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INTRODUCTION

The measurement of short laser pulses which are less than 1 ps is an ongoing challenge in

optical physics. One reason is that no oscilloscope exists today which can directly measure

the time structure of these pulses and so it becomes necessary to invent other techniques

which indirectly provide the necessary information for temporal pulse reconstruction. One

method called FROG (frequency resolved optical gating) has been in use since 19911 and

is one of the popular methods for recovering these types of short pulses. The idea behind

FROG is the use of multiple time-correlated pulse measurements in the frequency domain

for the reconstruction. Multiple data sets are required because only intensity information

is recorded and not phase, and thus by collecting multiple data sets, there is enough

redundant measurements to yield the original time structure, but not necessarily uniquely

(or even up to an arbitrary constant phase offset).

The objective of this paper is to describe another method which is simpler than FROG.

Instead of collecting many auto-correlated data sets, only two spectral intensity measure-

ments of the temporal signal are needed in the absence of noise. The first can be from the

intensity components of its usual Fourier transform and the second from its FrFT (frac-

tional Fourier transform). In the presence of noise, a minimum of four measurements are

required with the same FrFT order but with two different apertures. Armed with these two

or four measurements, a unique solution up to a constant phase offset can be constructed.

The next sections will describe how

(i) the input temporal signal can be reconstructed from two different FrFT order

measurements in the absence of noise. See Finding s(t) from Iα(f) and Iγ(f) with

a bootstrap algorithm.

(ii) in the presence of noise, at least two sets of apertures and two different order
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FrFTs, i.e. four measurements makes the algorithm more immune to noise. See

Enhanced bootstrap algorithm.

(iii) an optical setup for implementing the algorithm. See Method for Measuring Ultra-

short Laser Pulses.

(iv) the bootstrap algorithm can reconstruct the temporal signal from the optical setup.

See Numerical Demonstration I and II and Appendix II: Optics Analysis.
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THE FRACTIONAL FOURIER TRANSFORM

We define the fractional Fourier transform (FrFT)2 of a function s(u) to be

Sα(v) =
� ∞

−∞
du K(α, u, v)s(u) (1)

where the kernel K is given by

K(α, u, v) =
e
i
1
2α

√
i sin α

exp
�
iπ

(u2 + v
2) cos α− 2uv

sinα

�

≡ Aα exp
�
iπ

(u2 + v
2) cos α− 2uv

sin α

�






(2)

For the case when 0 < |α| < π, Aα can be written as

Aα =
exp

�
−i

�
π sgn(α)

4 − α

2

��

| sinα|
1
2

if 0 < |α| < π (3)

And in the cases where α = ±π/2, (2) reduces to the ordinary Fourier transform. In this

paper, we define the Fourier transform to be

S 1
2π

(v) =
� ∞

−∞
du s(u)e−i2πuv (4)

i.e. when α = π/2.

Important: the transform pair variables u and v are dimensionless. Since we are going

to be working in the time and frequency domains, we will identify u as the dimensionless

time variable and v as the dimensionless frequency variable. To keep the “bean counting”

easier, we will map u → t and v → f and call the dimensionless variables t time and f

frequency for the rest of this paper.a

An N -point α-order DFrFT of s(t) is easily created from (1) and is

Sα(m∆f) = Aα∆t

N/2−1�

k=−N/2

s(k∆t) exp
�
iπ

�
(m∆f)2 + (k∆t)2

�
cot α− i

2πkm

N

�
(5)

a Ozaktas et al spent section 7.2 in their book2 discussing the relationship between dimen-
sionless and dimensionfull variables in FrFT.
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where ∆t is the sampling time, ∆f∆t = sin α/N , and we have assumed that N = 2q where

q ∈ N.

An important FrFT property which we will use to recover the input signal s(t) in the

Method section is the auto-correlation property3 (c.f. Wiener-Khinchin Theorem and auto-

correlation for ordinary Fourier transforms). The auto-correlation for an α-order FrFT is

defined to be

(s �α s)(τ) = e
iπτ

2 cos α sin α

� ∞

−∞
dt s

∗(t)s(t + τ cos α)e−i2πtτ sin α (6)

A quick check will show that (6) is the auto-correlation function for the ordinary Fourier

Transform when α = 0.

It is easy to show that (s �α−π/2 s)(τ) is related to |Sα(f)|2 as follows

(s �α−π/2 s)(τ) = e
−iπτ

2 cot α

� ∞

−∞
dt s

∗(t)s(t + τ)ei2πtτ cot α

=
� ∞

−∞
df |Sα(f)|2ei2πft





(7)

We can discretise (7) using an N -point α-order DFrFT to get

N/2−1�

�=−N/2

s
∗(�∆t)s[(� + k)∆t]ei2πk�(∆t)2 cot α

=
sinα

N∆t2
e
−iπ(k∆t)2 cot α

N/2−1�

m=−N/2

|Sα(m∆f)|2ei2π
km
N






(8)

where ∆f∆t = sin α/N and τ = k∆t for 0 ≤ k ≤ N−1. We remind ourselves that periodic

boundary conditions have been applied to the lhs of (8) because clearly (� + k) > N/2− 1

and (� + k) < −N/2 for some k. This condition will be used in the Method section.
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Method

We will assume that our setup measures the FrFT spectrum from an input signal s(t).

The measured intensity Iα(f) on the detector from an α-order FrFT is

|Sα(f)|2 =
����
� ∞

−∞
dt s(t)K(α, t, f)

����
2
≡ Iα(f) (9)

The goal, of course, is to extract s(t) from two sets of measurements Iα(f) and Iγ(f).

