
Some good C++ practices
for using the art framework

Marc Paterno
Scientific Computing Division/Fermilab1

Revision 4

Contents

1 Scope and intent of this document 1
2 Coding issues 2
3 Design issues 6
4 art-specific issues 8
5 Using C++11 9
6 Suggested reading 11

Thanks

I’d like to expression my appreciation for valuable input (over many years) from Walter
Brown, Chris Green, Chris Jones, Jim Kowalkowski, and Rob Kutschke, for constructive
input. Many of the good suggestions are theirs.

All the mistakes are my own.

1 Scope and intent of this document

This document is intended for an audience that has

• some programming experience,
• at least beginning familiarity with C++, and
• at least beginning familiarity with the art2 framework.

The intent of this document is to help the reader avoid some of the more common
mistakes made by those with little experience in C++, or in use of the art framework, or
both.

1Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United
States Department of Energy.

2The art framework’s home page is https://cdcvs.fnal.gov/redmine/projects/art.

1

FERMILAB-TM-2607-CD

mailto:paterno@fnal.gov
mailto:paterno@fnal.gov
https://cdcvs.fnal.gov/redmine/projects/art

2 Some good C++practices (Rev. 4)

C++ is a large and complex language, and so this presentation could be extended almost
without limit. I’ve hit topics of particular interest to me.

2 Coding issues

2.1 Use good names.

Good names are crucial to the clarity of code. This goes for functions, classes, and
variables. Your code will be written (and re-written, or modified) a few times. It will be
read many times. Make it easy to read!

If your variable, class, and function names are good enough, your code will need little
commenting. Very well-written code carries few comments, not many comments. The
need to write extensive comments is very often a sign of bad name choices.

Good names are not always long. A loop index should be called something short, like i,
not thisLoopIndex.

Be wary of re-using loop variable names in the same function. While the compiler will
not complain, it can cause confusion for readers. If you follow §2.2, you’ll avoid this
naturally.

2.2 Avoid the blob-o-code.

Giant functions are hard to understand, and so are hard to get right. 200-line functions
(or 2000-line functions!) are not rare in some code bases. In dozens of reviews, I have
never seen a well-written, understandable, correct function that is hundreds of lines long.
Please do not take this as a challenge to make yours the first. Have mercy on your
colleagues, and make functions short enough to be understandable. Function calls (with
small objects as parameters, and large objects passed by reference) are cheap.

Some guidelines:

• If your function contains more than one looping or if block, consider encapsulating
each block as its own function.
• Considering declaring the small function inline.
• If your function contains blocks of code, set off by comments, consider making

each commented section a function, with a good name that makes the comment
superfluous.
• If you have nested control structures, consider making the inner one a function

(well-named, of course).
• Consider using one of the algorithms of the Standard Library (from the Standard

header <algorithm>, rather than writing a loop.

N.B.: in C++11, the ease-of-use of the Standard algorithms is dramatically improved over
C++03.

1 #include <iostream>
2 #include <vector>
3 #include <algorithm> // for std::copy and std::for_each

Some good C++practices (Rev. 4) 3

4 std::vector<Thing> v(...); // initialized somehow

6 // C++ 2003: explicit loop
7 for (std::vector<Thing>::const_iterator i=v.begin(), e=v.end();
8 i != e; ++i)
9 { std::cout << *i << "\n"; }

11 // C++ 2003: standard algorithm (std::copy).
12 // Must #include <iterator> for std::ostream_iterator
13 std::copy(v.begin(), v.end(),
14 std::ostream_iterator<Thing>(cout, "\n"));

16 // C++ 2011
17 std::for_each(begin(v), end(v),
18 [](Thing const& x) {std::cout << x << "\n"; });

20 // C++ 2011, using algorithm from cetlib/container_algorithms.h
21 cet::for_all(v, [](Thing const& x) {std::cout << x << "\n";});

Listing 2.1: Improved functional algorithm use in C++11.

2.3 Avoid bare use of new.

The expression new X allocates memory for, and then constructs (in that memory) an
object of type X; the value of the expression is the address of the created object.

You should almost never have a call to new in your code. The few calls to new in your code
should be in initialization of some smart pointer. Bare calls to new are the most common
cause of memory leaks, because one must be careful to have a matched delete for all
possible code paths, including those resulting from exception throws.

