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A bstract 

In thi s paper two Iypes of crab cavity an: introduced, which arc TM and TEM mode caviLies. The equation of motion of 
both cav ities is obtained from Lorent/. force and Hamiltonian respecti vely. The equation of motion is solved using thill-lens 
approximation. 

I. CRAB CAV IT Y 

Consider elec tromagnetic waves confined 10 the interior of a hollow pipe, or wave guide. We assume thai the wave guide is 
a perfec t conductor. so that E = 0 and B = 0 inside the material itself. and hence the boundary conditions at the inner wall 
are 

B 1. = O. 

We are interested in monochromatic waves lhat propagate down the lube. so E and jj have the generic form 

E (J: , y, z. t ) = Eo (.c. 11) e,(b - w t ), 

13 (x , y , z . t ) = 130 (x, y) e , (b-wt ). 

The electric and magnetic fi elds must sati sfy Maxwell's eq uations ill the interior of the wave gu ide: 

\7 · E = O, 
aB 

\7 x E =--at . 
1 aE 

\7 · B = 0, \7 x B = 2D' c t 

( I ) 

(2) 

(3) 

The problem is (0 find functions Eo and 130 such that (he fi elds. Eq. (2). obey the differential equations. Eq. (3) , subject (0 

boundary conditions. Eq. ( I ), It su ffices 10 determine (he longi tudinal components E z and B z: if we know those, we could 
quickly caJcu lmc all the olhers. just by differentiating. If E z = 0 we call these TE (" lfansverse electric") waves: if Bz = 0 they 
are called TM (""transverse magnetic") waves: if both E z = 0 and B z = 0, we ca ll them TEM ("transverse elec tromagnetic") 
waves. 

A. TM mode caviry 
The TM 110 mode in a cy lindrica l geometry is shown in Fig. I . The elec tromagnetic field of TM 110 mode in a cylindrica l 
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Figure 1: TM 110 mode in a cylindrical geometry. There is no e lectric fie ld along z-axis, bUI only verlical magnetic field 
appears. The veflicaJ magnelic fi eld gives a deflecting kick. 
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The time transit factor T ari ses from the fact that a partic le passes thro ugh the rf gap within a finite time interval so that the 
energy gain is the time average of Lhe electric fi eld in the gap during the transit time. Since the transverse beam size is much 
smaller lhan the cavity diameter. i.e., -n « 1, the Besse l function can be expanded as 

00 (_ I)" (1 )2"'0 
Jo(x)= ,~om!r (m +"'+ I ) 2x 

1 1 3 1 5 
J, (x) = 2X - 16x + 192 x . . , 

(9) 

1 2 1 4 h (x) = ilX - 96 x + ... , 
where r (n) = (11. - 1)1. Then Eq. (8) can be approximated for small amplitude beam as follows 

qV" [ 1 ( "' )2( 2 2) 1 ( a )' ( 4 4) ]. wz !J.Pr = E 1 + il R J; - Y - 96 R x - Y + . .. Sill {3c' 

qV" [ 1 (a)2 1 (a)' 2 ] . wz !J.py = E -4 R + 24 R Y +... xy sm {3c' ( 10) 

!J.1J, = q~c [1- ~ (~) 2 (_ ~X2 + y2) + 916 (~)4 (- ~x, + y,) +] ;CX C08;~. 
(n order to make the approximate solution be symplectic, Eq . ( 10) is rearranged in higher order lenus. Note thm the radius 
of KEK crab cavity is R = 0.433 m and '" = 3.832. At the (proposed) crab cavity location of SPS, the rms beam size is 
(J:r = 0.91 mm. 

A s a check, let's see the equation of motion of particles whose transverse amplitude is small . At coordinates (x, y , s) = 
(0 , 0 , s), the electromagnetic fi elds are given by 

Ex = Ey = B:r = B II = 0, 
1 . 

By = -2 Eo 8 111 (wt) , . c 
Eo w E, = -0 -x cos (wI ). 
" c 

Note that Br and Btl> give the vertical magnetic field at. r = 0. Then one can get the equation of rnotion: 

dPr = - -q-Eo{3csin (w (t -~z)) , 
<it 2Poc {3c 

dpy = 0 
dt ' 

dp, = 'lEo wx cos ( w (t -~z)) . 
dt 2Poc {3c 

( II ) 

( 12) 

As above, it is assumed that the cavity field is synchronized with the beam bunch. i.e .. a synchronous part.icle sees the sine 
wave wi thout a phase. The z is the longitudinal distance from the synchronous particle. T he reference particle passes through 
the cavity gap in lime t E nTo + (-Aj 2{jc. ).. j2{jc). where).. is the cavity gap width. T he cavity kick for a particle per passage 
is 

