half of the magnetic 

a longer lever arm and 

deflection at the last 

toroid plane. They provide an even larger fraction of the 

deflection at the upstream planes. 

The magnetic field of the 24-foot toroids was included 

as a parameter in the fit for the energy scale discussed in 

Appendix G. The arrangement ~f the toroids relative to the 

calorimeter is i I lustrated in Figure 3.1. 

E.3. Chambers 

The toroid chambers were based on the almost the same 

extruded aluminum tubes and electronics as the calorimeter. 



332 

The extrusions were double-layered, with 8 and 7 wire sides 

staggered by a half eel I, rather than the single-layer 8-

wi re extrusions used 1n the calorimeter. The double-layer 

design was much more rigid. 

both wire layers, the stagger 

eel I size. The gas manifolds 

When 

gave 

a hit was registered in 

a half-inch effective 

than in the calorimeter, but the 

plated tungsten wires were used. 

with 10 percent ethane, 

was higher for more gas 

single tracks. 

rather 

gain, 

were of a different design 

same nylon bolts and gold

The gas used was argon 

than methane. The voltage 

since the interest was in 

There we~e both horizontal and vertical double-layer 

planes distributed through the toroid system. There were 

12-foot §quare 1n the 12-foot toroid system, after the 

second and fourth 12-foot toroids. There were also planes 

made from 24-foot long extrusions with wings of 16-foot long 

extrusions covering almost al I the area of the 24-foot 

toroids behind the first and third 24-foot toroids. 

The 24-foot horizontal wires 1n particular had 

difficulties with ele~tric~l-mechanical osci I lations, where 

the wire would be attracted to its image in the extrusion 

wal I, discharge, and spring back while it was recharging 

through its series resistor. This cycle would repeat at a 

few hertz unti I the high voltage was turned off. The plane 

could be turned on again immediately and appeared to be 

undamaged. 
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Rather than having an amp I ifier and latch for each 

wire, the wires were read out by charge division [47]. Sets 

of wires were bridged by a resistor chain that was connected 

to an analog amp I ifier and sample-and-hold at both ends. 

The ratio of the pulseheight difference between the ends of 

the bridge to the pulseheight sum was used to decide which 

wire was hit. The same integrating analog amplifier, 

control board, and multiplexed digitizer electronics were 

used as 1n the calorimeter, but there were no ELBs. The 

analog sum of al I the wires 1n a plane was available from 

the control board, and was used as part of the muon trigger. 

This electronics is described in Chapter 3. 

Because of the large distance between the toroid 

chambers and the central trigger electronics, and the long 

drift times, it was not possible for the trigger signal to 

reach the toroids 1n time to sample the base I ine. 

Therefore, the toroid planes were locally self-triggered. 

The first signal over 

used to trigger the 

threshhold during the beam gate was 

sample-and-holds. This resulted 

occasionally in a cosmic ray muon being held if it preceeded 

an neutrino event in the gate. 

The front vertical and horizontal 24-foot plane pair 

used 16-wire bridges and a single control board per layer. 

These planes had somewhat poorer than single-wire 

resolution. The other 24-foot planes had 8-wire bridges and 
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two control boards per layer. The 12-foot planes had 8-wire 

bridges and a single control board per layer. 

The chamber resolution is set by the wire spacing, two 

layers with 1 inch pitch staggered by 1/2 inch, for a 

resolution of order 1 centimeter. Since the deflection due 

to scattering was 200/E centimeters at the last chamber, at 

200 GeV, the chamber resolution becomes as important as the 

scattering. For tracks at large angle, which can traverse 

the 24-foot planes but miss the 12-foot planes, the chamber 

resolution was even more I imiting. 

tracks were mostly low energy, the 

However, since these 

absolute muon energy 

error was not_ large, only the relative error. 

E.4. M~nte Carlo 

The acceptance for muon energy reconstruction 1s a 

comp I icated function of vertex position, and muon energy and 

angle. The muon reconstruction resolution is as comp I icated 

as the acceptance. There is also the possibi I ity of bias 

and inefficiency in the muon track fitting programs. Thus, 

for the calibration anafysis, muon trajectories were 

simulated 1n detai 

toroid acceptance, 

including 

bending 1n 

scattering, 

the iron, 

energy loss, 

chamber hit 

resolution and efficiency, and biases and failures in the 

momentum fitting program. There was no attempt to generate 

noise hits in the calorimeter and toroids, since these are 

not a large issue in the muon reconstruction. 
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The ful I shower Monte Carlo contains energy loss, 

multiple scattering, and flash chamber hit generation in the 

calorimeter. It also 

bending, and toroid hit 

creates a data structure 

can be analyzed by the 

analysis was done with 

contains energy 

in 

loss, scattering, 

the magnets. It generation 

identical to a real event, which 

same 

the 

programs. Some calibration 

shower Monte Carlo, but fu I I 

since it was rather slow, most calibration analysis was done 

with a faster, more specialized muon Monte Carlo. 

Calorimeter tracks were fol lowed 1n 20 centimeter 

steps, with a lumped Coulomb scatter and a calorimeter 

chamber hit generated each step. The hit resolution was 

selected to match the resolution of the average of the flash 

chambers 1n 20 centimeters. The entire track length was 

used 1n a fit to simulate the muon angle resolution, and the 

last 300 centimeters of track was used to simulate the 

resolution of the toroid entry fit. 

Once in the toroids, the track was bent and scattered 

with energy loss in roughly 10 centimeter steps, and toroid 

cha~ber hits were generated. The incoming trajectory fit 

and al I toroid hits were used 1n a model version of the 

final parabolic fit step of TRACKM2, started with its center 

on the true muon energy and with no attempt to model the hit 

selection and coarse and fine momentum steps. TRACKM2 is 

described below. 



E.5. Calorimeter tracking 

There were several 

fitting programs used. 
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calorimeter 

One was 

track finding and 

NCCC, the event 

classification program, which also returned the muon track 

parameters for charged currents. Another was QFIND, a 

routine designed to find quasi-elastic charged currents, but 

which also could find most inelastic charged currents. 

There was also the TRX package of general track-finding 

routines, run 1n various guises for different purposes. Al I 

of these routines were run on al I events, and the results of 

al I these routines were stored in a summary block for use 1n 

to ro i d f i t t i n g_. 

The routine QFIND is based on finding a muon track in 

filters the hits in the the back_of the calorimeter. It 

last 100 chambers to remove noise and shower hits, and 

averages the position of the rema1n1ng hits. From this 

position, it histograms the angle of hits upstream. Tracks 

which go through the average point form a peak in this 

histogram. Hits 1n a road around the peak angle are fit to 

a I i ne, then the road is na-i-rowed a round the I i ne for a new 

fit. The fit I ine 1s then walked upstream unti I there are 

few hits in a narrow road around the I ine. The most 

upstream hit defines the 

defines the transverse 

efficient and accurate 

vertex chamber, and the fit I ine 

position. The routine 1s very 

for its intended purpose, which 1s 
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finding single low angle muons entering the toroids. It 

does poorly if there is noise, shower hits, or a second muon 

in the last 100 chambers, of if the muon leaves the sides of 

the detector rather than the rear. 

The TRX package was a set of compatible track finding, 

fitting, and matching routines. TRXDRV was the driver 

routine for general track-finding, and TXBDRV was 

specialized for the rear of the detector. 

Each view was considered independently. First, the 

routine CNTRS2 was used to temporarily remove al I flash 

chamber hits with near neighbors in each chamber. This 

removes most shower core hits but leaves isolated track hits 

behind. TRXFLl fi I Is a matrix with the number of hits in 

roads sp~nning a range 1n 

the mean z of the rema1n1ng 

slope and intercept centered on 

hits. TRXSCl scans the matrix 

to find elements over threshhold with no larger neighbors. 

These peaks in the array are track candidates. For each 

candidate, the range of slopes and intercepts is narrowed 

and centered on each peak, and a new matrix is fi I led by 

TRXFL2, and scanned by TRXSC2. If the peaks remain at this 

higher resolution, I ine fits with wide then narrow roads are 

made by TRXFIT. The result of these steps 1s a list of 

track slopes, intercepts, hit counts, and other information. 

The tracks in each view are matched into 3-view-consistent 

combinations by TRXMCH. 
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The shower hits are then restored, and TXVFND is cal led 

for each matched track I ine. TXVFND walks upstream unti I 

the hit density is low, and sets the vertex chamber to the 

first hit of the track and the vertex position to the 

intercept of the fit I ine with the vertex chamber much I ike 

in QFIND. TXVFND is able to find tracks that do not exit 

the back of the calorimeter, and is less confused by shower 

noise and extra tracks than QFIND~ 

E.6. Toroid fitting 

Muon analysis begins with the summary block of muon 

slopes and intercepts 1n the calorimeter. It is a good 

approximation and very convenient to treat the calorimeter 

track sl~pes and intercepts as given, and fit in the toroids 

for a single parameter, the momentum. The toroid chamber 

pattern recognition and fitting problem 1s not simple, evenn 

given a calorimeter track. Trajectories can bend in both 

directions if the center line 1s crossed. There are few 

chambers for redundancy, only 

and the chamber efficiency 

2 projections are avai I able, 

1s less than 90 percent per 

layer. There are noise hits in the readout from noisy wires 

or bad pedestals in the charge division, and from out-of

time tracks captured by the self-triggered planes. 

(Repetitively noisy wires that were in a run-dependent I ist 

of hot wires were turned off before fitting.) Because none 
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of the muon fitting programs gave completely satisfactory 

results, we used several and compared the results event by 

event to eliminate poor fits. 

The routine DMUDRV was used mostly for pattern 

recognition, although it returned a momentum estimate that 

was adequate for most physics purposes. It started from a 

calorimeter track slope and intercept, and computed a set of 

trajectories at a range of values of the inverse momentum. 

It stored the position versus momentum at each plane, so it 

could quickly interpolate the position at an arbitrary 

momentum, and calculate the derivative of position with 

respect to 1_nverse momentum. Starting from the most 

downstream toroid chamber with a hit, it interpolated to 

find th~ momentum that went exactly through the hit. The 

position 1n each upstream plane at that momentum was 

interpolated, and the closest hit to the position was noted. 

Hits within 3 multiple scattering sigma plus 10 centimeters 

of these locations were put into sums for a 1-parameter 

momentum fit, using the quadratic sum of chamber resolution 

and multiple scattering as uncorrelated errors. A hit 

rejection pass could reject a hit if this improved the chi 

square probabi I ity by a factor of 3. Up to 30 percent of 

the hits could be rejected. A track qua I ity factor was 

calculated from the chi square probabi I ity, the number of 

unused hits, and the number of planes in which there was no 

hit near the calculated trajectory. 



If a noise hit was used 

correct hits upstream were 

noise hit was el imated 1n 

DMUDRV saved the hit pattern 

340 

as the seed hit, some of the 

usually used anyway, and the 

the rejection pass. However, 

and track qua I ity and repeated 

the entire process starting from any hits upstream that were 

not used. If the qua I ity factor starting from a different 

hit was higher, then the new fit was taken as the correct 

one. The momentum, error, chi square, hit pattern, and 

qua I ity factor were al I stored for the best qua I ity track. 

The routine TRACKM2 was run independently, with no 

attempt to force it to use the same hits as DMUDRV. It also 

started from the calorimeter track and did a one-parameter 

fit for the momentum. First, it calculated the trajectory 

of the m_uon for momenta between 100 GeV defocussed and 300 

GeV focussed in 10 GeV steps. At each momentum, it counted 

hits within 3 multiple-scattering sigma plus 10 centimeters, 

and also calculated the chi square using uncorrelated 

errors. It noted which momentum went close to the most 

hits, and which momentum using that number of hits gave the 

lowest chi square. This was considered the first estimate 

of the momentum. The same process was then repeated using 1 

GeV steps for a 10 GeV zone centered on the first estimate. 

Next, a set of 7 inverse momenta centered on the new 

estimate and covering a =10 percent range was selected. The 

chi square was calculated for each inverse momentum, using 
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the ful I correlated error matrix for multiple scattering. 

This is slow since it requires a matrix inversion, which 1s 

the reason it is not done for the earlier stages, and not at 

al I in DMUDRV. A parabola was fit to the chi square versus 

inverse momentum curve. The track inverse momentum was 

taken from the parabola minimum 

the height at the minimum, and 

the parabola. 

point, the chi square from 

the error from the width of 

Uni ike DMUDRV and TRACKM2, the routine TRACKM did the 

ful I 5 parameter fit for the two vertex coordinates, 2 track 

slopes, and the momentum. It could be modified to work 

from just a vertex and toroid hits rather than requiring 

calorimeter track slopes and intercepts, although it was 

typical I~ run with a track and vertex as initial 

information. It used correlated 

iterated multiple parameter 

minimization methods. 

errors and conventional 

I inearized chi square 

However, TRACKM did not reliably and accurately 

reconstruct events that crossed the toroid axis. This was 

apparently because it assumed that magnetic deflection of 

tracks away from a straight I ine extrapolation of the 

calorimeter trajectory was strictly proportional to inverse 

momentum, which was not correct. 

Consider a track initially para I lel to the toroid axis 

and 50 centimeters off axis, with no dE/dx energy loss. It 
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wi I I be deflected toward the axis, cross it, then begin to 

curve back. At maximum deflection, it wi I I be moving 

para I lel to the axis 50 centimeters to the other side. It 

wi I I then begin to bend toward the axis again, cross the 

axis, and return to its original 50 centimeter off-axis 

position. 

If the inital momentum 1s changed, the deflection in 

the early part of the trajectory wi I I change by the same 

amount. The longitudinal position of the maximum deflection 

wi I I also change by the same amount, but the transverse 

distance at maximum deflection wi I I be the same. For 

infinitesimal _changes 1n the momentum, the deflection is 

independent of momentum near the point of maximum 

deflection. Thus, the maximum deflection point, which 

TRACKM considers to be the point with the most information 

about the momentum, actually has the least. It is true, 

however, that the deflection 1s proportional to inverse 

momentum for the early part of the trajectory. 

A file of ful I shower Monte Carlo muons was created to 

study this problem. The -· muons were at zero angle and were 

50 centimeters away from the toroid axis. They had random 

energies between 0 and 200 GeV, with energy loss, multiple 

scattering, and realistic flash chamber and toroid chamber 

hits. They were analyzed by TRACKM. For energies where 

tracks reached maximum deflection and began to curve back 
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before leaving the toroids, the momentum became biased. The 

iterative procedure for converging on the minimum chi square 

also became inefficient, probably because the momentum steps 

were calculated with the incorrect assumptions about 

proportional deflections. Wh i I e TRAC KM fits muons 

successfully and reasonably correctly far more often than 

not, because of the above problems it was not used for this 

analysis. 

E.7. Fitting bias 

There is one wel I-known bias in track momentum fitting. 

It is due to the fact that deflections scale more with the 

inverse of the momentum than with the momentum. Since we 

measure ~ef lections, we measure inverse momenta. The mean 

of the distribution of the reciprocal of a random variable 

1s not equal to the reciprocal of the mean. Since the 

momentum resolution is about 10 percent, this effect shifts 

the mean by the square of this, or about 1 percent. The 

distribution of inverse momenta 

but the di str i but ion of m-ome-nta 

momenta. This is a particularly 

is approximately gaussian, 

has a tai I toward high 

large difficulty for the 

poorly resolved tracks at high momentum, and for the tracks 

that only traverse the 24-foot magnets. 

The routine TRACKM2 had a subtle momentum bias which 

was discovered in Monte Carlo studies. Since the multiple 
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scattering increases at low momentum, the chi square as a 

function of momentum varies not only due to the residuals 

changing as the trajectory varies with momentum, but also 

because the multiple scattering varies with momentum. The 

position of the chi square m1n1mum as calculated with a 

fixed amount of multiple scattering 1s different from the 

position calculated with varying multiple scattering. 

Neglecting the chamber resolution contribution, the chi 

square for fixed residuals grows as the square of the 

momentum. It turns out that if the scattering is calculated 

for a fixed momentum, the chi square is parabolic in inverse 

momentum, and centered on the 

However, if the chi square 

true momentum on the average. 

1s calculated with varying 

scatter~g, then the curve becomes non-parabolic, and the 

m1n1mum shifts to higher inverse momentum, or lower 

momentum. 

TRACKM2 does calculate the chi square by varying the 

scattering along with the trajectory, and is subject to this 

bias. It is larger than the bias due to the mean inverse 

mom~ntum not being th~ 

opposite sign. It also 

inverse mean momentum, and of the 

varies depending on the trajectory, 

number of hits, and chi square value. This bias is one of 

the major reasons that the charged current calibration 

analysis was done by detailed simulation of the toroid 

fitting process. 
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The routines TRACKM and DMUDRV do not have this kind of 

bias because they calculate the chi square using derivatives 

of position and thus chi square at fixed momentum, and not 

by fitting a parabola to the chi square versus momentum. In 

fact, the TRACKM2 parabola fit can be made unbiased (and 

faster) by calculating the scattering at a fixed momentum 

for each point on the parabola. 
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F. Misclassification 

F.1. Introduction 

To extract neutral current physics from the data, it is 

necessary to identify which events are neutral currents, and 

distinguish them from the more numerous charged current 

events. We must define a specific rule for classifying 

events as charged current or neutral current. There wi I I 

always be a tradeoff 1n any classification scheme between 

the purity of the two classes. It is not possible in a 

calorimetric detector, even as fine-grained as ours, to 

correctly ide~tify al I events as charged current or neutral 

current. 

Muons make hits in the flash chambers inside the shower 

volume. These hits would cause charged currents to 

reconstruct to higher shower energies than corresponding 

neutral currents, so we remove them. However, when an event 

is misclassified, either the charged current muon hits are 

not removed from the shower energy, or a track that IS 

actua I I y part of a neutra I current shower is removed 

incorrectly from the shower energy. Thus, misclassified 

events have misreconstructed energies and shower angles. 

This Appendix describes the basic sources of 

misclassification, and methods of correcting for 

misclassification. It also describes the program used for 
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event classification in this experiment, how the 

misclassification was quantified, and how the information 

was incorporated into the physics analysis. The results and 

uncertainties of the misclassification analysis are 

presented. We also compare the misclassification 1n our 

detector with other similar neutrino detectors. 

F.2. Basic issues 

F.2.1 Muon properties 

The distinguishing feature of a charged current event 

1s the presen~e of a muon from the primary vertex, which is 

not found in a neutral current event. The charged current 

muon interacts only electromagnetically with the calorimeter 

material, while the hadrons interact strongly. Event 

identification is based on the presence or absence of a 

penetrating track which is presumed to be the muon. 

An obvious I imitation 1s that muons of low enough 

energy wi I I not be distinguishable from the rest of the 

hadron shower. A shower 1n o-ur calorimeter 1s typically 5 

meters long, which corresponds to about 1 GeV at minimum 

ionizing, so muons of less than about 1 GeV cannot be 

cleanly identified. In terms of the sealing variable y and 

the neutrino energy Ev, the muon energy Eµ satisfies 

E = E (1-y) µ v Eq.F.1 
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At high y, the muon energy 1s thus low, and the muon is not 

I ikely to be found. For neutrino events, the y distribution 

is almost flat, so for 50 GeV neutrinos and a 1 GeV minimum 

visible muon energy, about 2 percent of the charged current 

events would be misclassified as neutral current events at 

high y. 

There 1s another classification difficulty at high y. 

The muon angle is related to the sealing variables by 

Mx 
Ev 

1-
1-y = 1 - cos8µ ~ e2 I 2 µ Eq.F.2 

For large values of y, the angle becomes large. For our 1 

GeV muon from a 50 GeV neutrino, the relation becomes 

1-cos8µ~Mx, where for reasonable values of x the angle is of 

order 45 degrees. For y very close to. 1, the muon can 

actually scatter backwards. 

F.2.2 Electron neutrinos 

Electron neutrino charged current events have a final 

state electron rather than a muon. This electron showers, 

so there is no penetrating track, and the electron energy 

appears as part of the shower energy. This causes electron 

neutrino charged current events to be reconstructed as high 

shower energy neutral current events. The electron shower 

transverse momentum balances the hadron shower transverse 

momentum, so we expect electron neutrino events to 

reconstruct to zero angle, apart from resolution effects. 
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The correction for electron neutrino charged current 

event contamination of the neutra I currents 1 s 

straightforward. The electron neutrino flux is determined 

by the known branching ratio for Ke3 decays, the known decay 

energy distribution, and the kaon to pion ratio in the beam, 

which is measured both by the Cherenkov counter and by 

counting kaon band charged currents with reconstructed 

muons. For this analysis, they cut removes essentially al I 

electron neutrino events. The remaining events were 

compensated for by including the electron neutrino component 

in the neutrino beam Monte Carlo files, and assuming in the 

high statistics Monte Carlo that al I electron neutrino 

charged current events have the 

visible as shower energy, and are 

currents. 

entire neutrino energy 

classified as neutral 

F.2.3 Neutral current misclassification 

One of the primary causes of misidentification of 

neutral current events is muons from pion and kaon decay 1n 

the hadron shower. The -number of decays in flight is 

determined by the number of particles 1n the shower, their 

energy spectrum, their decay length cT, and the fraction 

that are absorbed or range out before they decay~ Hadronic 

total cross sections have 

so the ratio of decays 

a fairly weak energy dependence, 

to absorptions 1s determined 
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primarily by the 1 factors. Only a few percent of the 

hadrons that are energetic enough to mimic charged current 

muons decay before being absorbed. 

Neutral current events can also be misclassified due to 

penetrating hadrons that have not decayed into muons. Near 

the rear or edges of the detector, it is possible for a 

hadron track to escape before interacting. Also, our track 

finding program does not recognize smal I showers along or at 

the end of hadron tracks, so it considers any long and 

straight track as a muon candidate. 

·F.2.4 

If 

Correction to NC/CC ratio 

we assume that we know the charged current 

differential cross section, and the detector and algorithm 

performance, then presumably we 

of the charged currents are 

can calculate what fraction 

misclassified. We may also 

approximate the fractional neutral current misclassification 

as being independent of the physics we are trying to 

measure. This information is sufficient to correct the 

observed event counts misclassification. Since 

misclassification moves events between classes, it is 

necessary to correct both charged and neutral currents for 

misclassification simultaneously, but this is a simple 

exercise in I inear algebra. 
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If f is the fraction of neutral currents misclassified n 

and f c 1s the fraction of charged currents misclassified, we 

can write a matrix equation describing the relation between 

the true event counts and the observed event counts. 

= 
obs 

f c 
1-f c l [ ~~ l Eq.F.3 

true 

The matrix elements can be determined by Monte Carlo 

simulation, if we know the physics and the sources of 

misclassification. We fi I I a 2 by 2 scatterplot of observed 

class versus true class. The columns are then normalized by 

dividing by the number of true neutral and charged currents. 

This normalization forces the columns to sum to unity. Cuts 

can be made on the data, if the same cuts are made on the 

Monte Carlo when fi I ling the scatterplot. 

The solution is found by inverting the matrix. 

true 

1-f c 
-f 

n 

-f c 
1-f 

n l [ ~~ l Eq.F.4 
obs 

From this, we may write the corrected NC/CC ratio from the 

observed event counts and the misclassification fractions. 

NCI = CC true 
(1-f )NC - f cc I c c 
(1-f )CC - f NC obs n n 

Eq.F.5 

If we define the NC/CC ratio with perfect classification as 
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Rt and the observed ratio as R we can write 
0 

Rt 
(1-f ) R - f R 1-f (1 + 1/R ) Eq.F.6 = c 0 c = c 0 

(1-f ) - f R 0 1-f ( 1 + R ) 
n n 0 n o 

From this expression, and the fact that R is of order 1/3, 
0 

it is clear that the ratio is more sensitive to the fraction 

of misclassified charged currents, f c, than it is to the 

fraction of misclassified neutral currents, f . A 1 percent n 

charged current misclassification would lead to a 4 percent 

change in the ratio, while a 1 percent neutral current 

misclassification would cause only a .75 percent change in 

the ratio. 

The above corrections have the property of conserving 

events. That 1s, while events move between classes, the 

total event count after corrections is the same as before. 

However, we have noted that misclassified events have 

systematically wrong energies, due to improper muon removal. 

If energy cuts are made, then misclassification in the real 

detector wi I I not conserve events. Some events can move 

across a cut when they a re - m i-sc lass if i ed. For instance, a 

charged current at high y might be below the y cut if its 

muon hits were removed, but above the y cut if not. Such an 

event would not be accepted 1n the neutral current sample if 

it were misclassified. Thus, misclassification may lead to 

non-conservation of events. 

analysis of our NC/CC ratio 

The previously published 

for sin28 [35] used the eventw 
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conserving form of correction, which accounts for part of 

the difference between it and the present analysis. 

Mathematically, conservation of events is guaranteed by 

the columns of the matrix summing to unity. If we are to 

correct for non-conservation, the matrix must be more 

general, containing 4 and not just 2 independent quantities. 

The matrix elements can sti I I be calculated by Monte Carlo. 

To include non-conservation, we start with the same 

scatterplot elements, determined with cuts on the energy as 

altered by misclassification, but normalize to the number of 

true neutral and charged currents, determined with cuts made 

on the energy _without alteration by misclassification. 

We note that this information is not directly avai I able 

1n a Monte Carlo simulation analyzed exactly I ike the data. 

We must analyze the misclassified neutral currents with the 

hits on their false muon candidates restored. We must also 

analyze al I the misclassified Monte Carlo charged currents 

events with their muon hits removed, even though the muons 

were not found. 

For the present analysi~, we use a different approach. 

Rather than attempting to correct the observed ratio for 

misclassification, which imp I icitly assumes the corrections 

are independent of neutral current physics, we incorporate 

misclassification, including the effect of energy shifts due 

to misclassification, into the calculation of the NC/CC 

ratio as a function of sin2B w 
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F.2.5 Corrections to distributions 

If we are trying to correct differential distributions 

for misclassification, the energy and angle shifts from 

misclassification-induced improper muon removal are even 

more important. It 1s not true 1n general that a 

misclassified event that reconstructs into a certain bin 

would reconstruct into the corresponding bin in the other 

class if it were correctly identified. Our previously 

pub I ished analysis of the x dependence of the NC/CC ratio 

[38] treated the misclassification corrections as 

independent 2 by 2 problems for each x bin. This completely 

neglects the ~nergy and angle shifts due to improper muon 

removal. For a distribution of k bins each of neutral 

currents and charged currents, rather than solving k 

problems, each 2 by 2, the ful I correction involves solving 

a single 2k by 2k problem. 

Since we inevitably must deal with bin boundary 

crossing due to misreconstruction when correcting 

distributions for misclassification, we can use the same 

techniques as 

corrections. 

we 

In 

do for 

fact, 

resolution and acceptance 

the misclassification and 

misreconstruction corrections can be done simultaneously 

with the resolution and acceptance corrections. See Chapter 

7 and Appendix L. 
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If we were correcting distributions separately for 

resolution and acceptance, we would construct matrices that 

represent the probabi I ities of smearing from bins of true 

variables into bins of smeared variables. There would be 

one such matrix for neutral currents and one for charged 

currents. We can represent the probabi I ity for events in 

true variable bins of one class to reconstruct into smeared 

variable bins of the other class in two more matrices. One 

represents neutral currents reconstructing into charged 

currents, and the other represents charged currents 

reconstructing into neutral currents. The fact that 

misidentified events do not genera I I y reconstruct into the 

corresponding bin of the other class IS included in a fu I ly 

natural .Jlay in this matrix representation. 

In principle, we should do a simultaneous unfolding of 

the charged and neutral currents. 

self-consistent correction for 

This would give a fully 

the background 1n both 

classes due to the other class, as wel I as the acceptance 

losses due to misclassification. However, this introduces 

correlations in the statis£1c~I errors between charged and 

neutral currents, which complicates some of the further 

analysis. To avoid correlations, we fix the physics of the 

other class to calculate the misclassification backgrounds. 

This includes the correction and error due to events lost 

into the the other class consistently, and the correction 

for the background, but 

background. 

ignores uncertainties -in the 



356 

F.3. Programs 

F.3.1 Event classification program 

Classification of events as 

current for this analysis was 

charged current or neutral 

done by a track finding 

program known as NCCC. Given the neutrino interaction 

vertex, NCCC cal led MUSH2, which made a histogram of hits 

versus angle from the vertex was made for each of the 3 

flash chamber views. The histogram covered the range to 50 

degrees projected angle in 2 degree bins. Entries were made 

only if the local hit density was within depth- and angle

dependent limi~s intended to suppress the contribution of 

shower hits. The two largest peaks in each view were noted. 

The larg_est peak in each view was considered the track 

candidate for further processing under most circumstances. 

NCCC then did a series of least squares fits using 

subroutine MUFFIT with narrowing roads and application of 

the 3 view space-consistency condition. The number of 

chambers with 1 or 2 hits, and the number of chambers with 

0,1, or 2 hits, were counted for several different road 

widths. The hit counting 

the road left the active 

continued from the vertex unti I 

area of the chambers in any view. 

These results were combined into a track length variable and 

a track hit density variable. The sum of the distances of 

the track I ines from the neutrino vertex in al I 3 views was 

also noted. 
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If a track passed any of a set of requirements on 

length, hit density, and vertex consistency, then the event 

was cal led a charged current. If the track passed none of 

the criteria, NCCC did a second pass. First, the flash 

chamber hit filter routine CNTRST was cal led to eliminate 

shower hits and retain isolated track hits. The MUSH2 angle 

histogram was fi I led and searched again for 2 muon 

candidates for each view, with slight differences from the 

first pass. The MUFFIT I ine fits to the preferred candidate 

were also repeated. If the resulting track passed any of 

the criteria on the second pass, it was cal led a charged 

current event. Al I other events were cal led neutral 

currents. 

In the previous analyses of this data, although not in 

this one, the number of hits 1n the proportional tube 

chambers in the muon toroids could cause the event to be 

cal led a charged current, if the human scanners also cal led 

the event a charged current. This human scanner requirement 

was necessary because of noise and out of time events in the 

toroid chambers. The Monte Carlo events were not human 

scanned, so the requirement could not be imposed, but they 

also did not have noise in the toroids. 

F.3.2 Shower Monte Carlo 

For this experiment, the 

the number of misclassified 

primary means of determining 

events has been to gen~rate 
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simulated data by Monte Carlo techniques and analyze the 

events through (almost) the same set of programs as used for 

the actual data. For each Monte Carlo event, both the true 

class and the "observed" class are known. From this 

information, we can find the corrections needed to extract 

physics from the data. 

This requires detailed information about the chamber 

performance and material properties of the detector, and 

also assumptions about the cross sections and flux. It is 

also necessary to model the ful I hadronic shower development 

on a particle by particle basis. The size of the Monte 

Carlo data set was I imited by the avai I able computing 

resources and patience. The statistics were about 160000 

events g_enerated, and about 40000 within the final cuts, 

compared to about 15000 within the cuts in the data set. 

The detai Is of detector geometry and material 

properties such as particle energy loss, interaction and 

radiation length, and multiple scattering are easily put 

into the data generator. The sector by sector flash chamber 

eff1ciency and multiplicity tables were used to model the 

chamber performance. The Monte Carlo shower generator used 

simple "fireball" model approximations for particle 

generation, and al I shower particles were neutral or charged 

pions, except the initial nucleons. 
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F.3.3 Lookup tables 

For this analysis, lookup tables of the 

misclassification probabi I ities were generated from the 

Monte Carlo files, which contained the ful I beam, detector, 

and shower simulation, 

section assumptions. 

and rea Ii st i c differential cross 

The 

were recorded as functions 

current to neutral current 

misclassification probabi I ities 

of true variables. The charged 

table was a function of muon 

angle, muon visible length, muon energy, and shower energy. 

The neutral current to charged current table was a function 

of shower energy, shower invariant mass, distance of the 

vertex from the edge of the detector, and distance of the 

vertex from the rear of the detector. There was a different 

table for each beam setting. The mean difference between 

the reconstructed shower energy of misclassified events and 

the true energy was also parameterized. 

These tables were checked by weighting the events in 

the same shower Monte Carlo files according to the lookup 

table misclassification probabi I ities, and comparing the 

di str i but ions as weighted -w i t-h the di str i but ions for the 

events actua I I y misclassified. 

essentially perfect when no cuts 

The agreement was 

were applied. When cuts 

were made, the agreement was within statistics. 

It 1s not to be expected that the agreement after cuts 

wi I I be perfect, even when weighting the same Monte Carlo 
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data set used to make the tables. For example, the 

reconstructed y distribution of actually misclassified 

charged current events should be essentially a delta 

function at y=l, smeared by the neutrino energy resolution 

and the shower energy resolution. The number of 

misclassified events after the cut wi I I be the number that 

are both misclassified and fluctuate below the cut. Many 

more events wi I I be misclassified and not smear below the 

cut. The number calculated by the lookup table scheme may 

be thought of as the product of the average 

misclassification probabi I ity at high y and the average 

probability to smear below the cut from high y. There can 

be a statistical fluctuation 1n the smal I fraction of 

actually_ misclassified events that smear down below the cut 

even when the total misclassification is constrained to be 

the same. 

The tables and energy shifts were used in a high 

statistics Monte Carlo with no detailed shower or muon 

pattern simulation to calculate the neutral current to 

charged current ratio as a fi.Jnc-tion of sin28 with imperfect w 

classification. In effect, the misclassification was put 

into the Monte Carlo rather than removed from the data. 



- 361 

F.4. Results 

F.4.1 Charged currents 

Table F.1 shows the results from the +165 neutrino data 

Monte Carlo analysis of charged current misclassification 

under various conditions. Case A excludes al I electron 

neutrino events but has no shower energy cuts at al I. Case 

Bis the correction used for the previous publications, 

after the 10 GeV and y(0.7 cuts, and including a correction 

for electron neutrinos. Case C excludes electron neutrinos 

from both numerator and denominator, and counts events 

cal led charged currents only on the basis of toroid chamber 

hits as misclassified. 

Cas~ D rs identical to case C, except the shower 

energies of misclassified events were adjusted post facto 

for the unremoved muon before the cut was applied. This was 

done by correcting the shower energy of misclassified events 

downward. The decrease in the total number of events is not 

due to the energy change, which should increase the number 

of accepted events; this j o-b s imp I y ti med out before using 

the whole data set. 

Cases E,F, and G are I ike cases A,C, and D 

respectively, except the lookup tables were used to 

calculate the misclassification. 
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The energy shift parameterization has been somewhat 

improved since the analysis below. However, since the 

lookup tables use true variables and not smeared variables, 

the energy shift does not affect them. 

Table F.l 

Shower Monte Carlo cc~Nc studies 

Case cc cc~Nc Fraction Condition 

A 24471 1222 .050 No energy cuts 

B 9327 67 .007 Cuts, including ll e I 
as pub I i shed 

c 9321 72 .008 Cuts, no ll , no toroid-only e 

D 9309 103 .011 Energy adjusted 

E 24471 1226.0 .050 Weighted, no energy cuts 

F 9321 101.1 .011 Weighted, no energy adjustment 

G 9309 115.5 .012 Weighted, energy adjusted 

From this table, we can see the large reduction in the 

misclassification from the y cut. We can also see the 

fairly large influence of the unremoved muon energy on the 

effectiveness of they cut. The weighting scheme produces 

the same misclassification with no cuts, and almost the same 

misclassification with the cuts. 

The shift 1n the mean energy due to unremoved muons can 

be measured by the mean difference between the shower energy 

as reconstructed from the Monte Carlo flash chamber hits 
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including the unremoved muon hits and the true shower energy 

as generated. The result can be parameterized as the 

smaller of 15 percent of the true shower energy, or 4 times 

the muon energy, or 20 GeV. This is a surprisingly large 

effect. It should be recalled that the shower energy 

algorithm is nonlinear, so an extra track in the shower can 

cause a disproportionate shift 1n the energy. It is also 

true that the number of hits per GeV for isolated tracks is 

about twice the number of shower hits per GeV. 

Table F.2 shows the misclassification for al I 4 data 

sets, using the adjusted energy for making the y cut, both 

directly from the Monte Carlo, and using the lookup table 

weights. They are analogous to cases D and G and Table F.l. 

