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Abstract 
Longitudinal and transverse impedances are derived for round and flat laminated vacuum chambers. 

Introduction 
First publications on impedance of laminated vacuum chambers are related to early 70-s: 

those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen year later, a revision paper of 

R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there 

is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in 

a reasonable mutual agreement, these publications were all devoted to the longitudinal 

impedance of round vacuum chambers. The transverse impedance and the flat geometry case 

were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. 

[5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on 

that matter. As it can be seen below, results of this paper agree with Ref. [5].  

Some general conditions are assumed here. First, the frequencies under interest, ω, are 

supposed to be sufficiently low [6.7]:  
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Here a is the aperture radius, γ and β are the relativistic factors, c is the speed of light, σ and ε are 

the chamber conductivity and dielectric constant. The first condition actually requires the 

wavelength of the fields to be much longer than the aperture, as they are seen in the beam frame. 

Note that the specified wavelength parameter / ( )c aγβ ω  is relevant to the wake forces, not to the 

electric and magnetic fields taken separately. For the separate field components, the relativistic 

factor does not count; but it does count for the wakes (see e. g. Ref. [8], Eq. (2.41))     

 

 

The above condition seems to be satisfied for all practically interesting cases. It allows one to 



neglect the longitudinal magnetic field, and, consequently, the transverse components of the 

vector potential vanish. The second condition means that the beam electric moments are shielded 

infinitesimally fast at the chamber surface. While this condition is well satisfied for metals, it 

may be violated for ferrites [9]. The last case is irrelevant to this paper, since the laminations are 

metallic (iron). We also imply that the laminations are thin: ,h d a , and that the skin depth, δ, 

is much smaller than the lamination thickness, d.     

 

Figure 1. Geometry of laminated vacuum chamber. 

1. Flat chamber 

Longitudinal impedance 

Let the beam current be modulated at a frequency ω :  

 ( )0( , ) ( ) exp ( / v)I t I i t zδ ω⊥= − −r r . (1.1) 

Due to the horizontal homogeneity, the problem can be solved  by the Fourier-transform over 

this coordinate:  
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Since only the Fourier components are used below, the subscript k can be safely omitted. For 

long wavelength, the vector potential reduces to its longitudinal component only. In the free 



space, it satisfies the transverse Laplace equation and can be presented as 
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where Z0= 4π/c=377 Ohm, a is the half-gap (see Fig. 1); G = G(kx) is the function to be 

determined from the boundary conditions, and the vector potential is an even function of kx and 

y. The first term inside the square brackets describes a direct field of the beam, while the second 

one is the response due to the induced currents. From here, a ratio of the magnetic fields follows:  
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Using the boundary conditions at the metal surface one can easily prove that the vector 

potential inside a thin crack satisfies the Helmholtz equation: 

 crack 2 crack ,A k A⊥∆ = −  (1.5) 

where  
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Note that Eq. (1.6) is only justified if / 2 1gh  . In that case the fields inside the crack can be 

treated as independent from the z-coordinate (coordinate normal to its surface). Otherwise one 

need to take into account that the fields in the crack are dependent on z as cosh( )gz  or sinh( )gz , 

resulting in a more complicated form for Eq. (1.6). In most practical cases the thin crack 

approximation is valid. Taking into account that the crack is shorted at y = b, the fields can be 

written inside the crack as:  
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A vertical magnetic flux through the metal surface is 

 0metal
2 sin( ( )) / ,y x yB dz ik A k b yµ κ= − −∫  (1.8) 

where the factor of 2 comes out due to the two sides of the lamina. Adding the flux through the 

crack itself, one obtains the average magnetic field, is  
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yielding 
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The condition 0y a= +  means staying vertically at y a y= + ∆ so that , 1/h y kδ ∆  . 

Similarly, 0y a= −  means y a y= −∆ . Since both the average magnetic field, Eq. (1.9), and the 

horizontal field at the crack region are preserved at crossing the magnet border y=a, their ratio is 

preserved as well: 
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Thus, Eqs. (1.10) and (1.4) lead to the induced field amplitude 
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At this point, only an average electric field has to be found. To do that, the Maxwell equation 
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can be averaged over a period, yielding 
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Average electric fields above  and below the boundary (with a thickness of y∆ ) are related as 
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Using Eq. (1.12), the horizontal field is found:  
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Finally Eq. (1.16), (1.14) and (1.10) yield the following result, 
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for the longitudinal impedance per unit length follows. Here we used that  
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Transverse impedance 

For the horizontal beam oscillations, the vector potential is an even function of the vertical 

coordinate and odd one of the horizontal; according to [6] 
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with D0 as the amplitude of the beam dipole moment oscillations. Note that this field differs from 

the longitudinal case, Eq. (1.3), only by the amplitude; thus, all the field ratios remain the same. 

