
Fermilab HEPCloud Facility

Decision Engine Design

Version 1.2
May 23, 2017

FERMILAB-TM-2654-CD
CS-doc-6000

PREPARED BY:

Anthony Tiradani, Mine Altunay, William Dagenhart, Jim Kowalkowski, Dmitry Litvintsev,
Qiming Lu, Parag Mhashilkar, Alexander Moibenko, Marc Paterno, Steven Timm

FERMILAB-TM-2654-CD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Office of Science, Office of High Energy Physics.

Fermilab HEPCloud Facility - Decision Engine

Revision Log

Revision Description Effective Date

0.5 Rough Draft 03/06/2017

1.0 Initial Version 04/07/2017

1.1 Addressed issues encountered during the code sprint 04/27/2017

1.2 Added summary and Logic Engine Diagrams 05/23/2017

- 2 -

Fermilab HEPCloud Facility - Decision Engine

Table of Contents
1. Introduction

1.1 Document Purpose
1.2 Scope
1.3 Rationale
1.4 Terminology

2. Overview
3. Requirements and Constraints

3.1 Requirements
3.2 Constraints
3.3 The Major Inputs and Output
3.4 Behavioral requirements (use cases)

4. Architectural Overview
4.1 Decision Engine Overview
4.2 Decision Channel vs Policy

5. The Core Components
5.1 Data Space
5.2 Modules

5.2.1 Sources
5.2.2 Transforms
5.2.3 Logic Engines
5.2.4 Publishers

5.3 Task Manager
5.4 Configuration Management
5.5 Decision Engine Service

6. Standard Library
7. Runtime Environment
8. Roles
9. Testing Scenarios
10. Discussion

10.1 Architecture
10.2 Component Design

10.2.1 Decision Channel
10.2.2 DataBlock as the Communication Dashboard
10.2.3 Provisioner

10.3 Use Case
10.3.1 Use Case: As-is Description
10.3.2 Use Case: Decision Engine Translation

Appendix A
Appendix B

- 3 -

Fermilab HEPCloud Facility - Decision Engine

1. Introduction

1.1 Document Purpose
The Decision Engine is a critical component of the HEP Cloud Facility. It provides the
functionality of resource scheduling for disparate resource providers, including those which
may have a cost or a restricted allocation of cycles. Along with the architecture, design, and
requirements for the Decision Engine, this document will provide the rationale and
explanations for various design decisions. In some cases, requirements and interfaces for a
limited subset of external services will be included in this document.

This document is intended to be a high level design. The design represented in this
document is not complete and does not break everything down in detail. The class
structures and pseudo-code exist for example purposes to illustrate desired behaviors, and
as such, should not be taken literally. The protocols and behaviors are the important items
to take from this document. This project is still in prototyping mode so flaws and
inconsistencies may exist and should be noted and treated as failures.

1.2 Scope
For the most part, this document will be limited in scope to the architecture, design, and
requirements specific to the Decision Engine. However, in certain cases the document may
extend itself to include interactions between the Decision Engine and external services. The
included interactions will be used to clarify functionality, to provide expected interfaces and
requirements to external services, and/or to set boundaries on the responsibilities of the
Decision Engine.

1.3 Rationale
Commercial Cloud and allocation-based HPC resources both have explicit costs that must be
considered when deciding to provision these resources. The Decision Engine incorporates
these costs, quantity, and capability requirements in the decision making process. This
allows Fermilab to provision these new kinds of computing resources in a more efficient
and cost-effective way, incorporating “elasticity”. The facility responds to demand peaks
without local overprovisioning, using a more cost-effective mix of local and remote
resources.

The Decision Engine is the HEP Cloud subsystem that executes administrator- and
management-defined policies to create resource scheduling requests on behalf of the
Facility. It is responsible for ensuring that policies are executed in a reliable, traceable and
consistent manner. The policies that are executed result in resource requests on behalf of
the facility, and ensure that those requests are to resource providers that match the job
requirements. The goal is to minimize the execution time of the job subject to the constraint
of available funding.

- 4 -

Fermilab HEPCloud Facility - Decision Engine

1.4 Terminology

Term Definition

Decision Engine The Decision Engine is the HEP Cloud subsystem that executes
administrator- and management-defined policies to create
resource scheduling requests on behalf of the Facility.

Decision Engine
Framework

The parts of the Decision Engine which define and configure
Decision Channels.

Decision Engine
Standard Library

The Decision Engine Standard Library contains all the modules,
functions, logic statements, and classes that are used to build
Decision Channels.

Decision Engine
Policy

A Decision Engine Policy is a configuration which makes use of
decisions made by one or more Decision Channels. A policy can be
viewed as a high level decision algorithm that aggregates multiple
decision channels together to arrive at a resource provisioning
request.

Decision Channel A configuration that ties together various modules and business
rules to form a workflow to make a decision. Decision channels are
dedicated to one specific decision point, such as the optimal spot
price for a given region, zone, and virtual machine type in Amazon.
Typically, a channel does not implement an entire policy by itself.
Channels are broken up into four discrete functions. Sources obtain
data, Transforms feed the data to algorithms which transform the
data into new data products, Logic Engines which provide decisions
based on the transformed data, and Publishers which push the
decision to external systems.

Data Space The Data Space is a time sensitive data store that contains the
complete state of the Decision Engine. The Data Space manages
DataBlocks on behalf of the Decision Channels.

DataBlock The DataBlocks contain all data gathered by the modules that make
up a Decision Channel and all data required for traceability,
debugging, and logging. There is a one-to-one relationship between
a DataBlock and a Decision Channel.

Decision Engine
Module

A module of code that runs within the Decision Engine Framework.
This code fulfills one of the four functions for a Decision Engine
Policy: Source, Transform, Logic Engine, Publisher.

Source: Sources are the interface for the Decision Engine

- 5 -

Fermilab HEPCloud Facility - Decision Engine

to query external systems for data. Sources are
responsible for querying, formatting, and
registering data within the Data Store.

Source
Proxy:

A special Source that is used to retrieve data from
a DataBlock belonging to a different Decision
Channel.

Transform: Transforms contain algorithms and heavy lifting
code that is responsible for consuming and
correlating the data from produced by sources.

Logic
Engine:

Logic Engines evaluate logic expressions that are
derived from the data provided by the Transforms
to ultimately trigger Publishers.

Publisher: Publishers are responsible for formatting, and
pushing decisions via the proper APIs to an
external system or the Data Store.

Decision
Document

Administrative
Parameters:

Parameters set by management that provide
limits or boundary conditions for the
policies. An example of a parameter might
be spending rates for cloud resources.
These may be stored in the Parameter
Datastore.

Business Rules: Business rules tie together specific Sources,
Transforms, Logic Engines, and Publishers
into a Decision Channel. Additionally, they
provide logic statements that the
Transforms and Logic Engines incorporate
into their algorithms. This way, algorithms
can be tweaked without having to release
new code.

Decision Cycle: Triggered by the state change of a Source caused by new data being
inserted, this cycle contains the execution of the Transforms, Logic
Engines, and Publishers.

System-wide
Configuration

Information that lets the decision engine framework know where
user defined modules that are dynamically loaded based on
configuration options are, and system-level parameters that control

- 6 -

Fermilab HEPCloud Facility - Decision Engine

the basic functioning of the Decision Engine Framework.

Resource
Provider

An organization that possesses resources and wishes to make them
accessible to the Fermilab HEP Cloud Facility.

