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Abstract

In this paper two types of crab cavity are introduced, which are TM and TEM mode cavities. The equation of motion of
both cavities is obtained from Lorentz force and Hamiltonian respectively. The equation of motion is solved using thin-lens
approximation,

I. CRAB CAVITY

Consider electromagnetic waves confined to the interior of a hollow pipe, or wave guide. We assume that the wave guide is
a perfect conductor, so that E = 0 and B = 0 inside the material itself, and hence the boundary conditions at the inner wall
are

We are interested in monochromatic waves that propagate down the tube, so E and B have the generic form

E (z,y, z.t) = Eg (2, y) e'c=—=1),

A B —_ 2)
B (z,y,z,t) =Bo (z,y) """,
The electric and magnetic fields must satisfy Maxwell’s equations in the interior of the wave guide:
0B

V-E=0, VxE=——f/
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The problem is to find functions EU and ]-31, such that the fields, Eq. (2), obey the differential equations. Eq. (3). subject to
boundary conditions, Eq. (1). It suffices to determine the longitudinal components £. and D.: if we know those, we could
quickly calculate all the others, just by differentiating. If E. = 0 we call these TE (“transverse electric”) waves: if B. = () they
are called TM (“transverse magnetic™) waves; if both E. = 0 and B. = 0, we call them TEM (“transverse electromagnetic™)
waves.

A. TM mode cavity
The TM110 mode in a cylindrical geometry is shown in Fig. 1. The electromagnetic field of TM110 mode in a cylindrical
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Figure 1: TM110 mode in a cylindrical geometry. There is no electric field along 2-axis, but only vertical magnetic field
appears. The vertical magnetic field gives a deflecting kick.
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I. CRAB CAVITY

Consider electromagnetic waves confined to the interior of a hollow pipe, or wave guide. We assume that the wave guide is
a perfect conductor, so that E = 0 and B = 0 inside the material itself, and hence the boundary conditions at the inner wall
are

E,; =0, By =0, (1)
We are interested in monochromatic waves that propagate down the tube, so E and B have the generic form
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The electric and magnetic fields must satisfy Maxwell’s equations in the interior of the wave guide:
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The problem is to find functions EU and ]-31, such that the fields, Eq. (2), obey the differential equations, Eq. (3), subject to
boundary conditions, Eq. (1). It suffices to determine the longitudinal components E. and B.: if we know those, we could
quickly calculate all the others. just by differentiating. If E. = 0 we call these TE (“transverse electric™) waves: if 3. = ( they
are called TM (“transverse magnetic™) waves; if both E. = 0 and B. = 0, we call them TEM (“transverse electromagnetic™)
waves.

A. TM mode cavity
The TM110 mode in a cylindrical geometry is shown in Fig. 1. The electromagnetic field of TM110 mode in a cylindrical
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Figure 1: TM110 mode in a cylindrical geometry. There is no electric field along z-axis, but only vertical magnetic field
appears. The vertical magnetic field gives a deflecting kick.
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The time transit factor 7' arises from the fact that a particle passes through the rf gap within a finite time interval so that the
energy gain is the time average of the electric field in the gap during the transit time. Since the transverse beam size is much
smaller than the cavity diameter. i.e., 5; < 1, the Bessel function can be expanded as

- oc (_l)m 1 2mta
.Ia (7) = Z m (al) s

m=0

11 1 5. ©)
i (@) = 52 = 62" + 7552
. 1 2_ 1 4,
Ja (z) = 87 961 + ’

where I' (n) = (n — 1)!. Then Eq. (8) can be approximated for small amplitude beam as follows

Ky = dl;;!c i 2 1 (rz)2 (22 — y?) — 1 (E)‘l (@ —y*) +- ]smﬁ

E | R 96 \R 3
Apy = aVee [_1 (2) Pk 3 (2)4-u2+ 2y sin 2= (10)
v="E |T14\R) T2a\R/* it

@Vee [ lyan2( 1, o 1 pas2y d.a . .4 w3z
.= i~z (Y [ <2574 -y ot I (T - i
=" | 5(7) (37 +9) +g6(R) (52t +v') + | gromy

In order to make the approximate solution be symplectic, Eq. (10) is rearranged in higher order terms. Note that the radius
of KEK crab cavity is B = 0.433 m and «v = 3.832. At the (proposed) crab cavity location of SPS, the rms beam size is
7, = 0.91 mm.

