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Abstract

A realistic magnetic dipole has complex effects on a charged particle near the entrance and exit of
the magnet, even with a constant and uniform magnetic field deep within the interior of the magnet.
To satisfy Maxwell’s equations, the field lines near either end of a realistic magnet are significantly
more complicated, yielding non-trivial forces. The effects of this fringe field are calculated to first order,
applying both the paraxial and thin lens approximations. We find that, in addition to zeroth order
effects, the position of a particle directly impacts the forces in the horizontal and vertical directions.

1 Introduction

Charged particle optics is frequently used within the context of experimental beamline design. A key element
within an optical system is often a magnetic dipole, used to bend a beam. A pure dipole field implies that the
trajectory of charged particles will strictly follow an arc. However, a physical implementation of such a dipole
necessitates effects beyond the scope of a pure dipole field. In the FNAL experiment ORKA [2], dipoles are
used for typical reasons such as spatial constraints and the removal of certain unwanted particles. To reduce
the length of the beamline (and therefore minimzing travel time), designer Jaap Dornboss suggested the
implementation of a dipole adjusted at its front and back to introduce additional focusing and defocusing
effects on the beam in both the vertical and horizontal directions. These effects are a direct result of the
fringe fields, or the non-constant fields located at the ends of the dipole magnet. It is important to carefully
consider these effects because of the sensitive nature of the ORKA secondary beamline to subtle differences
in (specifically vertical) beam properties.

This document provides an in-depth derivation of the transfer matrix elements of the fringe field of a dipole
magnet. In particular, standard optical approximations are applied to achieve a “first order” approximation
of the fringe field. Initally, the system is simplified to consider an infinitesimally thin fringe field called the
“sharp cutoff field.” Then, we consider a finite-length fringe field and its effects compared to that of the
sharp cutoff field. Throughout the document, we assume conventional terminology and notation used in
beam transport and as established in Refs. [1] and [3]. We also assume some basic knowledge of E&M and
mechanical knowledge of a dipole magnet’s structure.

Throughout this document, we emphasize the approximations used to arrive at the solutions. For many
magnets, these approximations yield accurate results; however, it is up to a designer to determine whether
the approximations used are sufficiently accurate for consideration of the fringe field. We find that magnetic
dipoles tuned for low momentum particles (< 1 GeV/c), bent through large angles (> 1 rad), and/or con-
taining large vertical gaps relative to their lengths require a higher-order consideration of fringe field effects
for accurate analysis.
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2 Impulse Approximation of Magnet Exit

In this section, we look to simplify the system by considering the effects of a fringe field with zero length.
This configuration implies a constant field inside the magnet until the defined field boundary, after which
the magnitude immediately drops to zero.

2.1 Coordinate Systems

Figure 1: A 3-dimensional rendering of a simplified yet geometrically realistic dipole bending magnet. In
this graphic, the “pole faces” are the two rectangular faces between the coils. The region of interest is a thin
mid-plane volume.

When discussing the fringe field, calculations are simplified by placing the origin of each coordinate system
at the center of the pole face. The natural coordinate system defined throughout the magnet is a cylindrical
curvilinear coordinate system based on the radius of curvature of the reference trajectory1 given by the
magnetic field within the magnet. This system is called the (x, y, t) coordinate system.

A new coordinate system is introduced to describe the motion of a particle upon exiting the magnet.
This coordinate system again has an origin centered on the pole face and extends rectilinearly beyond the
magnet, following the reference trajectory. This coordinate system is called the (ξ, y, ζ) coordinate system.
Note that the y axis, in both coordinate systems, points out of the page in Fig. 2.

Fig. 2 depicts the new coordinate definitions based on the natural curvilinear coordinate system. In the
curvilinear coordinate system, t+ follows the path of the reference trajectory through the magnet, and the
x-axis points in the direction perpendicular to the t axis in the bend-plane. Sometimes, a magnet’s pole face
is rotated about the y axis through an angle β, conventionally positive for counter-clockwise rotations when
viewed from above, to modify the effects on the beam.

1The reference trajectory is the uniform trajectory of the central ray. All other rays are measured relative.
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Figure 2: A description of the coordinate system. Note that the beam travels from left to right, with t− and
ζ− inside the magnet. A positive β implies a counter-clockwise rotation of the pole face when viewed from
above.

We first look to find an expression of x and t in terms of ξ and ζ from Fig. 3. Figure 3) shows the
region surrounding the pole face and a displaced particle with its corresponding position in both (x, y, t)
and (ξ, y, ζ). This image is centered around the origin of both coordinate systems (located at the pole face).
Note that this graphic does not show the geometry of the magnet. For this reason, it should only be used
for conceptualizing the relationship between coordinate systems.

Figure 3: The trigonometry used to convert between the two coordinate systems. Note that both the angle
θ and the quantity t are both negative.

From the pythagorean theorem, we find that (ρ+ ξ)2 + ζ2 = (ρ+ x)2, or
x =

√
ζ2 + (ρ+ ξ)2 − ρ. To solve for t, we recognize that t = ρθ, where θ is the angle traversed in the path
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and ρ is the radius of curvature. Then, tan θ = ζ
ρ+ξ . Together,

x =
√
ζ2 + (ρ+ ξ)2 − ρ

t = ρ arctan
ζ

ρ+ ξ
. (1)

Solving for ζ and ξ, we have

ξ = ρ

(
cos

t

ρ
− 1

)
+ x cos

t

ρ

ζ = (ρ+ x) sin
t

p
(2)

Now we construct an expression for the line that defines the exit pole-face in the ξζ coordinate system as
seen in Fig. 4 with

ζ = −ξ tanβ, (3)

where β is the pole-face rotation angle.