Provisioner The Provisioner accepts requests from the Decision Engine and
translates those requests into requests that Remote Sites
understand. The provisioner is responsible for managing the
lifecycle of the resources.

Fermilab HEPCloud Instance will be using the glideinWMS Factory
as its provisioner.

Compute
Resource

A provisioned resource such as a physical machine, a virtual
machine, or a Container where a job can run.

Resource Request
States

“Normalized” set of states for a resource request so that policies do
not have to be aware of different provisioner states.

Pending A resource request which has been made, but not
fulfilled yet by the resource provider.

Active A resource request that is in the fulfillment
process, but has not been completely fulfilled yet.

Fulfilled A resource request that has been satisfied by the
resource provider and is in use.

Complete A resource request that was satisfied by the
resource provider and is no longer in use.

Failed A resource request that was not fulfilled. This could
be due to the resource provider denying the
request or due to an error condition.

HEPCloud
Resource

A representation of a Site/Resource provider combination that the
HEPCloud Provisioner understands.

HEPCloud
Resource States

Available The HEPCloud Resource is available for use

Offline The HEPCloud Resource is unavailable. No
requests will be made.

Degraded Capacity is at or near limit.

- 7 -

Fermilab HEPCloud Facility - Decision Engine

Error The Provisioner is receiving known understand
error states from the resource provider.

Unknown HEP Cloud Resource status has not been received
within some configured timeframe.

2. Overview
The Decision Engine provides a framework to execute one or more Decision Engine Policies.
A policy consists of one or more Decision Channels. Decision Channels are “Source ->
Transform -> Logic Engine -> Publisher” (STLP) workflows dedicated to making a specific
decision. A channel may be created to load Spot Pricing data from AWS or to determine the
health of a particular Resource Provider. Policies use the same STLP workflow to combine
these channel decisions into high level decisions such as a provisioning request to a
particular Resource Provider.

Large decisions such as deciding to send workflows to the cloud require many smaller
intermediate decision results as inputs. The Decision Engine breaks down the decision
making process into Decision Channels. Each Decision Channel is composed of modules that
correspond to a STLP workflow. The Decision Channel triggers the execution of Sources.
Upon completing of a Source the Decision Channel will trigger a “Decision Cycle”. The
decision cycle is composed of one or more Transforms, a Logic Engine which could cascade
to multiple Logic Engines, then finally one or more Publishers. Sources are responsible for
information acquisition from entities external to the Decision Channel. These external
entities may be DataBlocks from other Decision Channels, or they may be systems external
to the Decision Engine itself. Transforms contain the algorithms for specific decision tasks.
Logic Engines operate on boolean facts derived from the data provided by the Transforms
to follow rules that express a decision. Publishers are responsible for pushing the resulting
decision information out to external systems. At the highest level, there will be a publisher
responsible for pushing out specific requests to the Provisioner.

- 8 -

Fermilab HEPCloud Facility - Decision Engine

Figure 1: Decision Engine Design

Base classes that define the interfaces and minimal functionality that a module must
implement are contained by the Core Framework. The standard library contains a set of
approved, tested, and released modules which adhere to the interfaces defined by the core
framework. These modules may be contributed from interested stakeholders. User
libraries contain modules that are not part of the released standard library nor are they part
of the core framework. These modules must use the provided interface standards from the
core framework. The modules in the user libraries may provide functionality for specific
types of decisions, or they could simply be modules that are being tested prior to release.

The Decision Engine Factory/Builder takes a combination of module parameters and the
location of the module code within the libraries to create a runnable instance of a Decision
Channel. The module parameters provide all information to bootstrap a module instance.
Additional “tweakable” parameters are defined that allow management input into the
decision making process within fixed boundaries. An example of a “tweakable” parameter
might be the overall budget allocated to Cloud spending. Another might be the rate at which
the Facility is allowed to spend down the given budget.

All interactions between different Modules and even other Decision Channels is mediated
through the use of DataBlocks. All state and all relevant data is kept within a DataBlock
dedicated to the Decision Channel. Sources acquire data from from external systems,
format or derive the required information from the acquired data, and store the results in
the DataBlock. Transforms and Logic Engines only know how to query the DataBlock for
required information. The resulting Decisions are then stored in the DataBlock as well.
Publishers query the DataBlock for the decisions that need to be pushed out to external
systems and use the external system interfaces to communicate the decisions. In addition
to the data acquisition and communication processes, each Module regularly updates the
DataBlock with its state. In this manner, everything about the Data Channel is encapsulated
in the DataBlock. Each decision can be traced because all inputs, all state, and all outputs
are kept.

- 9 -

Fermilab HEPCloud Facility - Decision Engine

Operators interact with the Decision Engine from two perspectives. The system Decision
Engine will provide the standard tools that required for service management. These are the
primary tools that system administrators will interact with. Additional tools will be
provided that will:

● Allow dynamic updates to the “tweakable” parameters
● Create new Decision Channels
● Take Decision Channels off-line
● Query the state of Decision Channels
● Provide an API for monitoring hooks

3. Requirements and Constraints
3.1 Requirements

● Operational Requirements
○ Must be highly available (HA)
○ Must scale horizontally

● Compatible with the Provisioner Protocol
○ Facility expansion

■ Understands protocol used by a provisioner to describe a HEP Cloud
resource. For the FNAL deployment, this will be the glideinWMS
Factory.

■ Supports protocol used by the provisioner to request compute
resources in one or more HEP Cloud resources

■ Supports protocol used by the provisioner to terminate compute
resources provisioned in one or more HEP Cloud resources

■ Supports protocol used by the provisioner to cancel compute
resource requests in one or more HEP Cloud resources

■ Understands the protocol used by the provisioner to describe status
of the resource requests

○ Operations
■ Supports custom validation scripts
■ Supports custom periodic scripts

○ Security
■ Can manage submission credentials
■ Can manage credentials required by provisioned resources to

authenticate with the pool
■ Must securely pass credentials to the provisioner

● Data Space
○ Must be able to save a configurable amount of history of each DataBlock for

audit purposes, configurable on a DataBlock by DataBlock basis.
● Source

○ Must query a given information source to get its data
○ Must validate the data retrieved from an information source
○ Must timestamp the data retrieved from an information source

- 10 -

Fermilab HEPCloud Facility - Decision Engine

○ Must store the validated and timestamped data into a DataBlock
● Publisher

○ Must retrieve the data to be published from the DataBlock
○ Must be able to deal with stale data
○ Must deal with error conditions gracefully
○ Must publish the data to a given endpoint

● Transform
○ Must provide audit logs for financial decisions wherever applicable
○ Must provide audit logs for debugging purposes
○ Must provide audit logs detailing decisions made with regards to facility

expansion and the inputs that lead to each decision
○ Must be flexible enough to allow for input of arbitrary mathematical

expressions including but not limited to cost considerations, performance
measurements, time deadlines, and budget compliance.

○ Must be able to deal with stale data
○ Must deal with error conditions gracefully

● Parameter Datastore
○ Must provide storage for static or partially static information
○ Must provide means to store information
○ Must provide data access to a source

3.2 Constraints
The Decision Engine Policies will interface with many external systems such as Experiment
specific Data Movement systems. The Decision Engine will not exercise any API call other
than specifically exposed APIs for these systems. The Decision Engine will not duplicate or
replace any component or function of the external systems.

Specifically, the Decision Engine does not:

● Perform authentication and/or authorization
● Perform Data Movement
● Execute Jobs
● Match individual jobs to individual resources. This is the function of the HTCondor

Negotiator.