Note: In the next section we will cavalierly assume that we can, in fact, produce Iα in

the form that is compatible with the bootstrap algorithm and with the required accuracy.

However, in real life, there is noise in the measurement and a more complicated extraction

process which uses the bootstrap method as its basis must be used. We will discuss this

algorithm in the subsection Enhanced Bootstrap Algorithm.

Finding s(t) from Iα(f) and Iγ(f) with a bootstrap algorithm

In general, we need two sets of intensities from two different order FrFTs for extracting

s(t). We will describe a bootstrap algorithmb for obtaining s(t) here. Note: Much of our

work has been inspired by the work of Cong et al .5

Step 1 We divide s(t) into N samples at ∆t intervals and then pad with zeros from

−(Nm/2)∆t to (−N/2 − 1)∆t and from (N/2)∆t to (Nm/2 − 1)∆t to get Nm(≥ 2N)

points, i.e.

{s�} =






0−Nm/2, 0−Nm/2+1, . . . , . . . , . . . , 0−N/2−1,

s−N/2, s−N/2+1, . . . , s−1, s0, s1, . . . , sN/2−1,

0N/2, 0N/2+1, . . . , . . . , . . . , 0Nm/2−2, 0Nm/2−1,




 (10)

b At least two algorithms exist, the Gerchberg-Saxton4 algorithm and a recursive algorithm
published by Cong et al5 Unfortunately, we do not understand how the recursive algorithm
described by them can work and so have come up with our own bootstrap algorithm.
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where � = −Nm/2,−Nm/2 + 1, . . . , Nm/2 − 1 and s� = s(�∆t). Note: Here is one

major difference between our analysis and Cong et al ’s: we have extended the analysis for

Nm ≥ 2N .

Therefore, the Nm α-order DFrFT of {s�} is

Sα(n∆fα) = Aα∆t

Nm/2−1�

�=−Nm/2

s�e
iπ[(n∆fα)2+(�∆t)2] cot α−i2π�n/Nm (11)

where ∆fα∆t = sin α/Nm and −Nm/2 ≤ n ≤ Nm/2− 1.

We also perform an Nm γ-order DFrFT on {s�}, and the solution is

Sγ(n∆fγ) = Aγ∆t

Nm/2−1�

�=−Nm/2

ske
iπ[(n∆fγ)2+(�∆t)2] cot γ−i2π�n/Nm (12)

where ∆fγ∆t = sin γ/Nm.

The constraint on α and γ will be determined by the {s�} bootstrap process in Step 3

below.

Step 2 We apply the correlation property for the α-order Nm DFrFT to {s�} at τ = k∆t.

Using (8), we get

N/2−1�

�=−N/2

s
∗
�
s�+ke

i2πk�(∆t)2 cot α

=
sinα

Nm∆t2
e
−iπ(k∆t)2 cot α

Nm/2−1�

m=−Nm/2

Iα(m∆fα)ei2π
km
Nm

≡ Cα(k)






(13)

where Iα(m∆fα) = |Sα(m∆fα)|2. (Note that Iα is independent of τ) The range of the

summation of s
∗
�
s�+k starts and stops with the non-zero values of {s�}. (Clearly the range

can be made tighter, but this is sufficient for our purposes). And Iα(f) is just the intensity

which we measure of the α-order DFrFT of {s�}. This means that Cα(k) is completely

known for each k given Iα.
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Similarly, the correlation property for the γ-order 2N DFrFT of {s�} at τ = k∆t is

N/2−1�

�=−N/2

s
∗
�
s�+ke

i2πk�(∆t)2 cot γ

=
sin γ

Nm∆t2
e
−iπ(k∆t)2 cot γ

Nm/2−1�

m=−Nm/2

Iγ(m∆fγ)ei2π
km
Nm

≡ Cγ(k)






(14)

where Iγ(m∆fγ) = |Sγ(m∆fγ)|2 is the intensity which we measure of the γ-order DFrFT

of {s�}. And again, Cγ(k) is completely known for each k given Iγ .

Step 3 We solve for the terms s
∗
−N/2sN/2−m and s

∗
−N/2+m−1sN/2−1 which comes from

knowing Cα(k) and Cγ(k).

When we substitute k = N − 1 is into (13) and (14), we find that

s
∗
−N/2sN/2−1 = Cα(N − 1)eiπN(N−1)(∆t)2 cot α = Cγ(N − 1)eiπN(N−1)(∆t)2 cot γ (15)

We notice that the rhs is completely independent of {s�}.

When we substitute k = N − 2 into (13) and (14), we find that

�
e
i2π(−N/2)(N−2)(∆t)2 cot α

e
i2π(−N/2+1)(N−2)(∆t)2 cot α

e
i2π(−N/2)(N−2)(∆t)2 cot γ

e
i2π(−N/2+1)(N−2)(∆t)2 cot γ

� �
s
∗
−N/2sN/2−2

s
∗
−N/2+1sN/2−1

�

≡
�
Uα(2) Vα(2)
Uγ(2) Vγ(2)

� �
s
∗
−N/2sN/2−2

s
∗
−N/2+1sN/2−1

�
=

�
Cα(N − 2)
Cγ(N − 2)

�






(16)

which can be solved for s
∗
−N/2sN/2−2 and s

∗
−N/2+1sN/2−1 by inverting the 2 × 2 matrix

on the lhs. When we do this, we have
�

s
∗
−N/2sN/2−2

s
∗
−N/2+1sN/2−1

�
=

1
D(2)

�
Vγ(2) −Vα(2)
−Uγ(2) Uα(2)