Figure 4: A plot of the pole face line in the ξζ plane.

The component perpendicular to the bend plane, y, is identical in both coordinate systems. We retain
the same coordinate name for clarity and convenience. A point in the curvilinear coordinate system is given
by (x, y, t) while a point in the rectilinear coordinate system is given by (ξ, y, ζ).

2.2 Horizontal Effects

We begin the process of calculating the horizontal focusing effect of the fringe field. The initial position of
the particle is given as (x0, y0, 0) in the (x, y, t) coordinate system. This particle lies on the “reference plane”
which is both the xy plane and the ξy plane at t = 0 and ζ = 0 respectively. This plane coincides with the
pole face when β = 0.

To calculate the horizontal effects, we must first trace the trajectory of a test particle2 backwards in the
(x, y, t) coordinate system from the reference plane until it intersects the rotated pole-face. We then change
to the rectilinear (ξ, y, ζ) coordinate system so that we can translate the particle through the wedge-shaped
drift space. The net effect of this transformation removes the field’s effect on the particle through the region
swept out by a rotation of the pole face. (Note that while this description assumes positive β and x0, the
processes used can be rearranged for any condition. The final results are always the same.)

2We designate an arbitrary particle off the reference trajectory as a “test particle.” It is distinct from the reference particle, 
which lies along the reference trajectory. This particle may or may not differ slightly in momentum from the reference particle.
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We know from established TRANSPORT documentation that the transformation through a dipole with
radius of curvature ρ and vertical magnetic field derivative n (a unitless value equal to zero in the case of
any relevant dipole magnet) is given as

x = x0cx(t) + x′0sx(t) + δdx(t)

x′ = x0c
′
x(t) + x′0s

′
x(t) + δd′x(t)

where cx(t) = cos(kxt), sx(t) = 1
kx

sin(kxt),

dx(t) = 1
k2xρ

(1 − cos(kxt)), and k2x = 1−n
ρ2 . Note that the prime indicates differentiation with respect to the

longitudinal axis—in this case, t—for the remainder of this document. Expanding the trajectories about
t = 0, we have

x(t) = x0

(
1− k2xt

2

2
+ . . .

)
+
x′0
kx

(
kxt−

k3xt
3

6
+ . . .

)
+

δ

k2xρ

(
1− 1 +

k2xt
2

2
− . . .

)
(4)

x′(t) = −x0kx
(
kxt−

k3xt
3

6
+ . . .

)
+ x′0

(
1− k2xt

2

2
+ . . .

)
+

δ

kxρ

(
kxt−

k3xt
3

6
+ . . .

)
. (5)

Note: We define δ as the percentage difference between the test particle’s momentum and the reference
momentum.

Approximation 1. From the paraxial approximation used in first-order optics, we assert that each
ray makes a small angle with the reference trajectory and lies a small distance from the reference ray
compared to the radius of curvature of the reference trajectory. In the (x, y, t) coordinate system used,
this assumption implies

x

ρ
� 1,

y

ρ
� 1

x′ � 1, y′ � 1, δ � 1

The value of δ is constrained to be significantly less than one in order to ensure that the angles formed
with the reference trajectory stay small.

Because these values are small, any product of two or more of these quantities can be neglected in the
first-order approximation.

In order to transform the particle backwards through the magnetic field (described above), we evaluate
x(t0), x′(t0), where t0 is the traversed longitudinal displacement from the reference plane to the pole face
(see Fig. 5). Applying geometery and x0/ρ � 1 from Approximation 1, we observe that t0/ρ � 1.
We can therefore treat it as a small quantity as we do with x0/ρ. In fact, dividing both sides of Eq. (4)
by ρ, we recognize there are several terms that contain a product of t0/ρ and some quantity mentioned in
Approximation 1. Eliminating those terms and again multiplying through by ρ, we have x = x0. Applying
the same argument to Eq. (5), we eliminate the products of small terms, yielding x′ = x′0. Together,

x = x0

x′ = x′0. (6)
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Figure 5: A graphical representation of a ray traced backwards from the reference plane. Note that t0
decreases as x0 decreases.

The above calculations show that tracing the particle backwards from the reference plane to the pole-face
yields no first order changes.

The rotated pole-face geometrically yields a focusing or defocusing effect on horizontally displaced par-
ticles. Physically, the focusing effect is simply the result of passing through less (or more) field region. If
a particle has a positive x coordinate and the pole-face rotation angle β is positive, then it will experience
less field than the reference trajectory; likewise, if a particle has a negative x coordinate and β is positive, it
will experience more field than the reference trajectory. The reverse occurs for a negative β. Thus, we can
expect that a positive β results in a defocusing effect (the horizontal exit slope of particles with negative
x0 decreases and the horizontal exit slope of particles with positive x0 increases) and similarly a negative β
results in a focusing effect.

To express this behavior mathematically, we must change to the ξζ coordinate system to reflect the wedge-
shaped, field-free region outside of the pole-face (see Fig. 6). This change in coordinate system reflects the
physical fact that the particle’s direction does not change after exiting the field region: any ray will travel
in a straight line once in the rectilinear coordinate system.

Figure 6: Graphical representation of the field boundary, the wedge-shaped drift space, and the refrence
plane.
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By Eq. (2), we recognize that when we expand ξ in t and evaluate it at t = t0, Approximation 1 yields
ξ = x. Because x = x0 to first order at the pole face (see Eq. (6)), we conclude that, at the reference plane
in the ξζ coordinate system, ξ = x0. Therefore, we only look for effects in ξ′ = dξ

dζ due to the change in
coordinate system.