These are not the corrections that are applied to the data; 

they simply represent the results of the Monte Carlo 

analysis used to generate the lookup tables used to analyze 

the data. The -165 misclassification 1s much smaller 

because the (1-y) 2 distribution for antineutrinos has a 

smaller fraction of the events at high y where most 

misclassification occurs. 
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Table F.2 

Shower Monte Carlo CC-+NC 

Case cc CC-+NC Fraction Condition 

A 9309 103 .011 +165 raw 

B 9309 115.5 .012 +165 weighted 

c 9697 110 .011 +200 raw 

D 9697 118.7 .012 +200 weighted 

E 8018 67 .008 +250 raw 

F 8018 80.6 .010 +250 weighted 

G 8431 30 .004 -165 raw 

H 8431 31.5 .004 -165 weighted 

F.4.2 Charged current uncertainty 

Th~ systematic errors of these numbers are probably 

larger than the statistical errors of roughly 10 percent of 

the corrections. There have not been detailed studies of 

the sensitivity of the results to changes in Monte Carlo 

assumptions. It should be noted that the sytematic errors 

quoted in our previously pub I ished results do not include 

u n c e rta i n t i es 1 n the Monte - Ca r I o ca I cu I at i ons of the 

misclassification. The quoted error refers to the effect of 

changes in the energy scale and resolution on the charged 

current misclassification correction. 

The efficiency for NCCC to find muons depends on the 

length of the muon in the detector. The assumptions about 
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they distribution and the neutrino spectrum determine the 

muon energy distribution, which when combined with the 

energy range relation for the detector, determine the length 

distribution. For tracks which leave the detector, the x 

distribution and the detector geometry become important. 

Multiple scattering influences the amount of the track which 

is in the hit counting road. Al I of these influences may be 

considered wel I model led in the Monte Carlo. 

However, it was found that the Monte Carlo muon tracks 

had about a 5 percent lower peak value of hits per chamber 

than long tracks 1n real data. For this reason, the 

threshholds in the pattern recognition program were lowered 

by 5 percent for the Monte Carlo data. This is a source of 

uncertai~ty in the calculated muon finding efficiency. 

The efficiency of NCCC for finding muons 1s also 

affected by the amount of muon track obscured by the hadron 

shower, and by distraction due to features of the shower 

that appear similar to muon tracks. While Monte Carlo 

showers appear similar to the eye to actual showers, and are 

in reasonable quantitative ~gr~~~ent with actual transition 

curves and length distributions, it is difficult to be 

certain that the program performance is affected in exactly 

the same way by Monte Carlo showers as by real showers. 
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F.4.3 Neutral currents 

The results of the shower Monte Carlo analysis for the 

probability of a neutral current to be classified as a 

charged current, after cuts made with the shower energy 

adjusted for spurious muon removal, for both the raw and 

lookup table weighted shower Monte Carlo are presented in 

Table F.3 below. 

Table F.3 

Shower Monte Car Io NC~cc 

Case cc cc~Nc Fraction Condition 

A 2937 116 .039 +165 raw 

B 2937 115.3 .039 +165 weighted 

c 2946 118 .040 +200 raw -

D 2946 114.2 .039 +200 weighted 

E 2494 120 .041 +250 raw 

F 2494 112.4 .038 +250 weighted 

G 3025 83 .027 -165 raw 

H 3025 88.1 .029 -165 weighted 

The shift in energy due to removal of a spurious muon 

candidate can be parameterized by the smaller of 15 percent 

of the shower energy or 10 GeV. 
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F.4.4 Neutral current uncertainty 

One component of neutral current misclassification is 

decays in f I ight. While the probabi I ity of decay rather 

than interaction is simple to model 1n 

Carlo, the spectrum of hadrons is not. 

the shower Monte 

The Monte Carlo 

generates primary neutrino-nucleon vertex hadrons according 

to a non-isotropic firebal I model, rather than tabulated 

distributions. Subsequent interactions are model led by 

generating beam and target firebal Is which decay with 

similar properties, again 

sections. 

not based on tabulated cross 

While th• total track length in a shower of given total 

energy 1s relatively independent of the multiplicity 

distribu~ions used, there are more decays per unit track 

length from low energy tracks than high energy tracks 

because of the lower 7 factor. Also, decays from secondary 

interaction hadrons would not point as closely to the 

primary vertex as would primary hadron decays. Finally, the 

Monte Carlo does not include a kaon component 1n its 

showers. Al I of these factors make the decay muon 

calculation uncertain. 

From looking at pictures of the neutral current events 

misclassified as charged currents, it 1s clear that there 

are many more 

hadrons than to 

events 

decay 

misclassified 

muons. The 

due to penetrating 

program NCCC does not 
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check whether there is a shower at the end of a long track, 

so there are many more long hadrons than one might suspect. 

The calculation for the number of such penetrating hadrons 

is at least as uncertain as the decay muon calculation. 

There is additional uncertainty from the model I ing of low 

energy hadronic scattering. 

The lookup tables show a curious dependence on shower 

energy and invariant mass. The probabi I ity of cal ling a 

neutral current a charged current appears relatively flat 1n 

both energy and mass taken independently. However, there 1s 

a large increase in misclassification with energy at fixed 

mass, and a l~rge decrease in misclassification with mass at 

fixed energy. This can be explained by the properties of 

the Mon~e Carlo. The firebal I model in the Monte Carlo 

produces a primary multiplicity that increases with the 

logarithm of the hadron system invariant mass, but is 

independent of the laboratory shower energy. If there is a 

steeper than I inear probability of a showering hadron 

generating a muon candidate, when a fixed total shower 

ene~gy is subdivided i~to m~~e particles, as wi I I happen at 

high mass, the sum of the particle misclassification 

probabi I ities decreases. 

The Monte Carlo calculated rate of NCCC muon candidate 

generation in hadron beam data is about a factor of 2 larger 

than the misclassification measured 1n actual hadron beam 
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data. However, since calibration beam data is in the front 

and center of the detector, the level of misclassification 

measured and predicted is much lower than that predicted for 

neutrino data, so the difference may not be important. 

A low statistics study of removing the hits from the 

muon candidate found by NCCC and looking for a second 

candidate finds about 3 percent misclassification averaged 

over energy, after making a 0.5 percent correction for 

''real" multimuon events. This is reasonably consistent with 

the Monte Carlo, but is based on statistics of only 22/599 

events misclassified. 

F.4.5 Energy shift and acceptance 

As ~e noted above, the energy shift when a muon is not 

removed from a misclassified charged current, or a track 1s 

wrongly removed from a misclassified neutral current has an 

effect on the acceptance for each class 1n addition to 

contributing to the other class. The effect was 

incorporated into the high statistics Monte Carlo for 

calculating the measured ~C/CC ratio as a function of 

sin2e . The tables below were evaluated using that Monte w 

Carlo by comparing the acceptance for each class with and 

without the energy shift due to misclassification. 

Table F.4 shows the number of true neutral current 

events accepted by the cuts with gaussian smearing, and with 
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energy shifts from misclassification, and the corresponding 

bNC acceptance correction factor, the ratio of events 

accepted without and with the energy shift due to wrongly 

removed tracks, with the 10 GeV and y<.7 cuts. 

Table F.4 

NC muon-removal acceptance change 

Energy No shift Shifted bNC 

+165 7285.5 7335.8 .9931 

+200 7383.6 7429.1 .9939 

+250 7106.3 7163.4 .9920 

-165 4177.7 4188.3 .9975 

Table F.5 below shows the number of true charged 

current events accepted by the cuts with gaussian smearing, 

and with energy shifts from misclassification, and the 

corresponding ~CC acceptance correction factor, the ratio of 

accepted events with the shift to accepted events without 

the shift. 

Table F.5 

CC muon-removal acceptance change 

Beam No shift Shifted 6CC 

+165 23046.2 22771.5 .9881 

+200 23378.3 23083.1 .9874 

+250 22460.0 22050.3 .9818 

-165 11279.4 11507.5 1.0202 
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The neutral current shifts are rather smal I, about .7 

percent in the ratio, or about 1.5 percent . . 29 1n sin . 
w 

However, the charged current shifts are larger, of order 

1.3 percent in the ratio, or about 3 percent in sin28 . w It 

appears that the crossover from charged current to above the 

y cut is larger than the crossover between charged current 

and neutral current. Both corrections lower the corrected 

ratio. Some data neutral current events should be removed, 

because they are below the y cut only because a track was 

removed wrongly. Some charged current events should be 

added to the data, because they failed they cut only due to 

their unremoved muons. The antineutrino data has a 6CC 

larger than 1.0 because 6CC as calculated by the Monte Carlo 

also includes the shift 1n energy from delta rays on al I 

muons as wel I as the shift from misclassification. The 

(1-y) 2 distribution for anti neutrinos 1s thus shifted to 

higher y, so the loss of events to the 10 GeV cut 1s 

reduced. The flat neutrino y distribution makes the gain 

from 10 GeV cut and the loss from the y cut compensate for 

each ~ther. 

Since the energy shift effects are included in the 

Monte Carlo used in this analysis, the above corrections are 

imp I icitly included. However, the previously pub I ished 

results of this experiment lacked the corrections. After 

the neutral current and charged current event counts were 
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corrected for misclassification by the event-conserving 

prescription of the previous analysis, both should have been 

corrected further for the acceptance effects of the energy 

shift. The definitions of ACC and ANC were chosen such that 

the correction to the ratio 1s the product of the 

corrections. 

NCI = CC final 
NCI CC old corr * ANC * ACC 

Eq.F.7 

Table F.6 1s the total correction factors to the 

ratios, including both neutral current and charged current 

corrections. 

Table F.6 

NC/CC muon-removal corrections 

+165 .9813 

+200 .9814 

+250 .9739 

-165 1.0176 

The corrections are about 2 percent of the ratio, but 

of opposite signs for neutrinos and antineutrinos. They 

will tend to make . 2() sin 
w about 5 percent larger. The 

anti neutrino corrections wi I I make the value of p larger by 

about 1 percent. 
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F.4.6 Comparison with other experiments 

The experiment with the detector most similar to ours, 

and with similar event classification techniques, is the 

CHARM group at CERN. Their detector is made of marble slabs 

with scinti I later and proportional tube detectors 

interspersed. They identify charged current events by 

finding the muon track. They have published results from 

two runs. 

Their first result [48] required muons to have a range 

corresponding to an energy of 1 GeV, and .67 GeV visible 

outside the shower volume, with al I other events initially 

classified as neutral current. They human-scanned al I 

neutral current candidates, and transferred 5 percent to the 

charged_current class before further corrections, which is 

about 1.6 percent of the charged currents. They made a 2.6 

percent addition to the neutral currents for muons from 

decays 1n f I ight in the shower. They measured the 

inefficiency of their track finding program and selection 

process by superposing Monte Carlo muons on data showers to 

be 1.5 percent. 

Their second result [36] uses similar techniques in a 

somewhat upgraded detector. They quote a 3.5 percent 

charged current identification 

reasonably consistent 

However, the decay 

with the 

1n f I ight 

inefficiency, which is 

previous 1.6+1.5 percent. 

correction 1s much larger, 
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being 4.8 percent of the neutral 

than 4 GeV. 

currents with Eh greater 

The CDHSW [30] and CCFRR 

current candidates any event 

[37] groups define as charged 

whose length from vertex to 

last significant visible ionization is greater than some cut 

chosen to be longer than al I but a smal I fraction of 

hadronic showers. Both detectors are about 3 times denser 

than either the CHARM detector or ours, so decays 1n f I ight 

are smaller, and muon 

detector is magnetized to 

side of the detector are 

ranges 

focus 

are smaller. The CDHSW 

muons, so losses out the 

sma I I . The CCFRR detector is not 

magnetized, but makes a radius dependent y cut designed to 

exclude events where the charged current muon would have too 

short a range or too large an angle to be properly 

classified. 

Both CDHSW and CCFRR make a subtraction from the 

neutral current candidate sample for the number of short 

charged currents. 

the length cut. 

correction to their 

They calculate 1n detai I the propagation 

The CDHSW group makes a -22.5 percent 

ratio. - The CCFRR group has a 21.7 

percent background in their 

the y cut, and 4.6 percent 

very smal I misclassification 

currents. 

neutral current sample before 

afterwards. Both groups claim 

probabi I ities for neutral 
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G. Energy Calibration 

G.1. Overview 

G.1.1 Need for Eh calibration 

The absolute hadron energy (Eh) calibration of the 

calorimeter is important to the neutral structure function 

analysis because the hadron shower energy appears in the 

formulae for the sealing variables y and x 

Eq.G.1 

2 
x = Eh tan oh I 2M(l-y) Eq.G.2 

Also, the data used for the analysis are selected on the 

basis of Eh and y cuts. In addition, the hadron shower 

angle algorithm was calibrated using transverse momentum 

balance 1n charged current neutrino events, which also 

depends on the hadron energy scale. Of course, knowing the 

hadron energy scale is necessary as wel I for neutral current 

physics topics other than the structure functions, and for 

analyzing the charged current events in their own right. 

The hadron energies of neutrino events 1n this 

experiment were measured by counting hits 1n the flash 

chamber calorimeter. The detector and algorithms are 

described in Chapter 3. A calorimeter 1s a volume of 

material in which particles are intended to interact unti I 
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al I of their energy 1s dissipated. Typically, only a smal I 

fraction of the material 1s sensitive to the deposited 

energy, and the devices which 

recording have comp I icated 

amp I ify the energy signal for 

response functions. Thus, a 

calorimeter is a device which ideally produces a signal 

proportional to energy, but with an unknown constant of 

proportionality. This 

spectrometer for charged 

calibration is largely a 

strength and geometry. 

G.1.2 Hadron beam data 

1s 1n contrast to a magnetic 

particles, where the absolute 

function of the magnetic field 

The usual approach to calorimeter calibration is to aim 

a momentum-selected beam at the detector and measure the 

response. We have done this for our detector, but the data 

were spoiled by an unexpected effect. The number of flash 

chamber hits produced at a given energy was a function of 

the event number in each run. This occurred for calibration 

beam hadron and muon runs. The flash chamber response 

degraded rapidly at first,- then approached an asymptotic 

maximum degradation, recovered at event 200 (which is when 

the magnetostrictive wires were remagnetized), then began to 

degrade again. This was surprising, since cosmic ray muon 

data showed no demagnetization effects, nor did neutrino 

data. 
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Our hypothesis 1s that the currents induced in the 

pickup strips by the flash chamber plasma discharge produced 

magnetic fields that locally demagnetized the wires in some 

of the chambers. The damagnetization was cumulative unti I 

remagnetization. The calibration data showed the effect 

most clearly 

concentrated 

because the 

at precisely 

local 

the 

demagnetization was 

points along the 

magnetostrictive wires where the calibration beam events 

were read out. In neutrino and cosmic ray muon data the 

damage was spread out enough for it to be imperceptible. 

The effect was of order ten percent at energies typical 

of the neutrino data. The rate of decay was faster at 

higher energies, which IS consistent with faster 

demagnetjzation due to more hits to read out. However the 

amount of degradation was less at higher energies. This may 

be due to higher efficiency in the partly demagnetized state 

when the hits overlap at high density. For pre I iminary use, 

the hadron beam calibration data was analyzed by 

extrapolating the apparent trend back to the first event 

after magnetization. In any case, the hadron beam data is 

not wel I enough understood 

accurate absolute calibration. 

G.1.3 Charged current Eh data 

to provide a sufficiently 

For a neutral current analysis, one is tempted to use 
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the charged current neutrino data to obtain a hadron energy 

calibration. The spectrum of the narrow band beam is known 

wel I, and the charged current cross section as a function of 

neutrino and shower energy is known from other experiments, 

so the charged current hadron shower energy distribution may 

be calculated. The Eh calibration can be obtained by 

varying the scale parameter to match the measured shower 

energy distribution to the calculated distribution. 

There are in fact some advantages to deriving energy 

scales from the charged current data rather than from hadron 

beam calibration data. One advantage is the elimination of 

drifts in response in the period of time between calibration 

and data taking. Another 1s that the charged currents 

average _over the entire volume of the detector, while the 

calibration beam samples a narrow path in the front of the 

detector. Finally, it 1s possible that showers induced by 

hadrons are systematically different from deep inelastic 

neutrino scattering showers even for the same physical 

energy. 

However, since the -di str i but ion of hadron shower 

energies for neutrino charged current events is relatively 

flat, there is I ittle energy scale information avai I able. 

The only features are the position of the rapid drop in the 

Eh distribution at the high y edges of the pion neutrino 

band and the kaon neutrino band. These are smeared out by 

the Eh resolution and Ev spectrum, and we have incomplete 
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acceptance for identifying charged current events at high y. 

It is also somewhat circular to use a scale derived from 

assumptions about the differential charged current cross 

section for studying charged current physics. 

We could circumvent the high y systematics by making a 

y cut. However, since the y distribution is rather flat, 

the shape and mean of the distribution of reconstructed 

shower energies below the cut would be almost unaffected 

even if we were to change al I shower energies by a large 

factor. Thus, the charged current hadron shower energy 

distribution 1s not a very powerful way to derive an energy 

scale, nor a ~ery strong check of one. 

G.1.4 C~arged current Ev data 

Another way to use the charged current neutrino data to 

determine the hadron energy cal ibratior. is to use the muon 

energy and/or the neutrino energy information. 

One obvious possibi I ity is to use the hadron energy 

spectrum after making muon energy cuts. The hadron energy 

distribution of events with - sel~cted muon energies is more 

sensitive to the hadron energy calibration and less 

sensitive to some systematics than the inclusive hadron 

energy spectrum. However, the muon energy scale, and the 

acceptance and efficiency of the muon reconstruction, become 

issues in the analysis. 



380 

Another possibi I ity is to use the event by event 

neutrino energy information avai I able 1n the narrow band 

beam, which 1s discusses in Appendix D. The neutrino energy 

calibration 1s set by the known mean secondary momentum in 

the neutrino train, two-body decay kinematics, and the 

geometry of the decay tunnel and detector. Even crude 

knowledge of the hadron and muon energy scales is sufficient 

to separate pion neutrinos from kaon neutrinos, so there is 

a wel I-understood energy-radius correlation for the 

neutrinos. 

We can find the hadron energy scale from the neutrino 

energy and muon energy assuming nothing but conservation of 

energy, E =Eh+E . 
11 µ. The residual energy, 6E=Eh+E -E , should µ. 11 

be zero Jor al I charged current events, and wi I I be non-zero 

if the hadron energy scale is incorrect. The hadron scale 

can be found by varying the calibration unti I the mean 

residual energy for the data is zero. 

There are several advantages to using conservation of 

energy for the calibration rather than the distribution of 

had roh shower energies. Fi r-st, energy is conserved for al I 

events, independent of the cross section or acceptance or 

resolution. Thus many deta i Is of the experimental 

conditions are unimportant and cuts may be made to exclude 

events or kinematic regions without significantly biasing 

the result. Also, the distribution of deviations from 
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perfect conservation of energy 1s narrower than the 

distribution of shower energies, so there is more 

statistical power 1n conservation of energy than in the 

shower energy distribution for 

Fina I I y, a ca I i brat ion derived 

a fixed sample size. 

from charged currents 

assuming only conservation of energy may be used 1n a 

charged current physics analysis with less circularity than 

a calibration derived assuming a certain differential 

charged current cross section. 

G.1.5 Eµ ca I ibration 

The muon _energy calibration becomes important if energy 

conservation is used to determine the Eh calibration. If 

muon ene_rgies are systematically too high, for instance, the 

predicted shower energies would be lower by the same amount, 

and an erroneous hadron calorimeter scale would be derived, 

or a correct hadron energy scale could appear to be 

incorrect. The Eµ calibration is also important because the 

hadron shower angle algorithm was calibrated by transverse 

momentum balance 1n the charged current events, and the 

transverse momentum of the muon 1s directly proportional to 

the muon energy scale. Finally, any charged current physics 

analysis depends on an accurate muon energy scale. 

Muon detection and reconstruction is discussed 1n 

Appendix E. Muon momentum was measured by magnetic 
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deflection in toroidal iron magnets. The geometry of the 

magnets and muon tracking chambers is directly measurable (a 

tape measure wi I I suffice), so the systematic accuracy of 

the absolute muon energy calibration is I imited by how wel I 

we know the magnetic field 1n the iron. The field was 

dominated by the presence of the iron rather than by the 

excitation coi Is, although there was some position

dependence. 

It is possible to bring a beam of momentum selected 

muons to the detector and thus reconstruct tracks of known 

momentum. However, due to 

beam could not be swept 

essentially al I calibration 

beam I ine constraints, the muon 

across the detector. Thus, 

muons travel led the same path 

through ~he detector, rather than sampling the ful I range of 

trajectories populated by charged current muons. The muon 

beam data 1s therefore not a very strong check on the 

absolute muon 

particular path. 

energy calibration, except along that 

The distribution of muon energies from the charged 

current data cou Id a I so be u-sed to determine the muon energy 

scale, but problems arise that are similar to those in the 

use of the hadron energy distribution to determine the 

hadron energy sea I e. Our ab i I i ty to reconstruct muons at 

low energy was I imited, due to range and angular acceptance. 

The shape of the distribution depends on the neutrino 
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spectrum, the cross section, the acceptance, and the 

resolution, al I of which would have to be model led 

accurately. While quasielastic events, with almost zero 

shower energy and the ful I neutrino energy in the muon, can 

be used to find the Eµ scale independently of the Eh scale, 

they are a smal I fraction of the total cross section. 

G.2. Fitting procedure 

G.2.1 Requirements 

It is possible to use the charged current data to 

determine both and Eµ scales simultaneously. For 

instance, events at low y are a source of muons with energy 

nearly e~ual to the neutrino energy. Similarly, events at 

high y are a source of hadron showers with energy nearly 

equal to the neutrino energy. It is simply necessary to do 

a multi-parameter fit to the charged current data, where the 

parameters are the hadron and muon energy scales. 

We must now decide how to approach the problem. We 

must be able to calculate the expected distributions for 

correct scales, and also be able to quickly recalculate the 

data distributions under arbitrary hadron and muon scales. 

We must invent a measure of disagreement between the 

expectation and the recalculated data, and a process to find 

which values for the scale parameters minimize the 

disagreement. 
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Our choice is to use conservation of energy, 1n the 

form of the residual energy, 6E=Eh+E -E . µ v The smal I 

expected residual energy, due to selection and biases, wi I I 

be calculated by Monte Carlo. The hadron energy scale wi I I 

be represented by a polynomial function of the flash chamber 

response. The muon energy scale wi I I be represented by 

parameterized perturbations in the magnetic field map. The 

data wi I I be binned to max1m1ze the sensitivity to the 

different scales. A chi square wi I I be constructed from the 

mean residual energy for each bin and its statistical error. 

The errors wi I I be calculated from the width of the 

distributions, so the goodness of fit may be fairly 

evaluated. The chi square 1s a function of the hadron and 

muon scale parameters, and can be minimized by standard 

methods. Since events move across bin boundaries when 

scales are changed, the minimization process is iterated. 

G.2.2 Hadron scale parameters 

The basic measure of flash chamber response 1s the 

quantity denoted as corrected hits, He, as discussed 1n 

Chapter 3. Each 10-cel I region of each flash chamber 1s 

described by an efficiency and multiplicity in tables made 

from cosmic ray muons. These constants plus a model of 

saturation are used to "correct'' the observed hits in the 

region to a number of equivalent particle traversals, which 
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can exceed 10. The energy formula 1s a polynomial 1n the 

number of saturation-corrected flash chamber hits. 

E a.H(i-l) 
I C 

Eq.G.3 

A constant term represents an energy-independent noise 

component, a Ii near term represents the expected 

proportionality of calorimeter response to energy, and a 

quadratic term would indicate imperfect I inearity. A 

positive quadratic term is expected if the calorimeter 

saturates. Severe saturation might require even more terms. 

Studies of the noise upstream and downstream of 

neutrino events, including random hits, out of time hits, 

refired ce I Is, cosmic ray accidentals, etc., indicate that 

it was about 0.2~.02 corrected hits per. chamber. The 

average shower length was about 200 chambers, so the noise 

averaged 40 hits, which is equivalent to less than 1 GeV. 

This noise was subtracted from H before the polynomial was c 

evaluated, and the constant term a
1 

was fixed to zero in the 

fits. 

Since these are charged current events, the muon track 

makes hits 1n the flash chambers, which are removed by 

software before H is calculated. Studies indicate that 
c 

this process leaves behind energetic delta rays. While it 

would be possible to subtract the average amount of muon 

residue from the data, the actual distribution of muon 
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residue is far from symmetrical, with a large spike at 

nearly zero residue and a few events with many GeV of 

residue. The approach adopted here was instead to add delta 

ray fluctuations to the Monte Carlo shower energies. Thus, 

both data and Monte Carlo wi I I double count some energy, but 

the distributions should match 1n detai I. In fact, the 

effect of delta rays 1s visible in the population of very 

low y bins being depleted by events smearing up to larger Eh 

1n both data and Monte Carlo. 

While the flash chamber efficiency and saturation 

correction program takes about one second per event of CPU 

time on the Fermi lab Cybers, we can obviously store H for c 

each event and quickly recalculate the hadron energies as 

the scale fitting program changes the parameters. 

G.2.3 Muon scale parameters 

We expect errors 1n muon energies to be due to errors 

1n the magnetic field map. Such errors wi I I depend on where 

the muon track traverses the magnets. A simple polynomial 

adjustment to muon energies -doe-s not rep resent this we I I . A 

radius-dependent adjustment would be better, but a muon does 

not travel at a single fixed radius. It would be desirable 

to solve for the magnetic field map itself as a parameter in 

the fit. 



387 

One simplification is to presume that the field of the 

12-foot magnets is known, and that only the 24-foot magnets 

have an uncertain field map. Next, we may presume that the 

24-foot field map is approximately known, and we need only 

fit for perturbations to it. We may also assume that an 

azimuthally-averaged field correction wi 11 be sufficient, 

given the intrinsic 10 percent resolution imposed by 

multiple scattering. A set of low-order polynomials 1n 

radius can then be used as the perturbation functions. 

Also, since there are few muons at large radius, we can 

settle for a coarse parameterization of the field error over 

much of the 24-foot diameter magnet area. 

The perturbations chosen were a constant and a constant 

times the radius out to the ful I radius, and approximately 

orthogonal polynomials that were weighted to vanish at 200 

cm radius. The weighted polynomials were a constant, a 

I inear function of radius offset to be zero at 100 cm, and a 

parabola centered at 100 cm radius and offset so the mean 

change in the field would be approximately zero. The 

magnitudes of the perturbations were set to vary the muon 

energies by of order 10 percent. The perturbutations are 

I lustrated in Figure G.1. 

be able to recalculate It would be very desirable to 

muon energies for arbitrary field 

quantities, as we could for the 

maps from stored summary 

hadron energies. It takes 
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of the order of one second to fit a muon from scratch, 

largely spent integrating the trajectory of the muon, and we 

have tens of thousands of events. It is useful to recognize 

that we actually only need the change in the muon energy as 

a function of perturbations in the field parameters. This 

suggests using a Taylor expansion in the perturbations. 

A pass through the data reconstruction was dedicated to 

finding the coefficients to describe each muon energy as a 

function of the field map. Each muon was fit with the 

standard 24-foot field map and the result was stored as P0 . 

Then, for each of the 5 radius-dependent perturbation 

functions j, the muon was refit twice, first with a positive 

perturbation to produce 

perturbation to produce P. 
J-

p • I 
j+ 

then with a negative 

These 10 ref it energies were 

a lso stored. Each refit was substatial ly faster than the 

original fit, since the hit selection and early coarse fit 

iterations could be skipped. 

The muon energy for each event could then be calculated 

for arbitrary perturbations by quadratic interpolation 

(although cross terms betw~~n ~1fferent perturbations were 

ignored.) 

= I P 0 + r: AP j I 
J 

AP. 
j 

2 = [b.(P. - P.) + b.(P. 
J J+ J- J J+ 

2P0+ P. ) ] /2 
J-

Eq.G.4 

Eq.G.5 
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Events where the quadratic term 1n the Taylor expansion was 

too large could be recognized and removed from the sample. 

As discussed 1n Appendix E, there was a systematic bias 

of a few percent 1n the muon energy reconstruction program 

TRACKM2, which was used for this analysis. This bias was 

due to a subtle effect of the dependence of the multiple 

scattering contribution to the chi square on the momentum. 

Rather than attempting to parameterize the bias and remove 

it from the data, the same bias was included in the Monte 

Carlo muons by generating hits with magnetic deflection and 

multiple scattering, then fitting them with the same 

algorithm as 1n TRACKM2. 

G.2.4 BJnning 

The mean residual energy ~E for the data as a whole is 

not sensitive to the hadron and muon energy scales 

separately. For essentially any hadron energy scale, there 

is a muon energy scale that wi I I make the mean residual 

energy of the data match the Monte Carlo. The solution to 

this problem is to bin the aata and Monte Carlo in some way 

such that some bins are sensitive mostly to the hadron scale 

and some bins are sensitive mostly to the muon scale. 

Binning directly in hadron and muon energies is not a 

good choice, since the mean Eh+Eµ of a bin in Eh and Eµ wi I I 

be determined more by the bin edges than by the energy 
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scales. It is better to bin in they variable. The mean ~E 

value for each y bin is approximately zero. The high y bins 

are more sensitive to the hadron scale and the low y bins 

are more sensitive to the muon scale. Ten bins of width 0.1 

unit 1n y were used for the energy scale fit. 

At high y, there 1s an important bias in the mean 

residual energy due to selection effects. For each bin 1n 

y, there is a range of true neutrino energies. At fixed y, 

a higher energy neutrino produces higher energy muons than a 

lower energy neutrino. A muon without enough energy to 

penetrate the calorimeter and iron magnets cannot be fit. 

Thus, at high y, where IS near the minimum, a higher 

energy neutrino is more I ikely to produce an accepted muon. 

Therefore the mean accepted true neutrino energy at high y 

is higher than the average Ev for that radius. The sum of 

the reconstructed Eh and Eµ reflects this, so the mean 

Eh+Eµ-Ev IS biased positive at high y. This bias appears rn 

both data and Monte Carlo. To minimize possible systematic 

errors, a cut 1n y was made, at 0.8 for the pion neutrino 

band, and at 0. 9 for the kao-ri neutrino band. 

It is also useful to bin 1n neutrino energy. For each 

radius, the energy of a neutrino from pion decay is at most 

half that of an neutrino from kaon decay. Including the 

kaon band events separately from the pion band events is 

useful because it gives more lever arm 1n the scale 
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determinations, especially the I inearity of the hadron 

scale. Separating the high Ev events also reduces the 

correlation between the hadron and muon scales by greatly 

broadening the range of muon energies in events with a given 

hadron energy, and vice versa. There is also a factor of 2 

range of neutrino energies within the pion band, so it is 

worthwhile to divide the pion band into low radius (high 

energy) events and high radius (low energy) events. Events 

at higher energy than halfway between the pion and kaon band 

were assigned to the kaon band. Pion band events at less 

than 60 centimeters were assigned to the high energy pion 

band, and events at greater than 60 centimeters were 

assigned to the low energy pion band. 

Binning in y and Ev sti I I gives I ittle sensitivity to 

the position-dependence of the toroid magnetic field. While 

there is some indirect correlation of y and Ev to position 

in the magnets, it is better to also bin the data and Monte 

Carlo in the position of the muon directly. Since the muon 

bends in a field- and momentum-dependent way in the toroids, 

the radius at the front faci i~ the best variable, which we 

shal I cal I R24 . It 1s not necessary to use two-dimensional 

binning in bothy and R24 . We can bin in both independently 

and subtract one degree of freedom, since knowing al I they 

bins and al I but one R24 bin would al low us to calculate the 

last R24 bin if the same events are entered 1n both binnings 

of the data. 
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The distribution in muon radius at the toroid face is 

far from flat. There 1s a peak at about 100 cm radius, due 

to the competing effects of the change in area per radius 

increment and the fal I ing distribution 1n muon angle. The 

fit used 10 bins unequally spaced in radius but with roughly 

equal statistics. 

G.2.5 Chi square minimization 

The energy scales are were determined by minimizing the 

chi square between the data and Monte Carlo mean residual 

energies, defined as fol lows. 

Eq.G.6 

tiE = ___!_ E (Eh+ E - E ) N events µ. 'V 
Eq.G.7 

(j2 1 E (Eh+ E - E - tiE) 2 = N2 events µ. 'V 
Eq.G.8 

The sum over bins refers to the binning by neutrino 

train nominal momentum setting (-165, +165, +200, +250), 

coarse neutrino energy (kaon, low energy pion, high energy 

pion), charged current y, and R24 . tiE and a2 are computed 

separately for data and Monte Carlo, and separately for each 

bin. N refers to the number of events in the bin. Ev 1s 

the energy as derived from the event vertex radius for both 
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data and Monte Carlo. Eh is the smeared true hadron shower 

energy for the Monte Carlo, including the effects of delta 

rays, and for the data 1s computed from the polynomial 

coefficients a. and the saturation-corrected flash chamber 
I 

hits H , after the c length-dependent noise subtraction. Eµ 

for the Monte Carlo 1s the muon energy as smeared by 

reconstruction from a Monte Carlo generated scattered 

trajectory and smeared detector hits. For the data, Eµ is 

computed from the fit momentum with unperturbed magnetic 

field, P0 , the momenta from the positive and negative field 

perturbations P. 
J+ 

and p • I 
J-

perturbation coefficients b .. 
J 

and the magnetic field 

The problem of finding the energy scale parameters that 

make the data best agree with the Monte Carlo has been 

reduced to finding the parameter values that minimize the 

chi square function. This 1s equivalent to finding the 

parameter values where al I the partial derivatives of chi 

square with respect to the parameters vanish simultaneously. 

If the derivatives are constant, the problem is a system of 

I inear equations. Even if £he derivatives are not constant, 

they can be treated as constant near the minimum. We 

evaluate the derivatives at an estimated minimum, solve the 

I inear problem for the incremental parameters, and iterate 

unti I the increments are sufficiently smal I. 
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The problem at hand 1s exactly I inear in the hadron 

scale parameters, a., and nearly 
I 

I inear in the magnetic 

field parameters, b .. 
J 

However as the scales are adjusted, 

events move across bin boundaries, and the u2 of the data 

change, so iteration ts sti I I necessary. Nonetheless, we 

expect convergence to be rapid. 

The fitting program operated on files of Monte Carlo 

and data events for each data set. The files were read in, 

cuts applied to the events, and the sums necessary to find 

2 6E, u , and the partial derivatives of chi square, were 

accumulated for each bin. The I inear problem for the 

increments to_the parameters was solved, and the parameters 

were changed. The data files were then rewound, and the 

data sums were reaccumulated with the new parameter values. 

G.2.6 Parameter elimination 

We expect there to be important correlations between 

the I inear and quadratic hadron scale parameters, simply 

since both give increasing energy to events with increasing 

numbers of hits. A smal f increase 1n the I inear scale 

factor could be compensated for by a smal I decrease in the 

quadratic term. The amount of correlation wi I I vary with 

the range of hadron energies 1n the data: for antineutrino 

data, with few kaon neutrinos and suppressed cross section 

at high y, there w1 I I be I ittle independent information on 
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non I inearity, while for the +250 GeV neutrino data set, with 

many high energy kaon neutrinos, the quadratic term wi I I be 

better measured. 

There wi I I also be correlation terms between the 

different magnetic field perturbations. The worst wi I I be 

between the flat perturbation weighted to vanish at 200 cm, 

and the unweighted flat perturbation. If there were no 

events beyond 200 cm, there would be perfect correlation 

between these two parameters, since any . . increase 1n one 

could be compensated by the same decrease in the other. The 

perturbation polynomials in the inner 200 cm were selected 

to be roughly orthogonal to each other, but there wi I I 

surely be some residual correlation. 

Fin~I ly, there wi I I be correlations between the hadron 

scale and the muon scale. While the extremely low and high 

y regions are sensitive mostly to one scale or the other, 

and binning by coarse neutrino energy also gives some 

separate sensitivity to the hadron and muon scales, much of 

the statistical power of the fit comes from mid y, where the 

hadroM and muon scales are hlghly correlated. 

Our approach w i I I be to test whether parameters a re 

necessary by comparing their values from the fit with their 

statistical errors. We wi I I also compare the probabi I ities 

calculated from the chi square and degrees of freedom as the 

number of parameters is changed. Both tests require that 
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the statistical errors be wel I-defined. Our choice of the 

mean ~E, whose statistical error can be calculated from the 

RMS width of the ~E distribution for each bin, faci I itates 

this. 

G.2.7 Event selection 

There were four different neutrino beam secondary 

momentum settings 1n our data, nominally -165, +165, +200, 

and +250 GeV. The toroid magnet currents were reversed for 

the antineutrino running, but the magnitudes were the same. 

The data files were produced from the processed data 

summary tapes._ Both hadron shower energy triggers and 

toroid muon triggers were used. At least one of the vertex 

finding _programs, or the human scanner if avai I able, was 

required to have found a vertex. The event vertices were 

required to be at least 200 flash chamber clock counts 

(about 50 cm, or .45 absorption lengths) from the average 

efficiency edge of the flash chambers in al I three views in 

order to avoid calorimeter leakage out the sides. The 
-

vertices also had to be at least 176 flash chambers 

upstream of the end of the calorimeter to avoid leakage out 

the back, and to ensure the muon track is clearly visible. 

