
D. Trbojevic, K.Y. Ngt, E.D. Courant, S.Y. Leet, 
C. Ja,hnstonet, J. Gallardo, B. Palmer, and S. Tepikian 

Brookhaven National Laboratory, Upton, Long Island, NY 11979. * 

t Fermi National Accelerator Laboratory, P.O.Box sod, Batavia, IL 60510. * 

t Department of Physics, Indiana University, Bloomington, IN 47405. 

Abstract 
The muon collider would extend limitations of the e+ e- colliders 

and provide new physics potentials with a. possible discovery of the 
heavy Higgs bosons. At the maximum energy of 2 TeV the projected 
luminosity is of the order of 1035 cm-2s-1 • The collidingµ+µ- bunches 
have to be focused to a. very small transverse size of 2.8 µm which is 
accomplished by the betatron functions at the crossing point of (3* = 
3mm. This requires the longitudinal space of the same length 3 mm. 
These very short bunches at 2 Te V could circulate only in a. quasi­
isochronous storage ring where the momentum compaction is very close 
to zero. We report on a. design of the muon collider isochronous lattice. 
The momentum compaction is brought to zero by having the average 
value of the dispersion function through dipoles equal to zero. This has 
been accomplished by a. combination of the FODO cells together with a 
low beta. insertion. The dispersion function oscillates between negative 
and positive values. 

1 Introduction 

A muon collider will have two µ+ µ- bunches in the same ring with 2 1012 

particles per bunch. The luminosity could be presented as: 

r n N2"' 
r Jrep b µ 1 l035 -2 -1 ,,_= = cm s 

41r/3*t.N 
(1.1) 

where nb is the number of bunches, frep is the repetition frequency, Nµ, is the 
bunch population, /is the Lorentz relativistic factor, and C.N is the normalized 
tranverse emittance. Table I represents the basic parameters of the 2 Te V 
muon collider: 
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Table I· Basic Parameters of the 2 TeV Muon collider 
Energy 2000 GeV 
Normalized Emittance EN 50 mm 1 II 

Beta Functions at the IP f3* 0.003 m 
Length of the bunch u z rms 0.003 m 
Momentum Spread l.l.,f 0.5 % 
Repetition Rate f 30 Hz 
Effective number of Turns n,, 900 
Number of Bunches 1 
Number of Muons per Bunch nb 2 * 1012 

The minimum values of the betatron functions at the beam collision point 
require very strong and large aperture quadrupoles with the maximum val­
ues of the betatron functions of the order of tenths to hundreds kilometers. 
The chromaticity in the interaction regions has unusual large values. The 
chromaticity has to be compensated by separate sextupoles. To cancel the 
sextupole induced second order amplitude dependent tune spread as well as 
the higher order aberrations due to the interaction between the sextupoles and 
the interaction quadrupoles the sextupoles have to be be located around the 
interaction region with mr phase difference with respect to the the interaction 
quadrupoles. There should be a 7r betatron phase difference [1, 2] in each <I>:c 
and <1>11 betatron phases between each pair of sextupoles. The best solution 
[1] is with two pairs of horizontal and vertical sextupoles on each side of the 
interaction region. This report will present mostly the isochronous part of the 
collider ring lattice. 

1.1 Equations for the Longitudinal Motion 

A particle motion in the longitudinal phase space depends on the particles 
time of arrival at the RF cavities and to the first order could be presented as: 

D..T D..C 
(1.2) --=----

To Co v 

AT Ap 1 Ap - = T1- = (ao - -)-, 
To Po ; 2 Po 

(1.3) 

where T0 is the time of the arrival of the reference particle, D..T and D..p are 
the time and momentum deviation, respectively, of the off-momentum particle 
relative to the synchronous particle with the momentum p0 , where T/ is the 
"phase slip" slip factor, ; is the Lorentz relativistic factor, while a 0 is to the 
first order momentum compaction of the lattice. The transition 1t is defined 
as a 0 = :\-. The revolution time of particles with different momenta in the 
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regular FODO lattice depend on their energy. In the isochronous storage ring 
the revolution time of particles with different momenta. does not depend to 
their energy. When a value of the momentum compaction is close to zero 
then the second order quantities ha.ve to be considered. The bea.m life time 
depends on stability of the longitudinal pha.se space. It ha.s been shown, [5, 
3, 6] that 'conditions for the stable longitudinal phase space could be set. 
Also, the influence of the nonlinear terms in 8 = ~ on the stability of the 