To find these effects, we begin by applying the chain rule:

dξ

dζ
=

dξ
dt
dζ
dt

=
∂ξ
∂x

dx
dt + ∂ξ

∂t
∂ζ
∂x

dx
dt + ∂ζ

∂t

.

From Eq. (2), we substitute in the appropriate derivatives to obtain

dξ

dζ
=

dx
dt cos t

ρ −
(

1 + x
ρ

)
sin t

ρ

dx
dt sin t

ρ +
(

1 + x
ρ

)
cos t

ρ

=
x′0 cos t

ρ −
(

1 + x0

ρ

)
sin t

ρ

x′0 sin t
ρ +

(
1 + x0

ρ

)
cos t

ρ

.

To simplify, we first expand in t and evaluate at t = t0, giving

dξ

dζ
=
x′0

(
1− t20

2ρ2 + . . .
)
−
(

1 + x0

ρ

)(
t0
ρ −

t30
6ρ3 + . . .

)
x′0

(
t0
ρ −

t30
6ρ3 + . . .

)
+
(

1 + x0

ρ

)(
1− t20

2ρ2 + . . .
) .

Applying Approximation 1 yields

dξ

dζ
=
x′0 − t0

ρ

1 + x0

ρ

.

Now expanding in x0/ρ, we find that

dξ

dζ
=

(
x′0 −

t0
ρ

)(
1− x0

ρ
+
x20
ρ2
− . . .

)
.

and, again applying Approximation 1,
dξ

dζ
= x′0 −

t0
ρ
.

Again recalling Eq. (2), we recognize that ζ = t to first order and, as before, ξ = x. Substituting these
relations into Eq. (3), we have t = −x tanβ. Finally, substituting −x0 tanβ for t0 into the above equation
yields

ξ′ = x′0 +
x0
ρ

tanβ.

To translate the particle through the wedge-shaped drift space, we apply the standard drift space trans-
formation ξ = ξ0 + ξ′ζ0 where, to first order, (x0, t0) ≡ (ξ0, ζ0) (ζ0 is the distance from the pole face to the
reference plane in the ζ direction). Rewriting,

ξ = ξ0 + ξ′ζ0 = x0 +

(
x′0 +

x0
ρ

tanβ

)
t0

= x0 + x′0t0 + t0
x0
ρ

tanβ.

Noting from Fig. 5 that t0
ρ � 1 and applying Approximation 1, we eliminate appropriate terms, yielding

ξ = x0.

It is important to note that slopes do not change when traversing a drift space, so we still have

ξ′ = x′0 +
x0
ρ

tanβ.
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Then, in order to conform to the standard coordinate system (x, t), we rename (ξ, ζ) ≡ (x, t) once the
particle reaches the reference plane (see Fig. 2). Thus we have

x = x0

x′ = x′0 +
x0
ρ

tanβ. (7)

This result is the complete transformation due to the fringe field in the horizontal direction. Figure 7 provides
an intuitive geometric description of the transformation in the x′ coordinate.

Figure 7: From the triangle with side a opposite of β, we fnd that tanβ = a/(x0 − ε). From the triangle
with a opposite of ω, we have tanω = a/(ρ − ε). By Approximation 1, we have that ε ≈ 0. Therefore,
tanω ≈ (x0 tanβ)/ρ, i.e., the change in the slope.
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2.3 Vertical Effects

Vertical effects on rays passing through the fringe field of a dipole are caused by the element of the field
perpendicular to the pole face. For the impulse approximation, if β = 0, this element of the field will be in
the direction of motion of the particle, causing no vertical forces on the particle and leaving the trajectory
unchanged. To begin analysis, we suppose that the field B around the pole face also has some non-zero
component in the direction perpendicular to the pole face, along with the typical field component By. It is
important to clarify that specifics regarding the field are unnessesary for this mathematical consideration.

We begin with the trajectory coordinates before considering the effects of a vertical fringe field. Note
that y = y0 and y′ = y′0 before entering the fringe field.

2.3.1 Equation of Motion

We look to find the equation of motion in the y direction to describe the trajectory. To do so, we must find
an expression for all components of the magnetic field. Referencing Maxwell’s equations (Ampere’s Law),
we note that ∇×B = 0. Therefore,

∂Bζ
∂y

=
∂By
∂ζ

∂Bξ
∂y

=
∂By
∂ξ

, (8)

where the Bξ and Bζ fields are components of the field B in the respective directions, as seen in Fig. 8.

Figure 8: A diagram of the component of B in the bend plane.

We recognize that By depends solely on ξ and ζ—it is constant in y, as expected. Hence,
∂By

∂ζ depends
only on ξ and ζ. With the sharp cutoff field, By changes from constant B0 inside of the magnet to zero

outside of the magnet. This implies that By is a step function where
∂By

∂ζ is infinite, and therefore nonzero,
at the effective field boundary. However, this discontinuity is irrelevant with regards to the following method
of analysis.