This is about 5.5 meters or 6.5 absorption lengths. The 

muon fitting program was also required to have found a muon 

momentum, which means I ittle more than the existence of a 
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calorimeter track and a toroid chamber hit not grossly 

inconsistent with the track. 

There were 50000 Monte Carlo charged current neutrino 

events generated for each data set, within the above 

longitudinal volume and out to the 180 cm radius represented 

in the Monte Carlo neutrino beam files. The transverse 

containment cuts were applied also as above, removing about 

10000 events per data set, and the minimal muon 

reconstruction cuts removed about 5000 more events per data 

set. 

One of the reasons for using the mean residual energy 

in fitting for the energy scales is that the loss of events, 

even if correlated to kinematic variables, typically does 

not bias the mean. Thus, we may apply severe consistency 

cuts to the data to ensure that only events with unambiguous 

muon reconstruction are used. The fol lowing cuts were 

applied to both data as analyzed by TRACKM2 and Monte Carlo 

events analyzed by the analog of TRACKM2. The muon fit chi 

square per degree of freedom was required to be less than 3, 

and at least 3 muon chambe~ ~i~s were required in the muon 

fit, to remove questionable fits. The momentum error 

returned by the fit was required to be less than 30 percent 

to remove poorly measured muons. The polarity of the fit 

muon was 

positive 

required to be 

for antineutrino 

negative 

data. 

for 

The 

neutrino data and 

event vertex was 
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required to be downstream of flash chamber 8 to eliminate 

incoming muons that failed to 

These cuts removed about 3200 

fire the front veto counter. 

events per data set in the 

Monte Carlo, where there were no backgrounds or noise, and a 

larger fraction in the data. 

The pattern recognition and reconstruction task in data 

with relatively sparse, inefficient and noisy chambers, and 

a toroidal magnetic field, 1s difficult enough that a non

negl igible fraction of the events are improperly 

reconstructed. Therefore, 1n addition to the standard muon 

fitting routine, an independent pattern recognition and 

coarse fitting routine, DMUDRV, was run on the events. If 

the momenta did not agree to within 25 percent, the event 

was reje~ted. This cut removed from 500 to 1000 events per 

data set. DMUDRV also returned a qua I ity variable, 

representing a combination of chi square probabi I ity, the 

number of unused hits, and the number of m1ss1ng hits. A 

cut in this variable removed from 250 to 500 events per data 

set. Less important cuts were on soft failures of the 

standard fitting rout i he, an-d fa i I u res during the perturbed 

field refitting process. There was also a cut on the number 

of flash chamber hits upstream of the event vertex, to 

remove a few charged current events where the vertex finding 

program put the vertex on the muon track but downstream of 

the hadron shower. Finally, after al I the bin sums had been 
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accumulated for the fit, any bin that did not contain at 

least 25 events in both data and Monte Carlo was excluded 

from the fit. 

Table G.1 
Events used 1n energy scale fit 

Data Monte Car lo 
Fid, fit After Fid, fit After 

Energy cuts cuts cuts cuts 

-165 5986 5416 37989 33073 
+165 9608 8669 32176 27229 
+200 6660 5441 33180 27699 
+250 7231 5802 34169 28334 

G.3. Results 

G.3.1 Residual energy distributions 

Fi~ure G.2 shows the residual energy information as 

used in the fit. The top plot 1s a scatterplot of residual 

energy 6E=Eh+E -E µ ll 
in the pion band at radius less than 60 

cm, versus y=Eh/(Eh+Eµ). The middle plot IS the mean 

residual energy for the 10 bins 1n y. The deviation from 

6E=O at high y is due to larger acceptance for higher than 

average neutrino energies. The bottom plot is the y 

distribution of the events. The falloff at high y is due to 

the poor muon acceptance at large angles and low energies. 

Figure G.3 is the corresponding plot for the Monte Carlo. 

Note that the same deviation from zero ~E and falloff in 

acceptance at high y appears in Monte Carlo as in the data. 
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Figure G.4 shows the distribution of ~E for al I events 

1n the previous figures, with the data shown with error 

bars, and Monte Carlo shown with a sol id out I ine. 

Figure G.5 is the distribution before and after the fit 

of the ratio of the difference between the mean ~E in data 

and Monte Carlo to its standard 

overlaid are gaussians with zero 

deviation, which should match the 

deviation. The curves 

mean and unit standard 

distributions if the 

mismatch between data and Monte Carlo is due to statistical 

fluctuations. 

G.3.2 Magneti~ field at large radius 

The large radius region of the 24 foot magnets 1s 

populate~ mostly by large angle muons. The kinematics of 

charged current neutrino scattering is such that large angle 

muons are mostly from high y events. High y means large 

hadron energies, and thus large absolute (as opposed to 

relative) energy errors. If we think in terms of predicting 

the muon energy from the hadron energy and neutrino energy, 

clearly the largest absolute- errors 1n the prediction occur 

at high y. On the other hand, the lowest absolute muon 

energies occur at high y. Thus, the fractional error in the 

predicted muon energy is largest at high y. 

This 1s rather unfavorable for using the 

current events to measure the field at large radius. 

charged 

On the 
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other hand, the argument may be turned around. If we are 

interested only 1n the total event energy, the magnetic 

field value at large radius 1s not very important, since 

only high y events populate large radius, and a muon scale 

error effects only a smal I fraction of the total event 

energy. The same is true of the charged current y variable. 

At high y, changing the muon energy by 10 percent wi I I 

change (1-y) by 10 percent, but the value of y by much less. 

We may investigate the large radius region by changing 

the number of field perturbation functions we use, and 

comparing chi square probabi I ities. These fits wi I I be for 

data set independent I inear and quadratic hadron scale terms 

and the field perturbation coefficients. Using al I 5 of the 

perturb~tion functions, the chi square was 246.3 for 199 

degrees of freedom, for a probabi I ity of .0126. The fit was 

stable, but failed to converge 1n that the increments 1n 

some of the parameters osci I lated by amounts comparable to 

their errors. In particular, the coefficient of the slope 

of the field at large radius was only 1.5 times its error. 

If we remove the slope perturbation at large radius, 

convergence is satisfactory within 5 iterations. While 

removing a parameter would normally increase the chi square, 

instead we find chi square decreasing to 238.8 for 200 

degrees of freedom, for a probabi I ity of .0315. Presumable 

this is due to the instabi I ity of the previous fit. The 
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coefficient of the constant perturbation at large radius is 

just under twice its error. The change 1n field is 6 

percent relative to the input model field, and 1s not 

grossly inconsistent with the Hal I probe measurements. 

If we remove even the constant perturbation at large 

radius, sti I I fitting for 3 perturbation coefficients in the 

inner 200 cm radius of the magnets, the chi square becomes 

244.2 for 201 degrees of freedom, with a probabi I ity of 

.0201. Since the large radius magnetic field 1s so 

difficult to measure using charged current muons, 1s 

relatively unimportant for physics, and the chi square 

probabi I ity improves by such a smal I amount, we prefer to 

fit only for the inner magnetic field perturbations, and 

retain the input model field at large radius. 

It is an interesting property common to al I three fits 

that the magnetic field value at the radius where the muon 

calibration beam struck the magnet face was the same after 

the fit as the input field map. 

G.3.3 Hadron scale results 

Al I the above fits produced hadron scale parameters as 

wel I as magnetic field perturbations. The hadron scale 

parameters were almost insensitive to the field 

parametrization used in the fit. The inner field fit yields 

a I inear parameter with a statistical error of 0.75 percent, 
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including the correlation to the muon and non-I inear hadron 

scales. The quadratic hadron parameter is 13.8 statistical 

sigma away from zero. 

Since the deviation 

probably results from an 

from I inearity 

increase with 

1 s sma I I, and 

energy 1n the 

fraction of showers dense enough to defeat the correction 

algorithm, we expect that a quadratic energy formula, which 

describes a basically I inear departure from a constant 

number of hits per GeV, to be adequate. In the ful I shower 

Monte Carlo data, where the "true" hadron energy is known 

for each event, hits per GeV can be plotted directly as a 

function of th_e "true" energy. A quadratic formula appears 

completely adequate. 

We ~an fit using a cubic polynomial hadron energy 

formula and check the significance of the cubic coefficent. 

Its value is positive, indicating slightly worse than I inear 

saturation, but 1s less than 3 percent of a standard 

deviation away from zero. We therefore use only the 

quadratic formula. 

So far, we have been assuming that a single hadron 

energy scale (albeit non I inear) is adequate to describe the 

data. We know that the flash chambers are sensitive to 

atmospheric conditions, and some variation in the spark gap 

tuning, discriminator settings, etc., could have occurred 

during the long data-taking period. Several efficiency 
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tables were made from cosmic ray muons recorded along with 

the neutrino data. We expect that most of the humidity and 

chamber adjustment dependence was removed by these tables, 

but a few percent residual difference 1n hadron scale 

between data sets would not be surpr1s1ng. 

It 1s possible to fit each data set for its own hadron 

scale, and a common magnetic field map. We go from 2 hadron 

scale parameters to 8 by so doing. The chi square becomes 

227.2 for 195 degrees of freedom, with a probabi I ity of 

.0567. The chi square improves by more than the number of 

degrees of freedom lost. The highest and lowest of the four 

hadron scales _differ by only 4 percent. This is consistent 

with the expected variations. 

It 1s instructive to invert the energy from hits 

formula into corrected hits per GeV and plot it as a 

function of the energy. If H fully corrects for c 

saturation, the number of hits per GeV wi I I be constant. It 

is also possible to propagate the ful I correlated errors 1n 

the results into error envelopes. For the hadron scale, the 

large correlations between ~h~ I inear and quadratic terms 

largely cancel, giving an error envelope that reflects only 

the statistical power of the data, including the statistics 

of the hadron scale problem by itself, and the statistical 

uncertainty of the muon scale combined with the degree of 

coup! ing of the hadron and muon scales. We can also compare 
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to the hadron scale assumed to start the fit process, and 

which was used for previous results from this experiment. 

Figure G.6 shows the hadron energy scales for the 4 

different data sets in the form of corrected hits per GeV. 

The error bars indicate the statistical error envelopes. 

The saturation correction bui It into the corrected hit 

algorithm is clearly somewhat underestimated. Even after 

the event by event, chamber by chamber saturation 

correction, there is sti I I a decrease in the number of hits 

per GeV of about 20 percent from zero energy to 250 GeV, the 

upper I imit of our data sample. The slight differences 

between the energy scale for the different data sets are 

apparent. For reference, the lower horizontal I ine is the 

I inear ~scale derived from extrapolating the hadron beam 

data to the first event, and the upper hor i zonta I I i ne is 

the scale used for the previous publications from this 

experiment. 

Figure G.7 compares the energy scale from the +165 data 

to the hadron beam data points, in the form of corrected 

hits per GeV as a function of energy. The lower data points 

connected by a sol id I ine are the hadron beam data with no 

extrapolation, and the upper points connected by a dashed 

line are the same data after extrapolation. The 

extrapolation both shifts the mean and makes the response 

more constant with energy, even though the extrapolation 1s 
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less at high energy. The large dashed error bars are the 

RMS width of the distribution, showing the shift was a 

substantial fraction of the RMS. The extrapolated 

calibration data 1s reasonably consistent with the scale 

derived from the neutrino data. 

G.3.4 Magnetic field results 

The magnet parameters b. 
J 

are dimensionless 

perturbations intended to be of order 1 or less. Figure G.8 

is the 24-foot magnetic field in kilogauss versus radius in 

centimeters as calculated from the b. and the unperturbed 
J 

field. The statistical error envelope, including the 

effects of uncertainty in the hadron scale, 1s indicated by 

the erros bars. Beyond 200 cm, the field 1s unperturbed, 

since the large radius perturbations were eliminated from 

the fit. Also plotted is the unperturbed field used for 

previous analyses, and the mean of existing measurements of 

the 24-foot field. The RMS dispersion of the measurements 

1s indicated by the finely spaced error bars. 

It is also possible to fit for a different magnetic 

field for each data set. Since we wi I I be comparing several 

parameters describing the field between fits, it is a 

stronger test to compare the chi square probabi I ities than 

to compare the field parameters and their diagonal error 

matrix elements. The number of magnet parameters changes 
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from 3 to 12. The chi square becomes 225.1 for 185 degrees 

of freedom (one bin dropped below the minimum acceptable 

event count), for a probabi I ity of .0236. Here we have lost 

more degrees of freedom than we have gained in chi square, 

for a significant decrease in the probabi I ity. We conclude 

that there is no evidence of any magnetic field variation 

between data sets. We may also take this as evidence that 

the magnetic field fitting process 1s producing stable 

results. 
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24 FOOT MAGNETIC F"IELO PERTURBATIONS 
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Figure G.1 
24-foot toroid magnetic field perturbations 

Curves of magnetic field versus radius in 24-foot diameter 
toroidal magnets, as they were used to fit the magnetic 
filed using charged current muons. The unperturbed field 
ranges from 20 kilogauss at the edge of the central hole at 
30 centimeters, to 16 kilogauss at the edge at_360 cm. 
There are 5 different radius-dependent perturbations, each 
both added and subtracted from the unperturbed field. 
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Typical residual energy vs y after fit 

t 

Top plot is a scatterplot of residual energy Eh+E -E for 
charged current events in the pion band at radius l~ssvthan 
60 cm, versus y=E /(Eb+E ) . Middle plot is the mean 
residual energy for ~O binsµ in y. Deviation from zero at 
high y is due to larger acceptance for higher than_average 
neutrino energies. Bottom plot is distribution in y of the 
events. Falloff at high y is due to muon acceptance. 
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Figure G.3 
Typical Monte Carlo residual energy vs y 

Top plot is a scatterplot of residual energy Eh+E -E for 
charged current events in the pion band at radius lgssvthan 
60 cm, versus y=E /(Eb+E ) . Middle plot is the mean 
residual energy for ~O binsµ in y. Deviation from zero at 
high y is due to larger acceptance for higher than-average 
neutrino energies. Bottom plot is distribution in y of the 
events. Falloff at high y is due to muon acceptance. 
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Figure G.4 
Typical residual energy distribution after fit 

Points with error bars are number of events versus residual 
energy Eh+E -E for data. Sol id outline is Monte Carlo 
prediction gfrvresidual energy distribution. 
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Figure G.5 
Energy fit residuals 

Histograms of distribution of signed residual energies 
divided by their standard deviations, for each bin entering 
into energy scale fit. These distributions should be 
Gaussians with unit standard deviation, as shown by the 
curves. Top plot uses unperturbed magnetic field and hadron 
scale determined from cal'ibration beam. Lower plot uses 
hadron scale and magnetic field from fit. 
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Figure G.6 
Hadron scale fit results 

Corrected flash chamber hits per GeV of hadron energy for 
the 4 different neutrino data sets, as determined from the 
energy scale fit. Error envelopes indicate statistical 
errors of fits. For reference, the lower horizontal line is 
the energy scale derived from the hadron cal ibratien data, 
and the upper hor i zonta I Ii ne 1 s the energy sea I e used for 
previous analyses of this data. 
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Figure G.7 
Comparison of hadron beam data and fit 

Points connected by sol id I ine are mean corrected flash 
chamber hits per GeV for the 1982 hadron beam calibration 
data, with no extrapolation to correct for wand 
demagnetization. Error bars are statistical errors in mean. 
Points connected by dashed I ines are same data extrapolated 
to first event to correct for demagnetization. Dashed error 
bars are RMS width of distribution, for comparison with 
amount of correction. Closely spaced points are results of 
hadron energy scale fit for the +165 data set. 
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Figure G.8 
Results of 24-foot toroid field fit 

Sol id I ine is unperturbed field. Irregular curve with 
envelope is the mean and RMS deviation of Hal I probe 
measurements of the magnetic field in the 9 slabs. The more 
widely spaced points with error bars are the output from the 
magnetic field fit using charged current muons. Tbe error 
is statistical only. 
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H. Shower Energy Resolution 

H.1. Importance 

The hadron shower energy appears 1n the formulae for 

the sealing variables y and x 

Eq.H.1 

2 
x = Eh tan eh I 2M(l-y) Eq.H.2 

The resolution 1n the measurement of the hadron shower 

therefore determines 1n part the smearing in the sealing 

variables. Also, the probabi I ity of misclassifying a 

charged current event as a neutral current is very high at 

high values of y. While we can exclude events with a high 

value of y to minimize the misclassification, the hadron 

energy resolution determines the effectiveness of the cut. 

Knowledge of the hadron energy resolution is somewhat 

less important than knowledge of the shower angle resolution 

for the neutral current structure function analysis. The 

shower angle resolution 1s of the same magnitude as the 

typical shower angle, whereas the shower energy resolution 

is typically 10 to 20 percent of the total energy. Thus, 

the angle resolution dominates the energy resolution in the 

numerator of the x formula. 

The quantity 1-y appears 1n the denominator of the 

formula for x, and the resolution in 1-y can be comparable 
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to the value of 1-y for large values of y, which means that 

its resolution can sometimes dominate the x resolution. 

However a y cut to I imit misclassification tends to minimize 

this. The neutrino energy resolution is also about 10 to 20 

percent, so even when they resolution is important in the x 

resolution, the contribution from the shower energy 

resolution is not dominant. 

H.2. Methods of measuring energy resolution 

The shower energy resolution is not easily calculable 

from first principles. While the energy of hadrons wi I I 

eventua I I y be _ dissipated 1 n the ca I or i meter, it can be 

dissipated in many ways. Finite resolution is due to the 

different. responses of the calorimeter to different ways of 

dissipating the energy. For instance, some of the energy in 

a shower wi I I be 1n the form of decay neutrinos that no 

reasonable calorimeter can absorb. More prosaically, most 

of the mass of a calorimeter is usually dead absorber, with 

only a smal I fraction of the mass active, so fluctuations in 
-

the division of energy between I ive and dead material causes 

finite resolution. Unless special ma~erials I ike uranium 

are used, there 1s also a difference 1n the response to 

hadronic energy and electromagnetic energy, so fluctuations 

in that energy partition also cause finite resolution. 

Fina I I y, the active elements themselves have finite 
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resolution in responding to the energy deposited in them. 

The flash chambers used in our detector have rather I imited 

energy resolution individually, and it is only because there 

are so many of them that we succeed 1n obtaining a 

reasonably good energy resolution. 

To measure the energy resolution of the detector, we 

need a source of hadron showers whose energy is known better 

than the expected resolution of the calorimeter. A momentum 

selected hadron beam 1s the best source of such showers. 

Neutrino data is not be very useful for finding the hadron 

energy resolution, since the shower energy would have to be 

predicted by _subtracting the charged current muon energy 

from the neutrino energy derived from the vertex radius. 

The neut_rino energy resolution 1s comparable to the shower 

energy resolution, even before the errors introduced by 

subtracting the muon energy. The ful I detector and shower 

simulation Monte Carlo contains enough approximations it 

probably should not be relied upon duplicate the resolution 

of the actual detector. 

H.3. Calibration beam results 

The hadron calibration beam provides a source of 

hadrons with a momentum spread of order 1 percent, which 1s 

much smaller than the calorimeter resolution. We measure 

the energy resolution by simply finding the width of the 
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reconstructed shower energy distribution about its mean. 

The incoming hadron track presents no particular difficulty; 

we can either subtract the dE/dx before the interaction and 

sum the energy downstream of the vertex, or simply include 

the track as part of the shower. There is calibration beam 

data from 3 different running periods. 

Figure H.1 shows the energy resolution measured in 

hadron beam data taken 1n 1980~ before the detector was 

completed. The upstream third of the detector not yet 

constructed, and a somewhat different flash chamber gas 

mixture shorter delay between the event time and the flash 

chamber discha_rge time was used than for later neutrino data 

taking. The data was also analyzed without detailed chamber 

efficiensy tables and with a primitive saturation correction 

algorithm. 

The energy resolution was of 

100 GeV, and 10 percent at 50 

the order of 8 percent at 

GeV. It was reasonably 

consistent with sealing as the square root of the energy, 

with no constant offset 1n the resolution. 

Figure H.2 shows the resolution measured in calibration 

data taken at the end of the narrow band neutrino running, 

in 1982. The events were mostly in the part of the detector 

that was not present for the 1980 calibration. These new 

chambers were known to be less efficient that the older 

chambers, due to some changes 1n the construction methods. 
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It was also the spring season of high humidity, which has 

some effect on the chamber efficiency. However, region by 

region efficiency tables were used for the analysis, which 

should correct for the systematic efficiency difference 

between positions and seasons. The saturation corrections 

were based on a much more elaborate and sophisticated model 

of chamber behavior than was used in 1980. The timing and 

gas were identical to the neutrino data situation. 

The resolution was significantly worse than for 1980, 

being essentially independent of energy at about 15 percent. 

Even when a trigger required the hadrons to penetrate into 

the part of t~e detector present in 1980 before showering, 

the resolution remained poorer than before. 

It ~as in studying this discrepency that the problem of 

flash chamber magnetostrictive readout demagnetization was 

discovered. The magnetostrictive readout wires were 

apparently being demagnetized by reading out many events 1n 

the same region between magnetizations. This was visible as 

a drop in the number of mean number of flash chamber hits 

for a constant beam en~rgy as a function of number of events 

read out since the last magnetization. It was also visible 

as a drop 1n the flash chamber efficiency for wel 1-

col I imated muons traversing the same path. We would expect 

the shifting mean to widen the distribution of reconstructed 

energies for calibration data, which would degrade the 
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apparent energy resolution. Also, the lower efficiency 

would probably lead to worse resolution even relative to the 

shifting mean. Demagnetization was not a problem for 

neutrino events since they are randomly distributed 1n the 

detector volume. Thus, the neutrino shower energy 

resolution might be better than the 1982 calibration energy 

resolution. 

The 1985 calibration data were taken at the same time 

as a quadrupole triplet neutrino beam run, and the 

resolution measurements are presented 1n Figure H.3. 

Changes in the beam I ine layout al lowed higher energies to 

be brought to the detector, but there was no data taken 

below 30 GeV. The flash chamber readout was adjusted so the 

front ch~mbers were more efficient than in 1982, but they 

were sti I I somewhat worse than the detector average. 

Changes in the cosmic ray muon triggering scheme increased 

the efficiency table statistics, so the efficiency tables 

covered shorter time intervals. 

The 1985 calibration beam 

below 50 

energy resolution was 

GeV than in 1982, and somewhat worse at energies 

much worse than in 1980. · At 100 GeV, the 1985 resolution 

1982, but somewhat worse than in was very much better than 

1980. Above 100 GeV, data 

the resolution is about 10 

consistent with a resolution 

is avai I able only in 1985, where 

percent. The data is fairly 

of 4 percent plus 80 percent 
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over E' 5 , but there is more scatter 1n the data than simple 

statistical fluctuations. It should also be noted that 

while the extrapolation to infinite energy appears to give 

an intercept at 4 percent resolution, the highest energy 

points are in fact no better than 10 percent. 

The demagnetization effect occurred again 1n 1985. An 

attempt was made to compensate for the effect of the drift 

in the mean flash chamber response on the resolution. The 

hit count after efficiency and saturation corrections as a 

function of events since last magnetization was fit to a 

function 

F(I) = A (1 - B) 
1 - B exp(-I/N) Eq.H.3 

The parameter A IS the response immediately after 

magnetization, B 1s the asymptotic droop in response, N is 

the "time constant" for demagnetization expressed in number 

of events, and I is the number of events since 

magnetization. B was of the order of 10 percent, and N was 

of order 20 events. Both B _and N were energy dependent, 

with B becoming smaller at larger energies. 

were then corrected by multiplying by 

1 - B exp(-!/N) 
1 - B 

The hitcounts 

and the resolution in the corrected response was calculated. 

Figure H.4 shows that this improves the resolutior. somewhat 
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at the lower energies. For reasons we do not fully 

understand, the droop parameter B is less at high energy, so 

the change 1n the resolution 1s less pronounced at high 

energy. 

H.4. Shower Monte Carlo results 

The ful I shower and detector simulation Monte Carlo 

provides some insights into the energy resolution not easily 

obtained from calibration data. The Monte Carlo detector 

does not demagnetize. The calibration data statistics are 

poor at high energies, and the point to point scatter is 

larger than the statistical errors. The Monte Carlo 

provides high statistics and consistent behavior to map out 

the ener~y dependence of the resolution. 

There 1s however some uncertainty about whether the 

overal I level of the resolution 1n the shower Monte Carlo 

matches reality. While hadron propagation in the detector 

material with energy loss, scattering, and absorption rs 

treated in detai I, and energy and momentum is conserved 1n 

hadron production, the production of hadrons is treated by 

an approximate f i reba I I mode I . 

1s model led using the efficiency 

but the angle dependence of the 

The electromagnetic component of 

tracking photons. electrons, and 

The flash chamber response 

and multiplicity tables, 

response is not model led. 

showers is not treated by 

positrons, but rather by 
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generating flash chamber hits according to a 

parameterization of the length and width of electromagnetic 

showers. The absolute number and fluctuations 1n the number 

of electromagnetic shower hits as a function of sub-energy 

must itself be calibrated. 

Given these uncertainties, and the uncertainties 1n the 

degradation of the calibration data, the Monte Carlo hadron 

energy resolution is 1n reasonable agreement with the 

resolution observed 1n calibration data, as i I lustrated by 

Figure H.5. It is somewhat better than the 1980 data, and 

is almost a factor of 2 better than the 1982 and 1985 data 

below 100 GeV. The energy dependence of the resolution 

below 100 GeV 1s I inear in 1/E· 5 , with a smal I constant 

offset. _ 

It is interesting to note the degradation 1n resolution 

above 100 GeV 1n the Monte Carlo. This 1s gradual if 

plotted in terms of shower energy, but dramatic if plotted 

in terms of 1/E· 5 . The optimum resolution 1s about 8 

percent at about 80 GeV. The high energy data from 1985 do 

not show a dramatic degradation 1n the resolution at this 

energy. However, they are statistically weak, and do not 

rule out such a degradation. They are clearly more 

consistent with a flat or degrading resolution than a 

continued improvement in resolution. 
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The degradation in the resolution 1s presumably due to 

more saturation than the correction algorithm is able to 

compensate for. This 1s significant, because the Monte 

Carlo certainly creates flash chamber hits in precisely the 

probabi I istic fashion 

algorithm was based on. 

does better on real data. 

H.5. Conclusions 

that the saturation correction 

It is uni ikely that the algorithm 

The hadron shower energy resolution for the shower 

energies of interest for the neutral current structure 

function analysis, 10 to 50 GeV, are of the order of 15 

percent. The energy dependence of the energy resolution has 

a signi~icant offset from pure E' 5 behavior. The resolution 

probably approaches a constant fraction at about 100 GeV. 

There is some inconsistency between different measurements 

of the resolution. However, the shower energy resolution is 

not the primary source of smearing in the sealing variables, 

so uncertainties 1n the resolution are not of crucial 

importance. 
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Upper figure is fractional shower energy resolution versus 
beam energy, measured from ratio of root mean square to mean 
of distribution off lash chamber hits. Lower plot is same 
data plotted versus reciprocal of square root of beam 
energy. Sol id I ine is a fit to the data. Al I errors are 
statistical. 
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Upper figure is fractional shower energy resolution versus 
beam energy, measured from ratio of root mean square to mean 
of distribution of flash chamber hits. Lower plot is same 
data plotted versus reciprocal of square root of beam 
energy. Sol id I ine is a fit to the data. Al I err-ors are 
stat i st i ca I . 
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beam energy, measured from ratio of root mean square to mean 
of distribution off lash chamber hits. Lower plot is same 
data plotted versus reciprocal of square root of beam 
energy. Sol id I ine is a fit to the data. Al I er~ors are 
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1985 corrected calibration beam energy resolution 

Upper figure is fractional shower energy resolution versus 
beam energy, measured from ratio of root mean square to mean 
of distribution of demagnetization-corrected flash chamber 
hits. Events were corrected by a fit to the energy 
dependent and event number dependent droop in tRe flash 
chamber response to calibration showers. Lower plot is same 
data plotted versus reciprocal of square root of beam 
energy. Sol id I ine is a fit to the data. Al I errors are 
statistical. 
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high energy are combined for lower plot. Al I errors are 
stat i st i ca I . 
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I. Shower angle measurement 

I.1. Principles 

I.1.1 Overview 

Measuring the neutral current structure functions 

requires a detector sensitive to the energy flow direction 

of the visible hadronic products of the neutrino 

interaction. The formula for the sealing variable x is 

2 
x = Eh tan eh I 2M(l-y) Eq. I.1 

This Appendix ·is an attempt to review the source of possible 

biases of the angle measurement. First we wi I I discuss the 

details-of the construction and response of our actual 

detector, and also some simple approximations to the 

detector response. We next discuss the detai Is of the 

pattern of shower development, and some simple models of 

showers. We also discuss possible systematic biases in two 

algorithms for reconstructing a shower angle from the 

pattern of shower energy deposition. We wi I I next attempt 

to estimate the range of systematic bias 1n the angle 

encountered with the different combinations of detector 

model, shower model, and angle algorithm. Finally, we wi I I 

discuss systematic errors in the event vertex position and 

their influence on the angle scale. 
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I.1.2 Detector detai Is 

Our detector is a sandwich structure of planes of dense 

absorbing material, which also serves as the bulk of the 

neutrino interaction target, and flash chambers. A smal I 

section of the detector 1s schematically i I lustrated in 

Figure I.1. The flash chambers are made from double sheets 

of extruded plastic divided into many long independent eel Is 

of approximately square cross section. The response of a 

single flash chamber to a particle 1s not I inear in the 

track length inside the chamber. To a good approximation 

the response is simply yes-no. A single flash chamber thus 

gives a projected and quantized 

1n a plane slice through the 

view of the energy density 

shower. There are flash 

chambers_ with a side view of the shower, and flash chambers 

with views from 10 degrees on both sides of the vertical 1 

whose average is taken to give the vertical view. We wi I I 

be dealing with the two orthogonal projections of the shower 

separately for the most part. 

One important geometric fact 1s that the number of 

chambers traversed per unit track length is proportional to 

the cosine of the track angle. Large angle tracks traverse 

fewer chamber layers per unit length, although the total 

length inside each chamber is larger. 

Another fact is that a straight track travels the same 

fraction of its length in dense absorber material and flash 
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chamber material independent of its angle. While the number 

of layers of both absorber and flash chamber per unit length 

depends on the track angle, the ratio of the two does not. 

The extreme case of a 90 degree track, which would stay in 

whichever material it originated, appears to violate this. 

However, if we average over track origin positions, the 

fraction of 90 degree tracks contained entirely in absorber 

would equal the fraction of its length that a zero angle 

track spends in absorber. 

The last important geometric fact is that the number of 

flash chamber eel Is within a certain range of radius and 

angle from th~ event vertex 1s independent of angle. At 

smal I angles the region would contain a few eel Is each from 

many cha_mbers. At large 

would contain eel Is from 

angles, the corresponding region 

fewer chambers, but would contain 

more eel Is from each chamber. The same fraction of the area 

of such a region would be absorber and flash chamber 

independent of angle, and the same number of eel Is would 

make up the flash chamber area fraction. For large regions 

including many chambers and many eel Is this 1s clear. If we 

average over event vertex positions it becomes true for 

sma I I er regions. 

It 1s useful to imagine a range of possible detectors 

to be used for shower angle measurements. An ideal detector 

might be a continuous medium where al I of the shower energy 
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is dissipated, and the location in space of al I the 

deposited energy is known precisely. A less ideal detector 

could be an insensitive medium with infinitely thin active 

detector planes with infinitely fine eel Is. Sti I I less 

ideal would be to use thin planes with a finite number of 

eel Is. The actual detector has flash chambers of finite 

thickness and finite eel I size. Finally, it is known that 

the response of the flash chambers to single tracks depends 

on the angle of the tracks with respect to the flash chamber 

planes. 

I.1.3 Shower models 

We can also imagine two extreme models of the energy 

depositLon inside a shower. One extreme is that the shower 

consists of discrete tracks from the interaction vertex 

whose total length is proportional to the shower energy. A 

shower of muons would behave in this way. The other extreme 

is that the shower 1s a spray of energy in which information 

about individual particle directions 1s lost rapidly. 
-· 

Electromagnetic showers behave approximately this way, with 

a large fraction of the energy being deposited by low energy 

electrons and positrons moving almost isotropically. Real 

hadronic showers are a mixture of electromagnetic showers 

from neutral pion decays to photons, and charged tracks 

which cascade into daughter charged tracks and more 
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electromagnetic showers from neutral pion decay. There wi I I 

be a distribution of charged particle angles which changes 

with depth into the shower from being narrow and highly 

correlated with position near the vertex to broad and weakly 

correlated with position deep in the shower. 

It is important to recal I that we wish to measure 

shower angles that are up to several hundred mi I I iradians, 

so it wi I I not be sufficient to use only smal I angle 

approximations. Another important property of hadronic 

showers is the distribution 1n angle of the initial 

particles about their mean angle. This is typically larger 

than the mean .angle of the showers, which means that for 

showers of positive mean slope, much of the energy flows in 

the neg~tive direction. As the opening angle of the shower 

increases, gradients of detector response across the width 

of the shower become important. 

I. 2. A Igor i thms 

I.2.1 Centroid algorithm 

One simple algorithm for finding the angle of a shower 

is to find the centroid of energy deposition in each 

detector plane, and fit a I ine from the event vertex through 

the centroids. A variety of schemes for relative weighting 

of energy within a plane to find centroids, and for 
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weighting the centroids as a function of depth and 

transverse position are possible. 

Let us examine first a particular weighting scheme for 

the case of a continuous medium with perfect knowledge of 

the shower energy deposition pattern. We divide the energy 

into slices normal to some preferred direction, and find the 

centroid of each slice independently. The centroids are 

then combined with weights proportional to the total energy 

1n each slice. 

Consider a shower of angle e. The contribution to the 

centroid calculation of an element of deposited energy at 

radial distance from the vertex Rand angle from the shower 

axis 5 1s R tan(8+5). The distance from the event vertex of 

the sl ic~ containing the energy element is z=R cos(e+6). 

The energy element at the same radial distance from the 

vertex but with angle from the shower axis of -6 is 

typically in a slice at a different distance from the 

vertex. If we pair up these two energy elements, and weight 

them by the distances of their slices from the vertex, the 

weighted contribution to shower slope calculation is 

cos(B+o) tan(e+o) + cos(8-o) tan(O-o) 

cos(O+o) + cos(8-o) 

= 

= 
sin(8+o) + sin(8-6) 

cos(8+6) + cos(8-6) 

2 sin(O) cos(o) 

2 cos (8) cos (o) 

= tan(8) Eq. 1-. 2 
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Thus, for each pair of energy elements at equal radial 

distance from the vertex and equal angular distance from the 

shower axis, weighted by distance along the preferred 

direction, we get a weighted average contribution of tan(8), 

the desired unbiased result. Of course, we must integrate 

over the entire radial and angular extent of the shower, but 

as long as the shower 1s symmetric around its average 

direction, we can pair up deposited energy elements so each 

pair contributes to the numerator and denominator in the 

same ratio of tan(8), and the result wi I I hold true. 

Unfortunately, 1n a typical least-squares fit the 

weights are not proportional to distance, they are 

proportional to distance squared. Let 8. be the angle 
I 

between_the preferred direction and the centroid of energy 

in plane i. If plane 1s at distance z. from the vertex 
I 

along the preferred direction, the centroid is at distance 

z. tan(8.) normal to the preferred direction. We write the 
I I 

chi square for the deviation of the shower centroids, 

weighted by their energies E(z.), from the shower axis 

parameterized by an a~gle 8 as 

I 

2 z. tan(e)] 
I 

Eq.I.3 

We solve for tan(8) by setting the derivative equal to zero. 

= E -2E (z.) [z. tan (8.) - z. tan (8) J z. = 0 
I I I I I 

a tan (8) Eq. I. 4 
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tan(8) 2 2 = E E(z.) z. tan(8.) / E E(z.)z. 
I I I I I 

Eq.I.5 

This 1s simply the mean of the individual centroids, 

weighted by energy, and by 

We found above that 

2 z . 

1 weighting by R cos(8)=z produces 

an unbiased angle for showers symmetrical around their 

central angle. However, the identities used in deriving 

that result do not hold for weighting by z2 . Thus, a normal 

least squares fit to the shower centroids, which implicitly 

2 weights by z , should not be expected to produce an unbiased 

result. It is of course possible to weight the centroids 

exp I icitly by 1/z relative to the standard least squares 

formulation and remove the bias. 

