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I. INTRODUCTION

We are studying hollow electron beams as a new collimation technique for high-intensity beams in

storage rings and colliders. A detailed introduction can be found at Ref. [1].

The collimation system is important in high-energy particle accelerators and storage rings, because it

protects equipment from damage due to particle aborts. It is also used for controlling and reducing the

beam halo, which is continuously produced by processes such as beam-gas scattering, intrabeam scattering,

electrical noise in the accelerating cavities, ground motion, betatron resonances, and beam-beam collisions.

Beam halo is undesirable because it is a potential cause for unwanted radioactivity and a source of exper-

imental backgrounds. Therefore, it is of great interest to develop an effective collimation technique that

removes the beam halo.

Conventional collimation system (Figure 1) consists mainly of two-stage collimators, possibly followed

by successive stages. They include primary collimators (the targets) and secondary collimators (the ab-

sorbers). The primary collimator is the device that is closest to beam core and generates random transverse

kicks via multiple Coulomb scattering. For example, in the Tevatron, the primary collimators are 5-mm

tungsten plates placed about 5 standard deviations (σ ) away from the beam core. The random multiple-

scattering kick has a root mean square of 17 µrad for 980-GeV protons. The secondary collimator is placed

farther away from the beam core than the primary. The affected particles from the primary stage, as well

as the newly-produced particles from the primary collimator, get absorbed by the secondary collimator.

In the Tevatron, the secondary collimators are 1.5-m steel blocks placed at 6σ away from the beam core.

If necessary, more collimators are placed following the secondary collimator to increase the absorption

efficiency.

FIG. 1: Mechanism of conventional collimator system (picture courtesy of R. Assmann). The picture shows the

circulating beam and the first two stages of the collimation system.
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The conventional two-stage collimation system effectively shields sensitive equipment from beam

aborts, and reduces beam-related background in experiments. However, it has two main limitations. First,

in a high-energy particle accelerator, no material can be placed too close to the beam. Placing the collima-

tor too close to the beam results in increased beam loss rates and radiation damage. The electromagnetic

impedance of the collimator also gives some constraints on collimator placement. Another problem is beam

jitter. The beam oscillates as a result of mechanical vibrations, such as ground motion. Even with active

orbit stabilization, the beam centroid may oscillate by tens of microns. This translates into periodic bursts

of losses at aperture restrictions.

To address these limitations, magnetically confined hollow electron beams are being studied as a new

collimation technique. In a hollow electron beam collimator (HEBC), electrons enclose the circulating

beam immersed in a solenoidal field. (Figure 2). The electron beam is generated by a pulsed electron gun,

and it is transported with strong axial magnetic fields, in an arrangement similar to electron cooling and

electron lenses. Because of its low impedance, we can place the HEBC very close to the circulating beam

and even overlap with it, without leading to any material damage. In addition, the HEBC reduces the beam

sensitivity to surrounding vibration.

The electric charge of the electrons kicks halo particles transversely according to the following equation:

θ =
2IrL(1±βeβp)
rβeβpc2(Bρ)p

(
1

4πε0

)
, (1)

where Ir is the beam current, L is the length of the overlap region, Bρ is the proton beam rigidity, ε0 is the

vacuum permittivity, βec is the electron velocity, and βpc is the particle velocity. The + sign indicates that

protons antiprotons
hollow electron beam

FIG. 2: Left: experimental layout of a Tevatron Electron Lens (TEL-2). The experimental apparatus consists of three

solenoids, namely the gun solenoid where the gun is installed, the main solenoid, where HEBC acts on circulating

beams, and collector solenoid, where electrons are collected. Right: cross section of HEBC acting on antiproton

beam. The HEBC surrounds the circulating beam and kicks halo particles away from the beam core.
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the magnetic force and electric force are in the same direction. For typical parameters, the kick given to a

980-GeV proton is on the order of 0.2 µrad.

Several measurements have been done in Fermilab’s Tevatron to test the compatibility of the HEBC with

collider operations, acting on the antiproton beam (Figure 2). The effects of the HEBC on antiproton beam

include scraping the beam halo while leaving the beam core unperturbed, increasing halo diffusion rate, and

removing the correlation between beam losses from different bunch trains and hence reducing sensitivity to

beam jitter. A detailed description and data analysis of such studies can be found in Refs. [2] and [4].