1 int* ip1 = new int(3); // bad
2 std::shared_ptr<int> ip2(new int(3)); // ok, but see below
3 std::unique_ptr<int> ip3(new int(3)); // good
4 std::auto_ptr<int> ip4(new int(3)); // ok, but deprecated;
5 // prefer unique_ptr
6 auto ip5 = std::make_shared<int>(3); // preferred

Listing 2.2: Good and bad uses of new

Allocate every resource in a single code statement which initializes a manager object (e.g.,
a smart pointer) to manage the resource.

Don’t use bare pointers as data members! If you follow this rule, your class destructors
will be empty—so the compiler-generated destructor will be correct, and you don’t even
have to write one.

4 Some good C++practices (Rev. 4)

2.4 Use RAII.

RAII stands for resource allocation is initialization. This is a generalization of §2.3. Memory
is not the only resource; file handles, database handles, or anything that can get created
and destroyed, is a resource. Allocation and deallocation of resources (e.g., opening and
closing of files) should be managed through the lifetime of objects. The object lifetime
rules are enforced by the compiler, and use of RAII ensures no leaks of resources—even
if exceptions are thrown. You do not need to write try/catch blocks.

1 #include <cerrno>
2 #include <cstdio>
3 #include <system_error>

5 struct FileMgr
6 {
7 std::FILE* const fp;
8 FileMgr(const char* name, const char* mode) :
9 fp(std::fopen(name, mode)) {

10 if (!fp)
11 throw std::system_error(errno, std::system_category(), name);
12 }
13 FileMgr(FileMgr const&) = delete;
14 ˜FileMgr() noexcept { std::fclose(fp); }
15 };

17 void some_function_that_might_throw(); // implementation not shown

19 void example() {
20 FileMgr f("myfile.txt", "w");
21 some_function_that_might_throw();
22 fprintf(f.fp, "Some silly text.\n");
23 } // fclose is called upon exit

Listing 2.3: A simple resource manager.

2.5 Be const-correct.

Use the compiler to help catch errors. const is one of the simplest ways to do this.

• If a “variable” should not change its value after initializtion, declare it to be const.
Any mistaken attempt to change it will then cause a compilation error.
• If a member function does not change the state of the object on which it is called,

declare it to be const.
• If an argument of a function is not to be modified by that function, declare it to be
const (this is usually a reference-to-const: const&).

N.B.: This becomes even more important when programming for a multithreaded world.

Some good C++practices (Rev. 4) 5

2.6 Use standard containers. Prefer std::vector.

In C++, use of a C-style array is rarely the correct choice. Use standard containers:
std::vector, std::list, std::dequeue, std::set and std::map. C++11 introduces
a few more standard containers.

std::vector should be your first choice for a container, unless you have a clear, specific
reason to choose something else.

std::vector guarantees that its objects are stored in contiguous memory locations.

Use std::array (or boost::array) if you require a container that has its size fixed at
compilation-time.

Learn the interface of std::vector, especially the various constructors and the use of
reserve and resize.

If you think you need std::dequeue, think again. It is a very special-purpose container;
it is almost never the right choice.

I did not include std::multiset and std::multimap in the list of containers, because I
almost never prefer them.

2.7 Always initialize objects. Initialize variables at the point
of declaration.

This goes for both stack objects and member objects (data members). Leaving an un-
defined object often leads to “undefined behavior”, which most often means eventual
memory corruption, crashing, or both.

1 double x(0.0);
2 std::vector<double> v(3, 1.1); // three elements, each is 1.1
3 // Here’s how to initialize for-loop variables...
4 for (std::size_t i = 0, sz = v.size(); i!=sz; ++i) { ... }

Listing 2.4: Initialize variables when declared.

Following these rules, the bodies of constructors of classes you write will usually be
empty. All the initialization should be done in the initializer-list.

1 struct FileSentry {
2 std::FILE* const fp; // our data member
3 FileSentry(const char* name, const char* mode) :
4 fp(std::fopen(name, mode)) // initializer-list (only 1 member)
5 { ... } // implementation as shown earlier
6 ... // remaining implementation as before
7 }

Listing 2.5: Using an initializer-list.

6 Some good C++practices (Rev. 4)

2.8 Use caution with problematic libraries.

Sometimes you have to use libraries that do not follow good C++ practice, such as
avoidance of bare pointers. When presented with such libraries, a few defensive measures
are in order:

• Be sure to understand each function you have to use. Does passing a pointer to a
function pass ownership of the object pointed to, or does it not?
• Sometimes the answer is “it depends on the circumstances”. In such a case, try to

encapsulate the use of the dangerous resource.
• Sometimes, use of sentry objects (see §2.4) can avoid the problems inherent in a

poorly designed interface.