There are several technology choices that have already been made for the HEPCloud
Facility. These choices imply certain protocols and APIs. The following are choices made
prior to the design of the Decision Engine:

● Provisioner selected for Fermilab HEPCloud Instance is the glideinWMS Factory.
This component communicates via HTCondor classads.

● The Fermilab HEPCloud Facility batch computing service is HTCondor. There is a
command-line tool or a python API available to query for jobs or the state of the
batch system.

● The Fermilab HEPCloud Facility batch computing service is HTCondor. Is is
assumed that provisioned resources will be delivered in the form of a container (of

- 11 -

Fermilab HEPCloud Facility - Decision Engine

some type, e.g. glidein pilot, shifter container, vm, etc.) that runs an HTCondor
StartD daemon which joins the Facility HTCondor pool.

● The Fermilab HEPCloud Facility already utilizes monitoring suites provided by the
Landscape project and Check_MK. These tools have their own custom APIs

● GRACC is the accounting system used by the Fermilab HEPCloud Facility. There is a
Restful API available.

3.3 The Major Inputs and Output
The proposed Class Diagram of the Decision Engine Framework specifies the types of inputs
and output that each component of the framework. Most of the interaction with other
systems of HEPCloud and the external providers is done not by the Decision Engine
Framework itself but by the Source and Publisher modules that it runs. The candidate
inputs and outputs are based on examples of modules we intend to run.

Component Input(s) Output(s)

Source Information from external
sources or from other
HEPCloud subsystems
which include but are not
limited to external cloud
providers, billing system,
local batch clusters, and
facility interfaces.

Formatted, timestamped
data to DataBlock

Proxy Source Information from another
DataBlock

Information to local
DataBlock

Transform Information from local
DataBlock

Information to local
DataBlock

Logic Engine Information from local
DataBlock

Information to local
DataBlock

Publisher Info from local DataBlock Info to other subsystems
including (but not limited
to) Provisioner, Monitoring,
Facility Interface.

Task Manager A list of Sources,
Transforms, Logic Engines,
and Publishers that form
each Decision Channel

Status of whether the
Decision Channel was
executed successfully

Factory One or more Decision
Documents containing
Business Rules and
Configuration

A machine-readable
description of routines to be
executed by the Task
Manager and parameters.

- 12 -

Fermilab HEPCloud Facility - Decision Engine

3.4 Behavioral requirements (use cases)
These are three generic tasks each of which corresponds to a Decision Channel above. They
are abstracted from the use case in appendix A. They cover the major tasks.

Task Resource Identification

Level Continuously_recurring

Goal Find all available resources that match the current job requests

Actor Daemon

Trigger Continuously at short interval

Preconditions System configuration information, budget information

Post-conditions List of potential resources to submit.

Description Find all resources where the user is authorized to run and has
budget.

Nonstandard Flow Inputs out of date, or calls to external resources fail.

Comments Used as input to resource selection.

Task Resource Selection

Level Continuously_recurring

Goal Rank available resource based on occupancy and price-performance

Actor Daemon

Trigger Continuously at short interval

Preconditions List of available resources

Post-conditions List of potential resources to submit ranked by price-performance

Description Find all resources where the user is authorized to run and has
budget.

Nonstandard Flow Occupancy or price information is stale, performance info or resource
list is missing.

Comments Used as input to resource request

Task Resource Request

Level Continuously_recurring

Goal Request resources from optimum resources

- 13 -

Fermilab HEPCloud Facility - Decision Engine

Actor Daemon

Trigger Continuously at short interval

Preconditions Priority list of resources ranked by price performance

Post-conditions Request for how many of each type of resource

Description Request an appropriate number of each type of resource

Nonstandard Flow Burn rate info is stale, resource list is stale

Comments Final output goes to the provisioner.

4. Architectural Overview
This section describes the architecture of the Decision Engine, its components and their
relationship to other components within the Decision Engine and external systems.

4.1 Decision Engine Overview

Figure 2: Decision Engine Overview

The core purpose of the Decision Engine is to reliably process Decision Channel workflows.
The Decision Engine accomplishes this by utilizing a) a time sensitive Data Space which
expires data when it reaches an age threshold and b) a standard library and Modules
library to provide the necessary functions which are used by business rules that go into a
Decision Channel. Additionally, the Decision Engine contains a Configuration Factory and a
Scheduler. The Configuration Factory compiles the business rules into a Decision Channel

- 14 -

Fermilab HEPCloud Facility - Decision Engine

which is run by the Task Manager. The Scheduler is responsible for triggering the execution
of Decision Channels.

4.2 Decision Channel vs Policy

Figure 3: Decision Channel

A Decision Channel is a conceptual construct used to define a discrete workflow that is
executed by the Decision Engine. A Decision Channel minimally consists of a Source, a
Transform, a Logic Engine and a Publisher. The Decision Channel may one or more
Sources, Transforms, and Publishers. The Decision Channel is configured with only one
Logic Engine, but that Logic Engine may cascade to new Logic Engines.

Figure 4: Decision Engine Policy

Conceptually, a Policy is an aggregation of multiple Decision Channels. However, the Policy
is implemented in the same STLP model that makes up a Decision Channel. The Sources for
a Policy are the published results of a Decision Channel. Additionally, the Logic Engine rules
may be more complicated than a “lower level” Decision Channel.

5. The Core Components
5.1 Data Space
The Data Space is a time sensitive data store that contains the complete state of the Decision
Engine. All data management, archiving, and time management is accomplished through the
management of self-contained private databases called DataBlocks. These DataBlocks are

- 15 -

Fermilab HEPCloud Facility - Decision Engine

assigned to Decision Channels and contain all data gathered by Sources, all data generated
by Transforms, all results from Logic Engines, and all data required for traceability,
debugging, and logging.

Interactions between modules are only permitted through data stored in a DataBlock. The
DataBlock defines the data access protocol, the allowable data types that can be made
available, and the metadata that must be present for each stored item. The DataSpace
manages the versioning and archiving of DataBlocks. When a Decision Channel starts a
decision cycle, the complete DataBlock is copied for archiving. The decision cycle always
ends up using t-1 version, while the Sources always use t=0 where t=0 is always the current
version. This way future analysis tools can walk backwards through the cycles and and
analyze exactly what occurred during each cycle. When a copy for archiving operation
starts, any incoming put operations must be queued up until the copy is finished. This
ensures consistency of data.

There is no fixed schema for the data that will be inserted into the DataBlock. Therefore, the
DataSpace must provide a set of tools for managing a user-defined data model. This
includes a schema repository which can be used to store the specific schemas a particular
Source might produce. The pointer to the schema is the only dependent data that will be
propagated along with any data products.

Additionally, the DataBlock must provide tools for defining data retention policies for
DataBlocks. For example, if a Decision Channel is removed from the system, there must be
tools available to set how long a DataBlock will be retained for archival or forensics
purposes.

The DataSpace must also provide query tools that allow administrators to query the state
and content of DataBlocks, update DataBlocks, and remove DataBlocks. These tools can be
command line tools or APIs.