Po 
longitudinal pha.se space could be controlled. Sextupoles and other higher 
order elements could be used to help the control of the longitudinal pha.se 
space. The longitudinal pha.se space dependence on the nonlinear terms in 8 is 
due to variations of the dispersion function and of the momentum compaction 
a on 8. A difference in orbit length t::..C of the particle with a momentum 
offset depends on the higher order of the momentum [5] 8 a.s: 

~~ = ao8[1 + a 18 + e(8
2
)], 

The pha.se slip factor q could be presented a.s [5]: 

where: 

and 

1 1 1 
'T/o = ao - - = - - -, ,2 lt2 ,2 

3 /32 'T/O 
1/1 = 0'.00'.1 + - - - - . 2,2 ,2 

The dispersion function is defined as: 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

The momentum compaction defined to the lowest order in 8 is related to 
the horizontal dispersion function Do by 

(1.9) 

where p is the radius of curvature a.nd s is the longitudinal pa.th length 
measured a.long the reference orbit with a circumference C0 • 

When the phase-slip factor is equal to zero then I is equa.l /t· This condi­
tion would correspond to the transition. 

Vla.dimirski and Tara.sov [8] introduced reverse bends in a.n accelerator lat­
tice and succeeded in getting negative orbit-length increase with momentum, 
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thus pushing the transition energy to infinity. There was recently another pro­
posal by the UCLA (3] group on the isochronous ring with the reverse bends in 
the lattice. Teng [9] reported earlier that the same can be accomplished with 
a regular dipoles placed at locations where the dispersion is negative. For the 
thin dipole the momentum compaction to the first order is: 

(1.10) 

where fh is the bending angle of the ith dipole and Di is the average dis­
persion function at the dipole location. The condition for an isochronous 
storage ring lattice is to have average horizontal dispersion through most of 
the dipoles equal to zero: Es DiOi I dipole = O; There are many variations of the 
Teng's method, which are usually termed the harmonic approach and high­
tune approach (10, 12, 13]. This method will create a systematic stopband 
to induce dispersion-wave oscillations resulting in lower dynamical aperture. 
As we reported earlier [18] the quasi-isochronous storage ring can be designed 
without use of the reverse bends. Instead we use a combination of the FODO 
cell with a low beta insertion, or the 7r module, with a dipole in the middle. 
This allows better compaction of the ring and reduces the maxima of the dis­
persion function. We had studied extensively the tranverse beam dynamics 
[11, 14, 15, 19] of this kind of lattice and showed that the lattice is very stable 
and has very good tunability. Details of the design of the basic modules could 
be found elsewhere (14]. 

2 Normalized Dispersion Space 

The equation of motion to the second order in 8 was presented [5] as: 

II ( X ) ( 1 ) 1 X 8 1 X
12 + y12 

1 2 2 x + 1+- - (--K1 )x = (1+-)(-)(-)+ -K2-(x -y ), 
p 1 + 8 p2 p 1 + 8 p 2p 2 

after substitution [5]: 

x = D0 8 + Di82 

and y = 0 the first order equation is presented as: 

D~ + Kx(s )Do= p(ls), 

while the second order equation is: 

11 D~2 1 ( Do )2 1 2 D 1 + KxD1 = -
2 

- K1Do - - 1- - - -
2

K2D0 , 
p p p 
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(2.12) 

(2.13) 

(2.14) 



where the prime denotes the derivative with respect to the longitudi­
nal coordinate s, p( s) is the local radius of curvature, and: K1 = JP 8:!, 
K2 = JP a;~11 , and K:c = ~ - K1 • The K:c is the sum of the quadrupole K1 
and centrifugal focusing, while K 2 is the sextupole strength. The normalized 
dispersion function with components e and xis defined as, 

r;;- /3' e = VP:cD' - :.an= Vcos<P' 
2yp:r; 

X = ~D = V sin <P , (2.15) 

where f3:c and /3~ are respectively the horizontal betatron amplitude func­
tion and its derivative [16], Vis the norm or length of the normalized dispersion 
vector, and <Pis identical to the horizontal Floquet betatron phase advance in 
the region where there is no dipole. In the thin-element approximation, in nor­
malized e-x space, the normalized dispersion vector changes by 6.e = ~() 
and 6.x = 0. Outside the dipole (p = oo ), the dispersion function satisfies 
the homogeneous equation, so that vis an invariant, withe and x satisfying 
e2 + x 2 = V2 , which is a circle. The normalized dispersion vector advances 
by an angle q,. This type of normalized dispersion plots has been successfully 
used in lattice design and beam-transfer line design. It has also been used 
to lower the emittance in the electron storage rings [4] and to design a low 
emittance isochronous electron ring [18]. 