2.9 Compiler-generated code will not contain errors.

Use compiler-generated copy constructors, copy assignment operators, and destructors
whenever they do the right thing. Write your classes so they always do the right thing.

This becomes still more important with C++11, where the compiler, under the right
conditions, may also supply a move constructor and a move assignment operator.

3 Design issues

3.1 Take a moment for design.

Each class, and each function, should have a clear purpose. Take a moment to think
“What does this class (or function) do?”. Don’t think first of what a class contains, or how
a function is implemented.

Some good rules of thumb:

1. For almost all classes, you should be able to express the essence of the class in one
or two sentences, which do not make mention of implementation.

2. For almost all functions, you should be able to express the result of the function,
without making mention of the implementation.

Example: std::cos(double x) calculates the cosine of the angle x, expressed in radians.
Note there is no mention of lookup-tables, or calling of assembly language routines.

Since you have thought of this one- or two-sentence description of your class or function,
put it at the top of the header as documentation for the class. This is probably the best
concise documentation that can be provided for each class or function.

3.2 Plan for change.

Code is continually revised, updated, extended, and reused. Some up-front preparation
for this makes future modifications easier.

For example, if you’re introducing a second way to do something, plan for more in the
future—unless other ways are logically impossible.

Some good C++practices (Rev. 4) 7

1 bool alg_b = ps.get<bool>("do_alg_b");
2 if (do_alg_b) { alg_b(); }
3 else { alg_a(); }

Listing 3.1: Lack of planning. What if a third option is needed?

1 using art::Exception; // to make lines shorter here
2 using art::errors::Configuration;
3 std::string alg = ps.get<std::string>("alg");
4 if (alg == "alg_a") { alg_a(); }
5 else if (alg == "alg_b") { alg_b(); }
6 else { throw Exception(Configuration, "unknown alg")
7 << alg); }

Listing 3.2: Good planning. New options would not break existing code.

3.3 Don’t over-generalize.

The previous point (§3.2) could have been labeled “Don’t under-generalize”. This point
says to avoid the other extreme, over-generalization.

• Don’t introduce infrastructure for multiple options when only one option exists.

• Don’t introduce a base class when you will have only one derived class.

• Don’t write a class or function template that will be instantiated for one specific
type.

Abstractions always cost some mental overhead; introduce them when they are useful,
but only where they are useful. Don’t introduce them “just in case things change later”.

3.4 Don’t use inheritance to implement aggregation.

Use inheritance to introduce a type that can be re-used, by being implemented in several
different ways. Example: in the framework, EDFilter defines an interface, and your
filter classes inherit from it. EDFilter is used by the framework so that any class you
derive from it can be used in any place that an EDFilter can be used.

If you want a class to contain an object of another type, add a data member of that type.
Do not use inheritance.

Inheritance induces stronger coupling between classes, and makes it harder to change
one without affecting the other. Why is this? The derived class has the whole interface of
the class from which it inherits. A container class does not have the whole interface of
any class it contains; it can choose what part, if any, of that interface to support.

8 Some good C++practices (Rev. 4)

An airplane may contain a pilot, but an airplane is not substitutable for a pilot.

4 art-specific issues

4.1 Use the module interface as designed.

All modules have a similar interface, which reflects the “lifecycle” of the event-processing
loop.

• In the constructor, initialize all the module state that you can.
• In beginJob, initialize whatever could not be initialized at construction time. It is

certainly safe to invoke services in beginJob. In endJob, clean up after anything
that was initialized in beginJob.
• In beginRun, initialize whatever requires information available at the start of a new

run, e.g., the run number. Histograms that summarize the data for a run can be
initialized here. At endRun, clean up after anything that was initialized at beginRun,
e.g., fitting or saving histograms. Clean up run-related things here, not at the next
call to beginRun.
• beginSubRun and endSubRun are similar to beginRun and endRun (but for subruns,

of course).
• In the destructor, clean up whatever was initialized in the constructor. N.B.: if you

are following the suggestions above, your destructors are mostly empty. Then you
don’t have to write one, because the compiler-generated destructor will be correct.

4.2 Use the preferred form for produce.3

The interesting part of your module is the part that does the physics work, not the part
that interacts with the framework. The recommended form for produce is:

1 void ThingFinder::produce(art::Event& ev) {
2 auto h1 = ev.getValidHandle<InputTypeOne>("alg_a");
3 auto h2 = ev.getValidHandle<InputTypeTwo>("alg_b");
4 auto prod = std::make_unique<OutputType>();
5 // In this example, the first two arguments are inputs, the last
6 // is an output.
7 thingAlgorithm(*h1, *h2, *prod);
8 ev.put(std::move(prod));
9 }

10 // The signature of the putative function "thingAlgorithm" is:
11 // void
12 // thingAlgorithm(InputTypeOne const& a, // input, const
13 // InputTypeTwo const& b, // input, const
14 // OutputType& out); // note: out is non-const
15 // If a member function, it should probably be declared const.