Data access protocol:
 DataBlock {
 # No duplicate may occur until all puts complete
 # No puts may start until duplicate is complete
 put(key, value, header, metadata)

 # DataProduct is whatever value was ‘put’
 DataProduct get(key)

 # Creates
 Header get_header(Key) # admin
 Metadata get_metadata(Key) # admin
 }

Where:
Key = a unique string identifying this piece of data
Value = A JSON object (Python Dictionary) containing a required descriptive Header.
 Header {
 Taskmanager_id # Which Task Manager the DataBlock is assigned to
 create_time # Timestamp
 Expiration_time # Timestamp

- 16 -

Fermilab HEPCloud Facility - Decision Engine

 scheduled_create_time
 creator
 schema_id # An identifier that points to a schema definition
 # any other fixed information required for system management and tracking
 }
 Metadata {
 # might be internally generated so the user never sees this
 taskmanager_id
 state # system defined assessment of the state of this information
 generation_id
 generation_time
 missed_update_count
 # any other information required for system management and tracking
 }
 DataSpace {
 # example set of functions that all DataBlocks support
 duplicate(taskmanager, generation_id,
new_generation_id)

 # expiration_timestamp: the time at which the DataBlock
 # is expired and data products can no longer be used.
 # Get operations on an expired DataBlock should fail.
 mark_expired(expiration_timestamp)
 mark_demented(which_keys)
 # any other functions required for management of the system
 }

Notes:

● The Value must be read-only once placed into a DataBlock
● Any “updates” result in a new record inserted into the DataBlock
● Metadata manipulations (updates) must be tracked
● The expectations on a completed “put” operation is:

○ A data product object is generated
○ A header object is generated
○ A metadata object is generated
○ The DataBlock contains the data, header, and metadata generated by the put
○ The put function will return these objects

● Once a Decision Cycle is triggered, the DataBlock will be completely copied to a new
version. The original DataBlock is now version t-1. The new DataBlock is version
t=0. Source data products are always inserted into version t=0. The copy procedure
puts the t-1 DataBlock in the “BeingProcessed” state shown in Figure 4. Once the
Decision Cycle is finished, a metadata update is performed and the final state,
“archived”, of the t-1 DataBlock is triggered.

● Put operations should automatically increment an update counter in the metadata.
In a properly configured Decision Channel that is functioning properly, the update
counter should always be 0 or 1. Put operations from Sources will continue to

- 17 -

Fermilab HEPCloud Facility - Decision Engine

update the t=0 data product. If the update counter is greater than 1, this indicates
an error condition that should be addressed by operators.

Figure 5: Data Space State Diagram - Use of a DataBlock within the steady state of the
TaskManager

5.2 Modules
The framework defines the concept of a Module. Modules are objects that are “plugged”
into Decision Channels to perform particular tasks. These encapsulate algorithms, decision
actions, and the read/writing of data to and from external sources. Modules have the
following features:

● Use DataBlocks to operate on data that is active within the system
● Are written (coded) to the standard protocol defined by the framework
● Are runtime configurable: they appear in a running application because a

configuration file indicates that they are needed. The configuration file also
supplies runtime parameters for the module to operate within a given Decision
Channel

● Exist in libraries that are accessible at runtime to the application.
● Are constructed as objects within the running framework application. Their lifetime

is controlled by the framework.
● Are contributions to the core application. This means they are only known to the

framework via the standard protocol. They are expected to come from either the
standard library (defined in the next section), or from private user libraries.

● Ability to specify default values for parameters such as execution times

- 18 -

Fermilab HEPCloud Facility - Decision Engine

The core framework of the decision engine defines what it means to be a module: how a
module interacts with data within the system, when a module is scheduled to do its work,
and how a module is configured i.e. how it comes into existence. Modules come in four
flavors, depending on the service they provide: Sources, Transforms, Logic Engines, and
Publishers. These interfaces define the protocol.

A Task Manager will instantiate the modules that it is configured to manage. Once
instantiated, a module enters “idle” state. When the Task Manager calls the action function
for the module type (defined below), the module moves into “working” state. Upon
appropriate updates to the DataBlock and completion of the action function, the module
moves back to “idle” state. The module instance ends when the Task Manager is stopped or
the Task Manager configuration is changed.

Figure 6: Module States

All modules must implement the follow interfaces depending on the module type:
 Module {
 # set_of_parameters: any and all parameters required
 # for the module to function. These come from the
 # configuration
 constructor(set_of_parameters)
 }

 Source (derived from Module) {
 # produces: This function returns a list of data
product
 # names which the Source guarantees are the
 # key names.
 produces()

 # acquire: The action function for a source. Will

- 19 -

Fermilab HEPCloud Facility - Decision Engine

 # retrieve data from external sources and return a
 # dictionary whose keys are the DataBlock names.
 # The Values are the data products which are to be
 # inserted into the DataBlock
 acquire()
 }

 Transform (derived from Module) {
 # consumes: This function returns a list of the data
 # product names that the Transform will
 # consume.
 consumes()

 # produces: This function returns a list of data
product
 # names which the Transform guarantees are
the
 # key names.
 produces()

 # transform: The action function for a Transform. Will
 # retrieve from the DataBlock the data products
 # listed by consumes and performs algorithmic
 # operation on them. The Transform return a
 # dictionary whose keys correspond to the list
 # defined by the produces function. The values
will
 # be the data products to insert into the DataBlock
 transform()
 }

 LogicEngine (derived from Module) {
 evaluate()
 }

 Publisher (derived from Module) {
 # consumes: This function returns a list of the data
 # product names that the Publisher will
 # consume.
 consumes()

 # publish: The action function for a publisher. Will
 # send data produced by the decision cycle to
external
 # systems
 publish()
 }

- 20 -

Fermilab HEPCloud Facility - Decision Engine

All module interactions will be handled through the DataBlock. The sources are intended to
be scheduled periodically by the Task Manager. The Transforms, Logic Engines, and
Publishers make up a “decision cycle” A decision cycle is a scheduling concept that the Task
Manager implements and is described in detail below. Transforms always run before Logic
Engines, and Logic Engines trigger Publishers. The completion of a Source triggers the
decision cycle.

Notes:

● The base classes should set the logging facility so that logging can be performed in a
consistent fashion.

● At a minimum, modules should log execution times. If debug is enabled, debugging
information should be logged as well.

5.2.1 Sources
As the name suggests, Source is a module that is responsible for communicating with
external systems via the native APIs to gather data that acts as input to the system. For
example, to gather data from AWS, the Source would utilize the EC2 Query API to
communicate with AWS to acquire required information like running VMs, billing and
accounting information etc. Each Source is independent from other Sources and is
responsible for gathering its own data. Every Source is scheduled to run periodically by the
Task Manager based on it’s configuration. Data gathered by a Source is stored into the
DataBlock associated with the Task Manager along with any manifest. When a Source stores
new information into the DataBlock, this represents change of state in the TaskManager and
it will trigger a decision cycle. A Source can be configured with a timeout. If a source does
not return within the time period specified by the timeout, an error condition should be
generated. Sources always operate on the “current” or t=0 generation of the DataBlock.

Sources advertise to the Task Manager the names of the data products they will produce via
a “produces” function. This way, the Task Manager can validate configurations as well as
catch error conditions where the Source is not returning the correct names and/or values.

5.2.2 Transforms
Just like a Source, Transform is a module that produces data that is stored in the DataBlock
associated with the TaskManager. However, unlike Source, Transform does not interact
with external systems but instead consumes the data produced by one or more Sources.
Transforms will perform algorithmic manipulation of the data and store the results in the
DataBlock for use in the Logic Engines and Publishers. A Transformmust produce the data
products specified during its instantiation.