By using the first line from Eq. (8), Bζ is linear in y (upon integrating both sides by y), or

Bζ = y
∂By
∂ζ

. (9)
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Expressing Newton’s Second Law in the y direction in a magnetic field,

v2ζ
d2y

dζ2
=

q

m
(v ×B)y

=
q

m
(vζBξ − vξBζ). (10)

where3

vξ =
∂ξ

∂ζ
vζ = ξ′vζ , (11)

(where the prime notation indicates differentiation with respect to ζ, the longitudinal axis in the (ξ, y, ζ)

coordinate system), from the chain rule. Therefore, vξBζ = ξ′vζy
∂By

∂ζ . Rewritng Eq. (10),

y′′ =
q

mv2ζ

(
vζBξ − ξ′vζy

∂By
∂ζ

)

Approximation 2. The speed v0 of a given ray is

v0 =
√
v2ξ + v2y + v2ζ = vζ +

v2ξ
2vζ

+
v2y
2vζ
− . . . .

From the chain rule,

v0 = vζ +
ξ′2v2ζ
2vζ

+
y′2v2ζ
2vζ

− . . . .

From Approximation 1, we say
v0 = vζ .

By using Approximation 2 and the fact that ρB0 = p/q (where B0 is the magnitude of the field on the
interior of the magnet), we have

y′′ =
q

mv0

(
vζBξ
vζ
− ξ′vζy

vζ

∂By
∂ζ

)
=
q

p

(
Bξ − ξ′y

∂By
∂ζ

)
=

1

B0

(
Bξ
ρ
− ξ′ y

ρ

∂By
∂ζ

)
.

Finally, from Approximation 1 in the (ξ, y, ζ) coordinate system,

y′′ =
1

B0ρ
Bξ. (12)

2.3.2 Evaluating the Equation of Motion

Integrating Eq. (12) once across the field boundary yields the change in the derivative of y with respect to
ζ. That is,

∆y′(ζ) =
1

B0ρ

∫ ζ

−ζ
Bξ dζ

∗, (13)

3Cases involving vζ = 0, although mathematically feasible, are physically unrealizable and therefore irrelevant.
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for ζ ≥ 0. Referencing Eq. (8) and integrating both sides with respect to ζ∗, we find that

∂

∂y

∫ ζ

−ζ
Bξ dζ

∗ =
∂

∂ξ

∫ ζ

−ζ
By dζ

∗. (14)

Recalling Eq. (3) and differentiating,
∂ζ

∂ξ
= − tanβ. (15)

Now consider the integral across the field boundary,
∫ ζ
−ζ By dζ

∗. Because By is B0 before the boundary and

zero afterwards, the integral evaluates to simply B0ζ. From using this result and by Eq. (15), we have

∂

∂ξ

∫ ζ

−ζ
By dζ

∗ =
∂

∂ξ
(B0ζ) = B0

∂ζ

∂ξ
= −B0 tanβ. (16)

Now, equating Eq. (14) and Eq. (16) and integrating over y from zero to y0, we have∫ ζ

−ζ
Bξdζ

∗ = −B0y0 tanβ. (17)

Finally, we can recall Eq. (13) and combine it with Eq. (17), yielding an expression for the change in y′,

∆y′ = −y0
ρ

tanβ. (18)

This change in the derivative of y with respect to ζ is simply the change that results only from crossing
the field boundary. We note that an integration to find the change in y would result in infintesimal bounds,
yielding a zero result. Hence, the total transformation due to the fringe field is

y = y0

y′ = y′0 −
y0
ρ

tanβ. (19)

2.4 Alternative Derivation of Vertical Effects

We begin by considering the vertical component of the magnetic field in the magnet. On the interior of the
magnet, the vertical component of the field has a value of B0 and on the exterior of the magnet the vertical
component of the field has a value of zero. We look to define a new axis that is perpendicular to the rotated
pole-face of the magnet in order to express the field mathematically. We use the geometry of the ξ and ζ
axes and the pole face to construct this axis (see Fig. 9). Let us define the new axis σ as

σ = ξ sinβ + ζ cosβ.
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Figure 9: Graphical depiction of the geometry used to define σ.

The field along the σ axis looks like a Heaviside function, H(x), so

By = B0H(−σ)

Rewriting this definition in terms of ξ and ζ gives

By = B0H(−ξ sinβ − ζ cosβ).

In order to find the field components in the ξ and ζ directions, we must reference one of Maxwell’s
equations and see that ∇×B = 0. That is,∣∣∣∣∣∣

ξ̂ ŷ ζ̂
∂
∂ξ

∂
∂y

∂
∂ζ

Bξ By Bζ

∣∣∣∣∣∣ = 0.

Hence, we have

∂Bξ
∂y

=
∂By
∂ξ

= −B0δ(ξ sinβ + ζ cosβ) sinβ

∂Bζ
∂y

=
∂By
∂ζ

= −B0δ(ξ sinβ + ζ cosβ) cosβ,

where δ(x) is the Dirac delta function.
Therefore, we can solve for Bξ and Bζ by integrating from zero to y0 in y. Because these functions are

constant in y, this calculation is a simple process and yields, together with By,

Bξ = −B0y0δ(ξ sinβ + ζ cosβ) cosβ

By = B0H(−ξ sinβ − ζ cosβ)

Bζ = −B0y0δ(ξ sinβ + ζ cosβ) sinβ.

As before, we write the equation of motion (see Eq. (10)) and substitute in the field components and the
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expression for vξ (as in Eq. (11)). So, we now have

v2ζy
′′ =

q

m
(v ×B)y

=
q

m
(vζBξ − vξBζ)

=
qB0vζ
m

[ξ′y0 cosβ − y0 sinβ] δ(ξ sinβ + ζ cosβ)

y′′ =
1

ρ
[ξ′y0 cosβ − y0 sinβ] δ(ξ sinβ + ζ cosβ).