Listing 4.1: Recommended style for writing produce.

3and filter

Some good C++practices (Rev. 4) 9

Some results of this design are:

• If an exception is thrown anywhere, no memory gets leaked. The code is exception
safe.
• If the required inputs are not found, we never even create the data product.
• The ThingFinder module handles all the framework-related tasks (interaction with

the Event, Handles, etc.
• The function thingAlgorithm knows about physics-related things, but isn’t clut-

tered with framework-related things.
• There is a greater chance of re-using thingAlgorithm in another module type.
• It might be useful to make thingAlgorithm a member function in an algorithm
class that can be used elsewhere; you’d then put thingAlgorithm in some library
that can be shared between multiple modules.

As a bonus, this code will be relatively easy to make thread-safe, when doing so becomes
important.

You may benefit from the command-line utility artmod.

1 ARTMOD(1) User Contributed Perl Documentation ARTMOD(1)

3 NAME
4 artmod: Generate clean module source for ART.
5 SYNOPSIS
6 artmod -h | --help | -?
7 artmod --help-types
8 artmod [optons] [--] module-type qualified-name
9 Options: --boilerplate|-b file |

10 --entries|--entry|-e entry+ |
11 --header-loc path |
12 --split |
13 --split-ext [lib-source-extension] |
14 --verbose|-v
15 Options marked with + are repeatable and cumulative.
16 DESCRIPTION
17 artmod is a tool to produce an ART module source skeleton for an
18 analyzer, a filter or a producer. The user can specify which opt-
19 ional member functions are to be configured and whether to split
20 the source into three files or combine it into one. In addition,
21 the name of a file wherein boilerplate comments or code may be
22 found for insertion into the source may be specified.

Listing 4.2: Partial output from artmod -h.

5 Using C++11

5.1 Use the type-specifier auto.

Compare for clarity and brevity:

10 Some good C++practices (Rev. 4)

1 std::vector<std::string> names = ... // initialized somehow
2 for (std::vector<std::string>::const_iterator i = names.begin(),
3 e = names.end();
4 i != e; ++i) {
5 do_something_with_a_name(*i);
6 }

Listing 5.1: Old-style for loop.

and

1 std::vector<std::string> names = ... // initialize somehow
2 for (auto i = names.cbegin(), e = names.cend(); i != e; ++i) {
3 do_something_with_a_name(*i);
4 }

Listing 5.2: Using auto.

Use auto to declare a variable whenever the compiler can use the initializer to deduce its
type.

1 auto x = std::cos(3.1); // auto -> double
2 auto const& y = ps.get<std::string>("n"); // auto -> std::string
3 auto z = std::qsort(...); // illegal: returns void

5.2 Use the range-based for statement.

The new range-based for statement allows for simpler iteration over any “range”. std::string,
Standard Library containers, and C-style arrays are all ranges. User-defined classes
which have right interface (supporting begin and end, and defining an iterator) are also
ranges, and can be used with the range-based for.

Compare the range-based for loop to the old-style for:

1 typedef std::map<std::string, std::string> dictionary;
2 dictionary definitions; // filling omitted

4 // C++2003 for loop
5 for (dictionary::const_iterator i = definitions.begin(),
6 e = definitions.end();
7 i != e;
8 ++i) {
9 std::cout << i->first << ": " << i->second << ’\n’;

10 }

12 // C++2011 range-based for loop
13 for (auto const& d : definitions) {
14 std::cout << d.first << ": " << d.second << ’\n’;
15 }

Listing 5.3: Range-based for loop.

Some good C++practices (Rev. 4) 11

6 Suggested reading

Two books I can recommend are:

1. For C++ coding advice: C++ Coding Standards, by Herb Sutter and Andrei Alexan-
drescu.

2. For object-oriented design advice: Object-Oriented Design Heuristics, by Arthur
J. Riel. Some of the C++ suggestions in this book are dated, but the object-oriented
design advice is excellent.

I can not yet recommend any good books on the use of C++11.

	1 Scope and intent of this document
	2 Coding issues
	3 Design issues
	4 art-specific issues
	5 Using C++11
	6 Suggested reading