In particular, Eq. (1.12) is valid for this case as well. Using Eqs. (10, 11) of Ref. [6], the 

horizontal impedance follows:  
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The vertical impedance can be found from the horizontal by a substitution 

cosh( ) sinh( )x xk a k a↔  in the finite conductance term xZσ , and taking twice higher infinite 

conductivity term [6]:  
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Note that the second terms in the integrand numerator in Eqs. (1.17), (1.20) and (1.21)

( /xkµ κ ) yields the conventional resistive wall impedances when the crack width approaches 

zero.   

2. Round Chamber  

Longitudinal impedance 

For a round vacuum chamber of radius a and arbitrary walls, the axially symmetric fields in 

the free space are related so that (Ref. [8], Eq. (2.3)) :  
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From here, the longitudinal impedance ||Z  can be related to the so-called surface impedance R: 
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The Maxwell Equation /i cω∇× =E B , applied to the azimuthal direction, relates inner and outer 

average longitudinal electric fields (compare with Eq. (1.15)): 
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This can also be written as 
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Inside the crack, the longitudinal electric field satisfies the Helmholtz equation (compare 

with Eq. (1.5)): 
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From here, the field components are expressed in terms of the Hankel functions: 
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A factor cosh( )gz  is omitted according to the assumption / 2 1gh  . Since there is no 

longitudinal electric field in the metal, only the crack electric field contributes to its average: 
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Together with Eq. (2.6), this yields 
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With Eq. (2.4), the impedance (2.2) follows: 
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where the second term in the numerator is responsible for the conventional resistive wall 



impedance when the cracks disappear.  

Transverse impedance 

For the transverse dipole oscillations, the vector potential in the free space can be written as 
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where 0D  is the amplitude of the dipole moment oscillations. In terms of the induced field 

amplitude G, the transverse impedance is expressed as [7]   
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At the inner border, 0r a= − , the longitudinal electric and azimuthal magnetic fields follow as 
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This relates the surface impedance 
0
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= −  and the induced field amplitude G:   
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Note that although the fields ,zE Hϕ , etc. and their ratios ,R R+ are denoted by the same symbols 

for the longitudinal and the transverse cases, they are not the same and should not be confused. 

Inside the crack, the field components crack crack,zE Hϕ  satisfy Eq. (2.5), leading for the dipole mode 

to 
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For the calculations, it is useful to remember the derivatives of the Hankel functions are 

expressed as 

 [ ]1 0 2( ) ( ) ( ) / 2.H x H x H x′ = −  (2.15) 

Equations (2.14) yield the field ratio 
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With Eqs. (2.4) and (2.13), this formula yields the transverse impedance (2.11) 
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3. Discussion 
It would be good to discuss the impedances on a base of real parameters of the Booster 

magnets. However, some of the important parameters are actually unknown. While the inner and 

outer aperture a and b, as well as the lamina thickness d are perfectly known, we have a poor 

knowledge of the magnetic permeability μ at the interesting frequency range of hundreds MHz. 

Moreover, the guiding magnetic field makes that value not just a function of frequency, but a 

tensor function. Another uncertainty relates to the crack width h. Comparison of the average 

lamina thickness with the entire length of the magnet gives only a magnet-average value for h. 

There is no reason to assume that these values have a narrow distribution over their average, but 

the rms of that distribution is unknown. Ideally, the calculated impedances have to be averaged 

over this distribution – but it cannot be done even approximately without knowing the rms 

spread of the crack widths. One more uncertainty relates to thickness of the iron oxide at the 

lamina surfaces, which may change the crack properties. All these uncertainties can be reduced 

with a set of dedicated measurements, which hopefully will be made in future. Some 

measurements were already performed [10], and they allow to see how good or bad is one or 

another hypothesis about the unknown values. Without any strong statement about our choice, 

we are assuming parameters of Table 1 for the Booster F-magnet, which show a reasonably good 

agreement with the measurements of Ref. [10]. With new measurements, the values of some 

parameters should be known better.  