As a check, let’s see the equation of motion of particles whose transverse amplitude is small. At coordinates (x,y,s) =
(0,0, 5), the electromagnetic fields are given by

E.=E,=B,=B, =0,
1 ;
By = 2—(;508111(&)1:). (11)

gfj w
E;, = ——xcos(wt).
: 2 ¢ @it)

Note that B, and B, give the vertical magnetic field at » = 0. Then one can get the equation of motion:

dp: a B i.,
dt = Zpec Euﬁrqm( (t D’('k))‘

dpy,
i 12
ik 0, (12)

dps _ qfo 1
- 21106@3,c()h w t—7z

As above, it is assumed that the cavity field is synchronized with the beam bunch, i.e., a synchronous particle sees the sine
wave without a phase. The z is the longitudinal distance from the synchronous particle. The reference particle passes through
the cavity gap in time t € nTy+ (—A/28¢, A\/253¢), where A is the cavity gap width. The cavity kick for a particle per passage

is & A/28c 1
Ap, = ——Egﬁc/ sin (w (t = —z)) dt,
2poc —A/28e Be

= iE @Siﬂ ﬂ sinE
T poc Y w 28¢ Be’ (13)
Ap, =0,
g€o WA wz
Ap, = — sin — 2 ¢cos —
T Poc 23 B(’
Here k = w/e. Equation (13) can be rewritten by
Vee . wz
A= qT sin E
Ap, =0, (14)
qVee w wz
A g AT
P« ="F Bc" “® Be

where the beam energy E is E = poe, the cavity energy V.. = qEo AT, the transit time factor 7" = sin (-2“%) J: (

)

e
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Figure 2: Parallel plate waveguide. The beam direction is along &.

1) Symplecticity: The Jacobian matrix resulting from Eq. (8) takes the form
8(z",pt, v 0}, 2", p)
A (2%, pi, ¥ Py, 27, D2)

T 00 0. 0 0
Jor 1 jaz 0 jos O
t 0 o 0y 1T 0 200
Jeii O Jis 1 g 0
0O 0 0 0 1 0
ka1 0 jes 0 Jes 1
where the elements of Jacobian matrix are given by
g apt B
J21 = By
opd
Jes = - B8
dz
For a symplecticity condition, the Jacobian should satisfy
FY8T =8,

Here the matrix & is given by

)
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P
co W

0 0
0 =1
S2 0 § Sy = ( ) s
B. TEM mode cavity

1) Farallel plate: Equation of motion from Lorentz force: The wave guide of parallel plate gives a TEM mode wave, as
shown in Fig. 2. The electric and magnetic field of TEM waveguide in parallel plate are given by

2
E (2,y,0,t) = &€ cos (ﬂ) sin (wt)
A
& 2 (1%
B(z,y,0,t) = &?': sin (_Ay) cos (wt) .
Note that the TEM wave propagates along the y direction. With application of dp/dt = I—,’;q (E + v x B), the equation of
motion is given by

dpx o qu ’ 3 dpy e dps
ek cos (ky) sin (wt) , =3 =10, T

Here it is assumed that the cavity field is synchronized with the beam bunch, i.e., a synchronous particle sees the sine wave
without a phase. The z is the longitudinal distance from the synchronous particle. The off-momentum particles see the wave as
sin (w (t — z/Bc)). We assume that the reference particle passes through the cavity gap in time ¢t € nZp + (—L/208¢, L/23¢),
where L is the cavity gap width. Then we can get a cavity kick for a particle per passage.

=10. (16)

Ve
s

F o8 (ky)sin Be Apy, =0, Ap,= 0, (17)
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where the beam energy E is E = pofe, the cavity energy ¢V.. = g€o AT, the transit time factor 7' = sin (2‘%) / (-,;Tl;) In
order to verify the symplecticity condition of Eq. (17), one can get the Jacobian

" ottt ol)
O (z,pis vt b, 2%, pt)

10 0 0 0 O

0 1 oz 0 jos O

oo 1 0 0 o0

= 0 0 1 0 0

00 0 0 1 0

o0 o 0 0 1

where jo3z = f%ﬁk sin (ky) sin (%—f) and joz = —9-\;’—**% cos (ky) cos 7. Then one can get

0 0 jog 0 jos 0O
0 0 0 0 0 0
T e —jJoz 00 0O 0 O
JEF == 0 0 0 0 0 0
—j25 0 0 O 0 0O
0 0o 0 0 0 0

The equation of motion in terms of mechanical momentum does not satisfy the symplecticity condition. However, the
symplecticity condition is satisfied in the canonical coordinates. because the horizontal canonical momentum Ap, = 0 (see
Eq. (25)).