By Approximation 1, we eliminate the second order term ξ′y/ρ. We simplify the equation to

y′′ = −y0
ρ
δ(ξ sinβ + ζ cosβ) sinβ. (20)

Integrating with respect to ζ across the pole-face from −ξ tanβ − ε to −ξ tanβ + ε (referencing Eq. (3)) for
any ε > 0, we have

∆y′ = −y0 sinβ

ρ

∫ −ξ tan(β)+ε
−ξ tan(β)−ε

δ(ξ sinβ + ζ cosβ) dζ

∆y′ = −y0 tanβ

ρ
.

This result is the total change of the slope y′ from passing through the sharp cutoff field.
We then attempt to calculate the total change in the y position from passing through the pole face. To

do this, we take the antiderivative of both sides of Eq. (20) and integrate across the field boundary, as before,
with the same bounds.∫ ε

−ε

dy

dζ
dζ =

∫ −ξ tan(β)+ε
−ξ tan(β)−ε

[
−y0 sinβ

ρ

∫
δ(ξ sinβ + ζ∗ cosβ) dζ∗

]
dζ

∆y =

∫ −ξ tan(β)+ε
−ξ tan(β)−ε

[
c− y0 tanβ H(ξ sinβ + ζ cosβ)

ρ

]
dζ

∆y =

[
cζ − y0 tanβ

ρ
H(ξ sinβ + ζ cosβ)(ζ + ξ sinβ)

] ∣∣∣∣−ξ tan(β)+ε
−ξ tan(β)−ε

We see as ε goes to zero,
∆y = 0.

The above result shows that the total change of y from passing through the sharp cutoff field is zero.
Thus, the transformation through the sharp cutoff field is:

y = y0

y′ = y′0 −
y0 tanβ

ρ
.

3 Extended Fringe Field Effects

3.1 Coordinate System

In this section, we look to get a better approximation than the previous impulse approximation. The impulse
approximation’s sharp cutoff magnetic field cannot be physically realized. We look to find an approximation
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based on a finite vertical pole gap where the fringe field extends beyond that of the sharp cutoff case. Recall
that the pole width is still treated as if it were infinite so that the field never has a non-zero horizontally
transverse component. See Fig. 10.

σ

y

Figure 10: A view from the side of the dipole exit face. There is no field in or out of the page.

We first look to define an axis perpendicular to the pole-face in the y = 0 plane (see Fig. 9). The
magnitude of the field |B| is then only a function of this coordinate σ and the y coordinate. That is,

σ =
ζ cosβ + ξ sinβ

g
, (21)

where g is the vertical pole gap4. For sufficiently large positive σ, the magnitude of the field is zero.
Conversely, for sufficiently large negative σ, the magnitude of the field is B0, or the magnitude inside the
magnet. We name these values σ2 and −σ1 respectively. Note that σ2 is finite but large enough such that
any remaining field is trivial.

Let σ = 0 be the “effective field boundary,” or the point at which the sharp cutoff field drops to zero.
Further, let B0

y be the function representing the sharp cutoff field. Consider the sharp cutoff field and the
extended fringe field as functions of σ. We set the effective field boundary such that∫ σ2

−σ1

By dσ =

∫ σ2

−σ1

B0
y dσ = σ1B0, (22)

where By represents the magnitude of the field in the vertical direction at y = 0 (see Fig. 11). While the
definition is an approximation because By does indeed vary with y, it is necessary and reasonable for small,
practical values of y (as can be seen in Fig. 10).

4The definition of σ here differs from the definition given in the alternative derivation for the sharp cutoff field by a factor
of g.
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Figure 11: A graphical depiction of Eq. (22). The gray regions are equivalent in area, showing the equivalence
of the integrals.

Finding the field components in the other two directions ξ and ζ is necessary in order to apply the Lorentz
force. Because By = By(σ), we know that By = By(ξ, ζ). Applying Ampere’s Law,

∂Bζ
∂y

=
∂By
∂ζ

,
∂Bξ
∂y

=
∂By
∂ξ

.

Taking the antiderivative of both sides of each of the above equations with respect to y yields

Bζ =

∫
∂By
∂ζ

dy

Bξ =

∫
∂By
∂ξ

dy

Evaluating the integrals on the right, we have

Bζ = y
∂By
∂ζ

Bξ = y
∂By
∂ξ

Finally, applying the chain rule from derivatives of Eq. (21),

Bζ =
y cosβ

g

dBy
dσ

(23)

Bξ =
y sinβ

g

dBy
dσ

.

From these expressions of the field in the three coordinate directions, we can determine the horizontal and
vertical effects of the fringe field.

3.2 Horizontal Effects

To calculate the horizontal trajectory, we begin with an expression of Newton’s second law in the ξ direction,

mv2ζ
d2ξ

dζ2
= q(v ×B)ξ

= q(vyBζ − vζBy)
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From Eq. (23), we substitute in Bζ . Further we recognize that vy = vζy
′ where the prime indicates differen-

tiation with respect to ζ (the longitudinal axis in this coordinate system). So,

mv2ζ
d2ξ

dζ2
= q

(
vζy
′y

cosβ

g

dBy
dσ
− vζBy

)
After dividing by mv2ζ , we use Approximation 2 and p/q = B0ρ:

ξ′′ =
q

mvζ

(
y′y

cosβ

g

dBy
dσ
−By

)
=

q

mv0

(
y′y

cosβ

g

dBy
dσ
−By

)
=

1

B0ρ

(
y′y

cosβ

g

dBy
dσ
−By

)
.