��
Cα(N − 2)
Cγ(N − 2)

�
(17)

where D(2) = det
�
Uα(2) Vα(2)
Uγ(2) Vγ(2)

�
. Again, like for the k = N − 1 case, the rhs is

independent of {s�}. However, this is not true for k > N − 2 because in general, for
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k = N −m, we have

�
s
∗
−N/2sN/2−m

s
∗
−N/2+m−1sN/2−1

�
=

1
D(m)

�
Vγ(m) −Vα(m)
−Uγ(m) Uα(m)

��
Cα(N −m)− Σα(m)
Cγ(N −m)− Σγ(m)

�

(18)

where

Uθ(m) = e
i2π(−N/2)(N−m)(∆t)2 cot θ

Vθ(m) = e
i2π(−N/2+m−1)(N−m)(∆t)2 cot θ

Σθ(m) =
m−2�

j=1
s
∗
−N/2+j

sN/2−m+je
i2π(N−m)(−N/2+j)(∆t)2 cot θ

D(m) = det
�
Uα(m) Vα(m)
Uγ(m) Vγ(m)

�

= e
i2π(−N/2)(N−m)(∆t)2(cotα+cot γ)

e
i2π(N−m)(m−1)(∆t)2 cot γ×

�
1− e

i2π(N−m)(m−1)(∆t)2(cotα−cot γ)
�






(19)

and the rhs is clearly dependent on {s�}. We notice that D �= 0 as long as m �= N and m �= 1

and so the general solution is always applicable for 2 ≤ m ≤ N − 1 (or 1 ≤ k ≤ N − 2).

For the algorithm to work, we must ensure that D(m) �= 0 for 2 ≤ m ≤ N/2 + 1 (or

N/2− 1 ≤ k ≤ N − 2). This is the only constraint on α and γ.

Step 4 We start the bootstrap method by solving for sN/2−1 in terms of sN/2 with (15)

sN/2−1 = Cα(N − 1)eiπN(N−1)(∆t)2 cot α
/s
∗
−N/2

≡ cα/s
∗
−N/2




 (20)

From (17), we can solve for sN/2−2 and s−N/2+1 in terms of s−N/2

sN/2−2 =
1

s
∗
−N/2D(2)

�
Vγ(2)
−Vα(2)

�T �
Cα(N − 2)
Cγ(N − 2)

�

s−N/2+1 =
s−N/2

c∗αD∗(2)

�
−Uγ(2)
Uα(2)

�† �
Cα(N − 2)
Cγ(N − 2)

�∗






(21)
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In general, we have

sN/2−m =
1

s
∗
−N/2D(m)

�
Vγ(m)
−Vα(m)

�T �
Cα(N −m)− Σα(m)
Cγ(N −m)− Σγ(m)

�

≡
Fα,γ(m)
s
∗
−N/2

s−N/2+m−1 =
s−N/2

c∗αD∗(m)

�
−Uγ(m)
Uα(m)

�† �
Cα(N −m)− Σα(m)
Cγ(N −m)− Σγ(m)

�∗

≡ s−N/2Gα,γ(m)






(22)

and

Σθ(m) =
m−2�

j=1

1
cαD(j + 1)

�
−Uγ(j + 1)
Uα(j + 1)

�T �
Cα(N − j − 1)− Σα(j + 1)
Cγ(N − j − 1)− Σγ(j + 1)

�
×

1
D(m− j)

�
Vγ(m− j)
−Vα(m− j)

�T �
Cα(N −m + j)− Σα(m− j)
Cγ(N −m + j)− Σγ(m− j)

�
×

e
i2π(N−m)(−N/2+j)(∆t)2 cot θ






(23)

We observe that Σθ(m) is independent of s−N/2 which means that Fα,γ(m) and Gα,γ(m)

are both independent of s−N/2.

Step 5 We solve for s−N/2. From (22), we see that for both sN/2−m and s−N/2+m−1,

1 ≤ m ≤ N/2. And from (13), we have for k = 0

N/2−1�

�=−N/2

|s�|2 = Cα(0) (24)

Thus, by using (22), we have

|s−N/2|
2

N/2�

m=1
|Gα,γ(m)|2 +

1
|s−N/2|2

N/2�

m=1
|Fα,γ(m)|2 = Cα(0) (25)

which we can easily solve for |s−N/2|. We can immediately dismiss the negative solutions

and only keep the two positive solutions. In principle, both solutions are possible values

for |s−N/2|. The final selection of |s−N/2| comes after we make the following assumption:

All the phases are measured w.r.t. s−N/2. This will allow us to make s−N/2 ∈ R and

s−N/2 > 0. Once we do this, we can make the identification that |s−N/2| = s−N/2. With
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this identification, we can select between the two possible s−N/2 by demanding that

s0 = s−N/2Gα,γ(N/2 + 1) =
1

s−N/2
Fα,γ(N/2) (26)

Therefore, we can bootstrap this solution to obtain the solution for every term in the

sequence {s� : � = −N/2 + 1,−N/2, . . . , N/2 − 1} by using all the equations in Step 4.

Q.E.D.

Note: We observe that since every s� is either multiplied by s−N or 1/s−N in the

equations of Step 4, we can set s−N = 1 first and solve for {s�} with this assumption.

After we have obtained s−N/2 in Step 5, we can then re-calculate {s�} with this value.

The Mathematica input files shown in the appendices and used in all the demonstrations

apply this observation.