Upon a state change of a source, i.e. new data, the Task Manager will trigger a decision cycle.
The first stage of the decision cycle is to run all configured Transforms. All interactions with
the DataBlock during the Decision Cycle occur on the the most recent backup version, or t-1
version of the DataBlock.

Transforms advertise to the Task Manager both the data product names it will produce and
the data product names it will consume. This provides the necessary information for the
Task Manager to validate the configuration for Sources and Transforms.

- 21 -

Fermilab HEPCloud Facility - Decision Engine

Note: As much as possible, the data products produced by the Transforms should be Pandas
DataFrames. The Pandas DataFrame gives the Logic Engine Facts their power and
flexibility.

5.2.3 Logic Engine
The Logic Engine module operates on the data produced by one or more Transforms or
Sources. Facts are expressions which evaluate to a boolean “true” or “false and depend on
the data products in the DataBlocks. The logic rules are constructed using the facts to make
decisions on how to fulfill the policy being expressed by the Decision Channel. The Logic
Engine will process all Facts to obtain the boolean values, then process all rules to obtain
the decision. A Rule consists of a condition made up of facts and boolean operators and an
action. Actions are triggered when the rule evaluates to boolean “True”. Example:

Available Facts:

 # value is determined by configuration and stored in the
 # DataBlock as parameters
 cloud_enabled

 # budget_available is a value stored in the DataBlock by a
 # Source estimated_cost is a calculation done by a
Transform,
 # the value is also stored in the DataBlock
 cost_ok = (budget_available - estimated_cost) > 0

Rule:

 cloud_enabled && cost_ok -> request_cloud_resources

Logic Engine Rules can produce new facts that evaluate to the result of the rule’s boolean
expression. This fact can be used by subsequent rules. In this manner, rules can be
developed separately as blocks and chained together.

The Logic Engine expects to find either simple data types or Pandas DataFrames in the first
level DataBlock lookups. Fact expressions must produce python boolean values but can use
the full capabilities of Pandas in the expressions.

When a Decision Cycle is triggered, the Task Manager runs all the Transforms prior to
invoking the Logic Engine. Logic Engines never trigger any Transforms and all Transforms
need to happen before the Logic Engine is triggered. The Logic Engine then processes all
Facts and applies Rules to produce result that is stored in the DataBlock. There is no
inherent ordering implied in the Rules. The data product in the DataBlock can in turn be
used by the publisher to publish information to external systems. Since the Logic Engine
execution occurs during a Decision Cycle, all facts are evaluated using data from the most
recent backup, or t-1 version of the DataBlock.

- 22 -

Fermilab HEPCloud Facility - Decision Engine

Figure 7: Logic Engine

As with the Transforms, the Logic Engine will advertise both the data product names it will
produce and the data product names it will consume. However, unlike Sources and
Transforms, the data product names it consumes is dynamically discovered by parsing the
Fact expressions. Transforms and Sources hardcode their “produces” and “consumes”
functions.

5.2.4 Publishers
A Publisher is the inverse of a Source. Publishers read data products from the DataBlock
and format them according to the formats that external systems expect. Publishers use the
remotely exposed APIs to push the data to the external systems. Publishers must publish all
the data products that they promise or generate an error condition. The Task Manager uses
the returned list of Logic Engine Actions as inputs to determine which Publishers to trigger.
The Task Manager is responsible for triggering the Publishers.

Publishers do not create new data products within the DataBlock. Therefore, they only
consume data products. These data product names must be advertised via a “consumes”
function.

5.3 Task Manager
A Task Manager manages the execution and life cycles of a configuration of Modules and
Logic Engines. The Task Manager is assigned a unique DataBlock by the Configuration
Factory which holds all the current state which is operated on by the Modules and Logic
Engines managed by the Task Manager. The Task Manager is responsible for performing
the DataBlock “put” operation. This ensures that the synchronization of Source updates and
DataBlock version updates is handled in one place.

The Task Manager maintains a Source->Transform->LogicEngine->Publisher (STLP)
workflow. To accomplish the workflow, the Task Manager schedules Sources to run
periodically. The period of execution is determined by the configuration used to instantiate
the Task Manager instance. Sources may be executed in parallel. Once a Source changes
state, or in other words, requests an update for the value of advertised data to a new,

- 23 -

Fermilab HEPCloud Facility - Decision Engine

different value, the Task Manager performs the update, then triggers the rest of the
workflow. All configured Transforms are executed before the Logic Engine(s). As with
Sources, Transforms may be executed in parallel. In this manner, all required data is
available in the DataBlock prior to making any decisions. Logic Engines are are executed
next. All Logic Engines, embedded or not, have access to the same DataBlock. The Logic
Engine stage begins with one and only one Logic Engine. Logic Engine actions may trigger
subsequent Logic Engines. This allows Rule and Fact writers to compartmentalize specific
rules. At some point the Logic Engine rules will lead to a decision. The Logic Engine
decision action will trigger a configured set of Publishers to run. This document does not
describe the mechanism by which Publishers are executed. This is deliberately left to the
discretion of the implementer.

The "Decision Cycle" is defined as the execution of Transforms, Logic Engines, and
Publishers. A Decision Cycle is triggered by a state change in any of the configured sources.
However, there must be a configurable minimum delay between Decision Cycles to avoid
decision collisions. It also prevents over scheduling due to jitters in the system. This
configuration item should provide a sensible default value. The start of a Decision Cycle
should cause the TaskManager to trigger the DataBlock to initiate a version (history)
change. The Decision Cycle will then use the t-1 version. All Sources use the t-0 version of
the DataBlock.

The TaskManager must guarantee reproducibility of results. Given the same module
scheduling parameters and a replaying of the same data used as input earlier to the system,
the system must make the same decisions, and form the same intermediate results.

A Task Manager has the following states:

● Boot: This state begins when a Task Manager is started. A Task Manager is in boot
state until all configured sources have populated the DataBlock with the data
products they guarantee and all Transforms have successfully executed at least
once.

● Steady State: This is the main operational state of the Task Manager. If an
unrecoverable error is encountered, the Task Manager is moved to the "Offline"
state. An administrator may shutdown a Task Manager which will move the Task
Manager into the Shutdown state.

● Offline State: This state occurs when an unrecoverable error is encountered that
needs administrator action, or an administrator manually takes an Task Manager
offline. Once an administrator fixes an error state or chooses to manually restart an
offline Task Manager, the Task Manager moves to the Boot state. When a Task
Manager enters the offline state, all data products in the DataBlock are marked as
inaccessible.

● Shutdown State: A Task Manager in Shutdown state will complete a Decision Cycle
if one is ongoing, then trigger an archive operation on the DataBlock to preserve the
history of the Task Manager. All Source Execution will cease immediate to ensure a
new Decision Cycle will not be triggered. Just prior exiting, the Task Manager
trigger a new version in the DataBlock and then take the DataBlock offline. At the
end of the Shutdown state the Task Manager will exit.

- 24 -

Fermilab HEPCloud Facility - Decision Engine

Figure 8: Task Manager State

Notes:

A Task Manager that is in any state other than "Steady State" is not expected to provide
valid, reliable results. Another Task Manager may have a Source Proxy that reads data from
this Task Manager. Therefore, the Task Manager must have access to the headers for all
data products that its configured Sources promise to produce. The Task Manager will
manage state for these data products such that data in the Task Manager's DataBlock will be
marked as inaccessible to Source Proxies when the Task Manager is not in "Steady State".

