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Abstract

The stochastic injection scenario used by nuSTORM features the pion decay and
secondary muon acceptance in the storage ring’s long decay straight [1,2]. The designed
momentum acceptance of the nuSTORM decay ring is centered at 3.8 GeV/c, based
on neutrino detector performance, with a ±10% bin. In order to design the injection
section, and to obtain as many useful muons from pion decay as possible, the center
momentum of the pion beam being injected needs to be carefully chosen. This paper
describes in detail the determination of the center momentum of the pion beam, with
simulation from G4Beamline [3].
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1 Introduction
The injection scenario used in design and simulation of the nuSTORM facility requires a
special beam combination section (BCS) and a special treatment in designing the FODO
cells as a decay straight section [1]. Because the BCS and decay straight are designed to
incorporate both the injected pion beam and the circulating muon beam, the need of choosing
the right injection momentum is self-evident. The initial designed momentum acceptance
of the nuSTORM decay ring is 3.8±10% GeV/c. The transport line of the pion beam is
designed to have a P0±10% momentum acceptance. In order to provide a flat distribution
of muon momenta over the 3.8±10% GeV/c range, the center momentum P0 can not be too
large. Nevertheless, a higher P0 can limit the phase space of the muon beam, and reduce the
requirement on the BCS, which creates a large dispersion for orbit separation of the injected
reference pion and circulating muon. This trade-off can be balanced by noticing that P0

could be chosen larger as long as the muon momentum distribution does not fall off on its
edges.

1aoliu@fnal.gov, also affliated to Indiana University.

1

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. 



In this paper, we will demonstrate the balancing criteria by showing the theoretical
derivations and the simulation results from G4Beamline [3], which utilizes the Monte Carlo
simulations in Geant4.

2 Muon momentum distribution over 3.8±10% GeV/c

2.1 Muon momentum distribution from decay of pions at a certain
energy

The pion decay to muon is well understood by simple relativistic mechanics. In the rest
frame of the injected pions, using the conservation of energy and momenta we have:

E ′π = E ′νµ + E ′µ;E ′νµ = cp′νµ ;E ′µ =
√

(cp′µ)2 + (mµc2)2 (2.1)

p′νµ = p′µ (Magnitude) (2.2)

where the prime stands for the value in the rest frame of the pion. The values for p′µ and E ′µ
are found from the above equations:

p′µ =
E ′π

2 −m2
µc

4

2E ′π · c
= 29.81MeV/c (2.3)

E ′µ =
√

(29.76)2 + (105.7)2 = 109.8MeV (2.4)

Denote the direction of the moving pion in the lab frame as z, and the angle between the
direction of muon and z as θ, or θ′ under the rest frame of the pion, we write the Lorentz
transformation of a 4-momentum vector as,

pµ cos θ = γ

(
p′µ cos θ′ + β

E ′µ
c

)
(2.5)

pµ sin θ = p′µ sin θ′ (2.6)

which simply implies that,

p2µ = γ2
(
p′µ cos θ′ +

βE ′µ
c

)2

+ p′
2
µsin2 θ′

= (γ2 − 1)p′
2
µ cos2 θ′ + 2γ2

βE ′µ
c
p′µ cos θ′ + p′2µ + γ2

β2E
′2
µ

c2
(2.7)

Here the β and γ are relativistic factors rather than the optics β and γ. Now remember the
fact that the distribution of muons under the rest frame of decayed pion is flat with respect
to the solid angle dΩ′ = d(cos θ′)dφ′, namely with respect to cos θ′ and φ′. In order to obtain
the probability density function, fp(p), first denote the cumulative density function as Fp(p),

2



and regard cos θ′ as the independent variable so that fX(x) = f(cos θ′) = 1
2

=const. We have
the expression for Fp(pµ) that:

Fp(pµ) = Pr(Pµ ≤ pµ) = Pr(

√
(γ2 − 1)p′2µ cos2 θ′ + 2γ2

βE ′µ
c
p′µ cos θ′ + p′2µ + γ2

βE ′2
µ

c2
≤ pµ)

= Pr(0 ≤ [(γ2 − 1)p′
2
µ cos2 θ′ + 2γ2

βE ′µ
c
p′µ cos θ′ + p′2µ + γ2

βE
′2
µ

c2
] ≤ p2µ)