 

 

 

 

 

 



a Magnet half-gap 2.08 cm 

b Outer short-cut  16.5 cm 

d Lamina thickness 0.064 cm 

h Crack width 0.002 cm 

σ Conductivity 4.5·1016 1/s 

ε Dielectric permittivity 4.75 

μ Magnetic permeability 50 

Table 1: accepted parameters of the Booster F-magnet.          

Longitudinal impedances for that magnet, Eq. (1.17), (2.9) are shown in Fig. 2.  
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Figure 2: Longitudinal impedances for the round (solid lines) and flat (dash lines) geometries. Red 

lines are for the real parts, blue – for the absolute value of the imaginary parts. The magenta line shows 

the low-frequency approximation LF conv
|| ||

1 2Re ln( / ) Re ln( / )aZ b a Z b a
d dπ σδ

= =  with conv
|| 2

Z
a
κ
π σ

=  

as longitudinal impedance of the conventional solid round vacuum chamber of the same metal.  

Several features of Fig. 2 deserve to be noted.  



• The low limit of the frequency range  is determined by the skin depth: at 10 kHz 

δ≈d/2. 

• At low frequencies, f d50MHz, a simplistic electrotechnical approximation 

conv 1/2
|| ||

2ln( / ) ln( / )aZ b a Z b a
d d
κ ω

π σ
= = ∝  for the round geometry coincides with 

the actual solution. For the flat case, the low-frequency impedance behavior is 

different, 3/4
||Z ω∝ .   

• Note that impedance of the conventional solid vacuum chamber conv
|| 2

Z
a
κ
π σ

=  

exceeds the careless limit || 0| / | / 2Z n Z≤  [8] by a factor of ( / ) ln( / )a b aµδ . For 

1µ   this can be a big number. The reason is that the field energy located inside the 

magnetic chamber grows unlimitedly with the magnetic permeability: 
2

2
8
H aµ π δ µ
π

∝ . 

• A limit for the low-frequency approximation is determined by the field decay along 

the crack depth, 3/4Im k ω∝ , see Eq. (1.6). At sufficiently high frequency, when 

Im 1kb  , this radial field decay limits the length of the shielding current along the 

crack surface before it reaches the outer short-cut radius b. At f t 1 GHz, Im 1ka ≥ , 

so the path length of the shielding current gets proportional to the field decay length 

Im k , leading to conv 1/4
|| ||

2
Im

Z Z
d k

ω−∝       

• For the conventional solid vacuum chambers, the longitudinal emittance of the flat 

chamber is known to be equal to one of the round chamber [11,12]. In other words, 

the longitudinal Yokoya factor of the solid flat chamber, or the ratio of flat-to-round 

impedances is 1. As it is seen from Fig. 2, the Yokoya factor of the flat laminated 

chamber is close to 1 at 10f ≥ MHz, while at lower frequencies it may be 

significantly smaller.    

The transverse impedances are presented in Fig. 3. There are several reasons for the complicated 

behavior of the transverse impedances. First, the depth of field penetration inside the crack 

changes at | | 1ka  . Above that frequency (~ 1GHz), the shielding current path length is 



determined by the decay along the crack, while below that it is determined by the aperture a.   
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Figure 3: Transverse impedances (γ →∞ ) for the round (solid lines) and flat geometry (dash lines 

for the horizontal and dot lines for the vertical). Red lines are for the real parts, blue – for the absolute 

value of the imaginary parts.  

The second reason is change of the field structure at | / ( ) | 1Rc aω  , equivalent to / 1dµδ   or 

10f  MHz.  At low frequencies, when / 1dµδ  , the fields inside the free space, r a< , are of 

the magnetic type: the magnetic field is almost orthogonal to the magnet surface, 

0| / | 1r r aH Hϕ = −  . In the opposite case, for / 1dµδ  , the fields are of the conductivity type: 

0| / | 1r r aH Hϕ = −  . Interplay of these and some geometrical factors leads to variety of 

possibilities for impedance behavior at low frequencies seen in Fig. 3. Note, contrary to the 

longitudinal impedance, the transverse one never exceeds its careless limit 2
0 / ( )Z aβ π . That is 

why a popular Panofsky-Wenzel estimation of the transverse impedance from the longitudinal is 

inapplicable here: its use at low frequencies may result in order(s) of magnitude overestimation 



for the transverse impedance.     
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