A Source Proxy may not read data from a foreign Task Manager's DataBlock if the foreign
Task Manager is not in Steady State. Sources and Source Proxies define a valid lifetime for
data that they produce. If a Task Manager that produces data used by another Task
Manager is not in Steady State, the dependent Task Manager may continue to execute on the
data it has until it is expired. Once the data is expired, the Task Manager must report an
error state and move to an offline state.

If a Task Manager is Shutdown or effectively permanently disabled, all dependent Task
Managers will remain in an offline state until the dependency is fixed. If an offline Task
Manager has not been manually taken offline, i.e. it went offline due to a dependency issue,

- 25 -

Fermilab HEPCloud Facility - Decision Engine

that Task Manager should periodically check to see if the issue has been addressed and
automatically cycle to boot state when it has.

Consider the following scenario:

(source1 <put1>)(start decision cycle 1 <do versioning> do
work)
 (source2 active <put2>)
 (source3 active <put3>)
 (source4 active <put4>)

Put operations put3 and put4 will be delayed until the versioning operation is complete.
Put2 will be added to the DataBlock prior to the versioning operation, however, any trigger
that might have occurred due to put2 is considered invalid and no trigger should happen
since this data is being considered by decision cycle 1.

During the Decision Cycle, the Task Manager must manage dependencies between
transforms. If transform A requires data produced by transform B, then the Task Manager
must manage the execution of the transforms such that transform B finishes its execution
before transform A is executed.

- 26 -

Fermilab HEPCloud Facility - Decision Engine

Figure 9: Task Manager Timing Diagram

Notes:

● The Task Manager should log all state changes, all module executions, and all
“actions” that the Task Manager is taking. There should be logging levels that all
provides varying degrees of information in the logs for debugging purposes.

- 27 -

Fermilab HEPCloud Facility - Decision Engine

5.4 Configuration Management
Configuration management contains three important components necessary for
constructing a consistent, running applications using dynamically loaded modules.

● Configuration document definitions and handling for describing the functionality
that will be available in the running application and all the runtime settable
parameters

● A Factory for loading and constructing Module objects in the running application
● A Builder that uses Configuration objects and the factory to construct Task

Managers

Module configuration appears in two different contexts: Facility and Operator. The basic
requirement is that Facility-configured modules be capable of overriding the decisions of
Operator-configured modules.

Module configuration must permit three kinds of module parameters:

● Module-specific constants - parameters necessary to instantiate a module instance,
where the values are the same for the duration of the module’s lifetime.

● Module-specific adjustables - parameters that are permitted to change within
pre-established bounds.

● Module management - parameters that must be specified for a module to run
correctly within a Task Manager, but not specific to a given module. An example is
the periodic scheduling value.

System-wide configuration must contain the following types of parameters:

● Workflow - decision channel definitions, modules that will be active within each
decision channel, version information for the modules, scheduling and error
handling policies and parameters, any required configurable ordering of work,
connections between decision channels.

● Component - connection definitions for access to remote components such as the
data space, pointers to credentials.

The Engine will provide a runtime environment for the configuration factory to operate
within. The runtime environment supplies the search paths for the standard library, user
libraries, the logic engine facts and rules, and the locations for the system-wide
configurations.

The configuration factory translates a Decision Channel Document into a functional
workflow definition and performs any required validation steps. This includes ensuring
that every dataproduct that a module declares it consumes is actually produced by another
module in the Decision Channel. The configuration factory also ensures that the
information necessary for the Task Manager to schedule source execution is available to the
instantiated Task Manager. The factory passes the workflow definition to a “builder” and
triggers a build. The Factory will store history of configuration changes for traceability,
auditing, and debugging purposes.

- 28 -

Fermilab HEPCloud Facility - Decision Engine

5.5 Decision Engine Service
The Decision Engine Service manages Task Managers and their states, the tweakable
parameter connection, and connections (if any) to the DataSpace implementation.
Additionally, the Decision Engine Service facilitates the validation of the tweakable
parameters prior to handing them over to the Task Managers for delivery to the modules.

At a minimum, the Decision Engine Service should provide tools to the Operators and
Facility that allow the following functionality:

● List Decision Channels
● Return Decision Channel status
● start/stop/load specified Decision Channels
● start/stop/reload all
● Global error handling
● Create an audit trail detailing the execution paths and state changes of a specified

Decision Channel execution cycle

The Decision Engine should provide a logging facility interface that can be configured to
meet the needs of the operators. For example, one use case might be to perform simple
logging to a file. Another use case might dictate the need to send all logging to syslog. The
interface should be provided to the modules and individual components of the system.

6. Standard Library
The Decision Engine Standard Library is a collection of implemented Modules that have
been deemed useful for operating a HEPCloud/DecisionEngine facility. All the modules in
this library conform to decision engine standard interfaces, and therefore can be found,
loaded, and configured by the running decision engine system. The library also contains
typical and standard configuration files for operating these modules, and all the validation
tests that show that the modules are operating correctly.

The Standard Library is expected to contain versioned releases that include the module
sources, module configurations, unittests, data schemas, and examples for the modules.

Example standard library structure:

/library base path/version1.1.1/lib
/library base path/version1.1.1/lib/unittests
/library base path/version1.1.1/config
/library base path/version1.1.1/config/schemas
/library base path/version1.1.1/examples

/library base path/version1.2.1/lib
/library base path/version1.2.1/lib/unittests
/library base path/version1.2.1/config
/library base path/version1.2.1/config/schemas
/library base path/version1.2.1/examples

- 29 -

Fermilab HEPCloud Facility - Decision Engine

Example logic engine facts and rules:

/logic base path/version2.1.1/facts
/logic base path/version2.1.1/rules
/logic base path/version2.1.1/examples

/logic base path/version3.1.1/facts
/logic base path/version3.1.1/rules
/logic base path/version3.1.1/examples

Modules are minimally validated via unittests that encompass all expected functionality.
Regression and integration testing requires infrastructure outside the standard library, but
should be considered best practices.

At a minimum, we expect the groups of modules to be found in this library:

● AWS access - all the modules necessary to monitor and control AWS using the AWS
protocols and convert all the data to the DE standard formats

● Google access - all the modules that allow us to work with Google as a cloud
provider

● NERSC - all the modules that are specific to working with NERSC
● Algorithms - standard modules for deciding how to best utilize resources for use

access providers.
● Modules for dealing with laboratory, government, and division regulations and

policies, especially monitoring and control of spending
● Modules for checking data integrity and reporting problems with data

We further expect the standard library to define a majority of the data model (the
definitions of the data structures that will exist within DataBlocks), since the algorithms and
modules for accessing providers and resources are contained here.

User supplied libraries must conform to the same standards as the Standard Libraries.

7. Runtime Environment
The runtime environment for the Decision Engine will provide the following:

● STD_LIB_PATH - Standard Library search path
● USER_LIB_PATH - User Library search path
● LOGIC_LIB_PATH - Logic Engine facts and rules search path
● PYTHON_PATH - complete python path to all python modules and packages
● CONFIG_PATH - path to the configuration files used to bootstrap a functioning

engine, to create all the Decision Channel instances, and keep histories of
configuration changes

● Any other required environment variables

- 30 -

Fermilab HEPCloud Facility - Decision Engine

The file system layout Config path

● ${config_base_path}/decisionengine - global configuration, this may include
connection details for the Data Space, parameter store details,

● ${config_base_path}/decisionengine/config.d - this is where individual Decision
Channel configs are stored

● ${config_base_path}/decisionengine/config.d/history - this is where the
configuration factory stores the history of configuration changes

A Operator should be allowed to take individual Decision Channels on and offline at will.
This should have no effect on the Engine as a whole. However, any Decision Channels that
depend on the channel that was just taken offline, will also change state to offline when the
dependent data expires. Decision Channels that have went offline due to dependency issues
should automatically come back online when the dependency issues have been addressed.