= Pr(cos θ′− ≤ cos θ′ ≤ cos θ′+) (2.8)
= Pr(−1 ≤ cos θ′ ≤ cos θ′+) (2.9)

where cos θ′−(pµ) and cos θ′+(pµ) are the two roots of Equation 2.7. Considering that Equa-
tion 2.7 is monotonically increasing in [-1,1], the probability of Equation 2.8 and Equation 2.9
is the same. According to the definition of cumulative probability function, Equation 2.9 is
the same with,

Fp(pµ) = FX(cos θ′+)− FX(−1) (2.10)

fp(pµ) = fX(cos θ′+)
d cos θ′+
dpµ

− 0 (2.11)

When γ �1, we have,

cos θ′+ ≈

−2γ2E ′µ
c

p′µ +

√
4γ4E ′2µ
c2

p′2µ − 4γ2p′2µ(p′2µ + γ2
E ′2µ
c2
− p2µ)

 /2γ2p′2µ
=

[
−

2γ2E ′µ
c

p′µ +
√

4γ2p′2µp
2
µ − 4γ2p′2µ

]
/2γ2p′

2
µ

≈
[
−

2γ2E ′µ
c

p′µ + 2γp′µpµ

]
/2γ2p′

2
µ (2.12)

since pµ � p′2µ. Then we obtain,

d cos θ′+
dpµ

≈ 1

γp′µ
(2.13)

According to Equation 2.11, we have

f(pµ) = f(cos θ′+)
d cos θ′+
dpµ

=
1

2γp′µ
, pµ,min < pµ < pµ,max (2.14)

where

pµ,max =

√
γ2
(
p′µ +

βE ′µ
c

)2

= γ

(
p′µ +

βE ′µ
c

)
(2.15)

pµ,min =

√
γ2
(
p′µ × (−1) +

βE ′µ
c

)2

= γ

(
−p′µ +

βE ′µ
c

)
(2.16)
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Figure 2.1: Comparison between theoretically calculated f(pµ) and G4Beamline simulated
f(pµ).

So, we proved when the relativity factor γ is much larger than 1, the distribution over
[pµ,min,pµ,max] is flat with a probability density function f(pµ)= 1

2γp′µ
, and the decayed muons

has a momentum band width 2γp′µ.
This result is checked in G4Beamline, where we put 10,000 π+ with the same momentum

5 GeV/c, and the same moving direction z. All the π+ are forced to decay at the same time by
a particlefilter at the vergy beginning of the motion, to produce µ+. A virtualdetector is
placed right after the particlefilter to record the information of these muons. The figure 2.1
shows the comparison of theoretical and simulated probability density function f(pµ). In
this case, γ ≈35.83, so theoretical result gives f(pµ)≈4.6812×104. The simulation results
corresponds well with the above derivation.
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2.2 Muon angles from decay of pions at a certain energy

Because of the angle θ between decayed muon’s direction and its parental pion’s direction,
the phase space area of the muon beam from pion decay will be enlarged. The tangent of θ
can be concluded from Equation 2.5 and Equation 2.6:

tan θ =
p′µ sin θ′

γ
(
p′µ cos θ′ + β

E′
µ

c

) (2.17)

The maximum of tan θ can be obtained by the extremum condition dθ/dθ′ = 0, we then
have,

cos θ′ = −
p′µc

βE ′µ
= − 29.78

109.8× 0.9996
= 0.2713⇒ θ′ = 105.7◦ (2.18)

thus we also have,

tan θmax =
p′µ sin θ′

γ(p′µ cos θ′ + βE ′µ/c)
=

28.6921

γ(8.0875 + 109.8β)

γ�1−−→ 28.6921

117.8875γ
(2.19)

Clearly the phase space area can be less magnified when γ is larger. When γ = 35.83 for 5
GeV/c pion, tan θmax = 0.0079. The histogram of θ is shown in Figure 2.2 This clarifies that
we need larger γ to reduce phase space area.

2.3 Muon momentum distribution from decay of pions within mo-
mentum bin P0 ± 0.1P0

Now suppose we have a pion beam which has a uniform momentum distribution over range
[0.9P0, 1.1P0], we want to check the probability density function of Pµ, f(Pµ), which is the
probability density that a muon from decay has momentum Pµ.