Then, applying Approximation 1, we eliminate the term containing y′y/ρ and find

ξ′′ = − 1

B0ρ
By. (24)

Because dζ/dσ = g/ cosβ from Eq. (21), we multiply both sides of Eq. (24) by this quantity and apply the
chain rule to both sides, yielding

d

dσ
[ξ′] = − g

B0ρ cosβ
By. (25)

Integrating both sides from −σ1 to σ2,

ξ′
∣∣
σ2
− ξ′

∣∣
−σ1

= − g

B0ρ cosβ

∫ σ2

−σ1

Bydσ (26)

We observe that Eq. (26) is valid for B0
y and By, the extended field case. We denote the slopes of the

trajectories with subscripts E and S for the extended fringe field and sharp cutoff field cases respectively.
Subtracting the two, we have[

ξ′S
∣∣
σ2
− ξ′S

∣∣
−σ1

]
−
[
ξ′E
∣∣
σ2
− ξ′E

∣∣
−σ1

]
= − g

B0ρ cosβ

∫ σ2

−σ1

(B0
y −By) dσ.

Recognizing that the second and fourth terms on the left side both represent the slope well inside the magnet
by the definition of σ1, their difference is zero. Thus,

ξ′S
∣∣
σ2
− ξ′E

∣∣
σ2

= − g

B0ρ cosβ

∫ σ2

−σ1

(B0
y −By) dσ.

This equation represents the difference of the slopes of the sharp cutoff case and the extended case at σ2.
Recalling Eq. (22), ∫ σ2

−σ1

(B0
y −By) dσ = (B0σ1 −B0σ1) = 0.

Then,
ξ′S
∣∣
σ2
− ξ′E

∣∣
σ2

= 0.

Hence, the vertical slope of the trajectory in the bend plane in the case of the extended fringe field is equal
to the slope in the sharp cutoff field. As such, x′ = x′0 + x0

ρ tanβ, just as in Eq. (7).

By using the process to achieve Eq. (25) twice, we find that

d2

dσ2
[ξ] = − g2

B0ρ cos2 β
By.
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We integrate twice with respect to σ and subtract the sharp cutoff case and the extended case to find the
difference in ξ between the extended case and the sharp cutoff case, just as before. This process results in

ξE
∣∣
σ2
− ξS

∣∣
σ2

=
g2

B0ρ cos2 β

∫ σ2

−σ1

∫ σ∗

−σ1

(B0
y −By) dσ dσ∗

=
g2

ρ cos2 β
I1

where

I1 =

∫ σ2

−σ1

∫ σ∗

−σ1

B0
y −By
B0

dσ dσ∗.

This difference represents the horizontal dispacement of a ray from the equivalent ray in the sharp cutoff
case. This displacement affects any input ray equivalently. Therefore, the net effect is a shift in the entire
beam, including the reference trajectory. Because this difference does not depend on any initial trajectory
coordinates, we call this effect a “zeroth order” effect.

The final effects of the fringe field in the horizontal direction are

x = x0 +
g2

ρ cos2 β
I1

x′ = x′0 +
x0
ρ

tanβ. (27)

3.3 Vertical Effects

To adequately consider the vertical effects, we must consider the horizontal trajectory throughout the fringe
field and how it affects the vertical motion. It is important to recognize that, due to the fringe field, not
even the reference particle exits the magnet parallel to the ζ axis: because the fringe field is continuously
decreasing to zero as opposed to a instantaneous change in the sharp cutoff case, both particles experience
lesser horizontal bending effects but for longer periods of time. This phenomenon implies that particles are
at an angle to the σ axis, called γ, which continues to change until the particles are a significant distance
from the pole face, at which point γ(σ2) = β. See Fig. 12.
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reference plane

β
Projection of

trajectory

γ

σ=0
effective field boundary

u

dT gdu

γT
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gdσ

σ

Figure 12: A graphical description of the coordinate systems used in this section, with the y axis pointing
out of the page. Note that the T and P axes follow the trajectory of each particle (in this case, the particle’s
trajectory in the plane is parallel to the reference trajectory). The angle γ lies between the σ axis and a line
tangent to the trajectory.

Suppose a particle displaced in the y direction. Because of the particle’s position along the y axis, it will
experience a field pointing in the σ direction as well as the typical field in the y direction while within the
fringe field (see Fig. 10). The field component in the direction perpendicular to the trajectory within the
bend plane is the direct cause of the vertical focusing/defocusing effects on the displaced particle. Thus,
the vertical effects depend on the said field component and the speed of the particle projected into the bend
plane, vT . Let (P, y, T ) be a curvilinear coordinate system where the P axis is always perpendicular to the
particle’s trajectory T in the bend plane.

3.3.1 Equation of Motion

By using the same technique that we used to find the field components in Eq. (23), we can find BP and BT :

BT = y
cos γ

g

dBy
dσ

BP = y
sin γ

g

dBy
dσ

. (28)

We then consider the equation of motion in the vertical direction,

v2T
d2y

dT 2
=

q

m
(vTBP − vPBT ).
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Because of the definition of the coordinate system, the only velocity in the bend plane is tangential to the
trajectory, i.e. vP = 0. Further, applying Approximation 2 in the (P, y, T ) coordinate system, vT = v0.
Simplifying,

d2y

dT 2
=

1

Byρ
BP

Then, from Eq. (28),

y′′ =
1

B0ρ
y

sin γ

g

dBy
dσ

, (29)

where prime indicates differentiation with respect to T (again the longitudinal direction in this coordinate
system).