We can predict the direction of the bias by returning 

to our paired energy elements at equal radial distance from 

the vertex and equal angular distance from the shower 

direction. The element of energy at lower angle from the 

preferred direction has a larger z than the other. If we 

weight them both by z, we g~t an unbiased angle. If instead 

we weight them both by z 2 , the weight of the element at 

lower angle relative to the other increases. This results 

1n an angle biased toward the preferred direction. 

We can imagine a case where a shower is composed of two 

lobes of equal length and energy, one at zero degrees and 

the other at 45 degrees. If we substitute cos2 fo~ cos in 
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the formula for the net contribution for paired elements of 

energy and insert the numerical values, we find 

(.707) 2• 1 + 12• 0 

(.707) 2 + 12 = 0.5 

1.5 
= .333 

This is the tangent of 18.43 degrees, and is to be compared 

to 0.414, the tangent of 22.5 degrees. The bias 1s about 20 

percent. 

Another drawback of the centroid fitting algorithm 1s 

that it is sensitive to fluctuations in the symmetry of 

shower development. If energy on one side of the shower 

axis is deposited at larger distance from the vertex than 

the corresponding energy on the other side, its weight wi I I 

be larger, and the reconstructed angle wi I I be pulled in 

that direction. Of course, the high-angle side and the low-

angle side of the showers develop identically when averaging 

over many showers, so this does not produce a bias in the 

above sense, but it does degrade the angle resolution. 

I. 2 . 2 Ang I e ave rag i n g a I go r-i t hln 

An alternative to the centroid algorithm is to average 

the energy weighted angle from the vertex to each unit of 

energy deposition. Formally, this is 

6 shower = Eq.I.6 
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We presume the angular energy density E(8) of a shower of 

angle 9 is on the average symmetric function of A = 8-~, 
where A 1s the angle relative to the shower axis. This 

implies that E(A+B) = E(-A+B), and al lows us to separate and 

evaulate the contributions that are even and odd in A in the 

numerator. 

J d8 BE (8) = J d (A+B) (A+9) E (A+9) = BJ dA E (A+~) Eq. I. 7 

Thus, averaging over showers, we get an unbiased angle. 

This method treats al I energy at the same radial distance 

equivalently, even if if the energy 1s in different 

calorimeter slices. It 1s also insensitive to fluctuations 

in the length and density of the energy deposited along a 
-

given direction. 

Our further discussions of angle measurement bias wi I I 

focus on the angle averaging algorithm. Since it is less 

complex mathematically, it 1s simpler to describe the 

effects of detector and shower models on the resulting 

angles. It is also the p~1mary_algorithm used for physics 

analysis. 

I.3. Estimates of angle bias 

I.3.1 Digital sampling bias 

When we compared the centroid and angle averaging 
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algorithms, we assumed perfect knowledge of the location and 

density of deposited energy. Our first step toward the 

detector actually used for physics analysis 1s to recognize 

that the shower is actually sampled by digital devices, the 

flash chamber planes. The effect of the digital nature of 

the detector depends on the shower model. 

We have alreacy observed that a wedge of detector 

covering some range of angle and some range of radial 

distance from the event vertex has the same number of flash 

chamber eel Is inside it, independent of the orientation of 

the wedge. In a random spray model of shower energy 

deposition, eel Is are I it according to some function of 

radial distance from the shower vertex and angle from the 

shower clirection. The number of eel Is I it at a given energy 

density is proportional to the number of eel Is avai I able to 

I ight. Since the same number of eel Is are avai I able in al I 

angle intervals, the mean angle of hit eel Is is unbiased in 

this model. 

In a track model of shower energy deposition, we assume 

showers are composed of particles travel I ing in straight 

I ines from the event vertex, whose lengths are proportional 

to their energies. We shal I assume for the moment that the 

particles I ight exactly one flash chamber eel I in each 

detector plane they traverse. A track at angle e from the 

beam direction traverses fewer detector planes by a factor 
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cos(8) than a track of the same radial length at zero angle 

from the beam direction, and therefore produces fewer flash 

chamber hits. Thus, energy in the form of zero angle tracks 

produces more hits, and 1s therefore weighted more strongly 

in the angle algorithm, than energy 1n the form of large 

angle tracks. This tends to bias the angle toward zero. 

This bias is not due to sampling in slices along some 

preferred direction; it is due to the combination of a track 

shjower model and the digital rather than proportional 

nature of the detector elements. Large angle tracks 

traverse fewer sampling layers by a factor of cos(8), but 

also have a longer path length 1n each layer by a factor of 

1/cos(8). If the detector elements had a response 

proporti~nal to the path length, and we weighted by the 

deposited energy~ the two factors would cancel. If the 

detector elements simply count tracks rather than sum path 

lengths, there is no cancellation and the result 1s biased. 

The magnitude of the effect is given by the integral of 

the cos(8) weight term across the shower angular energy 

distribution E(6). F6r the -numerator integral, we find 

Jde 8E(8)cos(6) = Jd(6+G) (6+8) E(6+8) cos(6+8) 

= Jd6 (6+8) E(6+8) [cos(6)cos(8) - sin(6)sin(B)] 

= 8cos(8) Jd6 E(6+8) cos(6) - sin(B) Jd6 6 E(6+6) sin(6) 

Eq.1:8 
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For the denominator integral, the calculation 1s similar. 

Jde E(9) cos(9) = Jd(6+~) E(6+~) cos(6+~) 

= J d6 E(6+~) [cos (6) cos(~) - sin (6) sin(~)] 

= cos(~) Jd6 E(6+~) cos(6) Eq.I.9 

Dividing, the first numerator term becomes ~' the 

normal mean shower angle. Approximating sin(6) by 6 1n the 

second numerator term, and approximating cos(6) by 1 1n the 

denominator for the second term, we find 

9shower = ~ - tan(~) 
f d6 6

2 E(6+~) 

J d6 E (6+~) 

Eq.I.10 

This differs from the true angle by the square of the RMS 

shower angular width, presuming that tan(~) is approximately 

~. If the RMS shower angular width is 100 mi I I iradians, the 

bias would be about 1 percent. If the RMS shower angular 

width is 200 mi I I iradians, the bias would be 4 percent. To 

the extent that e is not smal I I the bias becomes non I inear. 

If the shower angular width 1s energy dependent, then the 

bias would also be energy dependent. 

We shou Id rec a I I that this resu It ho Ids for track 

models of shower energy deposition, because we assume tracks 

can I i ght on I y a sing I e chamber ce I I , independent.. of the 
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angle they have with respect 

random spray model, energy at 

to the chamber plane. In a 

large angles sti I I traverses 

fewer planes than energy at smal I angles, but there are more 

eel Is per chamber per angle interval at large angles. The 

bias does not occur because there are the same number of 

avai I able eel Is in al I angle intervals. 

I.3.2 Multiple eel I crossing 

We have assumed that a single track can only I ight a 

single chamber eel I as it crosses the chamber plane. In 

fact, the real flash chambers have a finite thickness which 

is comparable ~o the transverse eel I size. Tracks that 

cross the chamber at large angles can pass through more than 

one eel I. For eel Is that are wide compared to the chamber 

thickness, few tracks pass close enough to the eel I 

boundaries to cross two eel Is. For eel Is that are narrow 

compared to the chamber thickness, however, tracks might 

pass through several eel Is even for fairly smal I angles. 

A track at angle a traversing a chamber of thickness t 

travels a distances= t tan1a) para I lel to the plane of the 

chamber. However, extra eel Is are traversed whether a is 

greater or less than zero. The number of eel Is of width w 

traversed by such a 

1s l+lsl/w. If we 

track, averaged over impact parameters, 

include the cos(a) factor in the number 

of chambers traversed per unit track length, the net effect 
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1s that the ratio of eel Is traversed per unit track length 

at angle a to the number at zero angle 1s 

R = cos(a) + t/w lsin(a) I Eq. I.11 

This factor must be included 1n the angle integrals 1n both 

numerator and denominator. 

We have already calculated the cosine terms in the 

numerator and denominator integrals. The analogous sine 

integrals cannot be simplified by trigonometric identities 

and symmetry because of the absolute value operation. It is 

useful to define 

E· 
c = f d6 E (6+8) cos (6) Eq. I.12 

Es6= f d6 6 E(l1+8) sin (6) Eq.l.13 

E = f de E (8) Is in (8) I Eq. I.14 a 

Eae= Jde 8 E(8) Is in (9) I Eq. I.15 

We can now write the result of the angle averaging 

algorithm for a track model _wit.h multiple eel I crossing as 

e = shower 
e cos(e) EC - sin(B) Es~ + t/w Eae 

cos(e) E + t/w E c a Eq. I. 16 

The first term 1n the denominator and numerator taken 

alone would give an unbiased angle. The extra terms 



446 

contribute biases of both signs. We may interpret this as 

the extra hits on large angle tracks giving a bias 

contribution toward larger shower angles, and the cos(a) 

factor in the number of chambers traversed giving a bias 

toward smaller angles. The net effect depends on the size 

of t/w and the angular width of the shower as measured by 

the above integrals. 

E 1s the energy of the shower deweighted by a factor c 

cos(~) for distance from the mean shower angle, which wi I I 

be a few percent less than the total energy. Es~ is the 

energy weighted by roughly the square of the angular 

distance from the mean angle, which is about the energy 

times the square of the RMS shower opening angle. E is the a 

shower e..nergy weighted by roughly the absolute value of the 

distance from the mean angle. For a gaussian shower 

profile, this is about twice Es~· Eae is the energy times 

an odd measure of the shower angle. It is roughly the 

energy times the square of the shower angle for very narrow 

showers, and vanishes for symmetrical showers at zero 
-· 

degrees. Since for typical showers the opening angle is 

larger than the mean angle there is energy with both 

positive and negative angles, so the absolute value operator 

has non-trivial effects. 

No really clear prediction of the net effect 1s 

possible. For showers whose opening angle is comparable to 
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their mean angle, none of the terms 1s negligible or simple. 

A bias of one sign or the other is to be expected 1n a track 

model of shower energy deposition with multiple eel I 

crossing. 

In a random spray model, there was no angle bias for 

infinitesimally thin chambers because the same number of 

eel Is was avai I able in each angle interval, so the same 

number could be I it 1n each 

finite thickness chambers, the 

i nte rva I 1 s st i I I independent of 

bias in the angle. 

angle interval. Even with 

number of eel Is per angle 

angle. Thus, there 1s no 

I.3.3 Angle dependent efficiency 

Th~ real flash chambers have a finite efficiency, about 

80 percent, to fire when crossed by a single particle. This 

1s consistent with primary ionization statistics, wal I 

thickness between eel ls, plasma ignition threshholds, dead 

eel Is, poor readout connections, etc., and by itself does 

not lead to any angle bias. However, tracks at large angles 

have a longer path length, and thus deposit more primary 

ionization in the eel Is, so are I ikely to be more efficient 

at I ighting eel Is. Also, the above discussion of multiple 

ce I I crossing assumed that any path I ength whatsoever in a 

eel I would I ight it with the same efficiency as a track with 

normal ful I path length. This is almost certainly not the 

case for our detector. 
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To include angle dependent efficiency 1n angle bias 

estimates would require finding the efficiency function from 

actual single track data and putting it in al I the above 

integrals, which are already somewhat intractable. We wi I I 

not be able to make any analytic estimates of the effect of 

angle dependent efficiency. 

from the biases found above. 

It could add to or subtract 

By hypothesis, the random spray model ignores any track 

direction information. We simply do not define an angle of 

chamber crossing 1n 

shower case that the 

this model. For the electromagnetic 

random spray model simulates, nearly 

isotropic low .energy electron and positrons are responsible 

average over angles of the 

the only relevant efficiency. 

for I ighting the eel Is. The 

angle de.pendent efficiency is 

Thus, the same angle averaged efficiency would apply for al I 

angles, leading to no bias. 

I.3.4 Saturation 

In the real detector, it is possible for many tracks to 

cross the same eel I, which can I ight only once. So far we 

have ignored this fact. While we have already found enough 

comp I ications to prevent quantitative predictions of the 

angle bias in the track model, in fact a clear prediction 1s 

possible in the I imit of extreme track density 1n a 

saturating detector. In the I imit of very high density, 
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essentially al I eel Is are I it 1n the shower region. Since 

the number of eel Is per unit angle is independent of angle, 

the shower angle tends to 

the track model becomes 

model. 

become unbiased. In this I imit, 

equivalent to the random spray 

This argument holds whether the bias at low density 1s 

positive or negative. If the bias at low density is 

negative, this can only be because energy at low angle 

produces more hits than the same energy at large angle. As 

the energy increases, the low angle region would saturate 

first and the bias would approach zero. If the bias at low 

density is positive, it must be that energy at large angle 

produces more hits, and wi I I saturate first. As the energy 

increase~, the large angle region wi I I saturate first, so 

the bias toward Larger angles would approach zero. 

Of course, in the I imit of complete saturation the 

angle resolution would be very poor, since al I the 

information would be carried by the location of the edge of 

the saturated region, and there would be no sensitivity to 

variations inside the ~aturated region. But presumably such 

variations would be equally I ikely to raise or lower the 

angle, and would average out over many showers. 

It is possible to use the local density information in 

the flash chambers to correct for saturation. This is done 

by interpreting the observed hits 1n a region of about 10 
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flash chamber eel Is according to some model of how many 

tracks would produce on the average that number of hits. 

Such a correction does not by itself compensate for the bias 

due to fewer chamber traversals per unit length by large 

angle tracks. If the model assumes that the tracks cross 

only one eel I each, then it also does not correct for 

multiple eel I crossing 1n finite thickness chambers, or for 

angle dependent efficiency. 

To the extent that saturation correction successfully 

converts partially saturated observed hits into equivalent 

normal incidence tracks, it negates the above argument that 

biases decrea.se as saturation increases. In fact, 

saturation corrections tend to overweight large angle tracks 

that cross multiple eel Is, which tends to introduce a bias 

component toward larger angles. This extra bias may either 

reinforce or cancel the biases from other sources. 

I.4. Vertex effects 

I.4.1 Angle variation from vertex variation 

The angle averaging algorithm requires that the event 

vertex be known before the shower angle can be found. While 

1n principle the centroid fitting algorithm does not need an 

a pr1or1 vertex to find the shower angle, the angle 

resolution without an a pr1or1 vertex is quite poor. In 
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practice, the centroid algorithm 1s used with an essentially 

fixed vertex. 

The same shower wi I I reconstruct to a different angle 

if a different vertex is used. The sensitivity of the angle 

to the vertex position can be estimated rather simply for 

the angle averaging algorithm. Consider an element of 

energy as viewed from two different vertices. It wi I I 

contribute with the same weight, but at different angles, 

to the angle as measured from each vertex. If the two 

vertices are at about the same longitudinal position but 

differ transversely, energy from deep in the shower appears 

at almost the ~ame angle from the two vertices. Energy near 

the vertex longitudinal position appears at very different 

angles fsom the two vertices. The net sensitivity of the 

angle to transverse vertex shifts wi I I thus depend on the 

average distance of the energy from the vertex, which we may 

cal I the effective shower length. The angle difference from 

two different vertices wi I I be roughly the angle subtended 

between the two vertices as viewed from the effective 

length. 

We can measure the sensitivity of the shower angle to 

transverse vertex displacements by reconstructing the same 

shower from two different vertices. If we plot the 

projected shower angle difference versus the vertex 

difference, we find that events I ie along a I ine through the 
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or1g1n. The slope of the I ine in radians per centimeter is 

the sensitivity. The reciprocal of the slope, whose 

dimension is centimeters, is the effective shower length. 

The natural length scale for a hadronic shower is the 

absorption length, which for our detector is about 1 meter. 

The expected sensitivity of shower angle to a vertex 

displacement of 1 centimeter 

radians, or 10 mi I I iradians. 

1s therefore about 1/100 

There 1s a logarithmic 

dependence of the shower length on energy. We therefore 

expect low energy showers to be somewhat more sensitive to 

vertex shifts than high energy showers. 

To measure the sensitivity of the reconstructed angle 

to the vertex position, charged current neutrino events were 

reconst~ucted with the angle averaging algorithm using raw 

hits from two different vertices. One vertex was found by 

the normal shower vertex routine, and the other was found by 

extrapolating the muon trajectory. The change in shower 

slope (the difference between shower slope and shower angle 

is not very important for this comparison) per centimeter of 

vertex difference was ~valu~ted separately for the different 

shower energy bins. Figure I.2 shows the result. The 

negative sign means that the shower slope change was 

negative for a positive vertex coordinate change. The 

reciprocal of the slope change per cm, the effective shower 



453 

length, ranged from about 75 centimeters for showers of less 

than 10 GeV, to almost 200 centimeters for showers of 250 

GeV. 

I.4.2 Vertex bias due to shower angle 

If the shower vertex errors were random, vertex errors 

would contribute only to the angle resolution, and would not 

introduce an angle bias. However if the vertex errors were 

correlated with the true shower angle, then a systematic 

bias in the shower angle reconstruction could result. For 

instance, if showers with a positive true angle tended to 

have their vertices displaced 1n the positive direction, 

using that vertex would lead to a reconstructed angle that 

was syst~matical ly smaller than the true angle. 

It is rare for the shower to begin with a single lit 

ce I I 1 n each v 1 ew whose position cou Id be taken as the 

vertex. The common case 1s for several eel Is, not 

necessarily adjacent, to be I it, and for no individual 

tracks from the vertex to be resolvable. Nuclear debris, 
-

backward tracks from vertex and from secondary 

interactions, residual flash chamber misalignment, and noisy 

or dead eel Is al I comp! icate the vertex. 

Therefore the standard shower vertex routine uses 

information from many hits in many flash chambers in the 

upstream part of the shower to find the vertex transverse 
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position. If the shower angle is zero, a simple average of 

the transverse positions of the hits would give an adequate 

vertex. However, if the shower angle is finite, the average 

transverse position of hits 1s displaced from the true 

transverse vertex position, the vertex would be displaced in 

a way correlated with the shower angle, and the 

reconstructed angle would therefore be biased. To avoid 

this, the vertex is determined by a I ine fit to the hits in 

the most upstream chambers in the shower. However, the road 

used to select hits for inclusion into the vertex I ine fit 

can bias the hit selection, and we have already seen that 

centroid fitting algorithms can produce intrinsically biased 

estimates of the shower angle. While we expect less vertex 

bias if ~e I ine fit rather than average to find the vertex, 

it is sti I I possible for the vertex errors to be correlated 

with the shower angle. 

The amount of correlation between the true shower slope 

and the vertex error can be studied using ful I shower and 

detector simulation Monte Carlo events. The true vertex 

position and true show•r angle are known, so one can plot 

the vertex error versus the true angle directly. There 1s a 

clear correlation between the vertex error and the shower 

angle of about 2 centimeters per radian for 10 to 30 GeV 

showers, 1 cm/radian from 30 to 50 GeV, and less than 

.5 cm/radian above 50 GeV. The vertex of shower Monte Carlo 
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events is noticably cleaner than real events, so it is 

possible that the bias 1s larger 1n real data than Monte 

Carlo. However, it 1s uni ikely that the bias is less in 

real data. 

For charged current events, it 1s possible to find a 

vertex by extrapolating the muon trajectory. Since a very 

narrow road around the trajectory can be used, this is 

intrinsically a much more precise vertex than the shower 

vertex, and its biases are different if they exist at al I. 

We can use the muon vertex 1n charged current events to 

search for shower vertex bias in real data. We plot the 

difference between the shower vertex and the muon vertex 

versus the shower angle. If the shower vertex were unbiased 

with pe_rfect resolution, al I events would I ie along a 

horizontal I ine. Vertex resolution wi I I cause scatter, but 

the mean vertex difference should be zero independent of 

shower angle. A vertex bias wi I I appear as a correlation 

between the mean vertex error and the shower angle, as 

measured by the slope of a I ine fit to the plot. 
-

We must be aware that a vertex error itself wi I I induce 

a change in the reconstructed shower angle of an event, 

which wi I I complicate the analysis. We can circumvent this 

problem by using the shower angle as predicted by the 

reconstructed muon and the shower energy, rather than the 

reconstructed shower angle. 
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It is possible that the presence of the muon hits makes 

the vertex bias different 1n charged and neutral current 

events. Hits from the muon, whose slope 1s the opposite 

sign from the shower, reduce the asymmetry of the flash 

chamber hit pattern with respect to the neutrino beam 

direction, and may tend to reduce the bias of the vertex in 

the direction of the shower slope. 

In addition to the normal ·shower vertex, for charged 

current events it is possible to find a shower vertex after 

removing the muon hits by software. The muon removal 

procedure does nothing in the first 5 chambers of the 

shower, or if there are more than 4 hits in a road about 10 

eel Is wide centered on the trajectory, but removes the hit 

closest ~o the muon I ine otherwise, and removes two hits if 

there are exactly two hits in the road. To the eye, and on 

the average to the flash chamber energy algorithm, the 

resultant events show no significant evidence of the muon 

(except for energetic delta rays.) We can use the vertex 

found after muon removal to estimate the effect of the muon 

on the vertex systematic errors. 

We have vertices from the muon, the shower with muon 

present, and the shower with muon removed. We can thus plot 

three vertex differences versus the predicted shower angle. 

They measure the charged current, neutral current, and 

neutral current charged current difference in vertex bias. 
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Also, the vertex bias may depend on shower energy, so we 

should find the slope of mean vertex difference versus 

predicted angle for different energies separately. At high 

shower energies, the range of predicted angles 1s smal I, and 

there are few events, so the statistical error on the vertex 

bias per radian wi I I be large. 

Figure I.3 shows the vertex bias as a function of the 

predicted shower slope for the charged current shower vertex 

found with muon hits present. The bias ranges from 6 

cm/radian below 10 GeV down to about 2 cm/radian above 20 

GeV. The sign 1s positive, meaning that the vertex is 

displaced 1n t.he same direction as the shower angle, which 

wi 11 lead to shower angles being biased toward zero. Figure 

I.4 is tbe vertex bias when the muon hits are removed before 

the vertex 1s found. The simulated neutral current shower 

vertex bias 1s consistently larger, from more than 8 

cm/radian below 10 GeV to 4 cm/radian above 20 GeV, again 

with large errors at high energy. 

The event by event difference between the shower vertex 

found with and without the muon 1s presented in Figure I.5. 

The difference has a narrower distribution than the 

difference between either shower vertex and the muon. 

Presumably this is due to the vertex algorithm seeing mostly 

the same hits with and without the muon, and finding almost 

the same vertex each time. We therefore have smaller 
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statistical errors on the amount of vertex bias due to the 

muon hits than we do on the total amount of bias. 

The difference in the vertex bias due to the presence 

of the muon 1s about 5 centimeters per radian of shower 

angle for showers below 10 GeV. Over the range from 10 GeV 

to 100 GeV, it 1s between 2 and 3 cm/radian. At higher 

energies, it remains consistent with that range, but within 

large errors. The sign of the difference indicates that the 

muon hits reduce the amount of vertex bias. 

I.4.3 Angle bias due to vertex bias 

The product of the energy-dependent correlation of the 

vertex error with true shower angle (Figure I.2) and the 

energy-d:pendent sensitivity of the angle to the vertex 

error (Figures I.3-l.5) produces a shower angle scale bias 

(Figures I.6-I.8). The bias w1 I I be different for charged 

current and neutral current events if the vertex bias 1s 

influenced by the presence of the muon, and the muon 1s 

present when the vertex used for the angle algorithm 1s 

found. 

The angle bias due to 

with the muon present, 

percent for energies below 

vertex bias for charged currents 

Figure I.6, varies from about 8 

10 GeV to about 3 percent for 

energies above 20 GeV, and 1s toward angles closer to zero. 

For charged currents with the muon removed, Figure I.7, and 
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smaller angles due to vertex 

for energies below 10 GeV, 
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currents, the angle bias toward 

bias is more than 10 percent 

about 5 percent from 10 to 20 

flat 3 percent bias at higher GeV, and is consistent with a 

energies. The difference in 

currents with the muon removed 

the angle bias between charged 

and present, Figure I.8 rs 

2 to 3 percent at higher about 5 percent below 10 GeV, and 

energies. 

I.5. Conclusions 

The only clear quantitative predictions from our 

analysis of models of shower angle measurements seem to be 

that showers dominated by random spray, or showers that are 

badly sa~urated, wi I I give unbiased angles if the angle 

averaging algorithm is used. Even these cases wi I I be 

biased if a centroid algorithm 1s used. Track dominated 

showers could be biased toward either larger or smaller 

angles, depending on detai Is of shower opening angle, eel I 

aspect ratio, the angle dependence of eel I efficiency, and 

saturation, which cannot be reliably estimated from first 

principles. 

Our conclusion from both theoretical model calculations 

and actual data analysis is that a vertex bias would result 

1n an angle bias, whose size 1s set by the shower length. 

In fact, the shower vertex routine does appear to show a 
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vertex bias which itself 1s a function of the shower angle, 

and which also appears to depend on the detai Is of muon 

trackhit removal. The combination of angle bias due to 

vertex bias, and vertex bias due to shower angle, leads to 

an angle bias. 

The practical conclusion must be that the combination 

of detector response and angle algorithm must be calibrated 

with showers of known angle. There is no reason to expect 

from first principles that the angles wi I I be unbiased. 

There are too many detai Is of detector, shower structure, 

and algorithm which have significant systematic effects and 

are difficult to know precisely. 

This is uni ike the situation of measuring the angle of 

single tracks. For tracks, if the geometry 1s 

systematically correct, there 1s usually no question of 

biases in mean angles. Even the angle resolution for tracks 

1s usually calculable from wel I-understood multiple 

scattering effects and known or easily measured chamber 

resolutions. 
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Figure I.1 
Flash chamber geometry 

View from flash chamber eel I end of a smal I section of 
detector. Neutrino and average shower direction is left to 
right. Flash chamber planes alternate with ta~get/absorber 
material Actual showers are much wider than this smal I 
section, and traverse hundreds of flash chamber plan~s. 
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Figure I.2 
Angle sensitivity to vertex 

Upper plot is radian per centimeter sensitivity of shower 
angle to transverse vertex offsets, as derived from slope of 
fit to shower ~ngle difference vs vertex displacement for 
charged current shower angles reconstructed from two 
different vertices. Errors are statistical errors of fit. 
slopes. Lower plot is effective shower length 1n 
centimeters, which is the reciprocal of the upper plot. 
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Figure I.3 
Vertex bias from shower angle with muon present 

Mean displacement of shower vertex from extrapolated muon 
trajectory for 1 radian shower slope, as determined from 
slope of fit to mean displacement as a function of predicted 
shower slope in charged current events. Vertex was found by 
program, with charged current muon hits present. eositive 
sign means vertex is displaced toward positive coordinate 
when shower projected slope is positive. Errors are 
statistical errors in fit slopes. 
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Figure I.4 
Vertex bias from shower angle with muon removed 

Mean displacement of shower vertex from extrapolated muon 
trajectory for 1 radian shower slope, as determined from 
slope of fit to mean displacement as a function of predicted 
shower slope in charged current events. Vertex was found by 
program, with charged current muon hits removed. eositive 
sign means vertex is displaced toward positive coordinate 
when shower projected slope is positive. Errors are 
statistical errors in fit slopes. 
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Figure I.5 
Vertex bias difference from muon 

Difference in mean displacement of shower vertex from 
extrapolated muon trajectory for 1 radian shower slope, as 
determined from slope of fit to mean difference between 
muon-removed and muon-present vertex coordinate as a 

_ _...._ function of predicted shower slope 1n charged _current 
events. Vertex was found by program in both cases. 
Positive sign means vertex 1s displaced toward positive 
coordinate when shower projected slope is positive. Errors 
are statistical errors in fit slopes. 
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Figure I.6 
Angle bias from muon-present vertex bias 

Fractional angle scale bias due to vertex errors correlated 
to true shower angle as a function of shower energy. 
Calculated from product of centimeter mean vertex 
displacement per radian shower angle with muon hits present, 
and radian shower angle change per centimeter verte~ shift. 
Errors are propagated statistical errors from both vertex 
sensitivity to angle and angle sensitivity to vertex. 
Negative sign means shower angles are biased closer to zero. 
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MUON-REWOVEO ANGLE BIAS F'ROM VERTEX 
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Figure I. 7 
Angle bias from muon-removed vertex bias 

Fractional angle scale bias due to vertex errors correlated 
to true shower angte as a function of shower energy. 
Calculated from product of centimeter mean vertex 
displacement per radian shower angle with muon hits removed, 
and radian shower angle change per centimeter verte~ shift. 
Errors are propagated statistical errors from both vertex 
sensitivity to angle and angle sensitivity to vertex. 
Negative sign means shower angles are biased closer to zero. 
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Figure I.8 
Angle bias difference from muon 

Difference between angle scales for events with muon removed 
and muon present when vertex is found. Negative sign means 
shower angles are more biased toward zero for events with no 
muon hits present when vertex is found. 
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J. Shower Angle Calibration 

J.1. Introduction 

We have demonstrated 1n Appendix I that it is possible 

and even rather I ikely that hadron shower angle measurements 

in detectors I ike ours wi I I be biased. While showers of 

zero true angle may reconstruct on the mean to zero angle, 

it may be that the mean reconstructed angle wi I I disagree 

with the true angle, for finite true angles. 

It 1s therefore necessary to calibrate the angle 

measurement process. This requires a sample of showers of 

known angle. The sample events 

with the same algorithms as the 

can then be reconstructed 

physics data sample. The 

sample should cover roughly the same range of true angles as 

the physics data does, and should also span the shower 

energy range of the data. 

To be precise, we wish to know the mean value of the 

reconstructed angle as a function of the true angle. This 

relation, along with the resolution of the reconstructed 

angle, 1s needed for the unfolding of the physics. It wi 11 

be sufficient to find the calibration of the angle algorithm 

1n projection. We expect that resolution effects wi I I bias 

the polar angle even if the projected angles are unbiased. 

However, we must include the resolution in the physics Monte 

Carlo in any case, so the part of the polar angle bias due 

to resolution wl I I be dealt with there automatically_ 
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This Appendix wi I I 

calibrating the shower 

discuss several methods of 

angle reconstruction. They are 

hadron beam data, cosmic ray bremsstrahlung showers, ful I 

shower Monte Carlo, and charged current distributions in the 

neutrino data. The method used to give the final 

calibration 1s based on transverse momentum balance in 

charged current neutrino events. The potential problems 

with Pt balance as a calibration are discussed, and the 

methods used to overcome them. The results for the angle 

scale bias are presented, and the corrected data are tested 

for consistency. 

J.2. Methods 

J.2.1 Hadron beam data 

One source of hadron showers of known angle 1s a beam 

of momentum selected hadrons. The same hadron beam data 

used for calorimeter energy calibration can be used for 

angle calibration. The reconstructed angle of the showers 

can be compared to the known beam angle to determine the 

angle scale. 

A difficulty with using the calibration beam data to 

measure angle bias is that, due to the detector and beaml ine 

layout, hadrons can be aimed only along a single trajectory 

through the detector. The calibration beam is at a fixed 
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angle of essentially zero in one projection, and 70 

mi I I iradians in the other. Only the projection with finite 

angle is useful for calibrating the angle scale. 

Al I hadron beam events occur with vertices along the 

fixed beam trajectory, and within a few absorption lengths 

of the front end of the calorimeter. If the detector 

inefficiency or noise were not uniform in the region where 

the hadron showers develop, it would contribute to a local 

angle bias, which could either add to or subtract from any 

intrinsic angle bias. For neutrino data, with random vertex 

positions, local noise or inefficiency presumably adds to 

and subtracts from shower angles equally often. 

Another problem with the hadron beam data 1s that the 

flash chamber magnetostrictive readout wires were 

progressively demagnetized 1n the spots where events 

occurred. A clear trend 1n the number of hits as a function 

of event number since last remagnetization was visible. 

This probably degraded the angular resolution, and could 

introduce an angle bias if there were variations in the 

amoont of response degrad~ti~n with position. Since 

neutrino vertices were spread much more evenly around the 

detector, demagnetization was not a problem for neutrino 

data. 

There 1s also some question about whether shower angle 

systematics are the same for hadron induced showers and for 
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neutrino induced showers. The multiplicity, energy, angle, 

and particle type distributions at the primary vertex of a 

hadron induced shower are I iable to be different from 

neutrino induced showers. In particular, the leading 

particle effects 1n hadron beam data may change the 

effective length and width of the shower, which is I ikely to 

affect the angle systematics. 

Evidence about angle bias from calibration data is 

statistically weak because we have only a few hundred 

calibration beam events at each energy. Since the angle 

resolution is about 1000/E mi I I iradians, 100 events at 50 

GeV measure the mean angle to about 2 mi I I iradians. This 

provides a 3.5 percent statistical 

in the 70 mi 1 I iradian view. At 

error from 100 events would be 

error in the mean angle 

25 GeV, the statistical 

7 percent. Thus, the 

expected statistical errors on the angle bias are comparable 

to the expected bias. 

Hadron beam data has an incoming track which generates 

chamber hits, whereas neutrino data does not. Since the 

vertex systematics affect tne angle systematics, one must be 

sure that the vertex is treated equivalently in hadron beam 

data and neutrino data. A vertex from a human scanner who 

sees the hadron track 1n calibration data is clearly not 

equivalent to a vertex found by either a program or a human 

scanner 1n neutrino data with no incoming track. 
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By comparing the incoming track I ine to the vertex 

found by human scanners, even with the track present, it was 

found that the calibration data set had a vertex bias of a 

few centimeters in the view with a 70 m1 I I iradian angle. 

This is large enough to cause an angle bias of tens of 

mi I I iradians. The cause of the human scan vertex bias ts 

unknown, but may be related to the known bias of the program 

that selects an initial vertex estimate for the scanners, in 

combination with the cursor step size of the scan station. 

If the hits from the incoming track are removed by 

software, the neutrino data vertex finding program can be 

used on calibration data. However, there are uncertainties 

about whether the track removal algorithm leaves a few track 

hits behJnd, which would result 1n a more accurate vertex 

than for neutrino data, or removes too many hits near the 

vertex, which would lead to a less accurate vertex than for 

neutrino data. It should not be assumed that the vertex 

resolution or bias is exactly the same as for neutrino data. 

In principle, we can correct the data for the 

diffetence in the vertex bi~s between hadron beam data and 

neutrino data, if we measure 

data. This can be done by 

after track removal with 

the vertex bias in calibration 

comparing the program vertex 

track I ine found before the 

removal. However, the statistical error on the amount of 

angle bias due to calibration vertex bias 1s comparable to 
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the bias itself. The systematic and statistical error in 

the correction for vertex bias weakens the statistical power 

of the calibration beam data even further. 

Figure J.1 shows the hadron beam calibration data taken 

1n 1982, just after the narrow band neutrino data set used 

for this physics analysis. The plot shows the ratio of the 

difference between the reconstructed angle in the 70 

mi I I iradian view and the true angle, divided by the true 

angle. The neutrino vertex finding program was used after 

track removal, and the angle averaging algorithm SHWANG 

reconstructed the angle. The mean angle was less than the 

nominal angle by 5 percent at high energy, and by up to 20 

percent at low energy. No corrections for vertex bias were 

made. The sol id I ine indicates the measured vertex bias 

times the senstivity of the angle to vertex bias. The 

vertex bias appears to be more than enough to explain the 

angle bias at high energy, but less than enough at low 

energy. 

Figure J.2 shows analogous angle calibration analysis 

for data taken in 1985, during a I ater neutrino run 1 n a 

different beam. Note the difference 1n energy range. In 

the energy region corresponding to the pion neutrino band, 

about 50 GeV, the angle scale bias is consistent with the 

1982 data. The angle bias expected from the measured vertex 

bias is shown with a sol id I ine. 
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In summary, the hadron beam calibration data cannot be 

used to rule out angle bias. It is consistent with no bias, 

and also consistent with a bias at the level of 10 percent 

or more. 

J.2.2 Cosmic ray bremsstrahlung 

The rate of cosmic ray 

detector is about 10 kilohertz. 

muons passing 

This results 

through the 

in a rate of 

muons with bremsstrahlung or delta ray showers of a few GeV 

or more of about one per minute. These showers are produced 

by photons or delta ray electrons that are essentially 

col I inear with the muon that produced them, so the muon 

direction provides a good measure of the shower direction. 

Since cosmic rays are predominantly at large angles from the 

horizontal, they provide a good source of large angle 

showers of known direction for bias studies. With a special 

trigger, a sample of such showers was obtained. The muon 

track hits were removed by software. Provided that the 

vertex was placed on the muon track, the results exclude an 

ang 1 e sea I e bi as of more tha-n a- few percent [3] . 