!1.0 !0.5 0.5 1.0
Time t

!2

!1

1

2
Phase s!t" !radians"

!1.0 !0.5 0.5 1.0
Time t

0.02

0.04

0.06

0.08

0.10
Magnitude s!t"

Figure 1 The blue traces are s(t) plotted out in phase and magni-
tude. The red traces are the results of the bootstrap algorithm applied
to the FrFT intensity spectra of the example.

Demonstration of the Bootstrap Algorithm

We can demonstrate how the bootstrap algorithm works with an example.c The input
c The Mathematica input file which was used in this demonstration is attached in Appendix

I .

11



signal s(t) is slightly modified from Cong et al5

s(t) = 0.1× e
−0.2(t+0.5)2

e
i[sin 5π(t+0.5)+cos 8π(t+0.5)] (27)

For the bootstrap algorithm, we have padded the input with zeroes from −2.0 to −0.5

and 0.5 to 2.0 and set the number of samples N = 32 in the s(t) region and Nm = 256

from −2.0 ≤ t ≤ 2.0. We have chosen α = π/2 for the first data set and γ = π/4 for the

second data set. We will only show the final results in Figure 1 because the demonstration

of the algorithm should be sufficiently clear from the Mathematica input file. It is obvious

that the bootstrap algorithm faithfully reproduces the magnitude of s(t) while the phase

is offset as expected.

Noise

The astute reader will notice that the the bootstrap algorithm solves for s−N/2 and

then marches towards s0 by bootstrapping. There are two problems with the algorithm

when applied to practical problems

(i) The temporal size of the signal is unknown and so N is unknown. For the algorithm

to work s−N/2 must not be zero.

(ii) |s−N/2| is at the tail end of the input pulse, it is usually much smaller than |s0| and

so if there is any noise in the measurement of Iα,γ , the error in s−N/2 will propagate

through the entire solution for {s�}. In fact, from our computer simulations, we

have discovered that the maximum relative error in the measured Iα,γ w.r.t. true

Iα,γ must be < 0.1×10−5 for the solution to be valid! This is, of course, impossible

to achieve in real life. Figure 2 shows the problem.

The first problem highlighted above can only be solved with a change or enhancement

of the bootstrap algorithm. We discuss the solution to (ii) below. For the noise problem,
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!1.0 !0.5 0.5 1.0
Time t

!2

!1

1

2
Phase s!t" radians

!1.0 !0.5 0.5 1.0
Time t

0.02

0.04

0.06

0.08

0.10

0.12

Magnitude s!t"

Figure 2 With noise in Iα,γ , the bootstrap algorithm does not
work very well. In this example, the maximum relative range of the
uniform noise at each point is ±0.01, Nm = 256, and N = 32.

the solutions are obvious:

(i) We can average Iα,γ sufficiently so that we decrease the noise.

(ii) We can enhance the bootstrap algorithm as follows: We take a smaller chunk of

the input pulse s(t) by masking out the tails so that the bootstrap algorithm works

with |s−N/2| �= 0 and, we hope, is comparable in size to |s0|. We can then increase

the chunk and bootstrap these solutions to solve for s� outside the first chunk. We

can continue increasing the chunk size until we obtain the solution for the entire

pulse. This forms the basis of our enhanced bootstrap algorithm which we will

describe in the next section.

Enhanced Bootstrap Algorithm

We can extend the bootstrap algorithm like we have previously described by first tak-

ing a smaller chunk of s(t). Suppose N1 < N is the first chunk that is used to produce

the spectra I1,α and I2,γ . We will assume that by taking this smaller chunk |s−N1/2| is

comparable in size to |s0| and so we hope will have greater immunity to noise in I1,α and
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I1,γ . We can then use the bootstrap algorithm to calculate {s−N1/2, . . . , s0, . . . , sN1/2−1} ≡

{σ−N1/2, . . . , σ0, . . . , σN1/2−1} where we will use σ� to signify that the solutions have al-

ready been found.

For our paper, let us choose the size of the next chunk to be N2 = 2N1.d Using (13),

we can select only the equations which does not involve (s∗
i
× sj) we can write down the

following complex matrix equation
�

Sα

Sγ

�
s =

�
Cα

Cγ

�
(28)

The entries of the Sθ matrix are

Sθ =




σ̄−N1
2 ,N1

σ̄−N1
2 +1,N1

. . . σ̄−1,N1 σ0,N1 σ1,N1 . . . σN1
2 −2,N1

σN1
2 −1,N1

σ̄−N1
2 +1,N1−1

σ̄−N1
2 +2,N1−1

. . . σ̄0,N1−1 σ−1,N1−1 σ0,N1−1 . . . σN1
2 −3,N1−1

σN1
2 −2,N1−1

σ̄−N1
2 +2,N1−2

σ̄−N1
2 +3,N1−2

. . . σ̄1,N1−2 σ−2,N1−2 σ−1,N1−2 . . . σN1
2 −4,N1−2

σN1
2 −3,N1−2

...
...

. . .
...

...
...

. . .
...

...
σ̄

0,
N1
2

σ̄
1,

N1
2

. . . σ̄N1
2 −1,

N1
2

σ−N1
2 ,

N1
2

σ−N1
2 +1,

N1
2

. . . σ−2,
N1
2

σ−1,
N1
2





(29)

where σ̄k,� → σ̄k,�(θ) = σ
∗
k
e
+i2πk�(∆t)2 cot θ and σk,� → σk,�(θ) = σke

+i2π(k−�)�(∆t)2 cot θ.

The size of the Sθ matrix is (N1/2 + 1)×N1.