Consider the differential right triangle in Fig. 12 (we include g because the distance along the σ axis
must be scaled to the distance along the T axis). Trigonometric relationships yield

dT

dσ
=

g

cos γ
. (30)

We multiply the left side of Eq. (29) by dT and the right side by g
cos γ dσ. Then, we integrate from σ = σ∗

to σ2, where σ∗ is a floating variable.∫ T (σ2)

T (σ∗)

d2y

dT 2
dT =

1

B0ρ

∫ σ2

σ∗
y tan γ

dBy
dσ

dσ

dy

dT

∣∣∣∣
σ2

− dy

dT

∣∣∣∣
σ∗

=
1

B0ρ

∫ σ2

σ∗
y tan γ

dBy
dσ

dσ (31)

∆
dy

dT
=

1

B0ρ

∫ σ2

σ∗
y tan γ

dBy
dσ

dσ

Now, we must find approximations for y and tan γ. In the end, we will substitute these back into the
previous expression, yielding the total change in y′.

3.3.2 Expression for γ

We now attempt to find an expression containing γ from a differential equation of motion in the perpendicular
direction from dγ/dT .

We begin expressing the Lorentz force in the perpendicular direction in terms of γ and T . By linking
T and γ with the instantaneous radius of curvature R ≡ R(T ) of the path, we recognize that dT = Rdγ.
Utilizing R in the equation for centripetal acceleration and equating it to the Lorentz force, we have

−mv2T
1

R
= −mv2T

dγ

dT
= q(vyBT − vTBy)

q

(
y′vT y

cos γ

g

dBy
dσ
− vTBy

)
.

As used several times previously, we apply Approximation 1 and Approximation 2 but in the (P, y, T )
coordinate system. Hence, the equation of motion in the perpendicular direction is

dγ

dT
=

1

B0ρ
By. (32)

Recall from Eq. (30) that dT = g
cos γ dσ. Applying this relation to Eq. (32), we have that

dγ

dσ
=
gBy
B0ρ

sec γ. (33)
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Next, suppose u is the axis perpendicular to the σ axis (see [4]), scaled in g (just as σ is). As before, we
consider the differential right triangle in Fig. 12. We see

tan γ =
du

dσ
.

Differentiating with respect to σ,
d2u

dσ2
=
dγ

dσ
sec2 γ.

Substituting Eq. (33) into the previous equation, we have

d2u

dσ2
=
gBy
B0ρ

sec3 γ. (34)

We integrate5 both sides of Eq. (34) from σ to σ2, where σ is a floating variable,

du

dσ

∣∣
σ2
− du

dσ

∣∣
σ

=

∫ σ2

σ

gBy
B0ρ

sec3 γ dσ∗

tan(γ(σ2))− tan(γ(σ)) =
g

B0ρ

∫ σ2

σ

By sec3 γ dσ∗.

Substituting in γ(σ2) = β and that γ(σ) ≡ γ,

tan γ = tanβ − g

B0ρ

∫ σ2

σ

By sec3 γ dσ∗ (35)

By using an iterative approximation6, utilizing the given point of γ(σ2) = β, we find that

tan γ = tanβ − g

B0ρ cos3 β

∫ σ2

σ

By dσ
∗. (36)

3.3.3 Expression for y

We look to use a similar iterative approximation to find an equation for y(σ) in terms of some fixed point
y2 by using Eq. (31).

Rewriting Eq. (31), we have

dy

dT
= y′2 −

1

B0ρ

∫ σ2

σ∗
y tan γ

dBy
dσ

dσ,

where y′2 = dy
dT

∣∣
σ2

. The next step is to make the iterative approximation. We choose the fixed point as

γ(σ2) = β and y(σ2) = y2. Simplifying,

dy

dT
= y′2 −

y2 tanβ

B0ρ

∫ σ2

σ∗

dBy
dσ

dσ

= y′2 +
y2 tanβ

B0ρ
By(σ∗). (37)

Then, integrating from σ∗ = σ to σ2 and solving for y, we have

y2 − y(σ) =
y′2g(σ2 − σ)

cosβ
+
y2g tanβ

B0ρ cosβ

∫ σ2

σ

By dσ
∗.

where the g/cos β factor above arises from applying the chain rule to convert from dT to dσ∗.

5Note that σ∗ is simply a dummy variable used to clarify the discrepancy between the variable of integration and the bounds.
6By iterative approximation, we mean a process of utilizing some given information and inputting it to one side of some

implicit equation to approximate all other values described in said equation. In this case, we use fact that γ(σ2) = β and
substitute this value into the right-hand side of the equation.
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Approximation 3. Physically, we know that the extent of the fringe field, g(σ2 + σ1), is of the same
order as the vertical gap g. Because g/L� 1 where L is the length of the magnet, we conclude that

g(σ2 + σ1)

L
� 1.

We can see from division by L that the term containing y′2g(σ2 − σ) contains the product of two small
values (assuming −σ1 ≤ σ ≤ σ2) and can be neglected, following Approximation 3. Then simplifying,

y(σ) = y2

(
1− g tanβ

B0ρ cosβ

∫ σ2

σ

By dσ
∗
)
. (38)

3.3.4 Change in y′

Utilizing the previous three subsections, we derive an approximation for the change in y′, the vertical slope,
as a function of the vertical displacement, y2. Substituting in Eq. (36) and Eq. (38) into Eq. (31), we have

∆
dy

dT
=

1

B0ρ

∫ σ2

σ∗
y tan γ

dBy

dσ
dσ

=
1

B0ρ

∫ σ2

σ∗
y2

(
1 −

g tanβ

B0ρ cosβ

∫ σ2

σ
By dσ

∗
)(

tanβ −
g

B0ρ cos3 β

∫ σ2

σ
By dσ

∗
)
dBy

dσ
dσ

= −
y2

B0ρ

∫ σ2

−σ∗

(
tanβ −

[
g

B0ρ cos3 β

∫ σ2

σ
Bydσ

∗
]
−
[

g sin2 β

B0ρ cos3 β

∫ σ2

σ
Bydσ

∗
]

+
g2 tanβ

B2
0ρ

2 cos4 β

(∫ σ2

σ
Bydσ

∗
)2)dBy

dσ
dσ.