!J.p, = - ~Eo{3c r"/2fi
C sin (w (t - ; z ) ) dt , 

2poc } ->./2{3c p C 

q c (3c . (WA) . WZ 
=-(;..O-8ll1 - 8 111-Poe w 2{3c {3c' 

!J.py = 0, 
qEo . WA wz 

f)"Ps = - 8 111 --;;- x cos 7.1' Poe 2 ,vc pC 

Here k = w/c. Equation ( 13) can be rewritten by 
qVcc . _ wz 

!J.p, = E Sill {3c 

!J.py = 0, 
qVcc W wz 

!J.p, = E {3cXCOS (3c ' 

where the beam energy E is E = Poc. the cavity energy qVr.c = q£oAT, the transi t time factor T = sin (~) j (Tic ) 
3 

( 13) 

(1 4) 
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Figure 2: Parallel plate waveguide. The beam direction is along ft. 

I) Symplecticity: The Jacobian matrix resulting from Eq. (8) takes the form 

8 (xl , p! , yl , p£ , zf ,pO 
:J = a(xi, p~ .yi ,py,Zi, pD 

= 

10000 o 
hI 1 h 3 0 j2S 0 
o 0 1 000 

j41 0 j4 3 1 j 'l5 0 
o 0 0 0 1 o 

k. , 0 j.3 0 j.s 1 

where the elements of Jacobian matrix are given by 

. op~ 
J21 = - =. ox 
. op{ 

)65= - = oz 
For a symplecticity condition, the Jacobian should satisfy 

f ·S.7 = s. 

Here the matrix S is given by 

~ ), 
S2 

B. rEM mode cavity 

- 1 ) o . 

H. J. Kim (hjkim @fnal.gov) 

1) Para/lei plate: Equation of motion from Lorentz force: The wave guide of parallel plate gives a TEM mode wave, as 
shown in Fig. 2. The electric and magnetiC fi eld of TEM waveguide in parallel plate are given by 

. (27rY) E (x , y , O", t ) = x&o cos T Sill(wt), 

• &0 (27rY) B (x , y, 0", t) = 0" Zo Sill T cos (wt) . 
( 15) 

Note that the TEM wave propagates along the y di rection. With application of dp / dt = ;1;;'1 (E + v x B ), the equation of 
motion is given by 

dp. q&o . -d = - cos (ky ) SID (wt ) , 
t Po 

dpy = 0 
dt ' 

dp, = O. 
dt 

( 16) 

Here it is assumed that the cavity field is synchronized with me beam bunch, i.e. , a synchronous panicle sees the sine wave 
without a phase. The z is me longitudinal distance from me synchronous particle. The off-momentum particles see the wave as 
Sill (w (t - z/fjc)). We assume that the reference particle passes through the cavity gap in time t E nTo + (-L / 2fjc, L / 2fjc), 
where L is the cavity gap width. Then we can get a cavity kick for a particle per passage. 

qVcc ( . wz tJ.p. = - E cos ky) Sill fjc' tJ.Py = 0, tJ.p, = 0, (17) 

4 
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where the beam energy E is E = po!3c. the cavity energy qVec = q£o)..T. the transit lime factor T = sin ( ~d~ ) / ( ~t~ ). In 
order to verify the sympJecticity condition of Eq. ( 17). one can get the Jacobian 

where j23 = 1ffk sin (ky)sin ('rc ) 

a {x l ,r/., yl, p£, zl , pO 
:1 = 8 (x., p~ .yi, p~.Z1. pD 

1 0 0 0 00 
01i23 0J .. O 
00 1 000 
000 1 00 
00 0010 

= 

0 000 0 1 

and i25 = -~ fir cos (ky) cos Tc ' Then one can get 

0 0 j23 0 j 25 0 
0 0 0 0 0 0 

fI'SJ - S = - 123 0 0 0 0 0 
0 0 0 0 0 0 

- 125 0 0 0 0 0 
0 0 0 0 0 0 

The eq uation of motion in terms of mechanical momenLum does not satisfy the symplectici ty condition. However, the 
symplecticity condition is satisfied in the canonical coordinates. because the horizontal canonical momentum !::J.Px = 0 (see 
Eq. (25)). 

Equation of motion from Hamiltonian: Let us consider the Hamil tonian lO derive the equation of motion in the para llel plate 
of TEM mode. 10 the TEM mode of paraJlel plate. the vector potential experienced by a test particle moving with a velocity 
/lc is 

A (x,y,z;s) = xAx (y, t ) = x: cos C:y
) cos ( ;c (s - Z» ) . ( 18) 

The Hamiltonian of TEM mode cavity is given by 

(P7 _ ~A~ ) 2+ p~ 
11. = 2 (l+f (p, )) + p,- f (p, ). ( 19) 

Canonical transformation is applied in order to remove the vector potential term in (Pl: - ,;Ax) 2 . The transformation is made 
via a (type 3) generating function G (x , fj,z' PJ:, Py, Pz iS) : 

G (x, ii, Z, Px, Py , P,; s ) = -xp, - ypy - zp, + xJ.. Ax. 
Po 

_ _ _ _ lJEo ( W ) 
= -xPx - ypy - z p, + x Pow cos (ky ) cos /lc (s - z) . 