However, brem and delta ray showers are electromagnetic 

showers. As such, they are narrower and denser and less 

"tracky" than hadronic showers. We have seen in Appendix I 

that under the same assumptions, a track-I ike shower may 

reconstruct to a biased angle, while a random spray shower 
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wi I I reconstruct to an unbiased angle. Also, the terms that 

cause angle scale bias tend to grow as the square of the 

shower angular width, and would be smaller for narrow 

showers than for wide showers. In addition, saturation 

tends to reduce the amount of bias. Therefore, hadronic 

showers could wel I be substantially more biased than 

electromagnetic showers. 

J.2.3 Ful I shower Monte Carlo 

It 1s possible to model the energy deposition of hadron 

showers in the detector by generating Monte Carlo simulated 

events. The Monte Carlo models the hadron-hadron reactions 

that generate the particles, the detector response to 

tracks,_ and uses a random spray method of generating 

electromagnetic sub-showers within the hadron shower. There 

is reasonably good agreement between data and Monte Carlo on 

shower properties I ike the longitudinal and transverse 

shower development. 

One can compare the reconstructed shower angles with 

the generated shower angles: Such studies have been done, 

and demonstrate a bias of shower angles toward zero. Using 

the standard shower Monte Carlo and the standard angle 

averaging routine SHWANG, the bias ranges from about 8 

percent at 10 GeV to 3 percent at 50 GeV, and becomes 

consistent with zero at higher energies. 
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The routine SHWANG attempts to correct the observed 

hits in each chamber for saturation using the local hit 

density. Another angle averaging routine that simply uses 

the raw hits, RGLDRV, shows a s1m1 lar trend in the angle 

bias with energy, but displaced by about 6 percent toward 

smaller angles for al I energies. This shift presumably 

imp I ies that the angle bias of dense parts of the shower is 

different from the bias of sparse parts of the shower, which 

is expected from saturation corrections interacting with 

biases from multiple eel I crossing. 

The standard Monte Carlo does not attempt to model the 

angle dependence of the flash chamber response to tracks. A 

modified version of the Monte Carlo which incorporated a fit 

to the ~ngle dependence of the detector response to muons 

was used to generate similar events. For both SHWANG and 

RGLDRV, the angle scale was shifted in the direction of 

larger angles by up to 10 percent at energies below about 50 

GeV, with less difference at higher energies. SHWANG angles 

were about 5 percent larger than the true angles at low 

energy, decreasing toward -zero at high energy. RGLDRV 

angles were about 5 percent too low at a I I energies. 

The major conclusions to be drawn from Monte Car Io 

studies of angle bias are that biases are Ii ke ly to exist, 

may be positive or negative, are Ii ke ly to be energy 

dependent, and may depend rather strongly on the detector 
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response as a function of angle. To the extent that shower 

density influences the angle bias, details of the shower 

development may also be relevant to the angle scale. While 

the shower Monte Carlo 1s valuable for studies of angle 

bias, there remain questions about whether it simulates the 

data wel I enough to be a quantitative calibration of the 

angle algorithms. 

J.2.4 Charged current distributions 

Another source of hadron showers of known angle 

distribution is the charged 

data sample. We can use 

charged current structure 

current neutrino events 1n the 

the known neutrino spectrum and 

functions to calculate the 

distribution of hadron shower angles, and calibrate our 

shower angle algorithm to this expectation. One might 

simply take the angle calibration from the ratio of the mean 

of the distribution of reconstructed charged current shower 

angles to the mean of the distribution of predicted shower 

angles. This could be done for many different bands of 

shower energy. 

However there are several drawbacks to such an 

approach. The mean projected shower angle 1s zero 

independent of the scale, which makes its mean useless for 

polar angle depends on the angle 

the angle scale, and may wel I be 

scale tests. The mean 

reso I ut ion as we I I as 
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dominated by the resolution. This means that any mismatch 

1n the angle distribution could be due to a wrong resolution 

as easily as to a wrong angle scale. Also, if we force the 

shower angle scale to make the charged current angle 

distributions match expectation, we cannot use the charged 

currents as a cross check of the systematics of the neutral 

' 
current analysis. 

J.3. Charged current Pt balance 

J.3.1 Advantages 

Another approach to calibrating the angle scale using 

charged current events that circumvents these problems is to 

use transverse momentum (Pt) balance. The sum of the 

reconstructed energy-momentum 4-vectors of the muon and 

hadron shower should add up to the incident neutrino 4-

vector. The neutrino angle is at most about 2 milliradians, 

so the neutrino Pt IS almost zero. From the measured muon 

energy and angle, and the measured shower energy, we can 

then predict the shower angle, and compare it to the 

reconstructed shower angle. For our detector, the 

resolution of this predicted angle is far better than the 

expected resolution of the measured shower angle. We can 

use the difference between the measured and predicted angles 

to calibrate the shower angle algorithm. 
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One of the advantages of using charged current Pt 

balance to calibrate the shower angle scale is that very few 

physics assumptions are necessary. Transverse momentum 

should be conserved for al I events at al I neutrino energies 

and al I values of the scaling variables. We need not know 

the neutrino spectrum or the charged current cross section. 

Since we do not force the charged currents reconstructed 

using shower angle to match assumed structure functions, but 

only force them to conserve momentum, the charged current 

structure functions measured using the shower angle are a 

non-circular check on the shower angle reconstruction. 

Using ch~rged current 

scale also circumvents 

events 

many of 

to 

the 

calibrate the angle 

difficulties and 

uncertainties encountered 1n using hadron calibration beam 

data. Rather than the fixed calibration beam angle of zero 

1n one projection and 70 mi I Ii radians in the other 

projection, the ful I relevant range of projected angles in 

both views 1s avai I able. The events are distributed 

throughout the detector, rather than being along the fixed 

beam trajectory and within the first few absorption lengths 

of the detector. Therefore, local flash chamber 

magnetostrictive readout demagnetization and sensitivity to 

local efficiency and noise nonuniformity does not occur for 

neutrino data. The differences between hadron-induced and 

neutrino-induced showers are no longer an issue, because 
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real neutrino-induced showers are used. The contribution to 

the angle systematics from vertex systematics can be 

automatically included in the angle calibration. There 1s 

no uncertainty from the systematics of removing the incoming 

hadron track in software. 

The uncertainties about completeness and accuracy of 

fu I I shower Monte Car lo simulated data are also 

circumvented. There 1s no need to understand the physics at 

the neutrino vertex, the shower development, or the detai Is 

of the detector response, when real neutrino-induced showers 

of known angle can be used. 

J.3.2 Systematic difficulties 

If the hadron or muon energy scales were incorrect, 

hadron and muon pt would not balance, even with 

systemat i ca I I y unbiased hadron shower angles. Thus it IS 

necessary for the hadron and muon energy scales to be 

understood before the angle scale can be ca I i brated by pt 

balancing. The hadron and muon energy scales of the data 

have been calibrated by - - . compa r 1 ng the observed energy of 

events to the mean neutrino energy at that radius in the 

di chromatic beam for the ful I range of y, i.e., for events 

where almost al I of the energy 1s 1n the muon and for events 

where almost al I of the energy 1s 1n the hadron shower. See 

Appendix G. Presuming that the neutrino beam is understood, 
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both hadron and muon energy scales should then be correct. 

Even if the neutrino beam energy used In the energy scale 

analysis IS incorrect, both hadron and muon energy scales 

wi 11 be wrong by the same amount, which wi 11 result rn 

balanced Pt if the angles are systematically correct. 

There is a known few percent systematic bias rn the 

muon momentum fitting algorithm. It is dependent on the 

muon trajectory and energy, and causes the mean 

reconstructed muon energy and therefore event energy to 

differ from the mean neutrino energy at each radius. While 

it would be possible to correct for it in the data, this 

would require a complicated parameterization of the effect. 

Instead, it was compensated for rn the energy scale 

cal ibra~ion by comparing data to a Monte Carlo with the same 

muon fitting bias. It can be compensated for in the hadron 

angle scale calibration in the same way, by comparing the 

angle scale bias observed 1n charged current data to the 

predicted bias in Monte Carlo data with reconstructed muons 

and empirically smeared shower energies. 

J.3.3 Technical difficulties 

One technical difficulty which 

ignored, but very easily circumvented, 

1 s very I arge if 

1s the problem of 

polar angle bias. As we noted above, we do not measure 

polar angles directly, bur rather measure projected angles. 
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The relation between polar and projected angles may be 

written as 

2 2 tan e = tan e x Eq.J.1 

Even if the projected slopes tan e and tan e are measured x y 

without bias, if there 1s finite resolution their squares 

are biased, and the polar slope tan 8 is thus biased. The 

trivial solution to this bias is to calibrate the projected 

angles rather than the polar angle. 

Another difficulty with using Pt balance is that the Pt 

of the shower is not completely trivial to calculate. There 

1s a distinct~on between the shower momentum and the shower 

r- energy. In units where c=l, the shower 4-vector energy is 

always 1-arger than the shower momentum, which is always 

larger than the shower kinetic energy. The calorimeter 

responds not to the ful I 4-vector shower energy Eh+M, which 

includes the mass of the target nucleon M, but rather to the 

shower kinetic energy Eh. However, it 1s the shower Pt 

which is balanced by the muon Pt. We should use Ph sin(8), 

not Eh sin(8). 

Uni ike the lepton side, the invariant mass of the final 

state hadron system is not the same for al I events, and can 

be a significant fraction of the total hadron energy. If Eh 

1s the shower kinetic energy, which equals the lepton energy 

loss, M is the target mass, and x is the Bjerken sealing 
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variable, the hadron invariant mass is written 

Eq.J.2 

With this result we can find the relation between hadron 

momentum and kinetic energy. 

2 
Ph= 

2 
(Eh+ M) - w2 

2 
2MEh+ M2- M2 - 2MEh+ 2MEhx = Eh+ 

= E2 
h + 2MEhx Eq.J.3 

Ph= Eh J 1 + 2Mx/Eh Eh ( 1 + Mx/Eh) Eq.J.4 

The difference between shower energy and momentum IS about 

10 percent at 10 GeV and x=l. For more typical x=.25 and 

Eh=25, the difference IS 1 percent. 

Another possible difficulty is biases due to errors In 

denominators. Even if the transverse momentum balance 

formula were simple, we end up dividing by some quantity 

measured only with poor resolut)on. 

take the approximate formula below. 

Eh8h = Eµ.8µ. 

eh = Eµ.8µ I Eh 

For a trivial example, 

Eq.J.5 

Eq.J.6 

As is wel I known, the mean of the reciprocal of a random 

variable is not equal to the reciprocal of the mean. For a 
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gaussian variable, the mean reciprocal 1s the reciprocal of 

the mean times one plus the square of the fractional error. 

< 1 I [z(l ~ a)] > ~ (1 + u2 ) / <z> Eq.J.7 

If the Eh resolution is 10 percent, the mean reciprocal 

energy is biased by 1 percent. If the resolution is 20 

percent, the shift is 4 percent. 

There are also statistical effects which can induce a 

spurious bias the comparison of predicted and 

reconstructed shower angles. The most straightforward 

method of comparing the predicted and observed shower angles 

would be to plot the observed shower angle versus predicted 

shower angle for al I events. If the predicted and observed 

angles were both unbiased and had perfect resolution, events 

would I ie along a diagonal I ine. Finite resolution in the 

observed angle would produce scatter around the diagonal. 

The angle algorithm would be calibrated by a fit to the mean 

observed angle as a function of predicted angle. 

If we describe the relation between the mean 

reconstructed projected shower angle ~ and the true shower 

projected angle 8 by a scale factor a, then we write 

8(8) =a 8 Eq.J.8 

If 8. is the reconstructed shower angle for event 1, whose 
I 
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predicted shower angle is 8., we find the angle scale factor 
I 

a by minimizing the chi square. 

Eq.J.9 

a = E 8.8. I E 8~ 
I I I 

Eq.J.10 

However, finite resolution 1n the predicted shower 

angle 8 wi I I bias the results of such a fit. The 

reconstructed and predicted shower angles appear I inearly in 

the numerator, but the square of the predicted shower angle 

appears in the denominator. Even symmetrical fluctuations 

in the predic~ed shower angle wi I I bias the denominator 

toward larger values, which wi I bias the value of a toward 

sma I I er -va I ues. This means that unbiased reconstructed 

angles wi I I appear biased toward zero angle if there is 

finite resolution in the prediction of the shower angle used 

for the fit. 

This is most easily seen by considering the events 

where the resolution of the measurements used to predict the 

shower angle smears the predicted angle beyond the kinematic 

I imit. Since the measurements used in the prediction are 

independent of the measurements used 1n reconstructing the 

shower angle, the fluctuations of the reconstructed angle 

are uncorrelated with the prediction. This implies that the 

mean observed shower angle wi I I be inside the kinematic 



487 

I imit, even for events whose angles predicted from the muon 

reconstruction are beyond the I imit. In other words, the 

events beyond the kinematic I imit, which have the largest 

lever arm 1n the angle scale fit, wi I I have shower angles 

which appear smaller than necessary to balance Pt. This 

wi 11 lead to an apparent bias toward systematically smal I 

shower angles, even for an unbiased angle algorithm. 

In general, if there 1s a sharp gradient 1n the 

distribution of the predicted angle, a given bin of 

predicted angle wi I I be populated by more events smearing in 

from one side of the bin than from the other. The mean 

predicted shower angle wi I I differ from the mean true angle 

for the bin, while the mean observed angle wi I I not 

(assumin_g there 1s no actual bias in the angle algorithm.) 

Observation and prediction wi I I disagree, but it wi I I be the 

prediction which is incorrect. 

J.4. Method 

J.4~1 Choice of variable 

We must choose which combination of measurements from 

the events in the data set to use in the fit for the angle 

scale. While the systematic difficulties with comparing 

charged current shower angles to those predicted from muon 

reconstruction cannot be avoided, it 1s possible to 

circumvent some of the technical difficulties. 
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Clearly we wish to avoid the polar angle bias problem 

by using projected angles rather than polar angles. By 

proper choice of variables, we can also minimize the 

statistical biases. The remaining statistical biases, and 

also systematic biases, can be removed by subtraction of 

comparable Monte Carlo results with no angle scale bias but 

the same statistical and systematic effects. 

Attempting to circumvent the difference of order 2 

percent between shower energy and shower momentum probably 

creates larger biases than the bias 

simplest to by analyzing both data and 

itself. It seems 

Monte Carlo as if 

shower energy _and momentum were identical and subtracting 

the apparent bias in the Monte Carlo analysis with the same 

assumpt i_on . 

One strategy for minimizing the statistical bias 

effects, which occur when there 1s a poorly resolved 

independent variable, rs to change variables to remove 

smearing from the independent variable and put it into the 

comparison of the measured dependent variable. Direct 

shower angle e with the pr~diited shower angle 8 is a poor 

choice, because 8 contains resolution contributions from the 

muon energy, muon angle, and shower energy. It is better to 

fit the shower Pt as a function of muon Pt, which moves the 

Eh resolution from the independent variable to the dependent 

variable. Also, Eh appears in the denominator of 8, so 
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using Pt instead of 8 avoids the bias from poorly resolved 

quantites in denominators. 

We therefore have chosen to use a transverse energy 

variable which we wi I I cal I Et. We use projected slopes 

with signs, rather than polar slopes. 

hadron shower, the muon, and the event. 

We define Et for the 

Eth = Eh tan eh Eq.J.11 

Et}' = E tan 8 Eq.J.12 
}.' }.' 

Et = Eth + Et}' Eq.J.13 

If the hadron shower angle algorithm is unbiased, the 

event Et shoul~ be approximately zero for each projection of 

each event, independent of the Et of the muon. Large muon 

Et values should be cancel led by large shower Et values with 

the opposite sign. If we made a scatterplot of event Et 

versus muon Et, events would scatter above and below a 

hor i zonta I I i ne due to event Et reso I ut ion, but the mean 

event Et would be approximately zero independent of muon Et. 

However, if the shower angle algorithm produces angles 

which are systematically 10 percent closer to zero than the 

true angle, then the event Et wi I I be biased toward the muon 

by 10 percent of the muon Et. If we made a scatterplot of 

event Et versus muon Et, the events would Ii e along a Ii ne 

with a slope of +10 percent. Thus, the fractional angle 

scale bias is just the negative of the slope of a fit to the 

scatterplot. 
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The Et variable is a compromise between the statistical 

bias issues discussed above, the physical principle of 

conservation of transverse momentum, and simplicity. We 

recognize that using the shower kinetic energy rather than 

the shower momentum, and using tangents rather than sines, 

means that event Et wi I I not be as precisely conserved as 

event Pt would be. The slight difference wi I I be 

compensated for by using the same variables in the para I lel 

Monte Carlo analysis. 

J.4.2 Parameterization of bias 

We wi I I parameterize the angle scale bias at a given 

shower energy by a simple scale factor. We presume that 

showers of zero true angle in projection wi I I reconstruct to 

zero angle in that projection, on the average. This can be 

easily checked in the data, independent of the angle scale. 

In principle, the mapping from true angle to mean 

reconstructed angle could be more comp I icated than a simple 

scale factor. It could be that smal I angle showers 

reconstruct correctly, and -large angle showers reconstruct 

increasingly incorrectly. However, since the reconstructed 

angle resolution is so poor, it is statistically difficult 

to detect a non I inear angle scale in the charged current Pt 

analysis. But if a non I inearity is not detectable with a 

given level of statistics, it is probably unneccessary to 
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include it for an experiment with such statistics. If we 

use the actual angle range populated by charged current 

events to derive a simple scale factor at each energy, the 

scale factor wi I I average over the non I inearity if it 

exists. Since we must estimate the effects of residual 

systematic errors in the angle scale on the physics analysis 

in any case, we wi I I presume that a simple energy-dependent 

angle scale factor is an adequate functional form for the 

angle scale ca I i brat ion. 

The angle scale bias wi 11 be taken as the negative of 

the slope of a fit to the mean event Et versus muon Et' 

after subtracting the corresponding Monte Car Io s I ope. We 

expect that the shower angle bias wi 11 be a function of 

energy, _because the shower opening angle, length, and degree 

of saturation al I depend on energy, and al I potentially 

affect the angle bias. We wi I I therefore analyze different 

shower energy bins separately for angle scale bias. We wi I I 

fit the difference between the data and Monte Carlo Et bias 

with a function of the form 

Eq. J .14 

J.4.3 Data selection 

We require charged current events with fully 

reconstructed muons for this analysis. We do not need to 

use the energy-radius correlation of the neutrino beam for 



492 

Pt balancing, since the charged current reconstructed 

quantities are sufficient to calculate the transverse 

momentum. Since Pt is conserved independent of the flux and 

cross section, there 1s no need to select any particular 

type of neutrino parent secondary. In fact, a wide band 

neutrino beam with no neutrino energy or flux information 

could be used. 

We can use loose fiducial volume cuts to increase the 

statistics, so long as the showers are contained. On the 

other hand, we can make any cuts on the qua I ity of the muon 

reconstruction that we wish, 1n order to minimize the 

contribution from bad muon fits, without biasing the Pt. We 

can also make cuts on the muon Pt, requiring that it be 

within the kinematic I imit to minimize statistical biases. 

Events for this analysis could come from either the 

hadron or muon triggers. Their vertices were required to be 

between chambers 8 and 400 (out of 608 chambers), and be at 

least 50 cm away from the nearest flash chamber edge for 

containment. The shower energy was required to be at least 

2 GeV. The muon fit was required to use at least 3 single 

or double plane hits, to have an estimated momentum error of 

less than 30 percent, and to have an acceptable chi square. 

Reasonable agreement between the momenta from two different 

fitting routines TRACKM2 and DMUDRV was also required. 

These cuts are essentially the same as those used in the 
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energy calibration in Appendix G. The muon energies were 

calculated using the corrected toroid field map. 

The 4 different neutrino data sets were analyzed 

independently. Each was divided into 10 energy bins. The 

first bin covered 2-10 GeV, and was below the energy cuts 

used for physics analysis. The bins for pion band energies 

were 10 GeV wide. The kaon band energy bins, which are 

largely above the neutral current physics cuts, were 40 GeV 

wide. 

Each event in the shower energy bin was entered into 

the fit twice, once for each of its projections. The value 

of the charged current sealing variable x was required to be 

less than .5 to minimize the influence of smearing 1n the 

tai Is of the Pt distribution. The absolute value of the 

projected muon and event Et was required to be less than 8 

GeV to prevent poorly reconstructed events from having 

excessive influence on the fit. 

The angle scale bi as was found by a normal least-

squares fit to the event Et versus the muon Et for an 

intercept and a slope. Th-e -statistical errors of the fit 

parameters were determined by assuming the Et resolution for 

a I I events in a shower energy bin was given by the root mean 

square scatter of the events around the fit I ine. 



494 

J.4.4 Para I lel Monte Carlo analysis 

Monte Carlo charged current events were generated from 

beam files of Monte Carlo neutrino energies and a fit to the 

Lab E and CDHS neutrino structure functions. The shower 

energy and angle resolutions were simulated by smearing the 

hadron shower 4-vector quantities. Delta ray effects on the 

shower energy and angle were simulated by throwing an 

exp I icit delta ray energy with the right distribution for 

the length of showers found 1n the data, adding the energy 

to the shower at the muon angle, and reducing the muon 

energy accordingly. See Chapter 4. The reconstruction of 

the muons from the events was simulated by projecting them 

through the calorimeter and toroidal magnets with energy 

loss and_ multiple scattering, creating chamber hits with the 

known chamber resolution, and fitting them with the same 

muon fitting algorithm used for the data. See Appendix E. 

It must be emphasized, though, that this Monte Carlo 

analysis made no attempt to model the detai Is of shower 

development or angle-dependent detector response. The 

hadron shower angle was tak~ t~ be the angle of the hadron 

momentum 3-vector, appropriately smeared. 

The same binning, cuts, and Et I ine fit procedure used 

for the data applied to the corresponding Monte Carlo event 

quantities. The known bias in the muon energy scale from 

the fitting algorithm thus appears 1n the Monte Carlo 
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analysis. The difference between shower energy and 

momentum, and the use of tangents instead of sines was also 

simulated. The statistical bias effects due to muon Et 

resolution also appear. Polar angle bias, and shower energy 

and angle resolution were also included, although they 

should not bias in the result. 

J.5. Results 

J.5.1 Monte Carlo analysis 

Figure J.3 shows the Monte Carlo event Et versus muon 

Et for the 10-20 GeV shower energy range of the +165 GeV 

.-- neutrino beam. The event Et is distribution 1s broadened by 

resoluti_on, but is only slightly correlated to the muon Et. 

Figure J.4 shows the mean event Et versus muon Et for the 

energy bins of the pion band, along with I ine fits. Note 

r-. 

that the vertical scales are different. The wave I i ke 

structure 1s due to the biases 1n the muon energy 

reconstruction, and the resolution in the muon Et. 

The results of the Monte Carlo analysis for angle bias 

were consistent with expectation. For al I 10 shower energy 

bins, and for al I 4 neutrino beam energy settings, the event 

Et was biased by only a few percent. The bias was negative, 

meaning the event Et was biased away from the muon. This is 

consistent with expectation from the muon energy scale bias. 
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Typical statistical errors on the 

for each shower energy bin. 

significant bias found in the 

angle bias were 1 percent 

The largest statistically 

Monte Carlo analysis was 

+5 = 1.5 percent in a single bin, out of 40 bins total. 

For this bin, the highest shower energy bin in the +165 

GeV neutrino energy data, events necessarily have smeared up 

1n energy from lower true energies. The mean reconstructed 

Et of the showers in these se1ected events is therefore 

larger on the average than 

muon. The population of 

smal I, and the 200 and 250 

1n these bins. 

the Et which would balance the 

the high shower energy bins is 

GeV settings show much less bias 

The Monte Carlo analysis tends to confirm that the 

shower a~gle scale can be calibrated using charged current 

Pt balancing. There are no large or unexpected artifacts in 

the fitting procedure. 

J.5.2 Data analysis 

Like the Monte Carlo analysis, the data analysis was 

done separately for each neu-tri-no beam energy setting. The 

data analysis was done for several angle algorithms, and 

using several different vertex algorithms. The results were 

somewhat different for the different algorithms and 

vertices. It is expected that different algorithms wi 11 

have different amounts of systematic bias, since different 
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weighting schemes are used, which wi I I have different 

sensitivities to the various sources of angle bias. Since 

the angles used for the neutral current physics analysis 

were from the routine RGLDRV, and the charged currents best 

simulate neutral currents when the muon hits are removed 

before vertex finding, those wi I I be the results presented 

here. 

Figure J.5 shows the event Et versus muon Et for the 

10-20 GeV shower energy band of the +165 GeV data. While 

not easily visible in the scatterplot itself, the mean event 

Et shows a strong positive correlation with the muon Et. If 

al I other scales are systematically correct, this means that 

_ _._ the shower angles are underestimated, so the shower Et fai Is 

to balance the muon Et. Figure J.6 shows the event Et 

versus muon Et for the shower energy bins that dominate the 

pion band, along with I ine fits to them. The slopes are 

clearly statistically significant. 

The 4 neutrino data sets were combined to find the 

angle scale bias. The Monte Carlo fit slopes for each 

shower energy bin of each l:ieam setting were subtracted from 

the data fit slopes. The corrected slopes from the 

different data sets were then averaged together, weighted by 

their statistical errors. This procedure corrects for the 

known biases due to the fitting procedure, and due to data 

reconstruction (apart from the angle algorithm biases, of 

course.) 
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Figure J.7 presents the angle scale bias as a function 

of energy for the algorithm RGLDRV, using the vertex found 

after charged current muon removal. The data points are the 

data bias after subtracting the Monte Carlo bias. The error 

bars are the statistical errors of the slope fits, combined 

for the data and Monte Carlo difference. The errors grow at 

high energy partly because of poorer statistics in the kaon 

band, and partly because the Pt range decreases at high y, 

which decreases the level arm for the slope fits. 

The sol id I ine indicates the amount of bias in the 

Monte Carlo, which is quite trivial compared to the bias in 

the data after subtraction. 

parameter fit to the data points. 

The dashed I ine 1s the 

The most striking results are for the 2 to 10 GeV 

shower energy bin. While the Monte Carlo bias for this bin 

1s at most a few percent, the data have biases ranging from 

20 to 50 percent bias toward zero angle, depending on 

algorithm. The statistical error on the bias is about 3 

percent. 

The shower energy range from- 10 to 60 GeV consistently 

shows a bias of 5 to 20 percent toward zero angle. The 

statistical errors on the angle scale measurements are in 

the 3 to 5 percent range for this energy interval. There 1s 

also a consistent energy dependence, with the higher 

energies being less biased than the lower energies. 
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At the higher energies, the angle scale bias appears to 

change sign. The bias is less statistically significant 

than at lower energies, but it is difficult to claim that it 

1s only a statistical fluctuation. 

Although not shown here, the bias sti I I exists even if 

the vertex used was derived from the charged current muon 

rather than the shower hits, which demonstrates that most of 

it is due to the intrinsic properties of the detector and 

algorithm, and not to vertex bias. Also, the differences in 

the angle bias between the different algorithms are rather 

smal I compared to the bias they share, which indicates that 

it is not mer~ly a result of a poor algorithm or programming 

errors. 

J.5.3 Discussion 

The angle scale bias toward zero angle at low shower 

energy 1s not unexpected from 

about the angle dependence of 

Appendix I. The trend toward 

the general considerations 

the detector response of 

less bias at higher energies 

is a I so not unexpected, s i nc-e h-i ghe r energy showers a re more 

saturated, and saturation tends to reduce the amount of 

angle bias. However, the bias toward larger than true 

angles at higher energy is somewhat disturbing. 

The reversal of the sign of the angle scale bias at 

high energy occurs in each of the neutrino data sets. It 1s 
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not of overwhelming statistical significance. It does not 

appear in the Monte Carlo analysis, except in the highest 

shower energy bin of the 165 GeV data, where it 1s due to 

using events smearing beyond the kinematic I imit of shower 

energy. It therefore seems uni ikely to be an artifact of 

the fitting procedure. 

It is worth noting that analysis of ful I shower Monte 

Carlo events using the SHWANG algorithm resulted in biases 

toward larger than true angles when an approximate angle 

dependence of the flash chamber response was included. The 

energy dependence of the bias for that particular choice of 

angle depende~t response was much flatter, and in fact was 

positive even at low shower energies, but the choice of how 

to include the angle dependent response was fairly 

arbitrary. It is quite possible that some realistic model 

of angle dependent response would duplicate the results of 

the data Pt balancing analysis. 

The increasing bias toward larger than true angles at 

high energy is somewhat inconsistent with the results of the 

1985 higher energy hadron ~ea~ ~al ibration of the detector, 

which show a mi Id bias toward smaller angles at high energy. 

However, the Pt balancing analysis uses events with a root 

mean square Pt of only about 3 GeV, while the hadron beam 

analysis uses a 70 mi I Ii radian angle, which gives a Pt of 14 

GeV for a 200 GeV hadron. It cannot be ruled out that the 
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assumption that a simple scale 

bias at al I values of Pt or 

angle, rather than some more comp I icated function. 

It should be kept in mind that events with less than 10 

GeV shower energy wi I I be excluded from physics analysis, 

because the trigger is not fully efficient at such energies, 

and the shower energy and angle resolution is poor. Thus, 

the very large angle bias 1n the first shower energy bin is 

not important for physics. Also, the high shower energy 

bins wi I I be excluded from physics analysis by they cut 

necessary to control the contamination of the neutral 

current sampl~ by misclassified charged current events. 

J.5.4 U~age of calibration 

For the physics analysis, we need to have the same 

amount of angle scale error 

Since we wi I I be repeating 

1n both data and Monte Carlo. 

the physics analysis with 

different angle scale assumptions to determine the effect of 

uncertainties in the scale, the scale error information 

should be introduced where it is most easily changed. If we 

apply the scale correction to the data, we can use the same 

unbiased Monte Carlo files for the unfolding process for any 

angle scale assumption. If we put the scale error into the 

Monte Carlo, we need to recreate the large Monte Carlo files 
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each time we change the scale assumptions. We therefore 

wi I I use an unbiased Monte Carlo, and put the angle scale 

corrections into the data. 

The function p(Eh) from the fit of angle scale bias 

versus energy was used to rescale the projected shower 

angles for the charged current data sample. 

The Pt balancing analysis was then repeated to confirm that 

the shower angles now balanced the muon Pt. 

Figure J.8 is the 10-20 GeV shower energy bin event Et 

versus muon _Et for the data after the angle scale 

correction, analogous to Figure J.3 for the Monte Carlo and 

Figure ~.5 for the Monte Carlo. The clear correlation of 

event Et and muon Et has been reduced to that of the Monte 

Carlo. Figure J.9 is the mean event Et versus muon Et for 

the shower energy bins of the pion band, analogous to 

Figures J.4 and J.6. 

Figure J.10 shows the shower angle scale bias after the 

cort•ction for each shower ~nergy bin of the data, and after 

subtracting the Monte Carlo expectation of the bias. This 

is analogous to Figure J.7. For the energy range of the 

neutral current physics analysis, ~10-60 GeV, the shower 

angle scale bias is now consistent with zero. 



The exception 1s the 

503 

lowest shower energy bin, which 

the correction. This bin 

GeV of shower energy and is 

remains negatively biased after 

covers the range from 2 to 10 

not used for neutral current 

(for other reasons than angle 

shower angle physics analysis 

scale bias). The data point 

is an average over an energy region where both the true 

angle distribution and the angle 

of energy, but is plotted at the 

were subdivided further and 

bias are strong functions 

bin center. If the bin 

a more sophisticated 

parameterization of the energy 

used, there is no reason to 

could not be calibrated away. 

dependence of the bias were 

believe that the the anomaly 
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Figure J.l 
1982 calibration beam angle bias 

Difference between mean reconstructed shower angle and 
calibration beam angle, divided by calibration beam angle, 
for hadron beam data taken at end of narrow band neutrino 
running. Sol id I ine is angle bias expected from measured 
mean difference between hadron track and progra~ vertex 
after track removal. 
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1985 CALIBRATION BEAM ANCL£ BIAS 
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Figure J.2 
1985 calibration beam angle bias 

Difference between mean reconstructed shower angle and 
calibration beam angle, divided by calibration beam angle, 
for hadron beam data taken during a later run with the same 
detector. Note change in range of hadron beam energy. 
Sol id I ine is angle bias expected from measur~d mean 
difference between hadron track and program vertex after 
track remova I . 
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Monte Carlo event Et vs muon Et scatterplot 

E +3 

Lower left plot is both components of event Et on y plot 
axis versus muon Et on x plot axis for each charged current 
event with shower energy between 10 and 20 GeV. Upper right 
plot is mean event Et versus muon Et, with I ine fit. Upper 
left plot is distribution of muon Et. Lower right_plot is 
distribution of event Et. 
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Figure J.4 
Mean Monte Carlo event Et vs muon Et plots 

Plots are mean event Et versus muon Et for different shower 
energy bands. Vertical scales are different between plots. 
Errors are statistical errors in mean. Lines are fits to 
points; slopes are negative of angle scale bias. 
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DATA EVENT ET VS MUON ET 
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Data event Et vs muon Et scatterplot 

Lower left plot is both components of event Et on y plot 
axis versus muon Et on x plot axis for each charged current 
event with shower energy between 10 and 20 GeV. Upper right 
plot is mean event Et versus muon Et, with I ine fit. Upper 
left plot is distribution of muon Et. Lower right_plot is 
distribution of event Et. 
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Figure J.6 
Mean data event Et vs muon Et plots 

Plots are mean event Et versus muon Et for different shower 
energy bands. Vertical scales are different between plots. 
Errors are statistical errors in mean. Lines are fits to 
points; slopes are negative of angle scale bias. 
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Shower angle scale bias vs shower energy 
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axis versus muon Et on x plot axis for each charged current 
event with shower energy between 10 and 20 GeV, after raw 
shower angles are corrected by energy-dependent scale 
factor. Upper right plot is mean event Et versus ~uon Et, 
with I ine fit. Upper left plot is distribution of muon Et. 
Lower right plot is distribution of event Et. 
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ANGLE SCALE BIAS VS SHOWER ENERGY 
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Figure J.10 
Corrected shower angle scale bias vs energy 

Shower angle scale fractional bias as a function of shower 
energy, taken from slopes of fits to mean event Et vs muon 
Et of charged current neutrino events, using corrected 
shower angles, after subtracting Monte Carlo fit slopes. 
Errors are statistical errors in slopes. Sol id I ine_is bias 
from Monte Carlo. 



514 

K. Shower Angle Resolution 

K.1. Introduction 

The formula for the sealing variable x 1s 

2 
x = Eh tan eh / 2M(l-y) Eq.K.1 

The resolution 1n x wi I I clearly depend on the resolution in 

eh. Because the square of the tangent is biased when 

measured by two orthogonal projections with finite 

resolution, there is also a shift 1n x due to angle 

resolution. To extract physics from the data set, some 

technique must be used to compensate for the finite x 

resolution, which requires information about the shower 

angle re-solution. It 1s I ikely that the assumed value of 

the shower angle resolution wi I I not only influence the 

errors quoted for the physics results, but also influence 

the values quoted for the physics results. 

While the angle resolution for single tracks 1s 

calculable 1n an open geometry from knowledge of chamber 

resolutions and layout, and 1n a calorimeter from multiple 

scattering, the angle resolution for showers 1n the 

calorimeter 1s not easily calculable from first principles 

to the desired accuracy. It 1s necessary to measure the 

angle resolution using real hadron showers of known angle to 

obtain the resolution information needed for extracting 

physics from the data. 
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This Appendix wi I I discuss some sources of shower angle 

smearing, and the estimated magnitude of their contributions 

to the angle resolution. The results of calibration of the 

angle resolution in a hadron beam and using charged current 

neutrino events wi I I be presented. 

K.2. Sources of angle smearing 

K.2.1 Scattering 

One source of angle smearing 1s the sum of many random 

transverse momentum transfers between the shower particles 

and the calorimeter mass, where the recoi Is are not properly 

visible. Multiple scattering transfers momentum from a 

particle__ to a nucleus, but the nuclear recoi I energy is 

usually too smal I to cause any ionization by itself. Also, 

most of the scatters occur 1n the inactive target mass. 

Finally, even if the recoi I energy were visible, the 

recoi I I ing nucleus would have a very short range and deposit 

its energy without moving very far. It would remain in the 

same angle bin relative to t-he. event vertex, uni ike the 

scattered track which would eventually leave its angle bin. 

Thus the recoi I nucleus would not balance the scattered 

track in the usual angle algorithm. 

We can calculate the approximate amount of angle 

smearing 1n a shower due to multiple scattering by 
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calculating the total amount of transverse momentum transfer 

from tracks in the shower. If we model a shower of energy E 

as a set of tracks with energy loss per unit length of dE/dx 

(about .2 GeV per meter at m1n1mum ionization 1n our 

calorimeter), which interact every length A, then the total 

number of interactions is 

E 
N = A dE/dx Eq.K.2 

If the transverse momentum transfer per interaction is K, 

then the total transverse momentum transfer from the shower 

to the calorimeter material, and thus the angle resolution 

may be calculated easily. 