Equation of motion from Hamiltonian: Let us consider the Hamiltonian to derive the equation of motion in the parallel plate
of TEM mode. In the TEM mode of parallel plate, the vector potential experienced by a test particle moving with a velocity
Be is

A(z,y,2;8) = 2A; (y,t) = i‘@ cos (%—y cos [ L (s—2)). (18)
w A Be
The Hamiltonian of TEM mode cavity is given by
- .
(p:r = I:{;A.r) + P;
H= +p:— f(p:). (19)

2(L+ f(p=))

2
Canonical transformation is applied in order to remove the vector potential term in (p.,_ = ;—:{;A,) . The transformation is made
via a (type 3) generating function G (Z, i, Z, pr, Py, P=; 8):

G (2,0, 2, P2, Dy =3 8) = —TPe — Ypy — 2Pz + fz%A”‘

(20)
N T | ey 3 PR
= 22 = by — s+ cos (ky) c( 5 (6 »)).
The generating function gives
- e G _ G _4y
T 8p. P ox  r po
g 9G _ 9G -
u= op, =1 Py = e =Pz (
Lo 96 _ 96 _
T oap. 7 . oz *
Note that pz, py, and p; are the mechanical momentum. New Hamiltonian # is given by
— oG
'H:'H-i-m,
2, .2 (22)
Pz + D5 ao . (w )
= i M = f (P} — ———Tco8 (Ky) sin | = (8—2) ] .
B+ F ey T 72 P T gt cos(w)sin (5 (o 2)
The new Hamiltonian is
1 p;+p; N ; (w ) ,
= e s — :) — s cos (ki —(8—=2)]. 23
T4 TP F ) — gz cos (ky)sin (- (s~ 2) @3)
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Figure 3: TEM mode waveguide of parallel two lines. The beam direction is along &.

Then one can get the equation of motion using Eq. (47)

g 0y D,
ds™ T 1+f(PE)‘
d  0H _ qgé . w
i ;JBE?COS (ky) sin (ﬁc (s z)) :
= Py
il — +_ 3
s’ " Topy 1+ 1 (p2)
d M _, o
s Ty T
d 2 +p2 ,
_§:+%=]ﬁ 1+M_2 f(ps),
ds 9ps 2(1+ f (p2))
4 e O
ds?* 0z
Using the thin-lens approximation of the cavity, one can get the solution of Eq. (24):
” qVee . iz
A' s g g = —_— S i s —_— »
I Ap % cos (ky) sin (5(‘)
(25)

Ap: =0,

where the beam energy F is E = pyfc, the cavity energy gqV.. = q€oAT’, the transit time factor T = sin (%) / (‘2"—,_{;)
Equation (25) is the same as Eq. (17). Note that Ap, = A — A} — i< cos (ky)sin (%) = 0.
2) Parallel wire: The electric and magnetic fields in a TEM resonant structure are

2 q
E(z,y,0,t) = E (z,0)cos (—gﬂ) sin (wt) ,

(26)
E (z, e 12
B(z,y,0,t) = M X 7 sin 29 cos (wt) .
Zy A
Here Zp = ’;—‘;’ = % = /éolio = 1/c. Note that temporal term in Eq. (26) is different from [1]. coswt gives the deflecting

kick, i.e., the amplitude of kicks is maximum at the longitudinal center of the beam. It is assumed that two infinitely long
lines are parallel to the y-axis, and crossing the (2, 0) plane at = +a, o = 0, and carrying uniform linear charge per unit
length ¢, as shown in Fig. 4. Note that the TEM wave propagates along the y direction. The potential is given by

2
iy e r_
V (z,0) e In (_r% ) 3 27)
where
r? = (zx - a)2 figB, 'r_2|_ = (x+ a)? + a2, (28)
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Figure 4: Transverse electromagnetic field of TEM mode cavity: (a) electric field, and (b) magnetic field. The two lines are

located at (z,y) = (+a,0).

The electric field is

av ag [2%—a®— o?
E; (2,0)=—5-= S [#] ’
& TEQ p T+
(29)
E, (z.0) = oV aq [ 2x0
e = "0 T e rers ]’
Figure 4 shows the transverse electromagnetic field of TEM mode cavity.
With application of dp/dt = Ploq(E + v x B) and v = f[ea, the equation of motion is
dp.. i
% = pqu: (2, 0) cos (ky) sin (wt) ,
dp, q Be ) . i
E = e (z, o) sin (ky) cos (wt) , (30)
dp. ¢ ] ;
=t EE,, (2, a) cos (ky) sin (wt) .

Note that p is normalized by po. The horizontal electric field £, has a maximum value at the origin (x,0) = (0,0). The
vertical electric field E, has a minimum at the origin. Momentum changes, Ap, and Ap,, are expected to be small or
negligible, compared to horizontal momentum change. At small horizontal displacement, i.e., x =~ (), the horizontal electric
field is E, (0,0) = %’5 ;2%5 As a test particle passes through the cavity, the particle will experience the spatial and temporal
variation of field. Assuming that the reference particle is synchronized with the cavity wave, the equation of motion in Eq.
(30) can be rewritten by, for a particle with a longitudinal distance z from the synchronous particle,

dp: _ 4 : s (EaYEl -

T Zn E. (z, Bet) cos (ky) sin (w (t ﬁr)) -

dpy, g Be N L 2@y 2

— = p¢_; Z_u E, (2, Bet) sin (_)\ )ws (w (t Fc)) . 31
dp;_q v RAEY Ane ek g Y

&= I'—JuEa (x, Bet) cos (ky) sin (w (t ,6(:)) .