The generating function gives 
x=_ oG =x oG q 

oPx ' 
oG _ 

l ' - - y ., - - oP. -.' 
z=_oG =z op, , 

P.c = - ax = Px - Po A 7 • 

oG 
py = - ay = Pz, 

oG 
pz = - at = p,. 

Note that P:1; . py , and pz are the mechanical momenlum. New Hamiltonian it is given by 

- oG 
11. = 11. + as ' 

P; + P; f () qEo - (). (w ( )) = 2 (1 + f (pz)) + p, - p , - Po/lc xcos ky Sill /lc S - Z . 

The new Hamiltonian is 

1 Pr + Py qEo _ . w 2 2 ( ) 11. = 21 + f (p,) + p, - f (p,)- Po /lcxcos(ky )sm /lc(s - z) . 

5 

(20) 

(2 1) 

(22) 

(23) 
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x= - a 

H. J. Kim (hjk.im@fnal.gov) 

x=+a 

Figure 3: TEM mode waveguide of parallel two lines. The beam direction is along &. 

Then one can gel the equation of mOlion using Eq. (47) 
d _ {)H p, 
ds X = + -{)p-x = :-l -c+.!:.j"'(P'--z'- )' 

-P. = -~ = -- cos (ky) Sill - (s - z) , d {)H q&o . (w ) 
~ fu ~~ ~ 

d 81i P-
dsY =+{)py = l +f(Pi)' 
d {)H 
~Py = - {)y = 0, 

~%-+ 81i - 1 - (1+ P;+P~ ) j'(P_) 
ds - {)Pi - 2 (1 + f (p.»2 z , 

d {)H 
ds Pz = - {)z = o. 

Using the thin-lens approximation of the cavity, one can get the solution of Eq. (24): 

.6.x = 0, 

6.y = 0, 
6.% = 0, 

Qllcc (). (wz) l:l.pz = --- cos ky sm - , E $c 
tJ.IJy = 0, 
l:l.pz = 0, 

(24) 

(25) 

where the beam energy E is E = IJoi3C. the cavity energy qVcc = q£o>.T, the transit time factor T = s in (~.B~ ) I (;t). 
Equation (25) is the same as Eq. ( 17). Nole thal6.px = A{ - A~- ~cos(kY)Sil1( rc) = 0. 

2) ParaJJeJ wire: The electric and magnetic fields in a TEM resonant structure are 

( 2rry) E (x, y, (J, t) = E (x, (J) cos T sin (wt), 

B (x,y,(J,t) = E ~~(J) XYSinC:V)cos(wt). 
(26) 

Here Zo = ~~ = ~ = "/€o/lo = l ie. Note that temporal term in Eq. (26) is different from [I]. coswt gives the deflecting 
kick, i.e., the amplitude of kicks is maximum at the 10ngitudinaJ center of the beam. It is assumed that two infinitely long 
lines are parallel to the y-axis, and crossing the (x,O") plane at x = ±a, 0" = O. and carrying uniform linear charge per unit 
length q, as shown in Fig. 4. Note that the TEM wave propagates along the y direction. The potential is given by 

q (r:') V(x,(J) = --ln 2" ' 
41r£o r + 

(27) 

where 

(28) 

6 
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Figure 4: Transverse electromagnetic field of TEM mode cavity: (a) elecUic fi eld, and (b) magnetic fi eld. The two lines are 
localed at (x, y) = (±a, O). 

av aq [x2 _ a2 _ u2 ] Ex {x, a) = --{) = - - 2 2 ' 
X ;riO T_T+ 

The electric field is 

{)V aq [2xa] E.{x.a) =--{) =-- 2""2 . 
(j 7riO T _ T, 

Figure 4 shows the Lr3nSverse electromagnetic field of TEM mode cavity. 
With application of dp/ dt = ;Ioq (E + v x B ) and v = /3ca. the equat ion of motion is 

dp;z; q ill = Po Ex (x,a) cos (ky) sin (wt) . 

dpv q /3c . 
-d = -- --Z E. (x,a)sm {ky)cos{wt), 

t 1>0 0 
IIp, q . -d = -E. {x, a) cos {ky)sm (wt) . 

t Po 

(29) 

(30) 