The s vector contains
�

s
∗
−N2

2

, s
∗
−N2

2 +1
, . . . , s

∗
−N1

2 −1

�
∪

�
sN1

2

, sN1
2 +1, . . . , sN2

2 −2, sN2
2 −1

�

which are the 2N1 (2× because the s�’s are complex) unknowns to be solved and is

s =





sN1
2

sN1
2 +1

sN1
2 +2

...
sN2/2−1

s
∗
−N2/2

s
∗
−N2/2+1

...
s
∗
−N1

2 −2

s
∗
−N1

2 −1





(30)

s is an N1 × 1 vector.

d This method works for N2 ≤ 2N1, but the matrix entries in (28) will have to be derived.
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The rhs of (28) is

Cθ =





Cθ(N1)
Cθ(N1 − 1)−

�1
j=1 σ

∗
−N1

2 +j−1
σN1

2 +j−2e
i2π(−N1

2 +j−1)(N1−1)(∆t)2 cot θ

Cθ(N1 − 2)−
�2

j=1 σ
∗
−N1

2 +j−1
σN1

2 +j−3e
i2π(−N1

2 +j−1)(N1−2)(∆t)2 cot θ

...
Cθ(

N1
2 + 1)−

�N1
2 −1

j=1 σ
∗
−N1

2 +j−1
σje

i2π(−N1
2 +j−1)(N1

2 +1)(∆t)2 cot θ

Cθ(
N1
2 )−

�N1
2

j=1 σ
∗
−N1

2 +j−1
σj−1e

i2π(−N1
2 +j−1)N1

2 (∆t)2 cot θ





(31)

which is a (N1/2 + 1)× 1 vector.

From (28), the number of equations is 2× (2× (N1/2+1)) = 2N1 +4 while the number

of unknowns is 2N1. Therefore, (28) is overdetermined. There are many ways to solve

(28) in this situation. Some standard techniques are the singular value decomposition

(SVD) method and the least squares fit (LSF) method. We will use the LSF method

LeastSquares[] built into Mathematica to solve for s in the demonstration.

Once we have the solution for the N2 chunk, we can expand the size of the chunk

N3 = 2N2 and solve for s. This continues ad infinitum until we have the complete solution

of s(t).

Enhanced Bootstrap Algorithm with Least Squares Fit Demonstration

The enhanced bootstrap algorithm (EBA) is demonstrated with a Mathematica pro-

gramme shown in Appendix I . The noise level has been set so that the maximum relative

range at each point is ±0.01 w.r.t. the true value of Iα,γ . The first chunk has length

N1 = 16. Once we get the solution to this chunk with the previously described bootstrap

algorithm, the second chunk N2 = 32 is solved with the matrix equation (28) with the

built-in LeastSquares[] function of Mathematica. Figure 3 shows the result. We can

compare it to Figure 2 where a large chunk N1 = 32 was used with the bootstrap algo-
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rithm with the same relative noise level ±0.01 only and we see that the results are much

poorer than with the EBA. Furthermore, the EBA works even if s−N2/2 = 0.

!1.0 !0.5 0.5 1.0
Time t

!2

!1

1

2

Phase s!t" radians

!1.0 !0.5 0.5 1.0
Time t

0.02

0.04

0.06

0.08

0.10

Magnitude s!t"

Figure 3 Demonstration of the enhanced bootstrap algorithm with
noise in Iα,γ . In this example, the maximum relative range of the
uniform noise at each point is ±0.01, Nm = 256, N1 = 16 and N2 =
32. Contrast this to Figure 2 where only the bootstrap algorithm was
used. In this demonstration, the chunk N2 encloses the zero outside
t = ±0.5.
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METHOD FOR MEASURING ULTRA-SHORT LASER PULSES

We will describe an optical setup that will allow us to measure ultra-short laser pulses

in the femtosecond range. Our method relies on the well-known technique of coupling

the longitudinal distribution of a laser pulse to its transverse plane with either a prism

or a diffraction grating and then manipulating it with lenses to obtain spectral intensities

required for our bootstrap algorithm. Our proposed setup is shown in Figure 4.

In this setup, the elements in the yellow box are completely described in Appendix II .

We will give a brief synopsis here:

(i) The laser beam is incident on the transmission diffraction grating at an incident

angle θi. When the laser pulse goes through the lens, the longitudinal pulse distri-

bution is coupled to its transverse plane. The diffraction grating also performs the

first Fourier transform of s(t).

(ii) By placing Lens 1 at a distance equal to its focal length f1 from the diffraction

grating, the spectrum at the output of the grating is quadratic phase compensated.

But an extra phase is also introduced when we apply the Fresnel diffraction formula

(53) and we have to introduce a new variable s̄(t) (See (61) in Appendix II) to

include this phase. The bootstrap algorithm will solve for s̄(t) and we will correct

for the extra phases to get s(t).

(iii) Lens 2 is placed at a distance equal to its focal length f2 from Lens 1. The image

at the back focal plane of Lens 2 is the exact Fourier transform of the image at Pg.

Therefore, the image on P2 is the result of two Fourier transforms applied to the

s̄(t). This is the critical observation: It is well known that the Fourier transform of

a Fourier transform of s̄(t) yields s̄(−t) and so the image at P2 is the longitudinal

distribution but phase modulated!
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(iv) We add an adjustable aperture at the focal plane P2. This is required for the EBA

because we want to sample the centre of the distribution first and then increase

the aperture to sample the rest of the distribution.

(iii) is the critical observation which tells us why the optical setup works because we

have successfully transferred the longitudinal distribution to a transverse distribution and

so the subsequent application of the bootstrap algorithm on this image will allow us to

recover s̄(t).