3 Basic Module of the (ISMCSR) Isochronous 
Muon Collider Storage Ring 

The basic module of the the isochronous muon collider storage ring(IMCSR) 
is made of the FODO cells and a 1r insertion. In the two FODO cells the 
dispersion function oscillates between negative and positive values within the 
dipoles providing zero value of the momentum compaction of the whole lat­
tice. We use a reflective symmetry of all Courant-Snyder functions within the 
module with respect to the vertical x axis in the normalized dispersion space. 
The reflection symmetry simplifies the analysis and optical matching consid­
erably. Other details of this module have already been presented [H]. To 
build a module with a momentum compaction factor close to zero the dipoles 
should be placed in both positive and negative values of the x axis of the 
(e, x) normalized dispersion space. The dispersion function at the beginning 
of the FODO cell is prescribed with a negative value DA with DA= 0. As we 
emphasized earlier [11] the choice of DA is important to dispersion excursion 
and to the value of the momentum compaction a 0 • 

A first example of the zero momentum compaction basic module of the 
ISMCSR is presented in 1. 
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Figure 1: Betatron Functions in the a=O basic module of the Muon Collider 
Storage Ring. 

The momentum compaction factor is set to zero for this particular block. 
It is important to note that the module could be tuned to whatever value of 
the momentum compaction a is needed to adjust the momentum compaction 
of the whole ring. This is to compensate for the momentum compaction of the 
interaction regions, extraction/injection regions, and zero dispersion blocks in 
the ring. The dipoles are 16 m long with the maximum magnetic field close 
to 9 T. There is one 16 m long dipole per half cell as well as one dipole in 
the middle of the low beta insertion cell. Two FODO cells are bracketed by 
two quadrupoles- doublets which provide the low beta /3:i: insertion part. The 
maxima of the betatron functions are /3rma:i: = 73.26m and /3yma.:i: = 89.96m 
with the dispersion function oscilating between D:i:ma.:i: = 1.287m and Drmin = 
-1.337m. The length of this module is """ 125 m. The second order tune 
spread of the chromaticity sextupoles is very small: 
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• 
I 

Vi:= 0.87896 - 1.33 Cz: + 9. 76 c\Iy = 0.45932 + 9. 76 Cz: + 24.4 cy, (3.16) 

where the c:r:,y are the unnormalizJ emittances. The quadrupole lengths are 
L1 = l.6m and L2 = 4.94m, and L3 = 3.05m, where the L1 is a length of the 
FODO cell,quadrupoles, while the L2 and L3 are the lengths of the 7r insertion 
quadrupoles. The gradients in all quadrupoles are GF = 263.84 T /m and 
GD =-205.36 T /m. The second example of the basic module with the zero 
momentum compaction has two 9.45 m long dipoles per half FODO cell and 
one 9.45m dipole within the 7r part of the module. 

The next module which provides the zero dispersion at the end of it, is 
presented in figure 2. This module is matched to the basic module with all 
betatron functions and could be used for the two injection-extraction or RF 
straight sections. 
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Figure 2: Betatron Functions in the Zero Dispersion Module. 

The interaction region is matched to the end of the 15 basic modules. We 
present in Figure 3 one of the initial solutions of the interaction region which 
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does not fulfill the request for cancelation of the higher order aberrations but it 
does have reduced the second order tune spread due to chromaticitysextupoles. 
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Figure 3: Betatron Functions in one of the First Solutions of the Interaction 
Region. 

4 Conclusion 

We have presented the Muon Collider Isochronous Storage Ring lattice. The 
mometum compaction has been brought to a zero value by dispersion function 
oscilation between negative and positiove values through the dipoles. We ap­
plied our basic design principle of the flexible-momentum-compaction lattice 
[11] to construct the muon collider isochronous storage ring. We presented 
modules with the momentum compaction equal zero with either 16 m long 
dipoles (SSC dipole) or with 9.45 m long dipoles (RHIC dipoles). The inter­
action region has the zero dispersion. The present design assumes two fold 
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symmetry with two interaction regions and two zero dispersion regions for the 
injection/extraction and RF . The most chalenging part of the collider design 
is the interaction region ~ requires very strong focusing quadrupoles with 
values of the betatron functions at the collition point as low as 3mm. The final 
solution of the interaction region will fulfill a cancelation of the higher order 
optical abe,rrations, reduction of the second order tune spread, reduction of 
the triplet induced betatron wave, etc. We have presented a realistic design of 
the muon storage ring collider which could be easily scaled down with energy 
if it is required. The high luminosity of the proposed,µ+ µ- collider could be 
achieved with very short bunches 3 mm and with the very small transverse 
beam sizes at the collision point /3* = 3mm which this storage ring design 
provides. 
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