Note that p is normalized by Po. The horizontal elecUic fie ld E. has a maximum va lue at the origin (x, u) = (O, O). The 
vertical electric field Eu has a minimum al the origin. Momentum changes. 6.Py and 6.ps. are expected to be small or 
negligible, compared to horizontal momentum change. At small horizontal displacement, i.e., x ~ 0, the hori zontal electric 
field is E ,f! (O,a) = ~~. As a test particle passes through the cavity, the particle will experience the spatial and temporal 
variation of fi eld . Assuming that the reference particle is synchronized wi th the cavity wave, the equation of motion in Eq. 
(30) can be rewritten by, for a particle with a longitudinal distance z from the synchronous particle, 

d:; = ~ Er (x,/3ct) cos {ky)siu (w (t - ;,)) , 

d;; = _ ~ ~: E. (x,/3ct) sin (2:Y ) cos (w (t - ;c )) ' (31) 

d~~ = ~ E. (x./3ct) cos {ky)sin (w (t - ;J). 
The reference particle passes through the cavity gap in time t E nTo + (- L./2/3c, L./2/3c), where L. is the cavity gap width 
along the a direction. In Eq. (3 1), the temporal variable t is synchronized with on-momentum part.icle in the center of the 
cavity, i.e., the reference particle sees zero field at t = nTo or simply t = 0. Off-momentum particles see temporal variation 
of field different from the field variation which on-momentum particle sees. Hence, t is replaced by t - -j;. and a is by {jet. 
The cavity kick. for a particle per passage is not available for analytical formula. 

In a real application. the electric and magnetic fields are not given by a functional form, for an example. such as Eq. (29). 
The fields are given by numerical data at finite number of grid points. In order to simulate the real application, we generate 
the electromagnetic fields using Eq. (29). The spatial domain is - 0.1 :-:; x :-:; 0.1, - 0.1 :-:; Y :-:; 0.1. and - L. / 2 :-:; z :-:; L./2. 

7 
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I Un" I I . Shape W,re model I 

~mode i Z 4 400 

La~y re =nee Ien~ · 
mm 444.1 

Lav" y w,Olh mm >W.U 'W.U 
LavUy h"'ghl mm jOn ,.,.1 
" "" lenglh mm 3>O.U · 
" "" w"IIh mm ".U · 

Aperture ",amelCr illm .'.U .'.0 
, vollage (V,.) MY 0.375 · 

Peak eleeIric lield IE p) MY/m · 
Peak magneuc fi eld ( Bp) "'I' · 

BpI 'P fael<), . ) · 

Table I: Cavity parameters. The parameters of rectangular shape is taken from [2J. 

The number of grid points is (Nx> Ny , N ,) = (20,20,40). Table I summaries the parameters of cavity. We use the cavity 
parameters: the cavity frequency f = 400 MHz, the cavity length L IT = 0.4447 m, the cavity width Wz = 300.0, the cavity 
bar position a = 0.125m, the cavity height ~ = 0.3832 m. 

3} Parallel bar model (Numerical field data [rom ODU): The electric and magnetic field of actual cavity design contains 
al l vector components, i.e., E = Bxx + EyiJ + Ezz and H = Hxx + HyiJ + Hzz. In general, the e lectric and magnetic fie lds 
are 

E (x, y , z, t) = E (x, y , /let) sin (w (t - ;J) , 
H (x, y,z, t) = H (x, y, /let) cos (w (t - ;e)) . 

Then the equation of motion becomes 

d;; = :0 Ex (x,y,/let) sin (wt(-;e )) - ~e ~HY(X,y,/let)eos(w(t- ;e))' 
d;; = :0 Ey (x, y,/let) sin (w (t - ;J) + ~e :0 Hx (x, y,/let) eos (w (t - ;J) , 
d;t = ~ E. (x, y,/let) sin (w (t - ;e)) , 

(32) 

(33) 

Figure 7 shows the cavity kicks which are calculated using the electromagnetic fie ld dara of JLab design at y = 0 plane. 
The cavity kicks are calculated in domain - 0.05 $ x $ 0.05, - 0.05 $ x $ 0.05, and - 0,23 $ z $ 0.23 in units of meter 
because the aperture diameter of the cavity is 0.084 m. The increment of grid points is 0.01 m. The number of grid points is 
(n" ny, n,) = (11,11,47). Parallel wire and parallel bar models show the same result (see Fig. 5 and Fig. 7). 

Implementation in the bbsimc: The electric and magnetic fi eld data obtained from the ODU should be rearranged in order 
to use them in the bbsimc code. First of all , the aperture which a beam particle passes through is much smaJler than the 
cavity dimension. The fi eld data inside the aperture is only required. Second, the fi eld profile does not depend on a RF voltage. 
T herefore, the fi eld data is extracted in domain - 0 .05 ::; x .$ 0.05, - 0.05 .$ x .$ 0.05, and - 0.23 ::; z ::; 0.23 in units 
of meter because the aperture diameter of the cavity is 0 .084 m. The cavity kicks are calculated in the domai n. In order to 
determine the fi eld strength, the transverse deHecting voltage is defined as 

Vr,rm. = (jL12 dz IE (0, 0, Z)1 2) 1/2 
- L1 2 

The value of the cavity kicks is adjusted by 

where Vee is the cavity VOltage . 
• Cbeck symplecticily from the Jacobian matrix for different grid sizes. 