Eq.K.3 

Eq.K.4 

We can now calculate the total effect of multiple 

Coulomb scattering. The radiation length of the calorimeter 

is about 15 centimeters, and a particle transfers about 20 

MeV (.020 GeV) of transvers~ ~omentum per square root of a 

radiation length. Thus, in GeV and radians, 

Eq.K.5 

~9 = .12 E -. 5 Eq.K.6 
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We have not yet included the effects of momentum 

transferred into invisible nuclear fragments from strong 

interactions. The hadronic 

calorimeter is 8S centimeters. 

absorption length of our 

The momentum transfer scale 

is set by the nuclear Fermi energy of about 30 MeV. The 

hadronic contribution is then 

APt ~ .03 (.8S•.2)-.s E's= .073 E's 

Ae = .073 E-.s 

Eq.K.7 

Eq.K.8 

This is not much smaller than the Coulomb component. It 

could be even a few times larger, since there are typically 

many boi loff nucleons in a hadron-nucleus col I ision, each of 

which may carry the Fermi momentum. 

This 1s an irreducible m1n1mum smearing for a detector 

with given material properties, and which responds to the 

energy rather than the transverse momentum of nuclear 

reco i Is. Even if a detector were fu I I y active and had 

perfect energy resolution, if the pt associated with an 

element of deposited energy 1-S inferred from its position 

relative to the vertex rather than being measured 

exp I icitly, this I imit wi I I apply. 

The sum of both Coulomb and hadronic scattering effects 

could easily be APt~.lS E.S For a 2S GeV shower, the APt 

would be .7S GeV, and for a 100 GeV shower it would be 1.S 

GeV. In terms of angle A8, it would be 30 mi I I iradians at 

2S GeV, and lS mi I I iradians at 100 GeV. 
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K.2.2 Calorimetry fluctuations 

Sampling fluctuations also play a role 1n angle 

smearing. Imagine the shower developing into separate 

radial calorimeter wedges projecting from the vertex, with 

the angle to be determined by the energy weighted average of 

the wedge angles. If the reconstructed energy in each wedge 

fluctuates relative to the 

energy fluctuations wi I I 

fluctuate. 

actual energy in the wedge, the 

cause the reconstructed angle to 

We can calculate the approximate amount of shower angle 

smearing due to shower fluctuations by propagating the 

errors through the angle algorithm. We write the density of 

energy as a function of angle as dE/d8, and assume that the 

shower fluctuations within an angle element scale as the 

square root of the energy within the angle element times 

some constant a. We can then find a in terms of the global 

energy resolution. 

E = f d8 dE/dB 

a 2 (dE/d8) = a 2 dE/de 

a 2E = fde a 2 (dE/d8) = fd8 a 2dE/d8 = a 2 E 

aE I E =a I E· 5 

Eq.K.9 

Eq.K.10 

Eq.K.11 

Eq.K.12 

Thus, a is simply the constant 1n the usual expression for 

the global energy resolution, expressed as a fraction over 

the square root of energy. 
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Now we write the expression for the shower mean angle 

in terms of the angular shower energy density, and its 

variance, neglecting the variance 1n the total energy 

measurement but including the fluctuations from angle bin to 

angle bin. 

~ = (1/E) Jd8 8 dE/d8 

a2~ = (1/E2) Jd8 e 2a 2 (dE/d8) 

Eq.K.13 

Eq.K.14 

Eq.K.15 

If we take the square root to get the resolution, and 

rearrange the total energy factor, we find 

a~ = (a/E) [J d8 e 2dE/d8] · 5 

a~= [a/E' 5] [(1/E)Jd8 e2dE/d8] · 5 

Eq.K.16 

Eq.K.17 

In this expression we recognize the root mean square angular 

shower width, 

e = [(1/E) Jde -e 2cfE/d8J · 5 
rms Eq.K.18 

and also the fractional energy resolution a/E· 5
. We can 

thus write the angle resolution, and the corresponding Pt 

resolution, as 

a ~ = (aE/E) erms Eq.K.19 
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u Pt = Eu ~ = E (uE/E) 8rms Eq.K.20 

If we take as 

.-5 uE/E=.1+.5E , and the 

mi I I iradians, the angle 

representative of our detector 

shower angular width as 200 

resolution contribution from 

calorimetry wi I I be 20+100E-· 5 mi I I iradians. This 1s 40 

mi I I iradians at 25 GeV, and 30 mi I I iradians at 100 GeV. In 

terms of Pt, the calorimetery contribution to the resolution 

is .02E+.1E· 5 GeV. For a 25 GeV shower, this is 1 GeV, and 

for a 100 GeV shower it is 3 GeV. 

K.2.3 Vertex ·resolution 

There is also a contribution to the angle resolution 

from errors 1n determining the neutrino interaction point in 

the detector. There is both a systematic bias and a finite 

resolution in vertex finding. This is discussed in detai I 

in Appendix I on sources of systematic angle bias. Here we 

simply summarize the general magnitude of the effect. 

The resolution on the shower vertex position is about 

2 centimeters, a few times the flash chamber eel I size of 5 

mi I I imeters. The relation between vertex errors and angle 

errors is the effective shower length of 1 to 2 meters, 

whose scale 1s set by the absorption length of 85 

centimeters. Thus, the angle resolution induced by vertex 

resolution is of the order of 10-20 mi I I iradians, with the 
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smaller number applying to higher energy showers. The 

contribution to the Pt resolution wi I I be about (.Ol-.02)E 

1n GeV. If we take 20 mi I I iradians for a 25 GeV shower, the 

Pt resolution would be 500 MeV, and if we take 10 

mi I I iradians for a 100 GeV shower the resolution would be 1 

GeV. 

K.3. Measurements of angle resolution 

K.3.1 Hadron beam 

Any method of measuring the angle resolution wi I I 

involve reco~structing many showers of known angle to 

determine the fluctuations of the measured angle. One good 

source of showers of known angle is a hadron beam of known 

angle. The same calibration data used for the energy and 

mean angle calibration of the calorimeter can be used to 

measure the angle resolution. 

angle of each shower and 

We simply reconstruct the 

observe the width of the 

distribution of shower angles about its mean. 

The hadron beam cal i~ra€ion data suffers from some 

difficulties with magnetostrictive readout demagnetization. 

This reduces the number of flash chamber hits per unit of 

energy as a function of events read out since last 

remagnetization. Neutrino events occur randomly throughout 

the detector, so they rarely occur 1n the same region 
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between magnetizations. This could lead to a calibration 

events having a poorer angle resolution than neutrino events 

due to increased saturation. The calibration data is also 

al I along the same trajectory through the detector, and is 

within a few absorbtion lengths of the front. Local 

variations in detector response or noise may thus shift the 

mean angle. It is difficult to predict whether this would 

make the distribution of reconstructed angles narrower or 

wider. 

The incoming hadron track 1n hadron beam data must be 

removed to fully simulate the neutrino shower vertex 

reconstruction situation, where the incoming track 1s 

invisible. This is done by computer program, then the same 

program_used for the neutrino data is used to find the 

hadron shower vertices. However, the track removal process 

cannot perfectly simulate neutrino vertices because there 

are uncertainties about which hits belong to the track alone 

and which hits are early shower hits. If too I ittle of the 

track is removed, the vertex resolution wi I I be better than 

for neutrino data, and if the early part of the shower is 

removed with the track, the vertex resolution wi I I be worse 

than for neutrino data. These vertex resolution differences 

would cause an angle resolution difference. 

One set of calibration data was taken 1n 1982 1 at the 

end of the narrow band neutrino running. The results are 
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shown in Figure K.1, both 1n terms of angle and Pt. The 

angle resolution was somewhat different in the different 

flash chamber views. At 10 GeV, the resolution was about 

100 mi I I iradians, improving to about 25 mi I I iradians at 100 

GeV. The energy dependence of the resolution appeared to be 

more I lke a constant plus another constant divided by E, 

rather than sealing with E' 5 . If we average the two views 

and multiply by the beam energy to get the Pt resolution, 

and plot Pt resolution against beam energy, the data points 

fal I along a I ine. The low energy Pt resolution is about 1 

GeV, degrading to about 5 GeV at 250 GeV if the line is 

extrapolated. 

In 1985, the detector was calibrated again, with the 

results shown in Figure K.2. An improved track removal 

program was used before finding the shower vertices. Data 

was taken from about 30 GeV to 400 GeV, extending the upper 

end of the range. The low energy angle resolution is about 

the same as the previous data, but the resolution at high 

energies 1s better, being about 15 to 20 mi I I iradians. In 

terms of Pt, the low energy resolution is about 1 GeV, and 

the resolution at 250 GeV is about 3.5 GeV by interpolation. 

K.3.2 Charged current events 

Another source of hadron showers of known angle is 

charged current neutrino events. Using transverse momentum 
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balance, it 1s possible to predict the angle of the hadron 

shower from the shower energy and the muon energy and angle. 

There is some smearing 1n the prediction due to the finite 

shower energy and angle resolution, but for most of the 

kinematic range it 1s much less than the expected shower 

angle resolution. 

However there 1s a special case where the smearing 1n 

the predicted angle is much smaller. That case is the angle 

of the shower out of the plane of the muon and neutrino, 

which should be zero independent of the shower energy and 

the muon energy. Only the muon angle resolution, which is 

quite good, e~ters the problem. In fact, the muon need not 

even be momentum analyzed. Any systematic error in the 

hadron ~r muon energy scales are irrelevant. Shower angle 

scale errors enter only as scale factors on the resolution. 

Using the charged current events to measure the shower 

angle resolution has the advantages that the events occur 

throughout the detector. Hadron beam calibration events may 

have different shower characteristics, and therefore a 

different angle resolution, -bec-ause they are hadron induced 

rather than neutrino induced. Also, the vertex resolution 

can be included as part of the angle resolution. There is 

no incoming hadron track removal influence on the 

resolution. 
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It is possible to measure the angle resolution using a 

vertex found from the shower with the muon hits present 1 or 

from the shower after the muon hits are removed 1 and also 

from a vertex along the extrapolated muon track. There are 

some differences 1n the angle resolution due to the 

different vertex resolutions 1n these situations. It is 

also possible to use different shower angle algorithms. The 

results presented here are for RGLDRV 1 the algorithm used 

for the neutral current physics analysis. 

The actual variable used for the shower angle 

resolution measurement was Et
1

out 1 the shower energy times 

the reconstructed shower slope out of the plane determined 

by the muon and neutrino directions. The shower angles were 

corrected for the bias found by charged current Pt balance. 

The Et twas histogrammed separately for different shower ,ou 

energy bins, and the RMS width of the distribution was taken 

as the E resolution. The angle resolution was t,out 

determined by dividing out the bin energy. 

Figure K.3 shows the angle resolution when the muon 1s 

present for vertex findin~. The Pt resolution at low 

energies 1s somewhat less than 1 GeV, and slightly better 

than found for calibration data. The Pt resolution degrades 

I inearly with shower energy, becoming about 5 GeV for 250 

GeV showers. This IS 1n agreement with the 1982 

calibration, and somewhat worse than the 1985 calibration. 
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If the muon is removed before the vertex is found, we 

obtain the results shown in Figure K.4. The resolution at 

low energies degrades to very nearly the same as both 

calibration data sets. The degradation 1s about the same 

for al I shower energies. Of course, just as is the case for 

incoming track removal, it is difficult to know whether the 

muon removal algorithm removes too few or too many hits near 

the vertex, however it explicitly does nothing to the first 

5 chambers downstream of the vertex. 

Figure K.6 shows the resolution if the extrapolated 

muon track is used for a vertex. The resolution is better 

at low energi~s even than the muon-present case. It is also 

better at higher energies, provided that the muon energy is 

fairly Large and the vertex is not too far downstream. The 

cuts used were Eµ>lS GeV and vertex at least 300 chambers 

from the end of the calorimeter. 

If al I extrapolated muons are used, however, the shower 

angle resolution from the extrapolated track vertex degrades 

at high shower energies. Comparing the shower vertex and 

the •xtrapolated muon shci~s that the vertex agreement 

worsens at high shower energies. Presumably this is because 

high energy showers generally have lower energy muons, which 

suffer more from multiple scattering, and must be 

extrapolated through longer showers. Also, there is less 

unobscured track to measure for the extrapolation for high 

energy showers near the back of the calorimeter. 
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A further question which can be answered with the 

charged current data is the shape of the angle resolution 

function. We can check whether the distribution of shower 

angles out of the muon plane matches a gauss1an with the 

same RMS. The results are presented in Figure K.6. For al I 

energies the agreement with gaussian resolution 1s 

reasonably good. The data tend to have a somewhat sharper 

peak and longer tal I than the corresponding gaussians, 

particularly at higher energies. 

K.4. Conclusions 

The hadr~n shower angle resolution in our calorimeter 

1s within about a factor of 2 of the I imit from multiple 

Coulomb and hadronic scattering, and is reasonably 

consistent with the expectation from the shower width and 

global energy resolution, and the vertex resolution. 

Measurements of the resolution 1n hadron calibration beams 

and using charged current neutrino events are summarized in 

Figure K.7. In terms of transverse momentum, the resolution 

is about 1 GeV for low en-ergy and increases I inearly with 

energy to about 5 GeV for 250 GeV showers. 
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Figure K.1 
1982 calibration beam angle resolution 

Upper figure is mi I I iradian shower angle resolution versus 
calibration beam energy. Sol id I ine connects vertical 
projection (x or V view), and dashed I ine connects 
horizontal projection (y-u or W view). 50 GeV point is two 
independent data sets. Lower plot is average of-Wand V 
view angle resolutions multiplied by beam energy. Sol id 
I ine is fit to data. Al I errors are statistical. 
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Figure K.2 
1985 calibration beam angle resolution 

Upper figure is mi I I iradian shower angle resolution versus 
calibration beam energy. Sol id I ine connects vertical 
projection (x or V view), and dashed I ine connects 
horizontal projection (y-u or W view). Lower plot is 
average of Wand V view angle resolutions multiplied-by beam 
energy. Sol id I ine is fit to data. Al I errors are 
statistical. 
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CC ANGLE RESOLUTION WITH MUON PRESENT 

200 

(/I 175 

I 150 + .. 
2 

! 
125 

~ 100 

r 
~ 75 --
~ 
a:: 50 

I ---25 

00 40 80 120 180 200 240 

SHOWER ENERGY (GEV) 

5 

<:> 

s 
4 

w 

! 
3 

s 
~ 
w 2 CIC 

i 
a:: 

~ 
(/I 

00 40 80 120 1eo 200 240 

SHOWER -ENERGY (CEV) 

Figure K.3 
Muon-present charged current angle resolution 

Upper figure is mi I I iradian shower angle resolution versus 
reconstructed shower energy, as measured by shower angle out 
of muon plane, for charged current events. Vertex was found 
with muon hits present. Lower plot is resolution multiplied 
by beam energy. Sol id I ine is fit to data. Al I errors are 
statistical. 
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CC ANGLE RESOLUTION WITH MUON REMCM:O 
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Figure K.4 
Muon-removed charged current angle resolution 

Upper figure is mi I I iradian shower angle resolution versus 
reconstructed shower energy, as measured by shower angle out 
of muon plane, for charged current events. Muon hits were 
removed before vertex was found. Lower plot is resolution 
multiplied by beam energy. Solid I ine is fit to data~ Al I 
errors are statistical. 
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CC ANGLE RESOLUTION F'ROM EXTRAPOLATED MUON 
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Figure K.5 
Extrapolated muon vertex charged current angle resolution 

Upper figure is mi I I iradian shower angle resolution versus 
reconstructed shower energy, as measured by shower angle out 
of muon plane, for charged current events. Vertex was found 
by extrapolating I ine fit to muon in each event. Muon 
energy was at least 15 GeV, and vertex was in front_half of 
calorimeter. Lower plot is resolution multiplied by beam 
energy. Sol id I ine 1s fit to data. Al I errors are 
statistical. 
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ENERCY • ANGLE RESOLUTION WITH MUON REMOVED 
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Figure K.6 
Pt resolution functions 

Histograms of charged current shower angle out of muon plane 
times shower energy for different ennergy bins. Curves are 
Gaussians with same mean, area, and root mean square width 
as each histogram. 
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L. Unfolding 

L.1. Representing the problem 

L.1.1 Binning 

To measure a distribution 1n high energy physics, I ike 

a differential cross section, we must introduce bins, and 

must deal with the statistical errors of sampling. We are 

I imited to constraining the integrals of the distribution 

over the finite intervals of the bins. For a very narrow 

interval, where we may not have recorded any events at al I, 

we cannot rul~ out the hypothesis that there wi I I never be 

any events in the interval. It is only after finite width 

bins haye been introduced that we can make meaningful 

measurements. 

The bins used typically are a compromise between wide 

bins, which give high statistics and thus smal I statistical 

errors, and narrow bins, which give more resolution for fine 

structure in the data. It must be understood that the 
-

variations of the distribution within the bin boundaries are 

not constrained by the data. It is common to present data 

as "evaluated'' at the center of bins. This actually means 

assuming that the distribution is smooth, and correcting for 

the difference between the measured average in the bin and 

the value at the center of the bin. We wi I I defer this 
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process, often referred to as "bin-center corrections," and 

concentrate on finding the average values for the bins. 

If the quantity we are binning 1n is measured with 

finite resolution, this also I imits the avai I able 

information about the distribution, 1n a way that 1s 

fundamentally different from the statistical sampling errors 

discussed above. Events that occur 1n a given kinematic bin 

may reconstruct into another bin, so the density of events 

in reconstructed variables is not generally the same as the 

density in true variables. Features of the true 

distributions that are narrow compared to the resolution 

wi I I be distorted in the reconstructed distributions. 

The conventional approach to the resolution problem 1s 

to use ~in widths comparable to the resolution. This 

minimizes, but does not completely eliminate, the effects of 

smearing. The data are then corrected for smearing by one 

of a variety of methods. Usually the size of the correction 

1s smal I. Many groups quote a systematic error that 1s a 

fraction of the correction, and do not publish results from 

bins with corrections of more than about 30 percent. 

Under conditions of poor resolution, there would be few 

bins, and expected variations within the bins would be 

substantial. One is therefore tempted to examine the 

possibi I ity of using bins significantly narrower than the 

resolution. 



537 

First, we must 1nqu1re whether the data contain any 

information at al I about structures narrower than the 

resolution. This must be true at least to some I imited 

degree. We expect distributions that are different before 

smearing to remain at least somewhat different after 

smearing. The worst case would be smearing two true 

distributions different only in a region narrow compared to 

the resolution. The two smeared distributions would differ 

by a smaller amount and over a wider region than the true 

distributions, but the smeared distributions would 

nevertheless be different. If one had sufficiently smal I 

statistical errors in the data, such a difference could be 

discerned. Thus there 1s, in principle, no absolute 

requirem~nt that the bin width need be as wide as the 

instrumental resolution. 

L.1.2 Matrix representation 

The most general possible smearing may be represented 

by the probabi I ities of an event from a given true bin to be 

reconstructed into each of the smeared bins. There is such 

a set of probabi I ities for each true bin, which we need not 

presume are the same from bin to bin. This set of 

probabi I ities may be written in matrix form. If we write 

the number of events in bin J 

and the number of events 1 n 

of the true variables as x., 
J 

bin i of the smeared variables 
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b th A ts t he probabi I ity of an event with as . , en . . represen 
I I J 

true variables in bin J to be reconstructed to smeared 

variables in bin i. The constraints on the elements of the 

smearing matrix A, and the relationship between the true 

distribution x, and the smeared distribution b, may be 

written as 

0 ~ A .. ~ 1 
IJ 

Eq. L.1 

E A .. = 1 
IJ 

Eq. L. 2 

E A .. x. = b. 
IJ J I 

J 

Eq. L.3 

The smearing matrix A then captures the resolution 

effects in a way which 1s almost independent of the true 
-

distribution. Actually, the elements of A have some 

dependence on the shape of the distribution within a single 

true variable bin, but particularly for the case of bins 

narrower than the resolution, the effects are smal I. Also, 

this dependence may be considered as part of the problem of 

inferring the unbinned true function from the binned 

unfolded data, which we have already deferred. 

The elements of A can be calculated by Monte Carlo 

methods if we know the sources of smearing. We simply 

generate events with an approximately correct distribution 

1n the true variables, calculate the raw quantities 

appearing in the formulae for the kinematic variables, smear 
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the raw quantities, and calculate the smeared kinematic 

variables. We know both the true and smeared variables 

event by event, and fi I I a matrix according to the true and 

smeared bin indices. The calculated matrix elements wi I I 

have statistical errors, but there 1s no practical 

difficulty in generating enough Monte Carlo events to make 

such errors smal I. It 1s also simple to analyze the data 

with two statistically independent smearing matrices to 

measure the contribution from Monte Carlo statistics. 

Naturally, the model of the sources of smearing 1n the 

Monte Carlo is also subject to systematic error. We can 

estimate the effect of systematic errors 1n scales and 

resolutions by making smearing matrices with different 

assumpti_s>ns in the Monte Carlo. We wi I I assume therefore 

that statistical and systematic errors in the smearing 

matrix wi I I be dealt with separately from the unfolding. 

L.2. Solving the matrix problem 

L.2:1 Existence of inverse 

Under these assumptions, the unfolding problem of 

finding the set of true bin contents that, after smearing, 

best reproduces the observed smeared data, reduces to 

solving the I inear algebra problem, Ax=b. 
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We wi I I presume that the same number of bins with the 

same bin boundaries are used for the true and smeared 

distributions (this assumption can be relaxed later.) If 

smearing moves events past kinematic boundaries, we can 

simply use open-ended extreme bins. This makes the A matrix 

1s square, and the problem is not trivially overdetermined 

or underdetermined. There may sti I I be no solutions, or 

many solutions, depending on the properties of the matrix. 

There wi I I be no solutions if two rows of the matrix 

are identical (unless the corresponding elements of bare 

identical.) This means that two bins of the smeared 

distribution have precisely the same dependence on al I the 

bins of the true distribution. We do not expect this to be 

exactly_true on physical grounds, although it wi I I be nearly 

true for bins separated by much less than the resolution. 

We can circumvent the problem by combining the bins in the 

smeared distribution. 

There wi I I be many solutions if two columns of the 

matrix are identical. This would mean that two bins of the 
-

true distribution smear into exactly the same combination of 

bins 1n the smeared distribution. Again, this is not 

expected on physical grounds (although for adjacent bins 

much narrower than the resolution it may be nearly true), 

and can be circumvented by combining bins. 



case, 

We therefore conclude 

there wi I I be a unique 
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that for the general physical 

solution to Ax=b. This means 

that there exists some true distribution which, after 

smearing, would produce exactly the observed distribution. 

Since there are excel lent algorithms to invert matrices, the 

unfolding problem has an exact and practical solution. We 

calculate the (nearly) physics-independent smearing matrix 

A, invert, and multiply the observed smeared distribution by 

the inverse matrix to obtain the true distribution. 

L.2.2 Example problem 

It 1s worthwhile to examine analytically a smal I 

example problem. We consider the case of two bins. 

A = [ ~ g ] Eq.L.4 

The matrix element C is the probabi I ity that an event 

truely in bin 1 reconstructs into bin 1 after smearing, and 

the matrix element c is the probabi I ity it reconstructs into 

bin 2. D and d are the corresponding probabilities for 

events truely in bin 2. For perfect resolution, C=D=l, and 

c=d=O. The worst case possible is for each bin of truth to 

reconstruct into the same pattern in smeared variables. 

This corresponds to C=d and c=D. Since C+c=D+d=l, these are 

not independent statements. 
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We can view this matrix as a very oversimplified 

example of unfolding a smeared kinematic distribution. Then 

C and Dare the probabi I ities for an event to reconstruct 

into the correct bin. These probabi I ities are not 

necessarily the same, since the resolution may depend on the 

kinematic variable. Degraded resolution is represented by 

non-zero values for c and d. Presumably, events are more 

probable to reconstruct to bins close to their true 

kinematic variable values than bins far from their true 

values, which implies C>c and D>d. The zero resolving power 

case for the first bin 1s then C=c=l/2, and similarly 

D=d=l/2 for the second bin. 

The inverse of A is 

-1 
A = 1 

CD-cd [_~ -~ ] Eq.L.5 

We note that while the smearing matrix A has only positive 

elements, its inverse A-l has both positive and negative 

elements. Thus, the solution to the unfolding problem 

involves differences within the data, and is therefore more 

sensitive to fluctuations in the data. Poorer resolution 

means c and d become comparable to C and D, and thus the 

negative matrix elements become as important as the positive 

matrix elements. 

The coefficient 1n front of the matrix 1n the 

. f A-l . expression or 1s the reciprocal of the determinant of 
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A. For perfect resolution, the determinant 1s 1. If as few 

as 25 percent of the events reconstruct into the wrong bin, 

the determinant is 1/2. As the resolution degrades, the 

determinant becomes smaller and the amp I ification factor 

becomes I a rge r. For the zero-resolution cases discussed 

above, the determinant is zero, and the amp I ification factor 

becomes infinite. 

Now let us insert some data and find the solution. 

x = [ ~ J 

[ ~ ] = 1 
CD-cd 

b = [ ~ J 

[ 
D G - d H ] 
C H - c G 

L.2.3 Instability of solution 

Eq.L.6,7 

Eq.L.8 

It ~s clear from this simple example that the solution 

to the unfolding problem 1s subject to worse fluctuations 

than the data. For poor resolution, each bin of the 

unfolded solution is a function of both bins of the data, 

with opposite signs, and a large amp I if ication factor. 

For problems with more bins, we expect the same 

difficulties. In general, the elements of the inverse of a 

matrix with only positive elements, I ike our A matrix, 

alternate sign 1n a checkerboard pattern. The inverse 

matrix 1s proportional to the reciprocal of the determinant 

of the original matrix. Poorer resolution is represented by 

the columns of the A matrix becoming more similar, which 
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results in a smaller determinant. Thus the inverse matrix 

elements wi I I be large and alternating in sign, and solution 

wi I I be a function of differences between bins of the data, 

times a substantial amp I ification factor. 

It is important to note that the fluctuations 1n the 

solution are in no way spurious. For perfect resolution, 

there 1s no amp I ification. The tendency of the solution to 

have bin to bin fluctuations grows smoothly as the 

resolution degrades. The amplification of fluctuations is 

an analytic property of the inverse of a matrix that 

represents a case of poor resolution. While there are 

indeed some numerical, computational difficulties with 

inverting large, nearly 

accuracy_ tends to be far 

data require. It 1s also 

singular matrices, the numerical 

better than the statistics of the 

simple to check the accuracy of 

inversion by multiplying by the original matrix. 

We can also develop an intuitive picture of the reason 

for the difficulties. Smearing always attenuates features 

of the data. The inverse of the smearing must therefore 

ampf ify features of th~ data. Since there 1s no way to 

distinguish a statistical fluctuation in the raw data from a 

physical feature of the true distribution, the statistical 

fluctuations are amp I ified along with the real features. 

In summary, we expect that there exists in general an 

exact, unique solution to the unfolding problem. It is 
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exact in the sense that there 1s a true distribution that, 

after smearing, reproduces each bin of the data exactly. It 

is unique, meaning that any other true distribution fai Is to 

reproduce the data exactly. However, the exact solution 

tends to have large bin to bin fluctuations, which grow as 

the kinematic resolution degrades. 

L.2.4 Statistical errors 

We have not yet considered, however, the statistical 

errors of the unfolded solution. This 1s a perfectly 

conventional calculation. The inverse of the smearing 

matrix is an explicit formula for calculating a bin of the 

unfolded solution as a function of the binned data. We have 

assumed ~he smearing matrix elements are without significant 

error, and we may invert the matrix without knowledge of the 

data, so we may assume that the elements of the inverse are 

also without error (and may check this by inverting a 

statistically independent Monte Carlo matrix.) Thus, the 

statistical errors of the bins of the solution can be 

cal~ulated by propaga~ion of the statistical errors of the 

raw data. 

For our 2 bin example, we can easily write down the 

variance of the solution from the variance of the data a 2G 

and a 2H, and the inverse of A. 

[ J 
2 

[ o2 
a

2
G + d

2 
a

2
H ] 

= 1 c2 ~2H + c2 ~2G CD-cd .., .., 
Eq. L_.9 
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Using the gauss1an approximation to Poisson statistics, 

2 u G=G, and 2 u H=H, we find 

[ u2E ] 
2 

[ D
2G + d2H ] = (co~cdJ Eq. L.10 

u 2 F c 2 H + c2G 

We see that the statistical errors of the unfolded 

solution share the same amp I ification factor 1/(CD-cd) as 

the bins of the solution. Therefore, the calculated 

variance increases in the same fashion that the sensitivity 

to fluctuations in the data increases. The error on each 

bin of the solution is a weighted combination of the errors 

on al I bins of the data. For perfect resolution, C=D=l and 

c=d=O, and the errors reduce to the errors of the raw data. 

As the resolution degrades, the amp I ification factor 

increases, and the errors in both bins of the data become 

equally important. 

Thus, the calculated statistical errors seem to take 

into account the fluctuation amplification. The conclusion 

must be that the solution found by matrix inversion really 

is the set of true bj n va-1 ues that most c I ose I y fits the 

observed data, but when the resolution 1s poor, the solution 

1s very sensitive to fluctuations in the data, and the 

statistical errors are much worse than the normal N' 5 errors 

of data with good resolution. 

L.2.5 Correlation of errors 

For the finite resolution case, each bin of the 
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unfolded solution depend on al I bins of the data. This 

means that the errors of the bins of the solution are 

correlated. We have already calculated the variance of both 

solution bins, u2E=<AEAE> and u2F=<AFAF>. The corresponding 

covariance is <AEAF>. 

For data fluctuations AG and Ah, the values of AE and 

AF are 

= 1 
CD-cd [ 

D AG - d AH ] 
C AH - c AG 

This leads to the covariance 

2 
<AE AF> = ( CD=cd) <(DAG-dAH) (CAH-cAG)> 

Eq.L.11 

Eq .L.12 

Since t~e data fluctuations are independent, <AGAH>=O, and 

we find that 

2 
<AE AF> = ( CD=cd ) (-1) (Cd<AHAH> + Dc<AGAG>) Eq.L.13 

Now we note that <AGAG>=u2G and <AHAH>=u2H to obtain 

Eq .L.14 

Using u2G=G and u2H=H, this becomes 

<AE AF>= ( CD:cd )
2

(-1) (Cd H +De G) Eq.L.15 
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guarantees that there are no 

However, as we approach the 

becomes comparable to the 
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perfect resolution, c=d=O 

correlations between E and F. 

case C=c=D=d, the covariance 

variance. The covariance is 

negative, which means that the fluctuation 1n one bin tends 

to be opposite to that in the other bin. 

L.3. Chi square analysis 

L.3.1 Chi square function 

The significant covariance of the bins of the unfolded 

solution means that the calculated variances of the bins are 

not a complete description of our knowledge about the errors 

of the s~lution. The best summary of the errors of the bins 

of the solution is embodied in 

of the bins of the solution. 

the chi square as a function 

The variances of the bins of 

the solution represent the range of bin values that change 

the chi square by one unit. For zero covariance, changing 

one bin from its value at the chi square minimum increases 

the chi square in a way that changing the other bins cannot 

decrease. A significant covariance means that the increase 

in chi square when one bin 1s changed can be at least 

partially undone by changing the other bins. 

The chi square is the sum over the bins of data of the 

squared difference between the observed data and the smeared 
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distribution calculated from a hypothetical true 

distribution, divided by the square of the statistical error 

on each bin of data. 

x2 = Eq.L.16 

It is useful to define x* as the point of minimum chi square 

and define l!Jx as 

• x. = x. + !!Jx. 
J J J 

Eq.L.17 

We can then rewrite the chi square, and use the fact that 

the chi square is zero at the m1n1mum (for our square A 

matrix.)_ 

x2 = 

= 

1 * 2 I: - 2 { b. - [ I: A. . (x. + l!Jx.) J} 
I J I J J J (1. 

I 

1 = I:~ 
(1. 

2 (I: A .. l!Jx.) 
I J J 

I J 

1 
I: I: l!Jxj (I: ~ 
J k q, 

I 

A .. A.k) l!Jxk 
I J I 

Eq.L.18 

Eq. L.19 

Eq.L.20 

We may take this expression as the definition of a new 

matrix, W. 

2 E E l!Jx. wj k l!Jxk x = 
J k J 

Eq.L.21 

wjk= E 1 A .. A. k 
~ I J I 

(1. 

Eq.L.22 

I 
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We can also write the W matrix as a matrix multiplication 

involving A and its transpose, 

the 1/u~ on its diagonal. 
I 

L.3.2 Properties of W matrix 

if we define a matrix with 

Eq.L.23 

The W matrix summarizes al I the information we have 

about the sources of error in the unfolded solution. The W 

matrix is constructed from the A matrix, which is the model-

independent summary of the smearing, and from the errors of 

the data, 1/u2 . 

For the case of perfect resolution, where A is the unit 
-

matrix, the product A .. A.k 1s zero unless i=j=k, so W is 
I J I 

simply a matrix with the reciprocals of the variances of the 

data along the diagonal, and al I other elements zero. When 

there is finite resolution, W is no longer diagonal. 

We can write the explicit elements of the W matrix for 

our 2 bin example proble~, ~ssuming b
1

=G and b2=H, and 

Poisson statistics where u 2b.=b. 
I I 

cc cc Cd cD 
G +H G + H 

w = Eq.L.24 
Cd cD dd DD 
G +H G + H 

We see that finite resolution, which means finite cord, 

results in off-diagonal elements. 
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For the example matrix, we can calculate the 

determinant. 

det W = (CD-cd)
2 

GH Eq. L. 25 

From this, we can eas1 ly write V, the inverse of W. 

GH 
2 (CD-cd) 

dd DD 
o+H 

+ 

Eq.L.26 
cc 
H 

We can simplify a bit further to obtain 

[ 

D2G + d2H 
V = (CD-cd) - 2-

- (Cd H + De G) 

-(Cd H + De G) 

c2H + c 2G 
] Eq.L.27 

If we compare the elements of V to the variance and 

covariance of the solution we found by direct inversion of 

the 2 by 2 example A matrix, we find they are identical. 

Our example is just a special case of the general property 

that the ful I covariance of the unfolded solution 1s 

described by the elements of . the the inverse of the W 

matrix, V matrix. The W matrix is often cal led the weight 

matrix, and the V matrix is often cal led the covariance 

matrix. 

We note that the factor -2 (CD-cd) becomes large when 

C~c and D~d, which is equivalent to the resolution becoming 

poor. The off-diagonal elements also become comparable to 
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the diagonal elements. Thus, the statistical errors and the 

correlations grow as the resolution degrades, even for fixed 

data statistics. 

L.3.3 Parameter fits 

We often wish to fit a parameterization to our data. 

This means choosing a functional form which depends on the 

binning variable and also on the values of some parameters 

a, f3, etc. We then find the parameter values which most 

closely predict the observed data. Our unfolded solution 

can be viewed as a special case of such a parameterization, 

with the parameters being the true variable bin values. 

However, we often wish to have fewer parameters, or a 

differen_t functional form than a collection of bins. We 

also may wish to smooth the unfolded solution, or to 

circumvent the highly correlated errors. We can do this by 

fitting a parameterization to the unfolded solution. 

It is important to retain the ful I correlated errors of 

the unfolded solution when fitting a parameterization. This 

is done by writing the chi square as a function of the 

parameters in terms of the W matrix and the difference ~x 

between the bins of the unfolded solution x f and the bins 
un 

of the parameterization x prm 

~x.(a,/J, ... ) = x.j f - x.(a,/J, ... )1 J J un J prm 

2 X (a, /3, ... ) = X
2

. + E E ~x. WJ.k ~xk 
min J k J 

Eq.L.28 

Eq.L.29 
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The chi square can then be minimized by standard fitting 

programs. 

It would be possible of course to calculate the value 

of each bin 1n true 

then smear using the A 

terms of the smeared 

errors. However, this 

above. 

variables from the parameter values, 

matrix, and write the chi square in 

data bins, which have uncorrelated 

1s mathematically equivalent to the 

L.4. Eigenvector analysis 

L.4.1 Eigenvalues and eigenvectors 

So far, we have summarized the smearing 1n the A 

matrix, ~nd summarized the smearing and statistical errors 

1n the W matrix. We now summarize the W matrix by 

diagonalizing it. 