The reference particle passes through the cavity gap in time t € nTy+ (=L, /28¢, L, /2/3c), where L, is the cavity gap width
along the o direction. In Eq. (31), the temporal variable ¢ is synchronized with on-momentum particle in the center of the
cavity, i.e., the reference particle sees zero field at £ = nT or simply t = 0. Off-momentum particles see temporal variation
of field different from the field variation which on-momentum particle sees. Hence, t is replaced by t — 4-, and o is by Bet.
The cavity kick for a particle per passage is not available for analytical formula.

In a real application, the electric and magnetic fields are not given by a functional form, for an example, such as Eq. (29).
The fields are given by numerical data at finite number of grid points. In order to simulate the real application, we generate
the electromagnetic fields using Eq. (29). The spatial domain is —0.1 < 2 < 0.1, 0.1 <y < 0.1, and —L,/2 < z < L, /2.
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[ Parameter | Unit | Rectangular shape | Wire model |

Frequency of m mode MHz 400 400

A/2 of ®# mode mm 374.7 374.7
Frequency of 0 mode MHz 411.0 -
Nearest mode of 7 mode MHz 411.0 -

Cavity reference length mm 4447 4447

Cavity width mm 300.0 300.0

Cavity height mm 383.2 383.2
Bars length mm 330.0 -
Bars width mm 55.0 -

Aperture diameter min 84.0 84.0
Deflecting voltage (V) MV 0.375 -
Peak electric field (Ep) MV/m 22 -
Peak magnetic field (Bp) mT 7.9 =
Bp/Ep mT/(MV/m) 3.6 -
Geometrical factor (G = QRs) Q 74.1 -
[R/Q]r Q 313.34 =

Table I: Cavity parameters. The parameters of rectangular shape is taken from [2].

The number of grid points is (N, N, N.) = (20, 20,40). Table I summaries the parameters of cavity. We use the cavity
parameters: the cavity frequency f = 400 MHz, the cavity length L, = 0.4447 m, the cavity width W, = 300.0, the cavity
bar position a = 0.125m, the cavity height § = 0.3832 m.

3) Parallel bar model (Numerical field data from ODU): The electric and magnetic field of actual cavity design contains
all vector components, i.e., E = E.& + E,fj+ E.z and H = H,& + H,j + H.Z. In general, the electric and magnetic fields
are

E(z,y,2,t) = E(z,y, Bct) sin (w (t 2 )),

pe (32)
H(z,y,2,t) =H(x,y, Bct) cos (w (t - -I%'-)) :
Then the equation of motion becomes
%Ei{ = pinEI (z,y, Bet) sin (wt (—%)) - qp—?iffy (z, ¥, Bet) cos (w (t - ﬁ)) ;
dp q A z gBe 1 z
TEE = p—ﬂEy (z,y, Bet) sin (w (t - E)) e (@, y, Bet) cos (w (t = 57)) ’ (33)
dp.

_ 95 (n ; = A,
=l pOE,, (2, y. Bet) sin (w (t BC)) !

Figure 7 shows the cavity kicks which are calculated using the electromagnetic field data of JLab design at y = 0 plane.
The cavity kicks are calculated in domain —0.05 < a < 0.05, —0.05 < 2 < 0.05, and —0.23 < z < (.23 in units of meter
because the aperture diameter of the cavity is 0.084 m. The increment of grid points is 0.01 m. The number of grid points is
(g, ny,n2) = (11,11,47). Parallel wire and parallel bar models show the same result (see Fig. 5 and Fig. 7).

Implementation in the bbsimc: The electric and magnetic field data obtained from the ODU should be rearranged in order
to use them in the bbsimc code. First of all, the aperture which a beam particle passes through is much smaller than the
cavity dimension. The field data inside the aperture is only required. Second, the field profile does not depend on a RF voltage.
Therefore, the field data is extracted in domain —0.05 < x < 0.05, —0.05 < z < 0.05, and —0.23 < z < 0.23 in units
of meter because the aperture diameter of the cavity is 0.084 m. The cavity kicks are calculated in the domain. In order to
determine the field strength, the transverse deflecting voltage is defined as

L2 1/2
VT.rmu = (f dz |E (0, 0, 2)|2) . (34)
)
The value of the cavity kicks is adjusted by
Ap;ﬂ e = Ap:l: Y.z X V;:C ) (35)
: T VT.rms

where V.. is the cavity voltage.
» Check symplecticity from the Jacobian matrix for different grid sizes.