8 
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Figure 5: Piol of the cavity kicks which are calculated using lhe functional fonn of the electric and magnetic fields at y = a 
plane: (a)-(b) horizontal kicks, (c)-(d) vertical kicks. and (e)-(f) longitudinal kicks. In this plot, P = 1, w = 400 MHz, the 
cavity gap La = 0.4447 m, the bar position a = 0.125m, and the cavi ty height ~ = 0.3832 m ar'l' applied. 
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ApPENDIX 

A. Hamijtonian 
The Hamiltonian in the natural coordinates (x, y , s) is given by [3] 

moc2 
1i = + qq,. VI - v2 / c2 

(36) 

The Hamiltonian 11. is the sum of the mechanical and fi eld energy. The Hamiltonian of charged particle in an elec[fomagnetic 
field is given by 

_ [22 2] '/2 1i (x . y , S,P,. py, p" t) - C moc + (p - qA ) + qq,. (37) 
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Figure 6: Plot of the difference of crab cavity kicks calculated by the functional fields and the numerical data at grid points at 
y = 0 plane. In Illis plot, (3 = 1, W = 400 MHz, the cavity gap L. = 0.4447 m, the bar position a = 0.125m, and the cavity 
height ~ = 0.3832 m are applied. 

where the longitudinal momentum is Psi (1 + h;r;x + hyy) for the curvatures h;r; and hy in the x-direction and in the v-direction 
respectively. Usually in accelerator physics, the arc length s of the design orbit is introduced as independent variable. The new 
Hamiltonian is 

K (x . y , t,pz, PY' - 1-l , s ) = - PIH 

= - (1 + h,x + hyy) [:2 (11. - e¢)2 - m~c2 _ (p, _ {[A, )2 _ (py _ QAy)2] '/2 
- (1 + h xX + hyy) qAs . 

Now, t and - 1£ fonn a pair of new conjugated canonicaJ variable . The equation of motion is 
dx 8K dy 8K dt 8K - =-, = dB = 8 (-11. )' dB 8)), ds 8py 

dp, 8K dpy 8K d( - 1I. ) 8K 
= di = = 

dB 8x 
, 

8y ds 8t 

(38) 

(39) 

In the following we choose a gauge with ¢' = 0 (e.g. Coulomb gauge). Instead of using t and 1£. we introduce new variables 
(- ct , 1) . 

E - Eo 
1) =~, (40) 
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Figure 7: PIOI of the cavity kicks which are calculated using the eieclromagnetic fi eld data of JLab design al Y = 0 plane: 
(a)-(b) horizontal kicks, (c)-(d) vertical kicks, and (e)-(f) longitudinal kicks. In thi s plot, fJ = 1, W = 400 MH z, the cavity gap 
Lu = 0.4447 m, and the cavity height ~ = 0.3832 m are applied. 

where the panicle energy E == 'H, and the design energy Eo. The Hamiltonian becomes 
, 1 

K, (x, 1), - ct,Px,Py,T).s) = -le, 
Po 

= - (1 +Ii.x + h,y) [ (1 +7j) - (ii. -~ A, r -(iiY - :~ Ay rr2 

q 
- (1 + hIx + hyy) -A,. 

Po 

(4 1) 

Here Po and Eo are the design momenlUm and energy, Po = Eof3o /c. [n general, E = mO"Yr2 . P = mo'l'V. ')' = mot? j E = 
1/~. and f3 = Jl - (moe' / E)2. The new variable '7 is 

i) = ~ (1 +r/)2 - (71';:,2 t (42) 

Since the variable t increases without limit , it is more useful to introduce the variable z = 8 - ct which descri bes the delay 
in arrival time at position 8 of a particle trave ling at the speed of light c. The canonical transformation can be achieved using 

II 
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Figure 8: Plot of deflecting angle due to (a) TM-mode crab cavity and (b) TEM-mode crab cavity. Top plots show the initial 
distribution. Bottom plots show the distribution after crab cavity kicks. To illustrate the de flecting angle. large cavity voltage 
is applied. The same crab voltage is applied to TM and TEM cavities. 

the generating function 

which gives transfonnations: 
oF3 _ 

X = - - - = x Y = ii, - ct = z - s, 
fJpx ' 

_ OF3 
P:r = - ox = Px. Py = Py. r; = 17· 

Finally we get the Hamiltonian [4] 

11. (x ,Px,Y,Py, Z, P.; s) = - (1 + f (P.)) (1 + hxx + kyy) (1 -
q - (1 + hxx + hyY) -A, . 