This project focused on characterizing a new 1-inch-diameter hollow electron gun, for possible use at

CERN in the LHC or SPS machine. The major goal of this project is to test the feasibility of a larger and

more powerful gun than that tested at Fermilab’s Tevatron. The cathode yield as a function of voltage and

temperature and the electron beam profile are of particular interest. They provide a tool for diagnosing the

performance of the cathode and understanding its geometry and operation, so that we have a better control

over the produced pulsed electrons. In addition, we analyzed our data according to a model describing

the transition between current densities in different regimes, which is important in diagnosing the surface

uniformity of the emitter. In this paper, we present the characteristics of the hollow electron beam measured

at the Fermilab Electron Lens Test Stand.

II. PRINCIPLES OF THERMIONIC ELECTRON GUNS

We used a thermionic dispenser cathode as our source of electrons. A thermionic dispenser cathode is a

device that emits electrons according to thermionic emission mechanism. As one increases the temperature

of cathode surface, electrons in the cathode can escape from the surface of the cathode when the energy

gained from heating reaches a certain value. The threshold energy above which electrons are thermally

excited to escape the cathode is the sum of Fermi level energy and work function, E0 + eφ . The work

function is determined by the cathode material.

Using the Fermi-Dirac distribution and appropriate approximations, one can derive the Richardson-

Dushman equation to describe the relation between emission current density and temperature of a cathode

with no applied electric field:

J = A0T 2e−
eφ

kT , (2)

where A0 is a universal constant and has a value 1.20×106 A/m2K2. A detailed derivation can be found in

Ref. [3]. The anode is set to a higher electric potential with respect to the cathode. The presence of the anode

creates an electric field, whose effect is not considered in the Richardson-Dushman equation. To include the
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effect of the applied electric field on an emitted electron, one can consider the increase in its kinetic energy

as the electron moves in between the cathode and the anode. The increase in kinetic energy is the same as

the corresponding decrease in potential energy. In addition to the applied field, the emitted electron induces

an image charge in the cathode, which creates a surface field via the Coulomb force between the emitted

electron and the image charge. Therefore the total electric field experienced by the emitted electron is the

sum of the applied field and the surface field. The effect of the applied field is called the Schottky effect.

Taking the Schottky effect into account, we can correct the Richardson-Dushman equation as follows,

J = A0T 2e
− e

kT [φ−
√

eEa
4πε0

]
, (3)

where Ea is the electric field strength between the cathode and the anode.

The above analysis addresses the relation between emission current density and temperature. This

regime is called temperature limited (TL) regime. However, as the voltage increases, the cathode will

reach its full space-charge limit (FSCL) regime, where increasing temperature does not affect the emission

current. The space-charge effect is a result of the negative charge of electrons, which reduces the potential

energy at the surface of the cathode. This limit occurs when the density of electrons adjacent to the cath-

ode surface becomes so large that the potential energy reduces below zero and the electrons are forced to

flow back to the cathode. In this regime, one can study the relation between emission current in relation to

cathode-anode voltage. Applying energy conservation law and Poisson’s equation, one can get the relation

between emission current and voltage as follows,

I = PV
3
2 , (4)

where P is known as the perveance of the diode. This is called the Child-Langmuir law. Perveance is

a function only of the geometry of the diode, and therefore it is a useful tool in diagnosing the cathode

geometry, which is addressed below in Section IV.

Note that the previous discussion on perveance does not take the electrons’ relativistic effect into ac-

count. When the electrons get accelerated to a very high velocity, their motion can be described in the

relativistic regime. Reiser [8] discusses a generalized perveance which accounts for the relativistic effect.

The relation between the cathode yield current and cathode-anode voltage can be described by the following

equation,

I =
I0

2(1− γ2 fe)
K(βγ)3, (5)

where I0 is a constant, γ and β are the Lorentzian factors in special relativity, K is the generalized perveance,

and fe is the neutralization factor for electrons. I will discuss each term below. I0 is a constant defined as

I0 =
4πε0mec3

e
= 17 kA, (6)
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where ε0 is the vacuum permittivity, me is the electron mass, and c is the speed of light. The Lorentzian

factors γ and β can be calculated from the cathode-anode voltage and electron’s rest mass. The generalized

perveance, K, is a dimensionless value. The neutralization factor fe describes the fraction of electrons

neutralized by the rest gas in the vacuum chamber, and it is expected to be between 0 and 1. Because of the

energy dependence of the ionization cross section, neutralization is more likely to occur at low voltages. By

comparing the shape of perveance and generalized perveance as a function of voltage, one can tell whether

the transition into temperature limited regime or the relativistic effect is more important. A more detailed

analysis can be found at Section IV.