(Draft version) Symplectic map of crab cavity H. J. Kim (hjkim@fnal.gov)

6 - e — -
:: a} — x=0.05a
0 *‘!; 0
= Sy |
-2 <
i -3 -4}
-15—-10 -05 00 05 1. E -1 -6 : . ; ‘ i :
5 =20 -15 -10 —05 00 05 1.0 15 20
4/(!
z/a
(a) (b)
X101 02107 | ——
3.2 — x=0.05a
24 - .
1.6 B
0.8 e
0.0 = 0.0
0.8 4
-186 —0.5
=24
=HI=10:=05 00 B 101 =53 1096 =15 10 —05 00 05 10 15 20
z/a z/a
(© (d)
24 0.6 T T —T T T T
ool 2 04} —
“_:3 éé ';' 0.2 — x=0.28
« 02 . o
~ 00 0.0 w00
" _p2 —0.6 2 9
~0.4 ; oy =t p
~0.6 e —~04}
~08 -1.8
-15 =10 =05 00 05 10 15 —24 —06 i : " . . .
z/a : =20 —15 —10 =05 00 05 1.0 15 20
z/a
() n

Figure 5: Plot of the cavity kicks which are calculated using the functional form of the electric and magnetic fields at y = 0
plane: (a)-(b) horizontal kicks, (c)-(d) vertical kicks, and (e)-(f) longitudinal kicks. In this plot, 3 = 1, w = 400 MHz, the
cavity gap L, = 0.4447 m, the bar position a = 0.125m, and the cavity height % = 0.3832 m are applied.
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APPENDIX
A. Hamiltonian
The Hamiltonian in the natural coordinates (x, y, s) is given by [3]
moc? ,
H= ————+ q¢. (36
g q9 )

The Hamiltonian 7 is the sum of the mechanical and field energy. The Hamiltonian of charged particle in an electromagnetic
field is given by

r 211/2
H (2,4, 8,DesPys Pst) = ¢ [mi + (p— gAY’ + a0, @7
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Figure 6: Plot of the difference of crab cavity kicks calculated by the functional fields and the numerical data at grid points at
y = 0 plane. In this plot, # = 1, w = 400 MHz, the cavity gap L, = 0.4447 m, the bar position a = 0.125m, and the cavity
height 3 = 0.3832 m are applied.

where the longitudinal momentum is p,/ (1 + h,x + h,y) for the curvatures h, and h, in the x-direction and in the y-direction
respectively. Usually in accelerator physics, the arc length s of the design orbit is introduced as independent variable. The new
Hamiltonian is

K (3:; Ys by Py Py —H, 3) =—Ps,

1/2
=—(1+ hez + hyy) [é (H — ed)® —m3e® — (D= — qAz)? — (py — qu)""] (38)

— (1 + hez + hyy) gA..
Now, ¢ and —H form a pair of new conjugated canonical variable. The equation of motion is
de 9K dy 0K dt aK
ds  dp,’ ds Op, ds O(-H)
dp. _ 0K dp, _ 0K d(-H) _ 0K

(39)

ds  dz ds Oy ds ot

In the following we choose a gauge with ¢ = 0 (e.g. Coulomb gauge). Instead of using ¢ and 7, we introduce new variables

(—ct,m),

E-E
Ey

n= (40)

10



(Draft version) Symplectic map of crab cavity H. J. Kim (hjkim@fnal.gov)

10 — T T T T
6.0
15 —_ B
3.0 =
1.5 & o
0.0 &
~16 q _g
g -3.0
—4.5
\m - ey L 1 i L i
I i —6.0 lﬂﬂﬁ =02 =01 0.0 0.1 0.2 0.3
z[m)
(a) (b)
1e-05 T - T T -

1e-05 — =0

96-06 —~ se06f | Ximm %:
60-06 S

3e-06 & 0e+00 |

Oe-+00 (S;: %

-36-06 ezl

66-06 i

A -9e-06
z|im - 1 . : I !
] -1e-05 1808 0s =0z —o1 00 01 02 03
z[m]
(©) (d)
0.6 . : . .
0.8 — x=0
0.6 Gt —  x=10mm
3 = 02 —  x=20mm
— el 0.4 5 0
I B, 0.2 S oo} N\ Za
01 bt e 4 —0.2 < -02 v
-02 -01 00 0.1 0.2 —0.4 04}
. 06
zim -06 L L " "
[m] -08 203 -02 -01 00 01 02 03
z[m]
(e) (H