Diagonalizing the matrix W means finding a matrix U and 

a diagonal matrix A such that 

W = u-l A U 

A = U W u-l 

Eq.L.30 

Eq.L.31 

The eigenvectors u and eigenvalues A of W satisfy the 

matrix equation 

W u = A u Eq.L.32 
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This can be rewritten using the unit matrix I, and 1s 

equivalent to a condition on the determinant 

(W - I ~) u = 0 Eq.L.33 

IW - I ~I = 0 Eq.L.34 

The eigenvalues are 

polynomial, where N is the 

the 

order 

roots of an Nth order 

of the matrix. There are 

always N eigenvalues, but for a general matrix they need not 

be real. However, the matrix W is by construction real and 

symmetric, and thus also Hermitian. This guarantees that 

al I the eigenvalues are real. 

Once an eigenvalue has been found, we can always solve 

(W-~I)u=O for its eigenvector. For a Hermitian matrix, the 

eigenvectors corresponding to distinct eigenvalues are 

always orthogonal. Even for repeated- eigenvalues, a 

Hermitian matrix always has N orthogonal eigenvectors. 

Since Wand~ are real, al I the elements of the eigenvectors 

are real. Any constant multiple of an eigenvector u 

satisfies the same equation, so we may normalize the 

eigenvectors without loss of generality. The eigenvectors 

then form a complete and orthonormal set of vectors. 

If we can find N such eigenvectors and eigenvalues, the 

rows of the matrix U are the eigenvectors u, and the matrix 

A has the corresponding eigenvalues~ on its diagonal. 

The purpose of introducing the eigenvectors and 

eigenvalues into the unfolding problem is to al low ~he chi 
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square function to be simplified. In matrix notation, we 

can write the chi square as 

x2 = /J.x w /J.x Eq.L.35 

Now we substitute the diagonal form of W. 

x2 = /J.x u-l A U ~x Eq. L. 36 

If we now define a transformed vector 

/J.x' = U /J.x = Eq. L. 37 

we can simplify the chi square to 

x2 = /J.x' A /J.x' Eq. L. 38 

We ~ave replaced the non-trivial matrix W with a matrix 

A, whose only nonzero elements are the eigenvalues A, which 

appear along its diagonal. We have also performed a unitary 

transformation on the error vector /J.x. In this new 

coordinate system, we can write the chi square function as a 

simple sum. 

Eq.L.39 

L.4.2 Eigensolution for example problem 

While there are many excel lent numerical algorithms for 

finding the eigenvalues and eigenvectors of matrices, even 

for a general order 2 matrix there is no compact formula for 
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the answer. We wi I I therefore make some simplifying 

assumptions that wi I I al low us to solve the 2 bin problem 

analytically. These assumptions wi I I correspond closely to 

treating the 2 bins as adjacent bins in a larger unfolding 

problem. 

We first assume that the data contains the same number 

of events in each bin, that 1s, G=H. Adjacent bins in a 

larger problem wi I I probably satisfy this at least 

approximately, particularly for poor resolution. This 

al lows us to factor the W matrix into 

w = 1 [ CC+cc 
G Cd+cD 

Cd+cD ] 
dd+DD Eq.L.40 

Next, we assume that the resolution is the same for 

both bi l"fs, 1n other words, C=D. Since C+c=D+d=l, this 

implies c=d. Again, for adjacent bins 1n a larger unfolding 

problem, we expect the resolution to be at least 

approximately the same. This a I lows a further 

simplification. 

w = ~ [ CC+ cc 
2Cc 

2Cc J 
CC+cc Eq.L.41 

We can find the eigenvectors of this matrix by 

inspection. If we multiply the unnormalized vectors (1, 1) 

and (1,-1) by w, we obtain 

1 [CC+cc 2Cc J [ i] = 
1 (CC+cc+2Cc) [ i] Eq.L.42 G 2Cc CC+cc G 
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~~~ccJ [_~] = a (CC+cc-2Cc) [_~] Eq.L.43 

We note that CC+cc+2Cc=(C+c) 2=1, and CC+cc-2Cc=(C-c) 2 . 

Thus, the vector (1,1) 1s an eigenvector with eigenvalue 

1/G, independent of the reso I ut ion. This is the plausible 

statement that the sum of the two bins of the true 

distribution, represented by the vector (1, 1) I IS not 

affected by degraded resolution. 

The vector (1, -1) IS also an eigenvector, with 

eigenvalue 2 (C-c) /G. This eigenvector represents the 

difference between the bins of the unfolded solution. For 

degraded resolution, the eigenvalue becomes smaller, which 

means that the error on the difference between the bins of 

the solution becomes larger. For the worst case resolution 

C=c=.5, the eigenvalue becomes zero, and the error 1s 

infinite. 

L.4.3 Interpreting the eigenvectors 

We originally reduced t-he problem of a continuous 

distribution to the problem of a finite number of bins, and 

then thought of the bins as a vector in a I inear algebra 

problem. We can represent that vector as a sum of other 

vectors, each of which is non-zero for one bin, and zero for 

al I other bins. If we normalize al I the single-bin 

functions to unit height, then we represent the distribution 
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by a set of coefficients times the set of normalized 

functions. These single-bin vectors are the discrete analog 

of Dirac delta functions. 

We now reverse the process to interpret the 

eigenvectors. An eigenvector 1s the analog of a function, 

although not a delta function. Each element of an 

eigenvector represents the function value for a different 

bin. The set of eigenvectors rs a set of functions. Since 

the eigenvectors are a complete set, we can represent any 

distribution by a set of coefficients times the set of 

normalized eigenvectors. This 1s the discrete analog to 

being able to represent any function by a sum over a 

complete set of functions. 

When we represent the unfolded solution as a sum of 

single-bin vectors, the errors on the bins are highly 

correlated, as we found when studying the chi square and W 

matrix. However, when we represent the solution as a sum of 

eigenvectors of the W matrix, the errors on the eigenvector 

components are uncorrelated, by construction. In fact, the 
-· 

errors on the eigenvector coefficients are related to the 

eigenvalues. 

It may seem as if there is a contradiction between the 

correlated errors of the bins of the solution, and the 

uncorrelated coefficients of the eigenvector representation 

of the same solution. Actually, if we were to calculate the 
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variances and covariances of the solution bins from the 

eigenvector coefficients and errors, we would obtain the 

same covariance matrix as the direct analysis. The 

correlation arises here from the error on each eigenvector 

coefficient contributing 1n a correlated way to the error of 

each unfolded bin. 

L.4.4 Eigenvalues and resolutiorr 

The orthogonality of the eigenvectors guarantees that 

there can be only one eigenvector that has al I positive 

elements. If there were another, their inner product would 

be positive, but it must be zero. The other eigenvectors 

must al I be orthogonal to this first one. We therefore 

expect t~at roughly half of their bins wi I be negative. 

The eigenvectors must also be a complete set, which means 

they must be able to reproduce an absolutely arbitrary 

vector. Hence, the eigenvectors cannot al I be smooth; some 

must contain large bin to bin fluctuations. 

If we compare the components of an eigenvector to the 

results of smearing the 
-

same eigenvector by the resolution 

function, we find that eigenvectors which have only positive 

bins and only smooth variations from bin to bin smear into 

vectors with only positive components and roughly the same 

amp\ itude. Eigenvectors with alternating positive and 

negative components values smear into vectors with much 

smal \er amp\ itude. 
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We can make some qua I itative predictions about the 

relationship between the shape of the eigenvectors and the 

size of their eigenvalues. Consider the effect on the chi 

square of adding a smal I amount of a given eigenvector to 

the solution. The exact solution reproduces the data 

exactly. Adding a bit of an eigenvector to the solution 

means adding a bit of the smeared eigenvector to the 

predicted data. The size of the eigenvalue depends on the 

change in the chi square caused by adding the smeared 

eigenvector to the solution. 

The largest possible change 1n the chi square wi I I come 

from the eigenvector which has the least cancellations due 

to smearing. This wi I I be the vector with the largest 

eigenval~e. The smallest possible change in the chi square 

wi I I come from the eigenvector which has the largest 

cancellations due to smearing. This wi I I be the vector with 

the smallest eigenvalue. Eigenvectors with higher spatial 

frequencies smear into vectors with decreasing amp I itudes, 

which means they influence the chi square less, and thus 

have smaller eigenvalues. 

We conclude that for a 

there wi I I typically be a 

problem with poor resolution, 

single eigenvector with al I 

positive bins. It wi 11 have a large eigenvalue, which means 

a smal I error. There wi I I also be an eigenvector with 

alternating positive and negative components, with a smal I 
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eigenvalue and a large error. The eigenvectors in between 

wi I I have both positive and negative bins and a range of 

spatial frequencies. The larger the spatial frequency, the 

larger the error and the smaller the eigenvalue. 

L.5. Truncated eigenvector sums 

L.5.1 Expanding solution in eigenvectors 

Since the eigenvectors are a complete set, we can write 

an arbitrary vector as a I inear combination of the 

eigenvectors. In particular, we can write the matrix 

inversion solution to the unfolding problem as a linear 

combination of the eigenvectors. 

WeJepresent the solution bins x. with the matrix u.k, 
J J 

whose columns are the normalized eigenvectors, and the 

coefficients ck. 

Eq.L.44 

The ck are just the elements of the vector x' which we 

defined above. We can calculate the ck by exploiting the 

orthonormal ity of the eigenvectors. 

E u x. = r ck E u ujk 
J 

mJ J k J 
mJ 

Eq.L.45 

= r ck I mk = c 
k m Eq.L.46 
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The statistical error of ck 1s given by the kth eigenvalue 

of the W matrix. 

Eq.L.47 

L.5.2 Truncating the eigenvector sequence 

We can view the eigenvectors as a sequence of 

functions. The order of the functions is determined by the 

eigenvalues. We can expand the solution in the sequence of 

eigenvectors, and associate a statistical error with each 

expansion coefficient. We expect that the first eigenvector 

wi I I be smooth, and have a large eigenvalue, and thus a 

smal I statistical error. The coefficient wi I I not be 

statistically consistent with zero. Later eigenvectors wi I I 

have osci I lations at increasing frequencies and larger 

errors. At some point, the statistical errors on the 

coefficients wi I I be as large as the coefficients, which 

means they are consistent with zero. At this point, we can 

truncate the expansion process. 

We can check whether or not the solution so obtained is 

consistent with the data, I.e. 1 in or near the error 

el I ipsoid, by completely conventional chi square techniques. 

We expect that the solution wi I I not have unreasonable bin 

to bin fluctuations, because such fluctuations come from the 

eigenvectors that have smal I eigenvalues and are uni ikely to 

be included in the sequence. 
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An appealing property of an eigenvector approach is 

that it employs a natural, naturally-ordered, and complete 

sequence of orthogonal "functions." The "functions'' are the 

eigenvectors of the matrix W. The ordering of the functions 

is determined by their eigenvalues. The function sequence 

is natural 1n the sense that it 1s not derived from any 

prejudice about the actual true distribution. Rather, the 

sequence is derived from the matrix W, whose elements depend 

on the resolution of the detector, and the errors of the 

data, but not on the data itself (although the values of the 

data bins determine the errors of the data.) The sequence 

is complete since it 1s capable of reproducing an arbitrary 

function (within the I imitations of the binning, of course.) 

We ~re already fami I iar with expansions as sequences of 

functions. Power series, Fourier series, multipole 

expansions, and polynomial series are used throughout 

science and mathematics. Typically, one includes as many 

terms in the expansion as are warranted by the desired 

accuracy, the effort involved, or the qua I ity of the data. 

For example, while N data ~oints may be fit exactly by a 

polynomial of order N, it is more common to use a much lower 

order polynomial. Even when there are no measurement errors 

involved, i.e., when approximating a wel I-defined but non

polynomial function by a polynomial, using a high order 

polynomial that fits al I the sample points exactly may lead 
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to severe osci I lations between the sample points, whereas a 

lower order polynomial, which cannot fit al I the sample 

points exactly, may produce a better approximation between 

the sample points. 

When measurement errors are involved as wel I, the 

drawbacks of using too many terms in the expansion are even 

larger. For most cases of physical interest, one chooses 

the expansion such that the coefficients in the expansion of 

the actual true distribution become smal I quickly. The 

coefficients as determined from the data, of course, are 

subject to fluctuation due to fluctuations in the data. At 

some point in ~he expansion, the fluctuations in the data 

wi I I cause larger fluctuations tn the coefficients than the 

sizes of_ the coefficients. 

of the truth 1s obtained 

A more accurate representation 

by setting al I the subsequent 

coefficients to zero than by extracting them from the data. 

L.5.3 Biases in truncated sequence 

A potential drawback of truncating the eigenvector 

expansion of the unfolded ~olution is the possibi I ity of 

introducing a bias. By bias, we mean that the average over 

many experiments of the result produced by the truncated 

eigenvector method may not agree with the "truth." 

The binned "true" distribution can always be expanded 

as a sum of the eigenvectors of W from a particular 
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experiment. We can compare the expansion coefficients of 

the "truth" with the coefficients determined by an ensemble 

of experiments. Presumably, the average of the experimental 

coefficients wi I I agree with the actual coefficients for the 

eigenvectors included 1n the truncated sequence. But 

obviously the coefficients 

process wi I I not agree 

coefficients. In this 

set 

with 

sense, 

to 

the 

the 

algorithm produces a biased solution. 

zero by the truncation 

corresponding actual 

truncated eigenvector 

However, we are more interested in the properties of 

the solution 1n the original binning than 1n terms of 

eigenvectors. The average bin values from an ensemble of 

experiments wi I I differ from the true values by the sum of 

the excluded eigenvector components. This bias wi I I 

commonly be smal I compared to the statistical errors on the 

bins for any given experiment. Also, the excluded 

eigenvectors wi I I probably have bins with alternating signs, 

and the expansion of the truth wi I I probably have some 

positive and some negative coefficients, so the biases of 

the bins wi I I probably have -ra~dom signs. 

L.5.4 Limitations 

It is easy to construct a situation where the truncated 

eigenvector algorithm gives a misleading solution. Imagine 

the "true" distribution is alternating empty and ful I bins, 
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and assume the smearing spreads the events out into an 

absolutely flat distribution. The first eigenvector of such 

a problem is a flat distribution. The last eigenvector is 

alternating positive and negative bins, and smears to zero 

in every bin. The truth 1s an equal sum of the first and 

last eigenvectors. The very first eigenvector produces an 

adequate chi square, and the other eigenvectors give no 

improvement, so we truncate the sequence after the first 

eigenvector. For this contrived example, we get the right 

coefficient for the 

the last eigenvector. 

is correct, but the 

missed. 

first eigenvector, but never consider 

The integral of the unfolded solution 

alternating structure is completely 

The reason for the error 1s that the resolution simply 

does not al low any trace of the fine structure to remain in 

the raw data. This example was constructed such that al I 

the information about the "true'' distribution was contained 

in the first and last eigenvectors. But it was also 

constructed so the last eigenvector had a zero eigenvalue. 

If the resolution were somewhat better, the last eigenvalue 

would not be zero, and the fine structure would be 

discernible, although perhaps with a large error. In 

practical analysis problems, one typically has some a priori 

information about the amount of structure in the true 

distribution, and whether the experimental resolution 1s 
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appropriate to resolve it. One would simply not attempt the 

analysis if the important information is not resolvable. 

The truncated eigenvector expansion al lows us to 

extract more information from high-statistics data than the 

conservative approach of binning at the resolution. 

However, this does not imply that information can be 

extracted from data with arbitrarily poor resolution. 

Incidentally, we can also use this example as a 

demonstration of the random nature of the bias introduced by 

truncating the eigenvector expansion. Al I the bins of the 

truncated solution are i~correct, but half the bins are too 

I a rge, and ha I_ f a re too sma I I • 

L.6. R~finements 

L.6.1 Acceptance and background 

We have concentrated on the problem of unfolding 

distributions where events are smeared across 

boundaries, but always appear someplace 

1s a related reconstructfon problem 

in the data. 

where events 

bin 

There 

that 

actually occur do not reconstruct into any bin of the data. 

This is the acceptance problem. 

of the inabi I ity to trigger the 

some of the information 

Events can be lost because 

detector on them, because 

to reconstruct them is necessary 

absent, or due to intentional cuts 1n the data made to 

reject some background or avoid regions of uncertainty. 
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If the resolution is perfect, and we know the fraction 

of the events being lost, it 1s simple to correct the data 

for the loss. We simply divide each bin by the efficiency 

for an event in that bin to be successfully reconstructed. 

If the efficiency is known without error, the error on the 

corrected bin is just the error on the raw data divided by 

the efficiency. 

If in addition to finite acceptance, there 1s also 

finite resolution, the problem is more comp I icated. If the 

loss of events is a function of the smeared variables rather 

than the true variables, then we can apply the same ratio 

correction technique as for perfect resolution, and then 

unfold the acceptance-corrected data. However, it may be 

that the_ loss of events 1s a function of the true variables 

rather than the smeared variables. If so, we should first 

unfold the smeared data, then apply the correction. 

In either case, we can telescope the acceptance 

corrections into the smearing corrections. We simply 

redefine the matrix A to represent the probabi I ity of an 

event occurring in a true variable bin to reconstruct into 

each bin of smeared variables, even when the probabi I ities 

do not add up to one. The perfect resolution case 1s a 

on its diagonal, rather than matrix with the efficiencies 

the identity matrix. 

reciprocals of the 

Its inverse is the matrix with the 

efficiencies on the diagonal. For 
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imperfect resolution, the columns of the smearing matrix no 

longer add up to one, so we must take care if evaluating it 

by Monte Carlo to keep track of events that are lost. The 

chi square function, errors, and eigenvector analysis do not 

depend at al I on the acceptance being perfect. 

Backgrounds can be dealt with within the unfolding 

context to some degree. We must presume that the background 

process 1s understood wel I enough that its shape in smeared 

variables is known. If its normalization is also known in 

the absolute, then the smeared background may be subtracted 

before unfolding. If the shape 1s known but the 

normalization 1s not, we can treat the background 

normalization as another ''bin" of the true distribution, and 

fit the ~ata as a I inear combination of smeared bins of the 

true distribution and background. 

L.6.2 Generalized binning 

For simplicity, we have treated smearing using the same 

binning for the smeared data and the underlying true 

distribution. For such bi~ning, there is a unique true 

distribution that reproduces a given set of data exactly. 

While we introduced the chi square function and W matrix 1n 

order to understand the errors imp I icit in the unfolding, we 

could and did solve for the correct true distribution 

without it. 
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However, it is also possible to have different binning 

for the smeared data and the underlying truth. We can sti I I 

define a smearing matrix A that relates a true distribution 

x to a smeared distribution b. The entries sti I I are the 

probabi I ities for an event 1n a bin of the true distribution 

to reconstruct into a bin 1n the smeared distribution. The 

perfect resolution case 1s no longer the unit matrix. If 

the number of bins is different for the two distributions, 

we can generally no longer find a unique solution. The A 

matrix is not square, so it is not invertible. 

We can sti I I define the chi square function as before. 

However, now we solve the unfolding problem by minimizing 

the chi square rather than inverting the A matrix. We 

minimiz~ by setting the derivatives of chi square with 

respect to the bins of the unfolded solution equal to zero . 

.Qx2 
E 2 (b.- E A .. ) (-Ai k) 0 

axk = ~ x. = I IJ J (J. J I 

Eq.L.48 

We can rearrange this to obtain 

E (E 1 
A .. A. k) E 1 b. Ai k 

(J~ 
x . = ~ I J I J I 

J (J. 
I I 

Eq.L.49 

On the left hand side we can recognize the W matrix. The 

right hand side we can define as a vector R constructed from 
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the A matrix 1 the data vector 1 and the data errors. 

E 1 
C1~ 

I 

Eq.L.50 

We can now rewrite the equation for the chi square m1n1mum 

as 

E 
J 

= Eq.L.51 

Thus 1 for general binning rather than solving Ax=b 1 we solve 

Wx=R. 

Even for different number of true and smeared bins 1 

.e. for non-s_quare A1 the W matrix is sti 11 square, with 

dimension equal to the number of bins in the true 

distribution. There is always at least one solution to this 

system. If there are fewer bins of data than bins in the 

true distribution 1 there w1 I I generally be a family of 

solutions. After al I 1 we cannot determine more parameters 

of the solution than we have measurements in the data. If 

there are more bins of smeared data than bins of the true 

distribution 1 there 1s generally a unique solution to this 

system. 

The exception wi I I be if the determinant of W is zero. 

Since the determinant is the product of the eigenvalues of 

W, this means that there is a zero eigenvalue. This in turn 

means that there is some vector in the solution space that 

makes zero contribution to the chi square, which can -only be 
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true if the vector smears to zero 1n the smeared data space. 

Since this implies we can have the same chi square with any 

amount of this vector 1n the solution, there is an infinite 

number of solutions. 

L.6.3 Maximum I ikel ihood 

There is a drawback to chi square as a measure of the 

best fit to the data. If there are bins with few events, 

the approximation that the error on the bin contents is 

gaussian with a variance equal to the bin contents breaks 

down. The most obvious example 1s a bin with zero events. 

Such a bin does not actually mean the true distribution for 

the bin is zero with absolutely zero variance. In the usual 

chi squase formal ism, we would be dividing by zero if we 

used a bin with zero contents. 

The solution to this problem 1s to use maximum 

I ikel ihood statistics. We can then use the ful I Poisson 

probabi I ity distribution, which 1s perfectly wel I defined 

even for bins with zero events. In fact, chi square 

statistics are just the special case of maximum I ikel ihood 

where al I of the bin I ikel ihoods are gaussian. 

Instead of minimizing the sum of the chi square 

contributions from each bin, we maximize the product of the 

probabi I ities for each bin to contain the number of events 

we actua I I y observe. It is conventional and convenient to 
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actually work with the logarithm of the I ikel ihood, which is 

the sum of the log probabi I ities for each of the bins. It i 

s useful to define q.' 
I 

not necessarily an integer, as the 

expected contents of bin under some hypothesis, to be 

compared with the observed contents of the bin b., which 1s 
I 

an integer. If we represent the true distribution as bins 

x., and the smearing and acceptance as the matrix A .. , we 
J IJ 

can write the log I ikel ihood for Poisson statistics as 

f o I I ows. 

L = I: In ( Pb.,q.) 
I I 

Eq.L.52 
I 

q. = I: A .. x . 
I IJ J 

J 
Eq.L.53 

p e-qg b = b,q b! 
Eq.L.54 

We wish to find the true bin values x. that max1m1ze 
J 

the log I ikel ihood. We do this by finding the values that 

make al I of the partial derivatives zero simultaneously. 

aL = 0 ax. 
J 

Using the derivative of the Poisson formula 

1 -q b -q b-1 b bT (-e q + e bq ) = P (q - 1) 

Eq.L.55 

Eq.L.56 
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and the derivatives of the q. with respect to the x., 
I J 

oq. 
I 

ox. 
J 

=A .. 
IJ 

Eq.L.57 

we can write the equations as 

oL a E .!__ oP 
oq. 

I 
0 ox. = ~ ox. In (Pi) = ax. = P. oq Eq.L.58 

J I J I J 

aL b. 

ox. = E (-' - 1) A .. = 0 q. IJ 
J I 

Eq.L.59 

We can I i near i ze these equations around a trial 

solution for the bins of truth 1n terms of incremental 

variables 6xk. If we assume that the second derivative 

matrix remains approximately constant, we can solve the 

I inear system for the 6xk. Adding the increments to the 

trial solution gives a new trial solution, from which we can 

recalculate the matrices and solve for new increments. This 

1s essentially a 

calculation. 

aL 
Ox. = 

J 
aaL I trial x. x. 

J J 

higher dimensional Newton's method 

+ Eq.L.60 

Eq.L.61 

Eq.L.62 
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Just as 1n the chi square case, we can form a square 

matrix wL of the same order as the number of bins of truth. 

-L 1 
b. 

E I A .. Aik wj k = q. q. IJ 
I I 

Eq.L.63 

E L /J.x. RL 
wj k = 

J k 
j 

Eq.L.64 

We can also define a right hand side vector RL. 

RL E b.-q. 
A.i k E 1 /J.b. A .. = I I = k q. I IJ q. I 

I 

Eq.L.65 

/J.b. = b. - q. 
I I I 

Eq.L.66 

We can see the s i mi I ar i ty between the maximum 

I ikel lhood formal ism and the chi square formal ism. We 

replace~he data b. with the residuals /J.b. because of the 
I I 

iteration scheme. The error weighting factor 1/u2 1n the 

chi square, which we took to be 1/b., is replaced by 1/q .. 
I I 

In other words, we replace the "error on the data" with the 

"error on the theory." We a I so get an extra factor b. /q. 1 n 
I I 

the wL matrix. If we assume that the solution yields 

calculated smeared bin contents q. that are approximately 
I 

equal to the data 

approximately unity. 

bin contents b., this factor is 
I 

L.6.4 Like I ihood errors and goodness of fit 

The error interval for a chi square fit is 

conventionally the region where the chi square is within one 
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of the m1n1mum. By construction, it 1s exactly symmetric 

for positive and negative errors. The corresponding 

statement for I ikel ihood 1s the region where the log 

I ikel ihood is within one half unit of the maximum. The 

factor of one half 1s due to the convention of chi square 

sums being written with 1/u2 rather than the logarithm of a 

gaussian probabi I ity, exp(-6 2/[2u2]). The region is not 

necessarily symmetrical, although 

errors it is approximately so. 

for reasonably smal I 

If we assume that the log I ikel ihood is described 

adequately by its second order Taylor expansion around the 

maximum, the region consistent with the data 1s the 

el I ipsoid described by the derivative matrix. The factor of 

one halL in the Taylor expansion compensates for the change 

from one unit increase 1n chi square to one half unit 

decrease in I ikel ihood. The entire apparatus of eigenvector 

and eigenvalue analysis can be carried over from chi square 

to I ikel ihood. We can eas i I y check that the actua I 

I ikel ihood evaluated at the extremes of the Taylor expansion 

e I I i pso i d 1 s sufficiently close to the approximate 

I ikel ihood to justify the expansion. 

At least for Poisson statistics maximum I ikel ihood, 

there is an exact analogy to the chi square test for 

goodness of fit. The distribution of the log I ikel ihood 

quantity is calculable, albeit with a bit more comp I ication 
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than the distribution of the chi square. For large numbers 

of bins, we can calculate the mean I ikel ihood we expect, and 

the RMS width of the expected I ikel ihood distribution for an 

ensemble of experiments. 

< L > 

< In p > = 

cr2L = E [ < 

< ln 2 
P > = 

= E < In P. > 
I 

-x + e 

2 In P.> 
I 

-x 

-

n 
x 
iiT 

n 
E x 

iiT 
n 

< In 

n 
In x 

iiT 

P.>2 J I 

n 
x 
iiT - 1 J 

Eq.L.67 

Eq.L.68 

Eq.L.69 

Eq.L.70 

We then compare the observed I ikel ihood at the maximum with 

the expected I ikel ihood and the range of I ikel ihoods 

expected from statistical fluctuations. We can therefore 

calculate the probabi I ity that a poor I ikel ihood is due 

purely to statistical fluctuations. 

For high statistics bins, the sums for <In P> and 

2 <In P> become impractical~ For such bins, we can use 

Gaussian approximations for the same quantities. 

< In P > ~ ( 1 + In 2~x )/2 

< ln 2 P > ~ 1/2 

Eq.L.71 

Eq.L.72 
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L.7. Implementation 

L.7.1 Calculating matrices by Monte Carlo 

In a practical situation, our understanding of the 

smearing and acceptance process is described by a Monte 

Carlo program, where events are generated according to some 

input distribution, and smeared by model I ing the detai Is of 

the reconstruction process. We have learned how to extract 

the underlying true distribution from smeared data given 

A .. , so we need to learn how to calculate A .. from the Monte 
I J I J 

Carlo, and to avoid sensitivity to the assumed input 

distribution .. 

Let us say that there are N bins for the true variable, 

and M bi~s of smeared measurements. We first define a 

histogram of N bins, and an M by N scatterplot. We generate 

Monte Carlo events according to the assumed true 

distribution, and accumulate the generated events in true 

variable bins in the histogram. At the same time, we smear 

the event and apply the cuts. If the event is accepted, we 
-· 

ent~r it into the scatterplot according to its true variable 

bin and its smeared measurement bin. If the event is not 

accepted, it is not entered. 

The elements of A are found by normalizing each of the 

scatterplot entries corresponding to a given true variable 

bin. We normalize by dividing by the number of generated 
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events in the corresponding true variable bin of the 

histogram. This divides out the dependence on the assumed 

true variable distribution. These ~ numbers add up to the 

acceptance for that bin. 

There are some advantages to using an input 

distribution reasonably close to the expected true 

distribution. If there are gradients or curvatures within 

the bins, using a more correct input distribution more 

correctly averages over them. Also, it may be a more 

efficient use of Monte Carlo computer time to generate most 

of the events 1n the parts of the distribution where the 

data wi I I exist. We can also incorporate bin-center 

corrections this way. 

The_re 1 s an alternative scatterplot normalization 

scheme which is sometimes useful. 

accurate input distribution for 

This 1s to assume an 

the Monte Carlo, and 

normalize the scatterplot entries by multiplying them by the 

ratio of the total accepted events in the data to the total 

smeared and accepted events in the Monte Carlo. The 

resulting A matrix takes an x vector whose elements are al I 

1 into the Monte Carlo output normalized to the same number 

of events as the data. If we use this A to unfold the data, 

1n effect we are solving for the ratio of the data to the 

assumption in the Monte Carlo. Under this scheme, we do not 

need to accumulate a histogram of the generated distribution 
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1n the Monte Carlo. We simply normalize the scatterplot, 

solve for the unfolded solution x, and multiply x by the 

assumed distribution to get the solution in physical units. 

L.7.2 Choice of data bins 

We can show rather easily that the choice of binning of 

the data wi I I have minimal effect on the unfolding process. 

The measurements b. appear in the construction of the vector 
I 

2 b./a.. However, for normal statistical 
I I 

R in the form 

2 errors, b.=a., which makes 
I I 

variable bin k. Thus, 

Rk just the acceptance for true 

R 1s determined only by the 

acceptance and not the binning of the data, or apparently 

even the values of the data. 

The_ values of the data must influence something, and 

that is the matrix W. We calculate W from the smearing 

matrix A and the errors on the data by W=AT(l/a2)A. For 

Poisson statistical errors, we can replace the 1/a2 by 1/b, 

which makes it clear that W depends on the data. 

However, while the elements of W depend on the data, 
-· . 

they depend I ittle on how i€ is binned. If we cut each data 

bin in half, we would reduce al I the A elements by a factor 

of 2, which would reduce W by a factor of 4. But we would 

also double the 1/b factors and have twice as many terms in 

the sum for calculating W. Thus the elements of W would 

remain the same magnitude. 
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Of course, if the binning is too coarse resolution is 

lost. The chi square approach also looses validity if the 

bins are fine enough that the statistical errors become non-

gauss1an. In that case, we should use the I ikel ihood 

approach. If we assume that at the solution, b.=q. on the 
I I 

average, the above arguments apply, and the binning of the 

data should not alter the wl matrix magnitude. 

L.7.3 Choice of theory bins 

We must also decide how to bin the true distribution. 

When we use eigenvectors, it might first appear that the 

binning becomes irrelevant. We can simply bin any way we 

wish and retain only the best determined eigenvectors in the 

solution. However, the binning of the true distribution 

effects the shapes of the eigenvectors. We wish for the 

eigenvector sequence to converge to the unfolded solution in 

as few terms as possible. 

There 1s a special case where we can make a prediction 

about the eigenvector sequence. Before being decomposed 

into eigenvectors, the unfol de-d so I ut ion 1 s the vector x 

that satisfies Wx=R. We demonstrated above that the 

elements of the vector R are just the acceptances. Assume 

for a moment that the acceptances are unity. If we bin the 

true distribution into equal statistics bins, then the 

elements of the vector x are also al I unity. Since x and R 
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are proportional to each other, then ~ is an eigenvector of 

W. This means that if ·we choose equal statistics binning 

for the theory, the ful I solution can be expressed in just 

one eigenvector. 

If the acceptance 1s not perfect, then not al I elements 

of Rare unity, but they are sti I I constants. We simply bin 

such that the statistics of the true distribution after 

binning match the acceptance. This means using narrower 

bins where the acceptance is poor, and is not the same as 

equal accepted statistics. 

Of course, we do not 

doing the exp~riment, so 

binning. However, we do 

actually know the solution before 

we cannot choose this optimum 

generally have some hypothesis 

about th~ solution, and 

that hypothesis tends to 

using 

make 

equal statistics binning for 

the first eigenvector in the 

sequence have that shape. 

L.7.4 Accelerating convergence 

We are free to simultaneously change the meaning of A 

and of x 1n an unfolding 

remains true. The above 

example of this freedom. 

problem in any way that Ax=b 

discussion of rebinning x is an 

In general, changing A changes W, 

and thus changes the eigenvectors and eigenvalues. We can 

use this freedom to select a representation where the 

convergence of the eigenvector sequence is particularly 

rapid. 
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The transformation we wi I I use 1s simply to divide each 

bin of the vector x by a different constant for each 

element. If we multiply each column of the A matrix by the 

same constants, we have a consistent representation of the 

same unfolding problem 1n a different basis. We can 

represent the set of constants by a diagonal matrix F, with 

the constants on the diagonal. The inverse of F is the 

diagonal matrix with the reciprocals on its diagonal. We 

can then write 

A x = b 

A FF-l x = (AF) (F- 1x) = A' x' = b 

A' = F A 

Now- we can write the w matrix 1n 

representation, W' I and relate it to the 

original representation. 

W' = A'T .!. A' 
C12 = FTAT .!. A 

C12 
F = F W F 

Eq.L.73 

Eq.L.74 

the transformed 

W matrix 1n the 

Eq.L.75 

We can a I so write the R vector -in the new representation as. 

F R Eq.L.76 

In this new representation, the transformed unfolded 

solution satisfies W'x'=R'. If we also wish the solution x' 

to be an eigenvector, we write 

W' x' = R' = A x' Eq.L.77 



584 

We now rewrite this as a condition on the F factors. 

F R = X F-l x 

F2 = X x I R 

Eq.L.78 

Eq.L.79 

The eigenvalue X can be set to unity and absorbed into the F 

factors, since we have noted that the F factors only 

represent a choice of basis. 

If the elements of the diagonal matrix F obey this 

equation, then they can be used to transform the unfolding 

problem such that x 1s an eigenvector. In the previous 

section, we found that for perfect acceptance, equal 

statistics bin~ing also made the solution an eigenvector. 

By using the above transformations, we can make an arbitrary 

distribution an eigenvector, independent of the binning. 

Note that we have not changed the unfolded solution. 

Whether we solve Wx=R directly, or solve W1 x>=R' then x=Fx', 

we obtain the same x. Al I we have done is change the 

eigenvectors. The advantage of doing so is that we can make 

one of the eigenvectors be an arbitrary distribution. If we 

have some a priori expectation about the solution, we can 

make it be an eigenvector. In the eigenvector expansion of 

the solution, it should have a large coefficient, and al I 

other eigenvectors should have coefficients consistent with 

zero. 
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We also have not forced the solution to resemble the 

expectation. While we can choose one eigenvector, the data 

sti I I chooses the size of the coefficient for that vector, 

which could be near zero or even negative if the expectation 

1s incorrect. 

There are several ways of using the transformation. 

One way 1s to solve the unfolding problem first without any 

F factors and obtain the W matrix and the solution x. Then, 

the expected distribution x* 1s multiplied by W to produce 

R* and the d' F f t , correspon 1ng ac ors computed. Then, the 

eigenvectors and eigenvalues of W1 =FWF are found, and the 

so I ut ion data _x 1s transformed to -1 x>=F x. Then x > is 

expanded in terms of the eigenvectors, the sum 1s truncated, 

and the result is multiplied by F again. Schematically, we 

have solved the unfolding problem 1n the original basis, 

transformed the solution to a special basis, removed the 

poorly resolved parts of the solution via eigenvector 

truncation, and transformed back to the original basis. 

There is another approach, where it 1s manifestly clear 

that we are not manipulating the errors by manipulating the 

W matrix. The A matrix was generated from by a Monte Carlo 

program, and we can generate Monte Carlo smeared "data" at 

the same time. We unfold that "data" to x* and R, and find 

the F factors. We then apply the F factors to the A matrix, 

and unfold the data. This is just unfolding the data with a 
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basis chosen with help from the Monte Carlo analysis. In 

this basis, the eigenvectors of the W matrix wi I I include 

the approximate Monte Carlo expectation. The eigenvector is 

only approximate because the data W matrix wi I I be different 

from the Monte Carlo W matrix, since the data errors and 

Monte Carlo errors wi I I be different, if only due to 

statistical fluctuations. Of course, we must remember to 

use the F factors when interpreting the unfolded data 

solution. (Actually, if the data errors are applied to the 

Monte Carlo "data'' values when the Monte Carlo W matrix is 

made to find the F factors, then the Monte Carlo expectation 

wi I I be exactly an eigenvector of the data W matrix.) 
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We also have not forced the solution to resemble the 

expectation. While we can choose one eigenvector, the data 

sti I I chooses the size of the coefficient for that vector, 

which could be near zero or even negative if the expectation 

1s incorrect. 