To describe the transition of the emission curve from one regime to the other, Longo proposed the

following model [5],

1
J

=
1

Jsc
+

1
Jtl

, (7)

where J is the observed current density, Jsc is the theoretical current density in space-charge limited regime,

and Jtl is the theoretical current density in temperature-limited regime. In Longo’s paper, he discusses the

change of the emission curve shape as the cathode ages. He adopts Vaughan’s suggestion [6] to raise each

term of Equation 7 to a power α , known as the shape factor. The modified equation is

1
Jα

=
1

Jα
sc

+
1

Jα
tl

. (8)

The parameter α is related to the uniformity of the emitter surface. It has been generally accepted that the

more uniform the emitter surface is, the sharper the transition of the emission curve is. Figure 3 illustrates

how the change in the shape factor α changes the transition of the emission curve.

III. ELECTRON LENS TEST STAND

The electron lens test stand is located in Fermilab’s lower linac gallery (Figure 4). It was originally

developed for the Tevatron electron lenses, but now it is also used for testing hollow electron guns. The

main experimental apparatus consists of a pulsed electron gun, a straight beamline, and a collector. The

vacuum beam line is surrounded by three solenoids. Figure 4 (top) is a photograph of the main apparatus.

The three solenoids are called, from left to right in Figure 4, the gun solenoid, the main solenoid, and the

collector solenoid.

The gun solenoid surrounds the electron gun. For a typical magnetic strength of 0.3 T, the current in

the coil in the gun solenoid is approximately 1800 A. The main solenoid needs four times the current in

the coil to provide a 0.3 T magnetic field. The 3-m straight beamline is equipped with pickup electrodes
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FIG. 3: Example of the effect of the shape factor on the transition between the temperature-limited and the space-

charge limited regimes. Cathode-anode voltage at 7000 V, shape factor α=1 (left) and shape factor α=10. The curves

represent the current densities, J (black), Jsc (blue), Jtl (red).

and corrector coils. The electron collector is installed in the collector solenoid. The current in the collector

solenoid runs at 1800 A to provide a 0.3 T magnetic field. The collector has a 0.2-mm-diameter pinhole for

current-density profile measurements, which are detailed below. This configuration is usually referred to

as a “3-3-3 kG configuration”. An 18-MΩ low-conductivity cooling water circuit provides cooling for the

power supplies, solenoids, and the collector.

The vacuum environment in the beamline is provided by two pumping systems. The primary one is

used for fore vacuum (10−6 mbar), and it is based on a turbo molecular pump by a diaphragm pump. The

secondary one is used to reach high vacuum (10−8 mbar), and it consists of three ion pumps.

To characterize the electron gun, we mainly studied the cathode yield and beam profile. The cathode

yield describes the yield current as a function of the cathode-anode voltage and as a function of cathode

temperature. Electrons are produced in pulses from the electron gun. The pulse width and period are

monitored by an oscilloscope. Different settings of the pulse width and pulse period allow us to achieve

different voltages and peak currents, keeping the average current approximately constant. The beam current

was read out from the output of the collector. The output current goes through two toroids, which measure

the voltage across each toroid. The output is displayed on an oscilloscope as a voltage pulse. The voltage is

measured as the average amplitude voltage of the pulse. This voltage is calibrated against current such that

1 V corresponds to 1 A collector current.
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FIG. 4: Electron lens test stand at Fermilab lower linac gallery. The main experimental apparatus consists of a pulsed

electron gun, a straight beamline, and a collector. There are three solenoids: gun solenoid (left), main solenoid

(middle), and collector solenoid (right). Note that the main solenoid in the middle for testing electron guns is not

superconducting as in Figure 2.

The current density profile is measured by recording the current through the collector pin hole while

sweeping the electron beam with the magnetic correctors in small steps. A software has been developed to

monitor the run throughout the measurement. Examples of profile measurements are given in Section IV

below.