First we find that the probability that the momentum of a pion falls in between Pπ ∼ Pπ+
dPπ where 0.9P0 ≤ Pπ ≤ 1.1P0 is simply 1

(0.2P0)
dPπ. From Equation 2.14, we know that the

probability density of having a muon with momentum Pµ from a pion with momentum Pπ is
1/(2γP ′µ), where the relativistic γ is evaluated at Pπ. Here we require that γ

(
−p′µ +

βE′
µ

c

)
≤

Pµ ≤ γ
(
p′µ +

βE′
µ

c

)
, otherwise the probability is 0.

This suggests that the averaged probability density function of having a muon with
momentum Pµ from this pion beam is

f(Pµ) =

∫ Pupper

Plower

1

0.2P0

· 1

2γP ′µ
dPπ

=

∫ Pupper

Plower

1

0.2P0

· 1
2PπP ′

µ

m′
πc

dPπ (2.20)
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Figure 2.2: Histogram of θ for muons from decay of pions at 5 GeV/c. Simulated in
G4Beamline.

where β is omitted for γ � 1. The integration upper and lower limits are determined by the
following conditions:

• If Pπ,min ≤ 0.9P0 and Pπ,max ≤ 1.1P0, Plower = 0.9P0, Pupper = Pπ,max ;

• If Pπ,min ≥ 0.9P0 and Pπ,max ≥ 1.1P0, Plower = Pπ,min, Pupper = 1.1P0 ;

• If Pπ,min ≥ 0.9P0 and Pπ,max ≤ 1.1P0, Plower = Pπ,min, Pupper = Pπ,max ;

• If Pπ,min ≤ 0.9P0 and Pπ,max ≥ 1.1P0, Plower = 0.9P0, Pupper = 1.1P0 ;

• Otherwise, f(Pµ) = 0

where Pπ,min and Pπ,max are the minimum and maximum momentum of a pion that can
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decay to a muon at Pµ. They can be determined by the following equations:

Pµ = γmin

(
p′µ +

E ′µ
c

)
=
Pπ,min
m′πc

(
p′µ +

βE ′µ
c

)
(2.21)

= γmax

(
−p′µ +

βE ′µ
c

)
=
Pπ,max
m′πc

(
−p′µ +

βE ′µ
c

)
(2.22)

or in another form,

Pπ,min =
m′πc Pµ

p′µ +
βE′

µ

c

(2.23)

Pπ,max =
m′πc Pµ

−p′µ +
βE′

µ

c

(2.24)

where m′π is the rest energy of a pion. Plug in the values for m′π, p′µ, and E ′µ, we have a
piecewise function for f(Pµ):

f(Pµ) =



0 Pµ ≤ 0.5158P0∫ 1.7452Pµ
0.9P0

1
0.2P0

m′
πc

2PπP ′
µ
dPπ = 11.7075

P0
ln
(

1.94Pµ
P0

)
0.5158P0 ≤ Pµ ≤ 0.6303P0

∫ 1.1P0

0.9P0

1
0.2P0

m′
πc

2PπP ′
µ
dPπ = 2.3494

P0
0.6303P0 ≤ Pµ ≤ 0.9001P0∫ 1.1P0

Pµ
1

0.2P0

m′
πc

2PπP ′
µ
dPπ = 11.7075

P0
ln
(

1.1P0

Pµ

)
0.9001P0 ≤ Pµ ≤ 1.1001P0

0 Pµ ≥ 1.1001P0

(2.25)

This result is verified by comparing the above equations with the simulation results from
G4Beamline. The plots of the probability density function from calculated and simulated
results are shown in Figure 2.3. They consist with each other very well.

2.4 Determination of P0

As a result of Equation 2.24, it is important to realize that the momentum distribution of
muons over 3.8±10% GeV/c is flat, as long as 0.9001P0 ≥ 3.8+0.38 and 0.6303P0 ≤ 3.8−0.38,
or namely P0 ∈[4.6439, 5.4260] GeV/c. Notice the fact that the flat top of f(P0) is smaller
when P0 is larger. There are advantages of having a lower P0, which can give more muons
within 3.8±10% GeV/c and smaller pion beam size after injection by the BCS. However there
are also advantages of having a higher P0, which can reduce the requirement on dispersion
Dx created by the BCS and can reduce the emittance growth from decay of pions to muons.
The Figure 2.4 shows the trade-off by plotting the number of muons and σx′ along with σy′ .
Balancing these criteria, we finally fixed P0 at a balanced value 5 GeV/c.
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