Figure 7: Plot of the cavity kicks which are calculated using the electromagnetic field data of JLab design at y = 0 plane:
(a)-(b) horizontal kicks, (c)-(d) vertical kicks, and (e)-(f) longitudinal kicks. In this plot, § = 1, w = 400 MHz, the cavity gap
L, = 0.4447 m, and the cavity height ’—3 = 0.3832 m are applied.

where the particle energy £ = H, and the design energy Ey. The Hamiltonian becomes

- 1
K (z,y, —ct,pz,py.m,8) = —K,

Po

q ’ q are
= — (14 hez + By T ) = [ === | =B~ ==4, (41)
(1+hez+ yy)[( +1) (p - ) (p_., = ,)]
— (1 4+ hez+ hy¥yp) {—IA,,.
o

Here po and E; are the design momentum and energy, po = Fofp/c. In general, E = mgvyc?, p = moyv, v = moc?/E =
1/+/1— 32, and 8 = /1 — (moc2/E)*. The new variable 7 is

. 1 2 moc2\ *
n= % Q+n)" - o ; (42)

Since the variable t increases without limit, it is more useful to introduce the variable z = s — ¢f which describes the delay
in arrival time at position s of a particle traveling at the speed of light ¢. The canonical transformation can be achieved using
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Figure 8: Plot of deflecting angle due to (a) TM-mode crab cavity and (b) TEM-mode crab cavity. Top plots show the initial
distribution. Bottom plots show the distribution after crab cavity kicks. To illustrate the deflecting angle, large cavity voltage
is applied. The same crab voltage is applied to TM and TEM cavities.

the generating function

F3(Z,9, 2, Dz, Py 8) = —DzT — Py — 20 + 37, (43)
which gives transformations: |
i -—3—:;: = y=y -—-ct=z-—s, -
_ OFy N H
Pz = — =Pzy Py=Dy, T=T1

Finally we get the Hamiltonian [4]
2 2y 1/2
(p- - 24:) + (py— £4)

H (%, Pz Y, Py 2,0:238) = — (L + F(p2)) (1 + hez + Kyy) | 1— 3
1+ f(p:))” (45)

[y
— (14 hyz + hyy) L3S
Po
Here we define f (p.) = 7 and p. = n/53. h, and h,, denote the curvatures in the 2-direction and in the y-direction respectively.
Ag, A, and A, denote the vector potentials. The longitudinal coordinates (z, p.) are defined as gs — pt, 7;51]). The variable
2 describes the delay in arrival time at position s of a particle and is the longitudinal separation of the particle from the center
of the bunch. The quantity 7 is the relative energy deviation of the particle defined by n = AE/Ey. Ey is the design energy.
The relative momentum derivation 77 = f (p.) is defined as

By )
Po Po
1 2 -m.;,r'2 )2
=—14/(14+7)" — !
z (1+m) ( o

0

1 2 moc? %

- l+3213'—( ) —1,

F‘jll \/( lrlll ) EO

V14 2p. + B2p2 - 1. (46)
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Note that 'y = %g’ = 1/4/1 - B2, B =+/1—7"2, E = mgyc?, p=moyv, and design velocity vo = ¢fo. 1+ 1) = f; The
corresponding canonical equations read as

d _ om d oM

ds’ op,  dstr T oz’

d oH d OH

iR L . .} 47
as’ = " op, as™ T T ay L
d M d OH

—z=4—, —ps = ———.

ds ap. ds 0z

In order to utilize this Hamiltonian, the electric field E and the magnetic ficld B or the corresponding vector potential
A (x,y, z;8) for the accelerator elements must be given. Once A is known, the fields E and B may be found

B=_92 _pgela 48
at “Caz a8
and B=V x A,
1 a a
B,=—r 1+ h. hyy) A —A, >,
l‘f"h:ﬂ:'f‘h'yy{()y [( + heT + UU) ] ‘5 ?}}
B—; EA —l[(l+f1:1:+h?)A] (49)
YU l+4 hazt+hyy | OsT" Oz * ulleste] (s
o 0
B.=—A,— —A,.
oz Y oy
Since the transverse momenta are much smaller than the total momentum p, i.e., |p, — ;ﬁ;AT < ﬁ:—) and ‘ Py =il =
one can expand the Hamiltonian up to second order in p.., py:
2 2
H=p:— 1+ f(p)) A+ ha + kyp) 1—1(191 ~ ) + (puﬁ )
' = 2 (1+ 1 (p:))*
- = . d
— (1 + hpa+ hyy) —As,
C Do
2 2
(p—F54e) +(p— %A
81 + Rt 4+ k)
2(1+ f(p=))
¢
Dz — (1 + hu:-')" i h"yy) (l + f (pz) + I‘%As) . (50)
0

For an example. the vector potential A of common accelerator elements such as bending magnets, quadrupoles, skew quadrupoles,
sextupoles, octupoles, solenoids and cavities can be written as:

1 1 . ) :
2 4= —5 (@ +hez + hyy) + 59 (y* — 2*) + Nay — = (2* — 32y®) + % (y* — 62%y% + 2%)

Poc
1 L ¢V (s) 2
—i= C h— )
5(2; 3rh Eo cos | h i 2+
2 4= ~Hy, (51)
i’)n(
—Ay = +Hz,
poc

where £ is the harmonic number. Above abbreviations represent:
1) bending magnet: h2 + h # 0.