IV. 1-INCH HOLLOW ELECTRON GUN

A. Main Features

A high-perveance gun was developed to generate the hollow electron beam. A tungsten dispenser

cathode with BaO:CaO:Al2O3 impregnant is used to obtain high perveance and appropriate work func-

tion (Ref. [3]). Theoretically, the tungsten melting point is 3410 ◦C, and the work function is 4.6 eV. For

barium, the melting point is 725 ◦C, and the work function is 2.7 eV. When the cathode is heated for a long
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enough time, typically after a few hours, the barium diffuses into the pores on the tungsten surface, and

hence decreases the effective work function to 1 to 2 eV.

B. Design Considerations

To approximately determine the required size of the hollow electron gun, we considered typical LHC

parameters. The energy of the proton beam is 7 TeV, corresponding to a Lorentzian γr approximately

7× 103. The beam size is calculated using the transverse amplitude function, which is approximately

β = 200 m, and the transverse normalized emittance, which is approximately ε = 2 µm. The transverse

root-mean-square beam size is therefore

σ =

√
βε

γr
=

√
(200 m) · (2×10−6 m)

(7×103 ) = 0.24 mm. (9)

Assuming the beam follows a Gaussian distribution transversely, the beam core is within 3σ = 0.72 mm.

The inner radius of the hollow electron beam should span approximately 4σ to 8σ , corresponding to

0.96 mm to 1.92 mm. The above dimension applies to the main superconducting solenoid, where the

magnetic field strength should be larger than 1 T for stability and smaller than 6 T due to technological

limitations. Similarly, in the conventional gun solenoid, the appropriate magnetic field strength should be

larger than 0.2 T and smaller than 0.4 T. The flux of the magnetic field remains approximately constant in

the transition between the gun and main solenoids. Therefore, the radius of beam in the gun solenoid, rgun,

and the radius of beam in the main solenoid, rmain, follow this relation:

rgun = rmain

√
Bmain

Bgun
, (10)

where Bgun and Bmain are the respective magnetic field strength in the gun and main solenoids. Because

1.58 <
√

Bmain
Bgun

< 5.48, we chose the inner radius of the hollow electron beam rgun ≈ 7 mm.

We have neglected the effect of dispersion D due to the beam momentum spread ∆p/p. If we were

to take dispersion into account, the beam size would be x2 = (D∆p/p)2 + σ2. For the LHC, we consider

the hollow electron beam dispersion D ≈ 1 m, and the momentum spread ∆p/p ≈ 1.5× 10−4. So, x2 =

10−8 m2 +10−5 m2, and we can see that the first term is negligible.

Figure 5 shows the longitudinal cross section of the 1-inch hollow electron gun. The outer diameter

of the cathode is 25.4 mm (1 in). The diameter of the hole is 13.5 mm, consistent with our calculation

using LHC parameters. The electrodes around the cathode help focus the electron beam. Figure 6 (top) is

a photograph of the cathode, which is the tungsten hollow cylinder in the middle. Figure 6 (bottom) is a

photograph of the entire gun, with cathode, anode and electrodes assembled together.
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FIG. 5: 1-Inch Hollow Gun Dimensions.

C. Perveance Measurement

The perveance, as introduced above, relates the gun yield current to the cathode-anode voltage. We

measured the perveance over a large range of temperatures and voltages. Figure 7 shows an example of the

pulse shape on an oscilloscope. The purple curve shows the pulse of the voltage modulator, and the green

curve shows the pulse measured by the toroid at the collector. We took the amplitude of the green curve as

the peak yield current.

We have taken two sets of data to study cathode perveance. One was taken from December, 2011 to
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FIG. 6: Photographs of the 1-inch hollow electron gun. Top: detail of the cathode. Bottom: assembled gun.
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FIG. 7: Example of pulse shape shown on an oscilloscope for perveance measurement: modulator voltage (purple

trace) and collector current (green trace).

February, 2012. The other was taken in June, 2012. Figure 8 compares the two data sets. Data points

were taken when the heating filament current equals 8.75 A, corresponding to a cathode temperature of

approximately 1100 ◦C. The uncertainty in current was calculated by adding a constant uncertainty of

0.05 mA in reading from the oscilloscope, an estimate of measurement uncertainty of 0.1%, and a systematic

uncertainty of 1 mA from difference between toroids that measure the collector current in quadrature. The

uncertainty in voltage is negligible. The least square fit is weighted by the square of uncertainty reciprocals.