Po 

(43) 

(44) 

(45) 

Here we define f (P.) == it and pz = 71/ f3'5. hx and h y denote the curvatures in the x -direction and in the v-direction respectively. 
A :.r;, Ay and As denote the vector potentials. The longitudinal coordinates (z, Pz) are defined as (8 - vot , ~1]). The variable 
z describes the delay in arrival time at position 8 of a partic le and is the longitudinal separation of the particYe from the center 
of the bunch. The quantity 1] is the relative energy deviation of the particle defin ed by 1] = i:::J. E j Eo. Eo is the design energy. 
The relative momentum derivation ij == f (Pz) is defin ed as 

f) = E. _ 1 = £lp , 

= 

Po Po 
1 

f30 

1 
f30 

2 (moe2)2 (1 + 1/) - E;; - 1, 

2 (moC2)2 (1 + f35p. ) - Eo - 1, 

12 
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NOIe that 'Y == m~:2 = 1 /~, /3 = } 1 - 'Y :2 , E = mOl'c2, P = mo1'v, and design ve locity Vo = cfJo- 1 + 'if = .1!.... . The 
corresponding canonical equations read as pO 

d {)H 
ds P, = - {)x' 
d {)H 

ds PY = - {)y , 

d 8H 
ds P, = - {)z . 

(47) 

1n order to utilize this Hamiltonian, the electric field E and the magnetic field Ii or the corresponding vector potential 
A (x , y, z; s) for the accelerator elements must be given. Once A is known, the fi elds E and Ii may be found 

- {)A {) -
E = -81 = f30c {)z A , (48) 

and B = \1 x A , 

B x = h 1 h { {){) [(1 + hxx + hyY) A .I - {){) A y } , 
1 + x X +yY y s 

B y = 1 1 I { {){) A x - {){) [(1 + hxX + hv Y) A ,I } , 
1 + tx X + tyY S X . 

(49) 

{) {) 
B r = {)x A y - {)y A x · 

Since the transverse momenta are much smaller than the total momentum p, i.e., Ipx - ....!LAx I « .1!.... and Ipy - ..LAy I « .l?... Poc Po poe Po 
one can expand the Hamiltonian up to second order in P,e, Py: 

( 

1 (Px - ;!- Ax ) 2 + (PY _ * A y ) 2 ) 
H = p,-(1 + / (p, ))(1+hxx + kyY) 1 -

2 
2 + ... 

(1+ I (Pr) ) 

- (1 + hxX + hyY) .'LA" 
Po 

(Vx - #;Ax)2 + (PY- p% Ay)2 
'" (1 + hzx + kyy ) 2 (1 + I (p:) ) 

+ p, - (1 + hxx + hyY) (1 + I(p,) + :0 A,). (50) 

For an example, the veCLOr potential A of common accelerator e lements such as bending magnets, quadrupoles, skew quadrupoles, 
sex tupoles, octupoles, solenoids and cavities can be written as: 

q 1 1 2 2 1 3 2 '" 22 - A ,=--? (1 + h,x +hyy )+-g(y - x) + Nxy- -(x - 3xy) + _(y4 _ 6xy +X4) 
POC " 2 6 24 

1 L qV (s) [ 271" 1 
- f36 271" h ~cos hr;z+'P , 

q 
- A x = - H y, (5 1) 
PoC 

q - Ay = +H x, 
Poc 

where It is the harmonic number. Above abbreviations represent: 
I ) bending magnet: h; + h~ # o. 
2) quadrupole: 9 = ~ (~) . 

PO x=y=O 

3) skew quadrupole: N = 1...!L (~ - ~ ) ... . 
4) sextupole: ,\ = -";; (0;;")" ox, 8y x~y-O 
5) octupoJe: J-L = --::. (8;:1 ) x=y=~ 

PO x=y=O 
6) solenoid: H = 1>ZcB, (0, 0 ,8). 
7) main rf cavity: V # O. 
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B. Lorentz force 
Let us derive the Lorentz force equation from the Hamiltonian. The canonical momentum is defined by 

q dx q p =mv +-A = m-+-A. 
Po dt po 

The time derivative of canonical momentum gives 

dp, _ J'x, .!L !!.A _ J' x, .!L (OA, ( . ) 
dt - m dt2 + Po dt ' - dt2 + Po at + v '\7) A , 

where the subscript i represents the coordinates i = x, y , z. From the Hamilton equation, 
dp, oH 
ds ~aXi' 

(p - f, A) . .!L_oA __ 
1 + 1 (p,) Po AX, 

Using z = s - vot and ds = vodt, Eq. (53) and (54) gives 

(p, - f, A,) q oA, + .!L oA, 
1 + 1 (p,) Po AX, po AX, . 

d;;" = Vo '!' -:0 ( o~' + (v· '\7) A,) . 