2) quadrupole: g = & (Trl) o
3) skew quadrupole: N = § -1 (%Ef - QE%)
B

4) sextupole: A = e (T_r,”-

- z=y=0

5) octupole: = 1737 (Oﬁfl y
E=y=
6) solenoid: H = % —LB (0,0,8)

7) main rf cavity: I; 0.

13
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B. Lorentz force
Let us derive the Lorentz force equation from the Hamiltonian. The canonical momentum is defined by
p=mv+ lA:mE 5 LA, (52)
Po dt  po
The time derivative of canonical momentum gives
dp; =md’2$" qd, dx g (BAi
dt dt2  podt’ " dt2  py \ Ot
where the subscript i represents the coordinates i = x, y, z. From the Hamilton equation,
dp; oH
ds 9z,

(p—;,"';A).qu (pz_':fEAZ)gaAz q 9A;

+(v- V) A) , (53)

TIT7@) podm 1+ 7@ o 0w | po 0w "
Using z = s — vot and ds = vodt, Eq. (53) and (54) gives
e i (%1 n).
Note that py = muvy. Since p — ;;%A = 1‘—:, Yo (p - %A) becomes v. Then, above equation becomes
mG TG o T Gm et o L9t IA):
=Bt [T e~ O VA (0= 5 7G) B
~ Lprxm) e L [ LDy SR (- ) O (56)
where E; = f;—fg%‘%l and (v x B), = v - g—f‘: — (v - V) A,. Now, consider special two cases: (1) TM mode cavity (v = vp2

and A = A.2), and (2) TEM mode cavity (v = voZ and A = A, & + A.2). Since v - §2 = vp%2= and v, = vy for both
cases, Eq. (56) becomes
d q

—P=—(E *.B), 57
R (E+v x B) (57)
where P is the mechanical momentum normalized by po. (Think: Above result is only applicable for a design orbit particle.
For a design orbit, v, = v, = 0 and v = po/m2 = vo2. po = (p2 +p} + pﬁ)]/z. However, in general, p, # 0, p, # 0. and
p= # 0.).

C. TM mode cavity - Hamiltonian
D. Horizontal crab cavity

Since there is only longitudinal electric field in the TM110, one can get the vector potential of TM110 mode using Eq. (48)
and (4)

A, (z,y,0,t) = éEng (%r) %sin (wt = %z) : (58)

Since the Hamiltonian is described by the longitudinal coordinate s instead of time £, the vector potential should be expressed
by, in terms of s = fet,

A (z,y.0,8) = iEOJl (%'r) %sin (% (s — z)) . (59)

14
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Note that z is the longitudinal distance from the synchronous particle. As above, the reference particle is synchronized with

the cavity. Equation (47) gives the equation of motion:
d Pr

El#lﬂ’(pz)_’ _
d g A (§7) a 22 (e ?] . (w
& e ( 2y J2(E’°) e o (L ol

iy - Py
ds L giDe)’

i a. a.. 60)
d 4 Ju(5) a J (%) | 2y & {
dr= “ﬁEﬂ (—2 - (Er‘) = =y r—qln (ﬁc (s— z)) !

i

d__ : i+ :
dsz = (1 - —_2 (1 s f_(p_ z')')g) f (pz) ,

& w
p. = EJ(—-')—,.‘—.— _
s = W 01 )2 cos(ﬁc(s z))
Here o/ R = w/c is applied. The reference particle passes through the cavity gap. i.e., s € sy + (—A/2, A/2), where X is the
cavity gap width. The cavity kick for a particle per passage is

Arx=Ay=A
e [(B(E) o) e (g eR] e
Aps = E [( <y Sz (RT) = 4 Zr 72 Sch’
Ve | [N (FT) o Ji(F7) | 2y . we (61)
Ap, = i3 [( o Ja (Er) - o - smﬁ—(:,
Ap, = @Vee 1 (ﬁr) ﬂ(‘.osE

where gV,.. = qEyAT is the crab cavity voltage, T = sin (;‘H)‘ ) / ( s ﬁ() the transit time factor, and £ = pgc the beam energy.
Equation (61) is the same as Eq. (8).