The earlier data set shows a perveance of (4.13± 0.01)× 10−6 A/V
3
2 , and the more recent one shows

a perveance of (4.15± 0.02)× 10−6 A/V
3
2 . These two values of perveance from two data sets taken at

different times are consistent within uncertainty. The blue curves in Figure 8 represent the results of SAM

simulation [7]. It can be seen that our measurements are systematically lower than simulation, and this

discrepancy is currently not understood and being investigated.

Both data sets show the fitted curve above the data points for higher voltages. We can interpret this by

considering two aspects. One is that the uncertainty includes a term proportional to the voltage, and since

the weight is the square of uncertainty reciprocal, the fitting is weighted more towards lower voltage than

higher voltage. Moreover, the deviation of the fit from the measurements at higher voltage tells us that as

we increased voltage, we were pushing towards the temperature limited regime, where increasing voltage

does not have an effect on cathode yield current. In this region, we can see that the power relation between

current and voltage tends to level up. This can be further demonstrated by the residual plots in the bottom.

In both residual plots, we can see a systematic trend that the residual becomes negative at a certain voltage,

and then continues to become more negative as voltage increases.
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FIG. 8: Perveance analysis using data from December, 2011 - February, 2012 (left), and June, 2012 (right). Top are

perveance measurements in logarithmic scale. The blue curves indicate the SAM simulation. Below are residuals.

The relativistic and neutralization effects can be studied using the generalized perveance. With some

algebraic manipulation on Eq. 5 and Eq. 6, we can get

K
1− γ2 fe

=
2I

I0(βγ)3 . (11)

Let’s denote the left-hand-side of Eq. 11 as LHS, and plot the right-hand-side as a function of cathode-anode

voltage. In Figure 9, we can see that the shape of the perveance and the LHS of Eq. 11 follow a similar

trend that as voltage increases, the value tends to decrease slightly and then stay approximately constant.

We can extract the value for generalized perveance K from the middle plot at high voltages, because at high

voltage, the neutralization fraction fe is approximately zero. Then we are able to calculate fe as a function

of voltage, as shown in the right plot in Figure 9. The maximum fe occurs at 70 V, and reaches 20.6%. The

fraction fe decreases as voltage increases, because the higher the energy of the electrons, the less likely they

are to ionize with rest gas molecules in the vacuum and get neutralized.
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FIG. 9: Generalized perveance analysis. Left: perveance vs. voltage. Middle: left-hand-side of Eq. 11 vs. voltage.

Right: neutralization fraction vs. voltage.

TABLE I: Fitting results of Longo’s model

Free parameter 1st Quartile Median 3rd Quartile Units

α 0.82 0.94 1.07

P 4.166 4.176 4.187 10−6 A/V
3
2

A0 5.8 24.6 86.8 103 A/m2K2

D. Cathode Yield vs. Temperature

To study the relation between cathode yield current and temperature, we first calibrated temperature

against the resistance of the heating filament.

Figure 10 shows the procedures of our temperature calibration. First (Figure 10 top left), we observed

how the filament resistance increased with filament current. Secondly, we studied the relation between

peak yield current and filament resistance (Figure 10 top right). The vertical line indicates what we took

the temperature to be 1100 ◦C, corresponding to a filament current of 8.75 A, and a filament resistance of

1.04 Ω. When the filament is at room temperature 300 K, we measured its voltage and current to get its

resistance, 0.43 Ω. Assuming a linear relation between temperature and filament resistance, T = βR + T0,

we can extract the values for β and T0. We found β = 1765.7 K/Ω and T0 = −462.29 ◦C, and Figure 10

lower left illustrates this relation. We leave 50 ◦C uncertainty in our choice of operating temperature, giving

rise to a range for β and T0, where 1683.47 K/Ω < β < 1847.87 K/Ω and −497.78 K < T0 <−462.80 K.