When a Facility administrator chooses to stop the Engine, the expected behavior is that all
Decision Channels are instructed to stop. The Decision Channels should halt all scheduling
of Sources and allow any running sources to finish. Any running decision cycles should be
allowed to complete within a configurable timeout. Decision Channels will exit after the
Sources and decision cycles have finished. When all Decision Channels have exited, the
Engine should clean up any configured external connections, such as connections to the
Data Space. Finally, the Engine is free to exit.

8. Roles
There are two different categories of human roles that encompass the configuration and
operation of the Decision Engine, Facility roles and Service Operator roles. There is nothing
that prohibits a person from spanning the two categories or even multiple sub categories.
The split is conceptual to allow tasks to be assigned according to skill sets.

Facility roles:

1. System Administrators: Administrators maintain the service as a whole. They
guarantee that the accepted configurations are in place and provide first level
troubleshooting of problems.

2. Facility Operators: Facility operators are responsible for ensuring that the
accepted management policies are encoded correctly in the Decision Engine
configurations. They have the ability to override any configuration or parameter
that a Service Operator may have provided as input.

Service Operator roles:

1. API Experts: API experts develop Sources and Publishers since these modules
interact with external systems via the native APIs.

- 31 -

Fermilab HEPCloud Facility - Decision Engine

2. Algorithm experts: Algorithm experts develop Transforms.
3. Data Analyst: Data Analysts develop Facts that are evaluated by the Logic Engines.

Facts require a sound understanding of both the data products that are produced by
the Transforms and the potential uses.

4. Service Operator: Service operators are the closest role the Decision Engine has to
an end user. Service Operators create rule sets that use Facts to make decisions.

9. Testing Scenarios
DataBlock Testing:

● Create new DataBlock
● “Put” data, including metadata, header, and data product
● “Get” data, verify that the metadata, header, and data product are the same as the

original put
● Update data, verify that the data product is versioned and metadata is updated

appropriately
● Version DataBlock

○ Ensure puts are queued until version operation completes
○ Ensure queued puts only operate on DataBlock t-0
○ Ensure DataBlock t-1 is returned for use by the Decision Cycle

Logic Engine Testing:

● Test Facts return expected values
● Test rules use test facts to make decisions

○ Changes to the test facts cause appropriate changes to the decision

Decision Engine Testing:

● Successful installation and configuration of an “empty” engine
● Successful, repeatable, configuration of a sample decision channel
● Successful execution of sample decision engine
● Successfully replay a previous execution such that the replay reproduces the exact

same results
● Successfully produce an audit trail showing the execution path and decisions made

during the execution path

Future testing considerations:

● Financial tests: The engine must show that it correctly stops sending jobs to paid
resources when there is no remaining budget or when the burn rate is too high. This
can be accomplished by starting a test with budget and then adjusting the budget
numbers downward.

- 32 -

Fermilab HEPCloud Facility - Decision Engine

● Load test: The engine must show that it can correctly perform under a load of
100,000 simultaneous jobs and execute a timely ramp-up and ramp-down.

10. Discussion

10.1 Architecture
One of the goals during the DE design was to make the architecture flexible and reusable to
support a Prediction Engine in the future. The architecture should support the capability to
use different implementations of key components. This enables different deployments of
the Decision engine to be extensible as it can interface with different subsystems like
different flavors of monitoring and information systems, job submissions and management
systems, accounting systems, etc. New types of components in the decision channel
(sources, transform, logic engines, and publishers) can be added to extend the functionality
of the decision engine and interface it with different systems as required. This architecture
philosophy makes core components of the decision engine agnostic to the changes in
components of the decision channel.

10.2 Component Design

10.2.1 Decision Channel
The Configuration Factory takes as its input the information provided in the configuration
schema to identify different sources, transforms, logic engines, and publishers required in a
decision channel. It then uses the configuration to define their interaction with each other
through DataBlock. The Task Manager uses a Scheduler to schedule sources periodically.
When a source completes with a data state change, a Decision Cycle is triggered by the Task
Manager. This cycle contains the transforms, logic engines, and publishers. A decision cycle
will create and publish a decision.

Each Decision Channel will contain a single Task Manager responsible for working with the
Scheduler to schedule and manage individual tasks. The architecture supports forming
Decision Channels based on any arbitrary policies provided they can be supported by the
underlying modules, components and plugins of the Decision Engine. As a recommended
implementation, each Decision Channel will always act on behalf a single VO. However, a
single VO may have more than one decision channels active at a time. This recommendation
is an implementation recommendation that will allow for better control and management of
the resource requests made by the DE.

10.2.2 DataBlock as the Communication Dashboard
Global namespaces are required to access DataBlocks universally. Data can be stored in
distributed databases that provide High Availability. Data in the DataBlock can be
unstructured from the Database point of view. However, modules and/or Decision Channels
can impose application specific structure. A Dictionary (aka Hash Map) is sufficient to

- 33 -

Fermilab HEPCloud Facility - Decision Engine

describe the data. Data should provide minimally required fields to be considered valid.
Data should be timestamped and have a valid lifetime. It should provide its type and
identifier. Beyond its valid lifetime data is considered stale and unusable for decision
making process. For scalability reasons, access to most recent data from the components of
Decision Channel should be instantaneous, however, access to old and archived data in the
DataBlock is useful for debugging and audits and does not have same instantaneous access
restrictions. Valid data in DataBlock is expected to be in the order of 10s of GigaBytes.
Actual size may vary based on the complexity and number of Decision Channels. Interfaces
provided by unconditional databases like UcondDB maybe able to satisfy our requirements
as a DataBlock. This needs to be further investigated.

DataBlocks and global namespaces act as a medium for different components in a decision
channel to communicate with each other. A DataBlock is unique to a specific instantiation of
a Task Manager and contains information representing current state of the system as
known to Decision Channels and the modules that are contained within. DataBlocks can be
used to provide audit trails.

In order for the Decision Cycle to make accurate and consistent decisions, it is important
that the Decision Channel acts upon most recent information from the DataBlock. When
new information is acquired and stored in the DataBlock by sources periodically, it
invalidates old data. Any failures to acquire data in a reasonable timeframe would result in
the Decision Channel making less than optimal decisions. To avoid such scenarios, data in
the DataBlock should have a valid lifetime. If this data is not refreshed within its lifetime, it
should be considered invalid and the Decision Cycles should handle this appropriately. Data
from different sources can have different life span.

10.2.3 Provisioner
The HEPCloud architecture allows for using different provisioners provided the
components of the Decision Channel follow same communication protocol. HEPCloud at
Fermilab will use a GlideinWMS Factory as its provisioner. GlideinWMS has a well defined
communication protocol for requesting resources from the different resource providers
through HTCondor. As a result, the Decision Engine should be able to communicate with the
GlideinWMS factory using the GlideinWMS protocol through HTCondor classad mechanism.

10.3 Use Case
This use case description is written with the FNAL deployment as an assumption. Therefore
much of the terminology used will be HTCondor and glideinWMS based. This use case is
presented in two parts. The first part is a description of the use case as it was executed, and
the second part is a translation into a configuration and pseudo-code for the Decision
Engine as designed in this document.