Note that Po = mvo. Since p - .!L A = m v . Vo (p - .!LA) becomes v. Then, above equation becomes 
Po Po Po 

m J' x, _ v . .!L oA _ v, q oA, + qvo oA, _ .!L (OA. + v . '\7 A) 
dt2 - l+/(p,) Po AX. l +I (Y,) Po ax, Po ax, Po at ( ) ., 

q q [ v oA ( v' ) OA,] =-E,+- ·_-(v·'\7) A,+ Vo - -
Po po 1 + 1 (p,) ax , 1 + f (y,) ax, ' 
q q [ oA f (p,) oA ( V' ) OA,] =-E, + - v· --(v · '\7) A,- v· _+ Vo - --

Po Po ax, 1 + f (y,) ax, 1 + f (p,) ax, ' 
q q [ 1 (p, ) oA ( v, )OA,] 

= Po [E , + (v x B ),l + Po - 1 + f (y,) V · ax, + Vo - 1 + 1 (p,) ax, ' 

(52) 

(53) 

(54) 

(55) 

(56) 

where Ei = -fo~ and (v x B )i = V· g:: - (v · \7) A i _ Now, consider special two cases: (1) TM mode cavity (v = voz 
and A = A zz), and (2) TEM mode cavity (v = vaz and A = A xx + A zz). Since v· ~A = va¥--- and Vz = Vo for both UXi vX. 

cases, Eq. (56) becomes 

!!.p = .!L(E + v x B ), 
dt Po 

(57) 

where P is the mechanical momentum normalized by PO. (Think: Above result is only applicable for a design orbit particle. 
For a design orbit, Vx = Vy = 0 and v = polmz = voz. Po = (p; + p; + p; ) 1/2. However, in general , Px #- 0, py -# 0, and 
p, '" 0.). 

C. TM mode cavity - Hamiltonian 
D. Horizontal crab cavity 

Since there is only longitudinal electric field in the TM 110, one can get the vector potential of TM 110 mode using Eq. (48) 
and (4) 

1 (a ) x ( w) A, (x, y, (J, t) = ;;:; EoJ, liT -;: sin wt - (3c z . (58) 

Since the Hamiltonian is described by the longitudinal coordinate s instead of time t , the vector potential should be expressed 
by, in terms of 8 = (3et, 

1 (Cl:) X (w ) A ,(x,y,(J, s)=;;:; EoJ, liT -;:sin (3c(8-Z) . (59) 
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Note that z is the longitudinal distance fro m the synchronous particle. As above. the reference particle is synchronized with 
the cavity. Equation (47) gives the equation of motion: 

d ,..-,:-,p"xc,. ----;-
ds x = 1 + f (P.)' 

~Px = - ..!LED [(J' if,r) 
ds PoC "R T 

- J2 -r -+ R sin -(s -z) , ( " ) ) x2 J, (<>.r ) y2] (w ) 
R r2 7fT r 2 {3c 

d py -y-
ds - 1+f (p.)' 

~P = __ 'I Eo [(J' (7) r) _ 12 (.'.'. r) ) _ J, (n r )] xY sin ( -""- (8 _ Z) ) , 
ds Y PoC TI T R ]IT r2 {3e 

(60) 

~z - - (1 + p~ + P~ ) f' ( ) 
ds - 2 (1 + f (p.))2 P. , 

~P. = - q- EoJ, ( .'.'.r) :':' cos ( -""- (s - z) ) . 
ds Pol3c R r {Jc 

Here "/ R = w / e is applied. The reference particle passes through the cavity gap, i.e., s E 80 + ( - ),/ 2, ),/ 2), where A is the 
cavity gap width. The cavity kick for a particle per passage is 

D.x = D.y = D.z = 0, 

A _ qV<c [(J' (f,r) _ J (.'.'. ) ) x2 
J1 (f, r) y2] . wz 

L..l.p x - E ~ 2 RT 2 + 0 2 sm {J , n T r 7'iT r c 

D.P. = q~c [ ( J , ~~r) _ 12 (~r) ) Jdf,r)] xy . wz 
- 0' ZSIl1 -{J , 

nT r C 

(61) 

qVcc J 1 (-nr) wx wz 
D.p. = E Q -{J cos -{J ., 

R r c c 

where qVcc = qEoAT is the crab cavity VOltage. T = sin C~)i'c ) / (;'i'c) the transit time factor, and E = Poe the beam energy. 
Equation (6 1) is the same as Eq. (8). 