As mentioned in Section II, Longo proposed a model to describe the transition between the space-charge

limited regime and the temperature limited regime. Bearing this in mind, we attempted to compare our data

with Longo’s model to extract some of the physical parameters. Eq. 8 can be written as follows:

Iop = a[(
1

Jsc
)α +(

1
Jtl

)α ]−
1
α , (12)
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FIG. 10: Temperature calibration using filament resistance. Top left: filament resistance increases with filament cur-

rent. Top right: peak yield current as a function of temperature. Vertical line indicates the point chosen to correspond

to 1100 ◦C. Lower left: temperature calibration with filament resistance, assuming a linear relation. Lower right:

peak yield current as a function of temperature.

where Iop is the measured current, a is the effective cathode area, and Jsc, and Jtl are described by Eq. 4 and

Eq. 2, repeated here:

Jsc =
PV

3
2

a
, (13)

Jtl = A0T 2e
− e

kT

[
φ−

√
eV

4πε0d

]
, (14)

where φ is the work function of the cathode surface, and d is the effective distance between the cathode and
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FIG. 11: Histograms of the fitting values for α , P, and A0.

the anode. Together with the temperature calibration parameters, there are a total of 8 correlated parameters,

a, α , d, A0, P, φ , β and T0. We aim to test whether the measurements can yield reasonable values for these

parameters, but do not expect to extract exact values for them. In order to do this, we chose α , P, and

A0 to be free parameters, and set the other parameters within a reasonable range. This choice was made

considering our knowledge of these parameters. Work function φ depends on the material of the cathode,

and is expected to be 1.4 eV < φ < 1.45 eV. Cathode area a and cathode-anode distance d can be found

from Figure 5, yielding a = 3.64× 10−4 m2 and d = 1× 10−2 m. Due to the electrode effects and the

concave surface of the cathode, we expect 3.6 cm2 < a < 4 cm2 and 0.9 cm < d < 1.7 cm. The range for

β and T0 are repeated here: 1683.47 K/Ω < β < 1847.87 K/Ω and −497.78 K < T0 < −462.80 K. We

looped through the different values for these parameters and executed 32 fits, yielding 32 values for each of

the free parameters, α , P, and A0. We expect α to be approximately one, as the case for typical cathodes.

As shown in Section IV C, we expect perveance P to be on the order of 4×10−6 A/V
3
2 . We do not have an

expectation for A0, as it is a function of the material and gun geometry. Figure 11 shows the histograms for

the three free parameters. The α and P histograms are flat, and the A0 histogram has a long tail, so Gaussian

distribution is not a good representation of the data. We chose to use the quartiles to estimate the range of

those parameters. Table I shows the results.

Figure 12 illustrates the fitting. The curves represent the fitted model corresponding to different volt-

ages, and the points represent measurements. As we increase the voltage, we see more significant deviation

of the model from the measurements. Since the fitting was done with weights equal to the reciprocal of

uncertainty squared, we suspect this deviation comes from an overestimation of the proportional term or an

underestimation of the constant term in the uncertainty calculation (Section IV C). Also, more discrepancy

can be seen at the lower temperature end for high voltage data. Figure 13 plots the histogram of the fitting

residuals. The median is 0.66 mA, and the median absolute deviation is 5.5 mA. In general, our measure-
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FIG. 12: Comparison of gun yields with Longo’s model.

ments are reasonably compatible with Longo’s model, and we get reasonable results for the parameters that

characterize the hollow electron gun.

E. Beam Profile Measurements

Hollow electron beam profiles were measured at different voltages. Figure 14 compares the 2 dimen-

sional cross section of the hollow electron beam taken at different times and different filament currents. We

can see that, horizontally, the current density is stronger in the positive direction than that in the negative

direction in all three plots. The asymmetrical pattern can be explained by either an off-axis cathode with

respect to the extraction electrode, or an asymmetrical distribution of the solenoid magnetic field. For the

latter possibility, we would expect to see different level of asymmetry at different currents. However, we

have repeated the profile measurement at different currents, and the profiles show the same asymmetry. Top

figure was taken in January 2012, with a filament current at 8.75 A. Middle figure was taken in June 2012,
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with a filament current at 8.75 A. In both cases, the peak electron current was 2.9 A. Bottom figure was

taken in February 2012, with a filament current at 6.25 A, and a peak current of 0.14 A. If asymmetrical

magnetic field is the cause of the asymmetrical beam profile, we would expect the space-charge effect to

be more significant in the higher current case. However, we do not see significant difference between the

bottom figure and the other two, indicating the asymmetrical pattern comes from the asymmetrical geom-

etry of the gun, instead of the magnetic field. Thus we have identified the cathode to be off-centered with

respect to the electrodes. The tolerance on concentricity becomes harder to achieve as we use larger and

longer cathode. This 1-inch hollow electron gun is the largest and longest cathode we have used so far.