There are several ways of using the transformation. 

One way 1s to solve the unfolding problem first without any 

F factors and obtain the W matrix and the solution x. Then, 

the expected distribution x* 1s multiplied by W to produce 

R*, and the d' F f t correspon 1ng ac ors computed. Then, the 

eigenvectors and eigenvalues of W1 =FWF are found, and the 

so I ut ion data _x IS transformed to -1 x'=F x. Then x, is 

1n common mathematical language, and compared to the 

unfolding method discussed in Appendix L. 

M.2. Regularized B-spl ines 

M. 2. 1 B-sp I i nes 

B-sp Ii nes are piecewise-continuous 

polynomials which vanish outside finite intervals. They 

resemble gaussian curves. One chooses a set of segment 

boundaries, ca I I ed knots, which defines the shape of a B-

sp Ii ne f un·ct ion for each knot. Each such sp Ii ne function 

uses a separate polynomial to represent the curve in each 
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segment, with polynomial coefficients chosen for each 

segment to make the curve and its derivatives as continuous 

as possible at the knots. One can define B-spl ines of any 

order of with corresponding order polynomials for segments. 

A I inear combination of B-spl ines is as continuous as the 

chosen order of B-spl ines is, even at the knots, for 

arbitrary coefficients. 

There are many normalization conventions possible for 

B-spl ines. To define B-spl ines rn a finite interval, one 

must not only define the knots inside the interval, but also 

several knot locations outside the interval. For physically 

bounded distributions, the choice of knots outside the 

interval is problematic. 

The_ first order B-sp Ii nes are rectangu I ar bin 

functions, and are not continuous at the knots. The second 

order B-spl ines are triangular functions covering two bins, 

with continuous function value at the center knot. The 

quadratic B-spl ines cover three bins, with continuous value 

and slope at the two inner knots. Higher order B-spl ines 

extend over more bin widths, and are continuous for more 

derivatives. 

The B-sp Ii nes are described 1 n more deta i I 1 n a paper 

by V. Blobel, which also discusses regularization [41]. 
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It is possible to approximate a distribution F(x) as a 

sum of B-spl ine functions B. (x) times coefficients a .. 
I I 

F(x) = E a. B. (x) 
I I 

Eq.M.1 

Such a sum cannot 1n general represent a function with 

perfect accuracy, unless the sum 1s over very many B-spl ines 

with very narrow widths. However, the sum is adequate for 

representing a distribution measured with finite resolution 

and statistics. A histogram is equivalent to a sum of first 

order B-spl ines. 

M.2.2 Unfold~ng with B-spl ines 

Unfolding data means finding the true distribution 

which, after smearing, best matches the observed smeared 

data. This can mean finding the set of B-spl ine 

coefficients a. which best describe the data. The CHARM 
I 

collaboration has used B-splines to unfold their charged 

current structure functions [49] 1 and the neutral current y 

distribution [50]. The steps 1n unfolding using B-spl ines 

are analogous to unfolding using bins. 

For each spline function, we find the distribution that 

it reconstructs into in smeared variables. This can be done 

by the fami I iar Monte Carlo method of generating events 

according to the spline distribution 1n true variables, 

simulating the reconstruction smearing, and accumulating a 
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histogram which we normalize into the resolution function 

for the spline. We assemble the normalized resolution 

functions into an A matrix, which contains the model-

independent information to calculate the distribution 1n 

smeared variables as a function of the coefficients a. of 
I 

the spline representation of the true distribution. 

The relation between the spline coefficient vector a, 

the smeared data vector b, and the A matrix is then Aa=b. 

We can then solve this problem by the I inear algebra methods 

described previously in Appendix L. The spline coefficients 

are multiplied by the spline functions to calculate the 

unfolded dis~ribution. Typically one integrates or 

otherwise evaluates the spline representation of the 

distribuj:.ion to obtain bin values. The spline coefficients 

have statistical errors and correlations, and these must be 

propagated into errors and correlations on the bin values. 

There are few real differences between unfolding with 

splines and unfolding with bins. One is 1n the Monte Carlo 

generation of the A matrix, which can be directly from a 
-

scatt~rplot for bins, and is slightly more complicated for 

splines. The other difference is the extra steps of 

calculating the bins of the unfolded distribution from the 

spline coefficients, and propagating the coefficient errors 

to the bin errors. An advantage of the spline approach 1s 

that the spline representation 1s continuous, and can be 
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transformed by changes of variables and binning 1n 

transparent ways. 

are not as apparent 

bins. 

In other words, the the bin boundaries 

with splines as they are for explicit 

It 1s sometimes claimed that the spline representation 

gives smaller correlations between bins. This seems 

implausible. Adjacent B-spl ine functions overlap by 

construction. This is why a sum of splines is continuous. 

When we fit the data as a I inear combination of functions, 

if the functions overlap for any reason, the errors on the 

function coefficients become correlated. The coefficients 

of the B-spl.ines thus have correlations even if the 

reconstruction resolution is perfect. Finite resolution can 

only wor.sen the correlations. If we integrate the sum of 

splines over bins using the ful I covariance of the 

coefficients, most of the correlation wi I I cancel, but we 

wi I I not improve upon the rectangular bin function case. 

M.2.3 Regularization 

The absolute m1n1mum chi square solution to an 

unfolding problem tends to have large bin to bin 

fluctuations. Regularization is an attempt to control the 

fluctuations by modifying the chi square or I ikel ihood to 

penalize the fluctuations. Regula~ization could be done 

without using B-spl ines, just as B-spl ines could be used 
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without regularization. There is an extensive discussion of 

regularization and splines 1n Blobel [41] . The CHARM 

collaboration used regularization 1n their neutral current 

structure function analysis [40]. 

If L0 (a) is the log I ikel ihood as a function of the 

vector of spline coefficients a, then the regularized 

I ikel ihood LR(•) used by the CHARM group 1s written 

2 = L0 (a) - 7 E. (a. 1 - 2a. + a. 1) 
I- I I+ 

I 

Eq.M.2 

(If we use chi square instead of I ikel ihood, we add rather 

than subtract the extra term.) The regularization term is 

the sum of squared second differences between adjacent 

spline coefficients, times an arbitrary parameter 7. 

Fluctuations between adjacent bins wi I I produce large second 

differences, and thus a large value for the regularization 

sum, which 1s subtracted from the I ikel ihood. Smooth 

variations between bins wi 11 produce sma I I second 

differences, and a smal I value for the regularization term. 

The maximum I ikel ihood or minimum chi square is thus a 

compromise between the solution without regularization, 

which is I iable to have bin to bin fluctuations, and the 

smoothness preferred by the regularizing term. The balance 

is control led by the parameter 7. 

This expression is ambiguous due to the many possible 

definitions for the spline functions B. (x). We need to know 
I 
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the order of the splines, the knot locations both inside and 

outside the physical region, and the normalization 

convention. If the knot spacing is not equal, a unit-area 

spline normalization convention wi I I give very different 

coefficients than an equal-height convention. If there 

additional boundary conditions at the edges of the physical 

region, we must know in detai I how they are implemented. 

These ambiguities are relevant because the spline 

coefficients a. depend on the spline function normalization. 
I 

For integrals of the coefficients times the splines, the 

ambiguity would cancel out, but for a regularization term 

such as is used by the CHARM group, the absolute spline 

normalization affects the coefficients, and thus their 

squared _,second differences. To be concrete, if we doubled 

al I the spline normalizations, the coefficients would be 

halved, and the regularization term would be quartered. 

Blobel suggests an improved regularization term. 

Rather than a sum of squared second differences, he suggests 

the integral of the square of the second derivative of the 

spline representation of the data. 

R = 'T J dx [ E Eq.M.3 

Since the splines are continuous, the derivative is wel I-

defined even at the knots. This term is much less sensitive 

to the deta i Is of the sp I i ne definition, and sens it i..ve more 

directly to the snoothness of the solution. 
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M.2.4 Biases 

There is a risk of introducing a bias into the unfolded 

solution if we regularize. We are no longer finding the 

distribution which best matches the data, but some 

compromise between the best fit and smoothness. For a large 

enough value of r, the regularized chi square is dominated 

by the regularizing term and not the data. 

We can make some general predictions about the nature 

of the bias. If the true distribution has finite curvature, 

or finite squared second differences, the true distribution 

has a finite value for the regularization term. The 

unfolding process wi I I underestimate the normalization in 

order to minimize the contribution from the regularizing 

term. TJiere 1s also a bias in the regularized solution 

toward smaller curvature for the same reason. 

Smal I amounts of bias, comparable to the normal 

statistical errors, are acceptable as the price of obtaining 

a smoother solution. Presumably there is some compromise 

value of r which is large enough to suppress the bin to bin 

fluctuations, but not so large as to overwhelm the data. 

Blobel presents a method of determining a value for r. 

He uses the eigenvectors derived 

representation of the regularizing term. 

s .. 
lj 

' ' ' ' = r fdx B. (x) B. (x) 
I J 

from the matrix 

Eq.M.4 
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While the eigenvalues depend on the value of r, the 

eigenvectors do not. He expands both the regularized and 

unregularized solutions 1n these eigenvectors. Typically, 

only the first few eigenvector coefficients 1n the 

unregularized solution are statistically significant. The 

eigenvector coefficients 1n the regularized solution depend 

on r. It is possible to choose r such that the coefficients 

of the statistically insignificant eigenvectors 1n the 

unregularized solution become neg I igible in the regularized 

solution. 

This method of choosing r 1s essentially equivalent to 

truncating th~ eigenvector sequence at the point where the 

eigenvector coefficients become statistically insignificant, 

as far a$ the bin values and the diagonal elements of the 

covariance matrix are concerned. 

M.2.5 Statistical errors and parameterization 

Since when we regularize we are no longer max1m1z1ng a 

pure I ikel ihood or a pure chi square, the 
-

conventional methods of calculating and interpreting 

statistical errors no longer apply. The region where the 

chi square is within 1 of the m1n1mum, or where the 

regularized log I ikel ihood 1s within 1/2 of the maximum, 

wi I I be different. The quadratic nature of the regularizing 

term guarantees that the "errors'' quoted for the regularized 



596 

problem wi I I be smaller than for the unregularized problem. 

For large enough values of r, the "errors" can be made 

arbitrarily smal I. 

It 1s possible to fit a parameterization to the 

regularized solution. This should be done using the ful I 

covariance matrix, since regularization does not completely 

remove the correlations between bins. The covariance matrix 

elements wi I I reflect the T value. This wi I I cause the 

parameter errors to reflect the T value as wel I. 

The parameter errors wi I I differ between 

straightforward unfolding, unfolding with a truncated 

eigenvector sequence, and unfolding with regularization. 

The errors of a parameter fit with the ful I set of 

eigenve~tors are always smaller than for a truncated set, 

because the excluded eigenvectors are excluded information, 

even if not particularly powerful information. However, 

with regularization, the high-frequency eigenvectors are not 

excluded. Instead, they are included with smal I 

coefficients and smal I "errors." It 1s precisely for these 

eigenvectors that the "errors" are dominated by the 

regularizing term, and not by the information of the data. 

There are thus two risks associated with regularizing, 

particularly if it is fol lowed by a parameter fit. One is 

that the regularized solution may be biased away from the 

true solution by the regularizing term. The other is that 
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the statistical "errors" are certainly underestimated. Both 

risks increase as the r value increases. It would be 

possible, of course, to fit using the regularized solution, 

but using the covariance matrix from the unregularized 

solution. 

If the unfolded solution 

of analysis, to be fol lowed 

is only an intermediate stage 

by a parameter fit, the fit 

itself can perform the smoothing function. The smoothing 

effects of regularization are unnecessary, and simply serve 

to bias the solution and confuse the error analysis. 

M.2.6 Conclusion 

Unfolding data using B-spl ines without regularization 

and with_ enough splines should be able to represent an 

arbitrary distribution as wel I as binning would. It should 

produce a continuous (although not necessarily smooth) 

solution suitable for changes of variables and binning. It 

is relatively simple and efficient to implement, although 

not more so than simple binning, and can produce an accurate 

ful I covariance matrix for further parameterization. If the 

resolution is poor, however, it wi I I typically produce a 

solution with bin to bin fluctuations. 

Regularization by altering the chi square or I ikel ihood 

should suppress the fluctuations in a way similar to a 

truncated eigenvector sum. Regularization wi I I always 
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result in the errors being somewhat underestimated. Care 

must be taken In choosing the strength of the 

regularization, or the solution wi I I be biased and the 

errors wi I I be underestimated. It seems preferable to use 

the unregularized solution for parameter fits. 

M.3. Unfolding by ratio corrections 

M.3.1 Introduction 

There is a common method of dealing with acceptance and 

resolution effects which we may cal I ratio corrections. The 

ratio correcti_on technique probably grew historically out of 

the pure acceptance correction problem. Often the ratio 

correcti_on method is used for bin-center and physics-model 

corrections as wel I as acceptance and resolution. The 

central assumption of ratio corrections is that the unfolded 

solution can be obtained from the raw data by multiplying by 

each bin by a correction factor. 

If we represent the operation of smearing by an 

operator A, then we can calculate the smeared distribution 

b* corresponding to some true variable distribution x* as 

Eq.M.5 

The x* distribution 1s binned in the same way as the smeared 

distribution b* and the data b. The correction factors c. 
I 
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are the .ratio of the true distribution to the smeared 

distribution. 

c. = x~ / b*. 
I I I 

Eq.M.6 

The unfolded solution is the product of the raw data and the 

correction factors. 

x. 
I 

= c. b. 
I I 

Eq.M.7 

M.3.2 Iterative solution 

For a pure acceptance problem, with perfect resolution, 

the A operator simply multiplies each bin of • x by the 

acceptance fo~ that bin. 

• x , so no assumption 

The c. factors are independent of 
I 

about • x IS necessary. When the 

resoluti~n 1s imperfect, however, the c. depend on the 
I-

• assumption about x . Essentially, one needs to know the 

solution before the corrections can be calculated, and needs 

to know the corrections before the solution can be 

calculated. 

The response to this problem 1s typically to iterate 

the ratio correction process. The raw data is the Monte 

Car Io input, which IS smeared by simulating the 

reconstruction, and the bin by bin ratios are used to make a 

first correction to the data. The corrected data is then 

fed back to the Monte Carlo for revised corrections. The 

process is terminated when the revisions are smal I. 
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It is simplest to analyze the iteration if we represent 

it in I inear algebra. The A operator becomes a matrix, 

necessarily square because the binning of x and b is 

identical The problem is then to solve Ax=b. We recal I 

that for square matrices representing smearing, there is 

typically a unique exact solution to this problem. It may 

be found by multiplying the data by the inverse of the A 

matrix. In this language, we are simply inverting A by 

iteration. 

In the nth iteration, some trial solution vector xn is 

smeared by the matrix A to produce a trial smeared data 

vector bn (we wi I I use no superscript when we mean the exact 

solution and the actual data.) 

and the Dext trial solution, 

I: A .. n x. = 
J 

I J J 

n n 
I c. = x. 

I I 

n+l n x. = c. 
I I 

n+l 
x 

b~ 
I 

b~ 
I 

b. 
I 

n The correction vector c , 

are calculated by 

Eq.M.8 

Eq.M.9 

Eq .M.10 

The first question to ask is if the result stationary 

at the true solution. If n x 1s the exact solution x, then 

bn is exactly the smeared data b. If we plug this into the 

calculation, we find 

n 
n+l x. x. 

I b. I b. n Eq. M..11 x. = = ~ = x. = x. 
I 

b~ 
I I I I 

I 
I 
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Thus, the iteration is stationary at the solution. 

The next question 1s if the algorithm always gets to 

the solution. If we view the algorithm in the abstract, we 

can easily construct some matrix problems it wi I I never 

solve. Since al I the elements of A are positive, if al I the 

elements of a trial solution and al I the data bins are 

positive, then the algorithm produces only positive 

correction factors. But for cases of poor resolution, we 

know the exact solution often contains large fluctuations, 

and some bins may be negative (they have neighbors that 

fluctuate to large positive values.) Thus, even though Ax=b 

has an exact $Olution, the iteration wi I I never arrive at it 

if it includes negative bins. While the iteration process 

1s stati9nary at the exact solution, it is not guaranteed to 

find the solution to an arbitrary problem from an arbitrary 

starting point. 

M.3.3 Convergence 

There is also the question of convergence. If we start 

the process from a point ne~r the solution, do we get closer 

or farther from the solution? If we consider the trial 

solution at any iteration to be the sum of the true solution 

n and an error vector E , 

n n x. = x. + E. 
I I I 

Eq.M.12 
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we can write the equations for the next iteration of the 

trial solution and trial smeared solution in terms of the 

error vectors and the true solution. 

n n 
n+l n+l x. x.+ €. 

I b. I I b. Eq.M.13 x. = x. + €. = = I I I 
b~ 

I b~ I 
I I 

The smeared trial solution can be simplified. 

b~ E A .. n E A .. (x. + n = x. = €.) 
I IJ J lj J J 

J J 

Eq.M.14 

b. E A .. n = + €· I IJ J 
J 

Eq.M.15 

We plug it into the denominator and expand assuming that the 

smeared error vector 1s smal I compared to the smeared 

so I ut ion. 

n+l x. + €· 
I I = 

(x. n = + €.) 
I I 

(x. n (1 = + €.) 
I I 

n x.+ €. 
I I 

n b. +EA .. €. 
I I J J 

J 

1 
1 1 E- A:. + 
~ 

I J 
IJ 

1 E A .. n - -i;-:-- €. 
IJ J I J 

Now we keep only terms Ii near 1n the 

n+l x. n I I: A .. x. + €. = x. + E. - -i;-:--I I I I IJ 
I J 

b. 
I 

Eq.M.16 

n Eq.M.17 
€. 

J 

+ ... ) Eq.M.18 

error vector. 

n Eq .M.19 €. + ... 
J 
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We invent a diagonal matrix C, whose elements are the 

correction factors c .. 
I 

Eq.M.20 

We bring e. into the sum with 6 . . , and cancel the exact 
I I J 

solution x. on both sides of the equation to find the change 
I 

in the error vector between iterations. 

n+l l: (6 .. l: CikAkj) 
n e. = - e. 

I IJ k J 
J 

Eq.M.21 

We can rewrite this 1n matrix language as 

n+l (I CA) En E = - Eq.M.22 

The error vector 1s multiplied by the matrix (I-CA) on 

each iteration step. The C matrix wi I I change from step to 

step in the iteration, but is approximately constant if we 

are converging on the so I ut ion. The condition for 

convergence is then that al I of the eigenvalues of the new 

matrix have magnitude less than unity. 

We can make some -general predictions about the 

eigenvalues, depending of the spatial frequency of their 

eigenvectors. The C matrix is approximately the unit 

matrix, if the corrections c. are 
I 

near unity. The matrix A 

does not attenuate low frequency vectors. Th us , i f u i s a 

low-frequency eigenvector, (I-CA)u~(I-II)u=Ou. This means 

the eigenvalues of low-frequency eigenvectors are much less 

than unity. So, the low frequency parts of the error vector 

wi I I be attenuated after a few iterations. 
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High frequency eigenvector components 1n the error 

vector wi I I smear to much smaller amplitude by the A matrix, 

so (I-CA)u~Iu=u. Therefore, high frequency eigenvectors have 

eigenvalues near unity, and high frequency error components 

wi I I be reduced only slightly at each iteration step. If 

some eigenvalues of (I-CA) have magnitude greater than one, 

which could be the case if the c. are large compared to 1, 
I 

the iteration wi I I diverge. 

Thus it seems I ikely that the iteration wi I I reproduce 

the low frequency shape of the solution much more rapidly 

than the high frequency fluctuations in the exact solution. 

This range of _speeds of convergence makes simple tests for 

convergence potentially misleading. The solution wi I I 

change ~pidly at first, then more slowly, but may continue 

at the slow rate for many more iterations than a simple 

extrapolation of the changes would indicate. 

M.3.4 Errors 

We have not mentioned the issue of calculating the 

errors on the corrected d~ta bins. The common practice 

seems to be to apply the same correction factors to the 

statistical errors of the raw data bins as are applied to 

the values of the raw data bins. This 1s certainly correct 

when the resolution is perfect, and the corrections are only 

for acceptance. 
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However, when the resolution 1s finite, the change in 

the statistical error 1s not the same as change in the 

value. For example, if we have a smeared data distribution 

that 1s flat for a region wide compared to the resolution, 

the correction factors wi I I be unity. This 1s true 

independent of the resolution. If we apply the same 

corrections to the errors as to the data, we would reach the 

absurd conclusion that the amount of information we have 

about the underlying true distribution is the same whether 

the resolution is good or bad. 

The proper treatment of errors 1s to propagate the 

errors of the data through the unfolding process to the 

solution. The fact that a complicated iterative procedure 

was usec:l to produce a set of correction factors should not 

bl ind us to the fact that we are sti I I solving Ax=b, and we 

could have inverted A directly. 

in larger elements for -1 A , 

errors degrade with resolution. 

Poorer resolution results 

so the properly calculated 

We must recognize that the correction factors are not 
-

model-independent when the resolution 1s finite, but are 

derived in part from the data, and have statistical errors 

which have been neglected. The correction factor for each 

bin is a function of the assumed value for al I other bins, 

so the correction factor errors are correlated. The 

correction factors are also correlated between iteration 
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steps, so the bookkeeping would be very comp I icated, but a 

ful I treatment of the errors should produce the same result 

as direct matrix inversion. 

It is often claimed that error amp I if ication is not 

important if the bin size IS comparable to the 

reconstruction resolution. We can demonstrate this is 

untrue with a simple example. 

Let us take an example smearing matrix for 3 bins, with 

50 percent of the events from the center true variable bin 

reconstructing into the center smeared variable bin. We 

wi I I let the overflows and underflows pi le up in the outer 

bins, which cqrresponds to even better resolution. We note 

that for a gauss1an, 50 percent of the events are found 

within a_ ful I width of 1.34u. 

smearing matrix. 

1 
2 
1 ~ ] -1 1 

A = 3 

We can easily invert the 

[ 
5 -3 1 l 

-3 9 -3 
1 -3 5 

Eq.M.23,24 

If the data b 1s flat with n events per bin, the 

formula for the solution in -terms of the data 1s 

-1 = 31 [ x = A b -~ ~~ -i l [ ~ l = [ ~ l Eq.M.25 

The matrix maps a flat distribution to a flat 

distribution, thus the ratio corrections for the flat 

distribution are al I unity. If we apply the same correction 
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to the errors as to the bins, the errors of the solution 

bins would be quoted as n· 5 

We can easily propagate the data errors through the 

formula to find a very different answer. 

Eq.M.26 

ax .5 = n [ 
1.97 l 
3.32 
1.97 

Eq.M.27 

Thus, even though the binning 1s coarser than the 

resolution, and the ratio correction factors give exactly 

. . the same solution as matrix 1nvers1on, the true errors as 

calculated by the matrix inversion method are two or three 

times I a_rger than the errors of the raw data. 

It is sometimes claimed that the ratio correction 

factor times the raw bin error IS the the proper error under 

the hypothesis that a I I other bins are fixed, rather than 

a I I other bins floating as IS true for the errors calculated 

above. This is also untrue. The errors assuming the other 

bins are fixed are the reciprocal square roots of the 

diagonal elements of the matrix W=AT(l/a2)A. The W matrix 

for our example, and the corresponding errors are easily 

calculated. 

w = 1 
16 

1 
n 

5 
6 
5 Jl Eq.M.28 
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uxf. 
IX [ 

1.26 l 
1.63 
1.26 

Eq.M.29 

The errors fixing the other bins are indeed smaller 

than the errors al lowing the other bins to float, but are 

sti 11 larger than the errors of the raw data. This is 

because the same number of events spread across several bins 

gives a smaller chi square contribution than if they are 

concentrated in a single bin. 

The above examp I es actua I I y underestimate the error 

amp I ification for gaussian smearing and binning at the 

resolution. First, fewer than 50 percent of the events 

remain in the correct bin for 1 sigma binning than for the 

~1.3 sigma binning for the center bin above. Second, 

smearing beyond the nearest-neighbor bin was neglected. 

Third, the 2 outer bins actually have 3/4 of the events in 

the correct bin, and the improved resolution for the end 

bins decreases the uncertainty of the center bin. If we use 

a larger matrix, the errors of the center bins are even 
-· 

larger than calculated above. 

M.3.5 Parameterization 

Most applications of the ratio correction technique do 

not represent the x* distribution as a vector or use a 

matrix representation of A. • Instead, x is represented by a 
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parameterization, and the smearing of the parameterization 

is done directly by a Monte Carlo program. The iteration 

starts by parameterizing the raw data, and feeding the 

parameterization to the Monte Carlo. The Monte Carlo 

program generates events according to the parameterization 

and smears them. The correction factors are sti I I the ratio 

of the Monte Carlo input parameterization to the smeared 

Monte Carlo output, binned the same way as the data. The 

corrected data is parameterized again, and the Monte Carlo 

program 1s run again with the new parameterization. The 

process 1s continued unti I the parameter values are stable. 

Using a parameterization tends to bias the result 

toward those shapes that can be represented by the 

parameteiization. For example, if the true distribution has 

a sharp feature that 1s narrower than the resolution, it 

wi I I be attenuated by smearing. The correction factors, 

i.e., the ratio of the true distribution to the smeared 

distribution, should be large near the feature. But if the 

parameterization does not al low 

cor~ection factors w1 I I be 

for any sharp features, the 

calculated for a function 

smoother than the true distribution. The amp I if ication for 

features that cannot be represented by the parameterization 

wi I I thus be underestimated in the ratio correction 

algorithm. 
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It is not always possible to know in advance what form 

of parameterization to use. Since an improper 

parameterization tends to bias the result toward the 

parameterization, it 1s even difficult to use the corrected 

data as a guide to choosing a parameterization. As we 

learned above, the statistical errors may be underestimated, 

so the parameter fit errors may be underestimated, and the 

chi square of the parameter fit may be overestimated. 

If the parameterization cannot represent bin to bin 

fluctuations, they wi I I not be amp I ified by the iteration 

process. This may appear to be an advantage of bui I ding 

parameterization into the unfolding. However, real features 

wi I I also fai I to be amplified. If we desire to smooth the 

solutioQ, it seems better to do so by unfolding without 

a single parameter fit using parameterization, fol lowed by 

the properly calculated ful I covariance matrix, rather than 

parameterization bui It into the exploiting a side effect 

unfolding process. 

M.3.6 Conclusion 

The ratio correction method, while it 

making acceptance corrections, has several 

is val id for 

flaws for 

unfolding smeared data. 

the ratio of true to 

It is fallacious to presume that 

smeared bins is irrdependent of the 

physics we are attempting to measure. While iterating the 
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ratio corrections may often formally solve the problem, at 

best it wi I I find the same solution less efficiently than 

matrix inversion. It may not find the correct solution, may 

not converge even when near the solution, and has very 

different rates of convergence to the low and high frequency 

components of the solution, which confounds simple tests for 

convergence. The statistical errors estimated by the ratio 

correction method wi 11 of ten be substant i a I I y 

underestimated, even if the resolution is comparable to the 

binning. If a parameterization is used in the process, 

model-independence may be lost. Unanticipated features of 

the data that .cannot be represented in the parameterization 

wi I I be suppressed. 

M.4. Unfolding by event weighting 

M.4.1 Introduction 

Unfolding by event weighting means correcting for 

resolution by spreading the reconstructed events across bins 
-

according to the probabi I ities that they came from the other 

bins in true variables. The method 1s also known as 

ideogramming. It has been used for the analysis of neutral 

current data from the Fermi lab 15-foot bubble chamber (43]. 

The method is based on a near tautatology from 

probabi I ity theory. Let p (t) be the probabi I ity 
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distribution of the true variable, and let P(s) be the 

probabi I ity distribution of the smeared variable. These are 

presumably not independent distributions, but highly 

correlated. The probabi I ity distribution for both t and s 

is P(t•s). The conditional probabi I ity for t given s is 

defined as 

P(t I s) = P(t•s) I P(s) Eq.M.30 

The needed tautology is 

J P(t•s) ds = P(t) Eq.M.31 

This is the statement that the probabi I ity of t is the sum 

of the probabi I ities of both t and s, for al I possibles. 

We can use the definition of P(t I s) to rewrite this as 

J P(t I s) P(s) ds = P(t) Eq.M.32 

In other words, the probability of t 1s the sum of the 

probabi I ities oft given s, weighted by the probabi I ity of 

al I values of s. This means that we can find the true 

distribution P(t) by weighting events 1n the smeared 

distribution P(s) according to their probabi I ity P(t I s) of 

having true variable value t given smeared variable values. 

We can also state this 1n the language of I inear 

algebra. The true variable distribution x. is analogous to 
J 

P(t), and the smeared variable b. is analogous to P(s). The 
I 

probabi I ity to smear from true bin J to smeared bin 1 1s 



613 

A .. 
1 

so the probabi I ity of being 1n true bin j and in 
I J 

smeared bin i is A .. x. 1 which corresponds to P(t•s). The 
I J J 

conditional probability P(t I s) then becomes 

P (t I s) -+ 
A x. 

I J J Eq.M.33 
b. 

I 

The integral over smeared variable s is equivalent to the 

sum over smeared bins 1. Thus, we can write 

x. = E 
J 

A .. x. 
I J J 
b. 

I 

b. 
I 

Eq.M.34 

Since the A matrix represents smearing probabi Ii ties, 

for perfect acceptance the sum of smearing to al I possible 

bins is unity. 

E A .. = 1 
IJ 

Eq.M.35 

Since the b./b. term cancels, this identity reduces the 
I I 

equation to the tautology x .=x .. 
J J 

If the acceptance is imperfect, our calculation of the 

events in true bin j as th~ suM the of the events in each 

smeared bin i times the probab i I i ty they came from true bin 

J excludes the events from true bin J that were not 

reconstructed into any bin. If the acceptance for true bin 

j 1s ~· 1 we include it by writing 
J 

x. = A .. x. 
I J J b. 

J b. ~
I J 

I 
Eq.M.36 



614 

The tautology 1s preserved since for finite acceptance, 

I: A .. = "I· 
IJ J 

Eq.M.37 

We can make a compact equation for the weighting method 

if we summarize the conditional probabi I ities for an event 

measured in one bin to have smeared there from another bin 

in a matrix Q. 

Q .. = 
J I 

A .. x. 
I J J Eq.M.38 

b. ,,, . 
I j 

Then we can write the equation for the solution as 

x. =I: Q .. b. 
j j I I 

Eq.M.39 

-
M.4.2 Iteration 

A problem with using the Q matrix for unfolding is that 

the Q matrix is not model-independent. The true 

distribution x appears 1n the formula for Q1 as wel I as the 

model-independent matrix A and the smeared data b. 

It may seem that we could overcome the model-dependence 

problem by iterating the procedure. We assume some trial 

true distribution xn, calculate the Q matrix, apply it to 

the smeared data, use the new unfolded distribution to 

calculate a new Q matrix, and continue unti I convergence 1s 

achieved. As with the ratio correction iteration, it 1s 

easy to show that the iteration wi I I be stationary at the 
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solution to Ax=b. It 1s also true that the iteration wi I I 

take positive trial solutions only to other positive 

solutions, so if the exact solution x has any negative 

elements, it wi I I not be found. 

We can perform a convergence analysis for the iteration 

that is very similar to the one for the ratio correction 

iteration. We assume that xn is the exact solution plus an 

error vector en and arrive at a matrix equation that 

relates for the error vector the next iteration en+l. 

n+l n+l A .. (x. + e~) 
x. = x.+ e. = I: IJ J J b. Eq.M.40 

J J J I: Aik(xk 
n I + e k) 

k 

I: A .. (x. + n (1 .!.__ I: Aikek ... ) Eq.M.41 = e.) - + 
I_ I J J J bi k 

x. n 
I: A .. Aik 

_J_ n Eq.M.42 = x.+ e. - ek J J ik I j b. 
I 

n+l A .. x. n 
- I: I J J Aik 

n Eq.M.43 e. = e. ek J J ik b. 
I 

n+l I: ( 6j k - I: Q .. A. k) n Eq.M.44 e. = ek J k I J I I 

en+l = (I - QA) en Eq.M.45 

Stabi I ity near the exact solution requires the eigenvalues 

of the matrix (I-QA) to have magnitude less than unity. As 

with ratio corrections, we can make some general statements 

about the relation of the spatial frequency of eige~vectors 

and their eigenvalues. 



616 

The elements of Q are the probabi I ities of an event 

smearing into smeared variable bin from true variable bin 

J. We expect the properties of Q to be similar to the 

properties of A. Either should map low frequency vectors 

back to themselves, and attenuate high frequency vectors. 

Thus for a low frequency eigenvector u, (I-QA)u~(I-II)u=Ou, 

so the eigenvalue is sma 11. For a high frequency 

eigenvector, (I-QA)u~Iu=lu, and the eigenvalue 1s near 

unity. Thus, low frequency error vectors are quickly 

attenuated by iteration, and high frequency error vectors 

are eliminated very slowly. 

M.4.3 Statistical errors 

Gi~en the elements of Q, we can propagate the errors 

from the smeared data to the unfolded solution. The 

elements of Q.. are the 
J I 

unity, with extra factors 

elements of A .. , 
lj 

of x./b., which wi I I 
J I 

a I I I ess than 

be near unity 

on the diagonal and may be larger or smaller off the 

diagonal depending on the gradients of the distribution. As 

the resolution degrades, the Q matrix becomes less diagonal, 

with its elements generally becoming smaller. Each bin in 

the unfolded x gets contributions with smal I Q matrix 

weights from al I the smeared data bins b. 

We can i I lustrate the error calculation using the 3 by 

3 example A matrix we used for the error calculation for 
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ratio corrections. Since for that problem, x.=b.=n for al I 
I J 

i and j, and the acceptance was unity, the Q matrix equals 

the A matrix (this is not true in general, of course.) 

1 
2 
1 ~ l Eq.M.46 

The statistical errors on the solution can be calculated 

from the variances of the elements of b, which are al I n· 5 . 

2 1 [9n + 
ln 

+ On l 
= 1~ [:~l <J x = 16 ln + 4n + ln 

On + ln + 9n 
Eq.M.47 

.5 [ 
0.79 l (JX = n 0.61 
0.79 

Eq.M.48 

The fractional statistical errors of the solution x are 
-

less than the fractional errors of the smeared data b! In 

fact, in the I imit of very poor resolution, the probabi I ity 

of having come from a given true variable bin is independent 

of the true variable bin. Thus the fractional error of each 

element of x wi I I be the fractional error of the total cross 

section. 

This IS 1n contrast to the errors calculated by 

inverting the A matrix. As the resolution degrades, the 

elements of A-1 become I arger, and the errors of the 

unfolded solution become larger. Why IS there such a 

difference in the behavior of the errors between matrix 

inversion and event weighting? The answer IS that the 
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elements of the Q matrix themselves have statistical errors 

that are neglected in the above arguments. 

The Q matrix depends on both the model-independent A 

matrix and the true distribution )( . Our only knowledge 

about what )( to use in constructing Q IS the data of the 

experiment, which determine )( and thus Q with finite errors. 

Presumably, if we carefully propagated the errors of the 

data through the iteration process to find the errors 1n the 

Q elements, the combination of the data errors and the Q 

matrix errors would become identical to the errors found in 

the A matrix inversion approach. 

M.4.4 Conclusion 

Th~ event weighting algorithm 1s an iterative method of 

solving the unfolding problem. It 1s stationary at the 

exact solution, but it wi I I not find negative bins from a 

positive initial distribution. It converges to the low 

frequency parts of the solution quickly, but converges to 

the bin to bin fluctuations of the exact solution much more 

slowly. If it 1s assumed that the Q matrix elements do not 

themselves have errors, the statistical errors of the 

solution wi I I smaller than the errors of the smeared data. 

However, the Q matrix elements are data-dependent and thus 

do have errors. 
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None of the alternative unfolding algorithms discussed 

here, regularized B-spl ines, ratio corrections, or event 

weighting, 1s more correct than directly inverting the 

smearing matrix A, or equivalently the weight matrix W, 

along with truncating the eigenvector expansion of the 

solution. None of them 1s more efficient (most 

implementations of 

efficient). Proper 

include correlations, 

matrix. 

them are iterative and thus less 

statistical error calculations always 

and are simplest when using the W 
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