E. Vertical crab cavity 
For a vertical crab cav ity, one can get the vector potential of TMII O mode by replacing <p as <p + ~ into the longitudinal 

electric field in Eq. (4) 

A, (x, y , (J , s) = ~EoJ1 ("i) ¥ sin (;c (8 - Z) ) . (62) 

Note that z is the longitudinal distance from the synchronous partic le. Equation (47) gives the equation of motion: 
d d d 
ds x = dsY = ds Z = 0, 

~Pr = - ..!LED [- lz (,,2:.)] x~ sin ( -""- (8 - Z) ) , ds poe R r' {Jc 

~P = - ..!LED [J' (,,~ ) - .lz (a2:.) y2 ] sin ( -""- (8 - Z) ) , 
ds Y Poc a-n R r2 /3c 

(63) 

~p" = - q-EoJ, (,, 2:. ) ~ cos (-""- (8 - Z) ) . 
d8 Po {Jc R r {Je 

The reference partic le passes through the cavity gap, i.e. , 8 E 80 + (- >.. / 2 , >.. / 2), where>.. is the cavity gap width. The caviry 
kick for a panicle per passage is 

D.p, = q~c [- (ai) - 2 lz ("i)] (a~) (,,~) sin ;;, 

~Py = qic 
[ ( aji) - 1 )1 (ai) - (ai) - 2 .h (ai) (a*) 2] sin ;;, 

D.p. = q~c (air' J, ("i) ;>00 ;:' 
15 
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where qVcc = qEo>.T is the crab cavity voltage. T = Sill (;~AC ) / (;~>'c ) the transit time factor, and E = poe the beam energy. 
In the small beam size, i.e., 1lT « I , Eq. (64) can be approximate 

qVcc [ 1 (,,)2 1 (a)4 2 ] . wz 
!:J.p, = E -4" R + 24 R x + ... xy SIn {3c' 

qv"c[ 1(a)2(2 2) 1(0)4(4 4) ].wz !:J.Py = -E- 1 - 8" R x - y + 96 R x - y +. .. Sill {3c' (65) 

!:J.p, = q~c [1- ~ (~f (X2 - ~y2) + 9~ (~)4 (X4 - ~y4) + ... ] ~~ Cos~~. 
In order to make the approximate solution be symplectic, Eq. (65) is rearranged in higher order terms. Note that the radius 
of KEK crab cavity is R = 0.433 m and a = 3.832. At the (proposed) crab cavity location of SPS, the rms beam size is 
ax = 0.91 mm. 

F. ScaJar and vector potential 
The homogeneous Maxwell equations 

'\7 · B = O 

and 
aB 

'\7 x E + Dt = 0, 

imply the existence of scalar and vector potentials Utrough which E and B may he expressed as [5J 
aA 

E = - '\7</> - Dt 
and 

B = '\7 x A. 

(66) 

(67) 

(68) 

(69) 

That is , if E and B satisfy Eq. (66) and Eq. (67) then we may find </> and A such that Eq. (68) and Eq. (69) are valid. 
Conversely ¢> and A may be expressed in terms of the corresponding E and B. The expressions for ¢ and A are not unique, 
however, because the gauge-transformed potential ¢' and A ' are 

, aX 
</> = </>+ at ' 

A' = A - '\7x, 
where X is an arbitrary smooth scalar, given the same E and B. 

Consider the averaged magnetic field for TEM mode cavity of parallel plate (see Eq. (15)): 

B = a~£oSin C~Y) [::~>t cos (w (t - ;c)) , 

= &~£o~ s in ( ;~) sin (2:V) cos (~~ ) , 

= a {3~2£oTSin C~y) cos (;~ ). 
Equation (71) does not satisfy with '\7 . B = O. 

c. Useful formula 

The unit vector in cylindrical coordinates (r.~, s) is related to the Cartesian basis (x, y, s): 
f = cos</>x + sin </>fj, 
J, = -sin </>x + cos</>fj, 
8 = 8. 

16 
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x y z 
{J {j a B = V x A = Ox By [jz 

A x A y A z 

= (OAz _ OAY):i:+ (OAx _ OAz) y+ (OAy _ OAx) i. oy oz oz ax ax oy 

A x (B x C ) = B (A C) - C (A B ) 

d P -d Jp (ax) = aPp _ 1 (ax) - - Jp (ax) , x x 
d P -d Jp (ax) = - a PpI I (ax) + - J p (ax) , x x 
d a 

-[ Jp (ax) = -2 (Pp - I (ax) - Pprt (ax)), ex 

cos (a ± b) = cos a cosb=F sin CLsin b, 
sin (a ± b) = sin a cos b ± cos a sin b. 

H. J. Kim (hjkim @fnal.gov) 

JV2~' ( ( z )) 1 ( (WA Wz) (WA wz )) sin WIIO t -- dt =-- cos --- - cos -+- , 
- '12#0 f3c W 2f3c f3c 2f3c f3c 

2 . (WA) . (wz) 
= - ~ SIll 2J3c sm /3e ' 

J>/ 2#0 ( ( z)) 1 ( (WA wz ) (WA Wz)) 
- >/ 2#0 cos WI.I O t - f3c dt = ;:;; sin 2f3c - f3c + sin 2f3c + f3c ' 

2 ( WA ) (WZ) = :; sin 2!3c cos (3c . 
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