Of course, what we have described above is completely useless if there is no way to

accomplish this optically. It turns out that an invention by Lohmann6 which uses a single

lens (type I) or a couple of lenses (type II) is all that is required. We describe his invention

in section Type I and II Optics. Using type I optics, we can place Lens 3 with focal length

f3 at a distance RQf3 from P2 to produce an image at P3 which for RQ = (tan α/2)(sin α)

is the α-order FrFT of the image at P2. For the bootstrap algorithm, we will need to

measure the spectral intensity at α and γ. For example, we can measure the spectral

intensity at P3 for α = π/2 and γ = π/4 and then apply the bootstrap algorithm for the

extraction of s̄(t).

Type I and II Optics

Up to this point, we have used dimensionless variables. In this section we will introduce

dimensionfull variables x̂ and x̂
� which, in this paper, have dimensions of length.

In both type I and II arrangements shown in Figure 5, the α-order FrFT of ŝ(x̂) is

given by

Ŝα(x̂�) = Âα

� ∞

−∞
dx̂ ŝ(x̂) exp

�
iπ

(x̂2 + x̂
�2) cos α− 2x̂x̂

�

λF3 sin α

�
(32)
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Figure 4 Our proposed setup for the measurement of femtosecond
laser pulses. The incoming laser pulse is incident on the diffraction
grating at θi. Lens 1 compensates the quadratic phase and Lens 2
Fourier transforms the spectral pattern from the diffraction grating.
The position of Lens 3 is selected to give the α or γ-order FrFT of
the pulse. The elements in the yellow box are completely described
in Appendix II .

where

Âα =
exp

�
−i

�
π sgn(sin α)

4 − α

2

��

|λF3 sin α|
1
2

(33)

and the scaling parameter λF3 (which has dimensions of [length2]), λ is the wavelength of

the laser pulse and F3 is the “local” focal length of the lens and depends on whether the

type I or II configuration is chosen

F3 = QF for both type I and II

Type I: R = tan
α

2
Q = sin α

Type II: R = sin α Q = tan
α

2






(34)

where F is the focal length of the lens (c.f. local focal length F3).

We can compare (32) and (33) with the original definition of the FrFT (1), (2) and (3).
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They are identical except for Âα = Aα/|λF3|
1
2 because the Fourier variables here are di-

mensionfull. The relationship between the dimensionfull and dimensionless representation

is:

Ŝα(x̂) =
1

|λF3|
1
2

Sα(x) (35)

We can also similarly discretise (32) using the same arguments as before to get

Ŝα(m∆x̂
�) = Âα∆x̂

N/2−1�

k=−N/2

ŝ(k∆x̂) exp
�

iπ

λF3

�
(k∆x̂)2 + (m∆x̂

�)2
�
cot α− i

2πkm

N

�
(36)

where ∆x̂ is the sampling length, ∆x̂∆x̂
�
/λF3 = sin α/N and we have assumed that N = 2q

where q ∈ N ∪ {0}.

Figure 5 The type I and II FrFT optics.6

Therefore, by placing a converging lens represented by Lens 3 (focal length f3) in
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Figure 4 at a distance RQf3 from Lens 2 we can produce an α-order FrFT of the image

on the P3 plane.

In the spirit of writing (36) into a dimensionless form which we can then easily compare

it with our original discretised version of FrFT (5) we will introduce a new variable which

has dimensions of length

µ3 =
�

λF3 (37)

and so ∆x̂/µ3 → ∆x and ∆x̂
�
/µ3 → ∆x

� which are clearly dimensionless. When we

substitute these new dimensionless variables into (37), we have

Sα(m∆x
�) = Aα∆x

N/2−1�

k=−N/2

s(k∆x)
�

iπ

�
(k∆x)2 + (m∆x

�)2
�
cot α− i

2πkm

N

�
(38)

where ŝ(k∆x̂) = ŝ(kµ3∆x) → s(k∆x).

Numerical Demonstration 1

In this numerical demonstration of the optical setup shown in Figure 4, we will use a

100 fs pulse defined as

spulse(t) =






1 if |t| < 50 fs

0 otherwise
(39)

and set the slit size b of the diffraction grating to be 1 nm (which is unrealistically small)

so that it satisfies the condition b/λ � 1, and θi = 85◦ = 1.48 rad. These parameters allow

us to use (69) for u
(1−). The other parameters used in the simulation are summarised in

Table AII.2. Using these parameters, we can use the results of Example A.II.2 and see that

we only have 18 sampling points for the temporal pulse. However, 18 points are sufficient

to reproduce spulse(t) quite nicely with the bootstrap algorithm.

Since this is the first of two numerical demonstrations, we will go through the steps of

this demonstration carefully. (Note: All the mathematical details are in Appendix II and

the Mathematica input file in Appendix IV ):
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time !fs"

0.2
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!200 !100 100 200
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0.8

1.0
Amplitude
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x !Μm"

0.2

0.4

0.6

0.8

1.0
Amplitude

Figure 6 Different parametrisation of spulse. The red dots on the
bottom left plot show how spulse(ct) is sampled by the diffraction grid
which are spaced a sin θi apart.

(i) Figure 6 shows the input rectangular pulse parametrised in terms of time, phase

and space. The red dots on the bottom left plot show the sampling points of the

diffraction grid which are spaced a sin θi apart.