After we have diagnosed the asymmetry of the cathode with respect to the electrodes, we took out the

electron gun from the Electron Lens Test Stand and disassembled it. We measured the average distance

between the cathode and the electrode to be (0.4± 0.2) mm. The concentricity was improved to (0.40±

0.07) mm. The gun was then sent to Fermilab Mechanical Support Department for cleaning and vacuum

testing.

In addition to the asymmetrical pattern, we can see a “quadrupole effect” from the 2-dimensional beam

profile scan: there is significant current density increase at four points around the circumference of the

beam cross section, with the left one lower than the other three due to the asymmetrical pattern in current

density. We suspected that this quadrupole effect is due to the four legs supporting the anode (Figure 6).

Because of the gap between cathode and anode, emitted electrons can experience the effect of the potential

of the four supporting legs, leading to the quadrupole-shaped beam profile. We did not see this effect in
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FIG. 14: 2D scan of hollow electron beam taken at 8 kV. High current (top: January, 2012; middle: June, 2012), and

low current (bottom: February 2012).
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FIG. 15: Modified 1-inch hollow electron gun with added anode shield.

the previous 0.6-inch hollow electron gun, because the gap between cathode and anode was smaller and the

supporting legs were farther from the cathode. We added an equipotential cylinder between the cathode and

the supporting legs to even out the quadrupole effect (Figure 15). We installed the gun back in the test stand

and are getting ready to repeat the beam profile measurements.

V. CONCLUSIONS

In conclusion, we have measured the characteristics of a new 1-inch electron gun. We have covered two

major characteristics, namely the cathode yield as a function of cathode-anode voltage and as a function of

cathode temperature, and beam profile. The perveance measurement illustrated the relation between cathode

yield current and cathode-anode voltage. The cathode yield as a function of temperature helped us determine

the gun working point: 1100 ◦C, corresponding to a filament current of 8.75 A. Perveance was measured

at this working temperature. The measurements taken in early 2012 and June 2012 show consistent results.

The analysis on generalized perveance show that relativistic effects are not dominant, and the neutralization

fraction reached a peak of 20.6% at 70 V. The Longo model fitting illustrated the relation between cathode
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yield current and cathode temperature. We used all data taken at various temperatures and cathode-anode

voltages, including both space-charge limited and temperature limited regimes. The fitting results show

effective parameters that characterize the electron gun in a reasonable way.

The beam profile measurements taken in early 2012 and June 2012 consistently show an imperfect

concentricity of the cathode in relation with the electrodes. We identified a cathode off-center problem

and the electron gun has been disassembled and improved. In addition, we identified a quadrupole effect

from the beam profile measurements. We suspected it to be the impact of the supporting legs connected

to the anode. We installed a conductive cylinder between the cathode and the legs. We plan to repeat the

characterization measurement to check the improved electron gun geometry.
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APPENDIX A: ORGANIZATION OF WORKING DIRECTORY

My working directory is lisiqi@mrbutts.fnal.gov. The home directory consists of the following sub-

directories: /ana for analysis, /report for report, and /data for data. The analysis directory contains all

the R scripts to produce the fitting results and plots presented in this paper. Produced plots are saved in

the nested directory /plots under /ana. “longo8.R” fits our measurements with Longo’s model and produces

Figure 12 and the histograms (Figures 11 and 13). “plotItemp.R” plots cathode yield current as a function of

temperature at 5000 V (the voltage is tunable in the script) and produces Figure 10 bottom right. “longo7.R”

produces Figures 10 top right and bottom left. “heating.R” produces Figure 10 top left. “profile.R” produces

1D and 2D scan of the beam profile. “shapefactor.R” compares the effect of different values of shape factor

α , producing Figure 3. “Iop temp.R” plots cathode yield current as a function of temperature, marked by

different colors for different voltages. The report directory contains all drafts that composes this paper,

including the original tex files and compiled pdf files. A subdirectory /template nested under the /report

directory contains all the formatting information for composing this report. The data directory contains all

measurements data related to this paper, including measurements taken from January, February and June

2012. Figures that illustrate the physical appearance of experimental apparatus, including gun geometry

diagram, are also saved in the data directory. There is an /old version directory nested under data and

analysis directory, which saves obsolete data, plots and R scripts.
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