E. Vertical crab cavity
For a vertical crab cavity, one can get the vector potential of TM110 mode by replacing ¢ as ¢ + 5 into the longitudinal
electric field in Eq. (4)

Ag (2, y,0,8) = éEuJ-l (a%) %sin (% (s — z)) . (62)
Note that z is the longitudinal distance from the synchronous particle. E;quation (47) gives the equation of motion:
d d d
PP e

d _ 495 LAY
oo =B [ (o)) Hsin (5 (5 2)),
3 (63)

d

N W
dsp,, pﬁcEO]l (QR) - (‘-()S(Bc (s—=z)

The reference particle passes through the cavity gap, i.e., s € sg + (—A/2, A/2), where X is the cavity gap width. The cavity
kick for a particle per passage is

8o =T [~ (oz) 2 (07)] (o) (o) sin e,

R
8oy =2 [(ag) " i (o) = (o)™ 72 (o) (o) sm %2, (64)
Ap, = l[‘;;?c (a%)—l Jy (ct}%) ﬁ—gcobg—z.



(Draft version) Symplectic map of crab cavity H. J. Kim (hjkim@fnal.gov)

where qV.. = qEpAT is the crab cavity voltage, T' = sin (5“%";) / (-2-‘%_) the transit time factor, and E = pyc the beam energy.

In the small beam size. i.e., 7 < 1, Eq. (64) can be approximate

_ Ve [_Lray? 1 oy, o sin 2
Ap, = E [ 4(R) +24(R) &° Fivsie a,ysmﬁc,

_qf/;c ,l 22 L SRRy i 34,.4L,4 . WZ 65
Apy =% [l S(R) (2 y)+9(i(R) (&% ~9) +--- | sin 7, (65)

qVec 1732 f g 1.4 1 (1)4 a4 1 4 wy w2
Aps= 1-=-(= g — = — (= T —= ver [ =S 08—
v="g { () (@-3)+5%(®) (= -5)+ Be “® Be
In order to make the approximate solution be symplectic, Eq. (65) is rearranged in higher order terms. Note that the radius

of KEK crab cavity is 2 = 0.433 m and o = 3.832. At the (proposed) crab cavity location of SPS, the rms beam size is
o, = 0.91 mm.

E Scalar and vector potential
The homogeneous Maxwell equations

V:-B=0 (66)
and
B
E+— =0,
VxE+ 5t (67)
imply the existence of scalar and vector potentials through which E and B may be expressed as [5]
adA
E=-V¢p— —
¥ ot (68)
and
B=VxA. (69)

That is, if E and B satisfy Eq. (66) and Eq. (67) then we may find ¢ and A such that Eq. (68) and Eq. (69) are valid.
Conversely ¢» and A may be expressed in terms of the corresponding E and B. The expressions for ¢ and A are not unique,
however, because the gauge-transformed potential ¢’ and A’ are

g o dx
¢ =0+5 (70)
A'=A-Vy,

where x is an arbitrary smooth scalar, given the same E and B.
Consider the averaged magnetic field for TEM mode cavity of parallel plate (see Eq. (15)):

2 _ L/‘ijc 2z
Bz(‘rl&;sin (ﬂ)f dt cos (w (t— —)) .
o A —L/28¢ Be
= r‘rlé‘ 3 sin L sin 4y 08 e
= 28¢ ) x )%\ Be )

= B Bl | =8 Yooon |22
,gﬁc,‘,&]Tsm( 3 )Loh(ﬁc). (71)

Equation (71) does not satisfy with V- B = 0.

G. Useful formula
The unit vector in cylindrical coordinates (r ctv a) is related to the Cartesian basis (Z, 7, §):
7 = cos O + sin ¢y,
é = —sin ¢ + cos ¢,

8.

s
Il
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Poog s

d 4
B=VxA=|23 % 2 |

Ar Ay A,

_(0A, 0A,\ . i DA, E)Az i A, BA
T\ Ay 8z ) 0z dx Y ('11 91; &
Ax(BxC)=B(A-C)-C(A-B)

—d—]ju (tiz) = aPp— (o) — %Jp (azx),

dx

d D

d—.]r, (ax) = —aPy (0x) + jJ,, (o),
d

i Jp (ax) = ( p—1(az) — Ppy1 (ax)),

cos{a £ b) =cosacosb Fsinasinb,
sin (a 4 b) = sinacosb £ cosasinb.

A/%Csin(w t-—))dt L loonl] 2 B [ O 2
[—A/aﬂc ”0( ﬁ w (ws (Qﬁf’ 50) i (2ﬁc' * Bﬂ))'
.. 2 wA) . (wz
T (26 ) (ﬁrf)
e 1 wA | wz
N O ) L C (— : —) v (5 +55))
_2 iye
= ;
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