(ii) Figure 7 shows the real and imaginary parts of u
(1−). The magnification of this

image is dependent on f1. In principle, we should be able to use multiple resonances

for averaging. We select f1 = 5 cm because one resonance image fits in about 3 cm

of space, i.e. fits in a typical lens. We also notice the high frequency component in

this plot which we will correct with Lens 1. We can compare this plot to Figure 8

where f1 = 1 cm. We select only one of these “resonances” for the analysis.

(iii) Figure 9 shows the result of correcting the high frequency component of u
(1−) with
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Lens 1. These plots reveal the underlying sinc() component which is the FT of

spulse(t).

(iv) Figure 10 shows the image u
(2) which is a magnified version of s̄. This is the key rea-

son why the optics setup works — Lens 2 recreates a magnified version of the input

pulse |s(ct)|. The magnification factor is f2/f1 (See Appendix III ). The width of

the pulse in Figure (a) is 20× the pulse shown in Figure 6. The real and imaginary

parts of u
(2) show an oscillation which originates from e

ikx
2
/2f1e

ikax sin θi .

(v) For illustrative purposes, we will construct a magnified version of s̄ which we see

at the focal point of Lens 2, i.e. on P2. The following equation essentially comes

from (91)

s̄
�(−νx) = s(−x)e−iπ/2

e
ik(−x)2/2f1e

ik(−x) sin θi (40)

The term e
−iπ/2 has been included to reflect the two Fresnel propagations from

the diffraction grid to P2. We note that the sampling distance is a (note: not

a sin θi) just after the grid and so the oscillations are grossly under-sampled. See

Appendix III . In Figure 11 we superimpose the “highly” sampled solution and

the under-sampled solution. The under-sampled solution looks nearly identical to

Figures 10(c) and (d). In fact, when we superimpose them in Figure 12 the two

match up really nicely!

(vi) Let us get back to the objective of the demonstration. We will generate four chunks

of spectral intensity data for the EBA for α = π/2 and γ = π/4 and aperture radii

16∆xpixel = 0.2246 mm and 32∆xpixel = 0.448 mm. With the selection of α and γ

and fixing the “local” focal length F3 = 1 m we can calculate focal length of Lens 3

and where to place it and the CCD camera w.r.t. the aperture. See Table 1. The

four chunks of the spectral intensity data are shown in Figure 13.

(vii) The spectral intensity data shown in Figure 13 are normalised so that the total
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integral power is one. This is necessary because in experiments, we expect to have

to integrate many pulses to get a good signal on the CCD. See the Mathematica

input file. The result of applying the EBA to the normalised spectra is shown in

Figure 14. The size of the magnitude is larger than the input signal because the

input spectra were normalised. The phase clearly has the contribution from Lens 1

e
ikx

2
/2f1e

ikax sin θi and is also offset. Therefore, the last thing that is left for us to

do is to correct the phase.

(viii) The phase which originates from Lens 1 is corrected using the formula

φcorrection(νx) = e
ikx

2
/2f1e

ikx sin θi (41)

which takes into account the magnification factor ν. The corrected phase is shown

in Figure 15 with the original input pulse rescaled without the magnification factor.

Table 1 Type I Optics Parameters for F� = 1.0 m

α f� = F�/ sin α (m) RQf� (m)

π/2 1.0 1.0

π/4 1.4 0.41

!0.010 !0.005 0.005 0.010
x !m"

!0.00005

0.00005

Re#u!1!"$

!0.010 !0.005 0.005 0.010
x !m"

!0.00005

0.00005

Im#u!1!"$

Figure 7 The real and imaginary parts u
(1−) which is the image

on Pg. The magnification of this image is dependent on f1. In this
case f1 = 5 cm. Notice the high frequency components in u

(1−).
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!0.010 !0.005 0.005 0.010
x !m"

!0.0002

!0.0001

0.0001

0.0002

Re#u!1!"$

!0.010 !0.005 0.005 0.010
x !m"

!0.0002

!0.0001

0.0001

0.0002
Im#u!1!"$

Figure 8 This is u
(1−) for f1 = 1 cm. Multiple resonances are seen

within the ∼3 cm aperture of the lens.

!0.010 !0.005 0.005 0.010
x !m"

!0.00006

!0.00004

!0.00002

0.00002
Re#u!1""$

!0.010 !0.005 0.005 0.010
x !m"

0.00002

0.00004

0.00006

Im#u!1""$

Figure 9 The high frequency component of u
(1−) are corrected by

Lens 1. The correction reveals the underlying sinc() component which
is the FT of spulse(t).

Figure 15 compares the input pulse with the reconstructed pulse. The reconstructed

magnitude is similar up to a scale factor but the reconstructed phase has structures which

are absent from the input phase — it has wiggles at the edges because of the division of

small imaginary parts by real parts in this area. The reconstructed phase also has a kink

around 0 which comes from the imperfect phase correction which can be seen in Figure 16.

This is easily corrected with better data analysis but will not be done here.
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!0.0010 !0.0005 0.0005 0.0010
x !m"

0.00005

0.00010

0.00015

Abs#u!2"$
!a"

!0.0010 !0.0005 0.0005 0.0010
x !m"

!3

!2

!1

1

2

3

Arg#u!2"$
!b"

!0.0010 !0.0005 0.0005 0.0010
x !m"

!0.0001

!0.00005

0.00005

0.0001

Re#u!2"$
!c"

!0.0010 !0.0005 0.0005 0.0010
x !m"

!0.0001

!0.00005

0.00005

0.0001

Im#u!2"$
!d"

Figure 10 u
(2) plotted in (magnitude, phase) and (real, imagi-

nary). This plot shows why the optical setup works — Lens 2 recre-
ates a magnified version of |s(ct)|. The phases are more complicated
because it contains e

ikx
2
/2f1e

ikax sin θi.
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!0.6 !0.4 !0.2 0.2 0.4 0.6
x !mm"

!0.004

!0.002

0.002

0.004

Re#s'$

!0.6 !0.4 !0.2 0.2 0.4 0.6
x !mm"

!0.004

!0.002

0.002

0.004

Im#s'$

Figure 11 This figure shows the construction of s̄
� using (40). The

sampling distance is a sin θi and so under-samples the oscillations.
The black dots are the sampling points and the red curve is created
when the black dots are joined. The blue curve is the “highly” sampled
s̄
�.