The lower bound of the outer integral σ∗ is set to −σ1 to account for the effects of the entire fringe field.

Approximation 4. For a length of a magnet L on the order of or smaller than the radius of curvature
ρ and assuming g/L� 1 as in Approximation 3, it follows that

g

ρ
� 1.

Eliminating all but first order terms in g/ρ from Approximation 4 and simplifying,

∆
dy

dT
= −y2

ρ

(
tanβ + g

(
1 + sin2 β

B2
0ρ cos3 β

)∫ σ2

−σ1

[
dBy
dσ

∫ σ2

σ

Bydσ
∗
]
dσ

)
. (39)

We can further simplify Eq. (39) with integration by parts to see that∫ σ2

−σ1

[
dBy
dσ

∫ σ2

σ

Bydσ
∗
]
dσ = −

∫ σ2

−σ1

By(B0 −By)dσ (40)

To compare this result with the sharp cutoff case, suppose an “effective exit angle” βv such that

tanβv = tanβ − g

ρ

1 + sin2 β

cos3 β
I2, (41)
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where I2 is a dimensionless, measurable integral7, defined as

I2 =

∫ σ2

−σ1

By(B0 −By)

B2
0

dσ. (42)

This angle βv is the angle through which the pole face in the sharp cutoff case must be rotated to achieve
the same vertical effect. Although many texts include further approximations to solve for βv,

8 no further
approximations are necessary.

Note that Eq. (39) is constant in σ. Therefore, integrating it to find the change in y would only yield
second order, trivial terms (from Approximation 1 and Approximation 3). Therefore, to first order,
y = y2 = y0. The final effect in the y direction is then

y = y0

y′ = y′0 −
y0
ρ

(
tanβ − g

ρ

1 + sin2 β

cos3 β
I2

)
. (43)

Within the TRANSPORT code, R43 reads

R43 = −1

ρ
tanβv. (44)

3.4 Total Transformation

Here we compile all effects of the extended fringe field, represented mathematically through matrix-vector
algebra. The input vector is equivalent to the output vector from the bending magnet transformation
preceding the exit face fringing field.

x
x′

y
y′

 =


1 0 0 0

1
ρ tanβ 1 0 0

0 0 1 0
0 0 − 1

ρ tanβv 1




x0
x′0
y0
y′0

+


g2

ρ cos2 β I1
0
0
0

 (45)

4 Evaluation of Approximation Accuracy

We now consider some real-world magnets and the level of accuracy that the approximations used throughout
this document would provide. Two distinct cases are examined: Fermilab’s Test Beam dipole magnet and
ORKA’s first bending magnet (proposed).

7Note that within texts like The Optics of Charged Particle Beams, this integral contains g in the denominator; however,
a different definition of σ lacking g is used. The definition Eq. (21) was chosen to clarify the mathematics, as seen in Enge’s
“Deflecting Magnets.” Hence, the integrals are equivalent.

8These texts include but are not limited to SLAC-75, The Optics of Charged Particle Beams, and both the TRANS-
PORT/TURTLE manuals.
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Value Test Beam ORKA Beam Notes
L 3.0 m .80 m Magnet longitudinal length.
g 3.8 cm 8.9 cm Vertical pole gap - represents

twice the maximum vertical dis-
placement.

w 13 cm 30 cm Magnet width - represents twice
the maximum horizontal dis-
placement.

p 120 GeV/c .60 GeV/c Design momentum of the mag-
net.

B0 15 kG 15 kG Magnitude of the magnetic field
deep within the magnet.

w/ρ 4.8× 10−4 .22 Used in Approximation 1.
g/ρ 1.4× 10−4 .067 Used in both Approximation 1

for twice the maximum vertical
displacement and in Approxi-
mation 4.

g/L .013 .11 This ratio relates the fringe field
length (on the order of g) and the
total magnet length, used in Ap-
proximation 3.

L/ρ .011 .60 Used in Approximation 4. A
smaller value yields a more accu-
rate approximation.

The ratios calculated in the final four rows of the above table are all used in important approximations
within this document. If these values are too large (i.e. on the order of 10−1 or larger), the approximations
lose validity because the squares and higher powers of these ratios must be essentially zero. One would note
that, upon squaring each of these ratios, the errors from these approximations would be insignificant for a
magnet like those in the Test Beam. However, the values yielded by ORKA’s dipole are far too large; the
squares of these values are still significant.

5 Conclusion

The Total Transformation section gives a complete matrix description of a particle’s trajectory while passing
through the exit fringe field of a dipole magnet. The transfer operations applied here are precisely the same
as those found in TURTLE and TRANSPORT. Several other texts including the TRANSPORT manual state
a result differing from the result given above (specifically, the R43 component). However, the discrepancy
lies in the use of an unnecessary approximation to yield a more aesthetically pleasing matrix element.

In conclusion, the first order approximations of the fringe fields in a magnetic dipole are sufficient for
high-momentum, large-ring dipoles. Further consideration regarding higher-order effects is necessary when
dealing with certain magnets.
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