10.3.1 Use Case: As-is Description
The Amazon Web Services optimization use case has been selected because it represents
the most complex workflow implemented to date. The workflow was prototyped in a

- 34 -

Fermilab HEPCloud Facility - Decision Engine

“proto-decision engine” in late 2015/early 2016. The prototyped workflow had three
phases: a) resource identification, b) resource selection, and c) resource request.

During the resource identification phase, the provisioner is queried to select all available
factory entries. For the Amazon use case, a factory entry corresponds to a
Region/Zone/AMI combination. These combinations are explicitly defined in the factory.
The job queue is queried to obtain a list of jobs to be considered for overflow into the cloud.
The remaining budget is queried to ensure that additional requests do not use more budget
than is available. For the purposes of this use case, authorization checks are assumed to be
inherent in the queries. If you are not authorized, the queries fail.

The resource selection phase queries for price-to-performance ratios for the entries,
estimated cost for resources requests, the latest pricing information, and a figure of merit
for ranking entries. This phase ranks the factory entries in order of desirability while
removing entries if they are unworkable or completely undesirable.

The resource request phase runs through the remaining entries in order of desirability and
calculates how many resources to request for each entry. This request is then published to
the provisioner.

10.3.2 Use Case: Decision Engine Translation
The as-is use case assumed that the VO was already authorized to request cloud resources,
and all the jobs submitted were going to run on the cloud. This translation adds a higher
level logic flow to select resources to provision.

Sources:

Source Name Source Type Data Label Description

s_job_query HTCondor Query d_jobs Job information for
jobs in the queue

s_local_capacity HTCondor Query d_local_capacity Number of “slots”
available locally to
run jobs

s_hpc_allocation Accounting Query d_hpc_allocation Hours left in HPC
allocation

s_cloud_budget Accounting Query d_cloud_budget Dollars left to
spend on Cloud
resources

p_overflow_threshold Parameter Query p_overflow_threshold Quantity of idle
jobs required to
trigger overflow

p_overflow Parameter Query p_overflow Boolean: allow

- 35 -

Fermilab HEPCloud Facility - Decision Engine

overflow

p_overflow_hpc Parameter Query p_overflow_hpc Boolean: allow
HPC

p_overflow_cloud Parameter Query p_overflow_cloud Boolean: allow
cloud

Transforms:

Transform Name Data Label Description

t_osg_requests d_osg_requests Performs the algorithm to spread requests out
among acceptable OSG entries.

t_hpc_requests d_hpc_requests Performs the algorithm to spread requests over
time and over HPC sites.

t_cloud_requests d_cloud_requests Performs the algorithm described above to
optimize the requests across entries, contain
costs, etc.

Resource Type Selection Logic Engine:

Fact Name: Fact

jobs_present (len(jobs) > 0)

overflow_condition ((len(jobs) - local$slots) > params$threshold)

overflow_permitted (params$overflow_permitted)

overflow_hpc_permitted (params$overflow_hpc_permitted)

overflow_cloud_permitted (params$overflow_cloud_permitted)

hpc_sufficient_allocation (hpcinfo$hours_available > SUM(jobs$time))

cloud_sufficient_budget (cloudinfo$available_budget > SUM(jobs$estimated_cost))

Rule: Description:

- 36 -

Fermilab HEPCloud Facility - Decision Engine

(jobs_present & overflow_permitted &
overflow_condition) -> [use_osg,
handle_overflow]

If jobs are present, overflow is permitted, and
we are in an overflow condition: action = use
OSG and set a fact that enables overflow
actions.

The use_osg action will trigger a publisher that
publishes OSG resource requests to the
provisioner.

(jobs_present & !(overflow_permitted &
overflow_condition)) -> [use_local]

If jobs are present and overflow is not
permitted or not in overflow condition: action
= use local

(overflow_hpc_permitted &
handle_overflow &
hpc_sufficient_allocation) -> use_hpc

If HPC overflow is permitted and in overflow
condition and there is sufficient HPC allocation
available: action = use HPC

(overflow_cloud_permitted & !use_hpc &
cloud_sufficient_budget) -> use_cloud

If cloud overflow is permitted and use_hpc
didn’t trigger and there is sufficient cloud
budget, action = use cloud. For this use case,
use_cloud triggers another logic engine with
its own facts and rules.

(!use_cloud & !use_hpc) -> use_local This is a catch all rule that says if none of the
other rules triggered, action = use local

Cloud Resource Selection Logic Engine:

Fact Name: Fact:

good_total_estimated_budget ds$budget - (match_table.filter(still_good == True
).mutate(req_cost=number_to_request*burn_rate
).summarize(SUM(req_cost))) > 0

good_total_burn_rate ds$targetburn <= (match_table.filter(still_good ==
True).summarize(SUM(burn_rate)))

Rule: Description:

Good_total_estimated_budget &
good_total_burn_rate ->
publish_cloud_request

If total estimated budget and burn rates are
good, publish the calculated cloud requests
to the provisioner and publish all required
information to the relevant HEPCloud

- 37 -

Fermilab HEPCloud Facility - Decision Engine

subsystems.

!(Good_total_estimated_budget &
good_total_burn_rate) ->
publish_cloud_refusal

If both total estimated budget and burn
rates are not good, publish the a refusal to
request cloud resources to the appropriate
logging facility.

Publishers(s):

This example only lists publishers for the Cloud use case.

Publisher Name: Description:

pub_cloud_req Publish the cloud requests to the
provisioner

pub_cloud_req_monitoring Publish the request to the HEPCloud
monitoring subsystem.

pub_cloud_req_accounting Publish the requests to the HEPCloud
accounting subsystem

pub_cloud_req_refusal Publish the refusal to request new cloud
resources, the reason, and all required
supporting data to the proper logging
subsystems.

- 38 -

Fermilab HEPCloud Facility - Decision Engine

Appendix A

Figure A1: Decision Engine Class Diagram

This is a simplified class diagram of the system, showing essential elements and their
relationships. Note that everything is not included in this diagram. Expressions are used by
the Logic Engine. Parameters are used in construction of Task Managers, Sources, and
Publishers. The interface is left out of this diagram. The relevant interfaces are described
directly in document sections.

- 39 -

Fermilab HEPCloud Facility - Decision Engine

Appendix B

A sketch of the interaction between task manager scheduling functions and the data
block for handling timing issues that may occur between decision cycles, backups, and
concurrent puts to data blocks.

DataBlock {
 put() { }
 get() { }
}

Backup(db_curr) { … return db_prev }

TaskManager {

 do_backup() {
 lock(my.cycle_lock)
 while(! my.active_cycle)
 {
 condition_wait(my.cycle_cv,
 my.cycle_lock)
 }

 db_prev = Backup(my.data_block)
 my.active_cycle=false
 release(my.cycle_lock)
 return db_prev
 }

 do_cycle() {
 db_prev = do_backup()
 my.run_transforms(db_prev)
 my.run_logic_engine(db_prev)
 my.run_publishers(db_prev)
 }

 do_one_source(src) {
 src.run()
 lock(my.cycle_lock)
 my.active_cycle=true
 condition_signal(my.cycle_cv,
 my.cycle_lock)
 release(my.cycle_lock)
 reschedule_source(function() {
do_one_source(src) }, now+src.period)
 }

 start_all_sources() {
 map(source_list, function(s) {
 reschedule_source(s, now) })
 }

 run_cycles() {
 while(online) do_cycle()
 }
}

- 40 -