!0.0010 !0.0005 0.0005 0.0010

!0.0001

!0.00005

0.00005

0.0001

!0.0010 !0.0005 0.0005 0.0010
x !m"

!0.0001

!0.00005

0.00005

0.0001

Im#u!2"$

Figure 12 We superimpose s̄
� (red curve) and u

(2) (blue curve)
from Figure 10(c) and (d). Clearly the two match up very well.
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!0.02 !0.01 0.01 0.02
x'
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0.004

Magnitude
Α # Π!2, "16x2#%x aperture

!0.02 !0.01 0.01 0.02
x'

0.001

0.002

0.003

0.004

0.005

0.006

Magnitude
Γ # Π!4, "16x2#%x aperture

!0.02 !0.01 0.01 0.02
x'

0.002

0.004

0.006

0.008

Magnitude
Α # Π!2, "16x4#%x aperture

!0.02 !0.01 0.01 0.02
x'

0.002

0.004

0.006

0.008

0.010

Magnitude
Γ # Π!4, "16x4#%x aperture

Figure 13 The spectral intensities for α = π/2 and γ = π/4 and
aperture radii (16∆xpixel) = 0.224 mm and (32∆xpixel) = 0.448 mm.
These are the data sets which will be used for the EBA. These abscissa
of these plots is the dimensionless variable x

� which is the length of
the spectral image on the CCD divided by µ3.
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!0.0010 !0.0005 0.0005 0.0010
x !m"
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0.20

Magnitude

!0.0010 !0.0005 0.0005 0.0010
x !m"

!3
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!1

1
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3

Phase !radians"

Figure 14 The results of the EBA with the normalised spectra.
The red traces are the results from the EBA. It is clear that the
magnitude is larger than the input signal because the intensity has
been normalised. The phase has a constant offset as expected. The
magenta trace comes from the small radius aperture 16∆xpixel and
the blue is from the large radius aperture 32∆xpixel.

!1."10!13 !5."10!14 5."10!14 1."10!13
time !s"

0.2

0.4

0.6

0.8

1.0
Magnitude

!1."10!13 !5."10!14 5."10!14 1."10!13
time !s"

!6

!4

!2

2

4

6
Phase !radians"

Figure 15 After the phase is corrected using (41) and the magni-
fication factor from Lens 1 and 2 is rescaled out from Figure 14, we
can compare the input pulse (blue trace) to the measured pulse (red
trace). There is a kink in the reconstructed phase at t = 0 because of
imperfect the phase correction which we can see from Figure 16.

29
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x !m"
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1
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Phase !radians"

Figure 16 The phase correction formula (41) is plotted here in
black with the reconstructed phase in red. Notice the imperfect match
in phase between the correction and reconstruction around x = 0.
Clearly this can be easily corrected with better data analysis.
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Numerical Demonstration 2

In this demonstration, we will use the input pulse (27) from Cong et al in the Demon-

stration of the Bootstrap Algorithm. It turns out that if we use the same diffraction grating

as in Numerical Demonstration 1 , the 18 points used to sample the input pulse is insuffi-

cient to get a good reproduction of it after Lens 2 — which is the key for why the optical

setup works at all. Therefore, we will use a diffraction grating with double the number

lines per mm a
� = 1/1200 = 0.83×10−3 mm. With this slit distance and an incident angle

of 85◦, the number of sampling points are doubled on the input signal from 18 to 36.

Next, we will make the slit width b = a/8 = 104 nm so that b/λ = 0.13 < 0.5 is not

so large as to make our approximation of u
(1−) from (75) useless and so can still be used

here. Otherwise, the other optical parameters remain the same as before.

Figure 17 shows the two cases for a and a
� for the same slit width b at the focal plane

P2. It is clear that the number of sampling points is critical for the good reproduction of

the input signal.

Finally, using the Mathematica programme shown in Appendix IV , we can recreate

the input signal. The final results are shown in Figure 18. There is a kink in the phase

near t = 0 which comes from the imperfect phase correction. This can be easily corrected

with better data analysis. As expected there is a scale factor difference between the input

magnitude and the reconstructed magnitude.
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18 Sampling Points
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!b"

36 Sampling Points

Figure 17 The number of sampling points have a dramatic effect on
how the signal looks like at focal plane P2. It is clear that increasing
the number of samples from 18 to 36 makes the signal look more like
the magnitude of the input signal shown in Figure 1.
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Figure 18 The reconstructed input signal (red) is plotted with
the input signal (blue). There is a kink in the phase near t = 0
which comes from the imperfect phase correction. This can be easily
corrected with better data analysis. As expected there is a scale
factor difference between the input magnitude and the reconstructed
magnitude.

33



CONCLUSION

We have demonstrated how the EBA works with and without noise and we have shown

that the algorithm works very well. We have also proposed a possible optical setup to

perform the EBA on an input signal and demonstrated that it works well in computer

simulations. However, in a real setup there are errors in alignment and positions of the op-

tical elements which have not been taken into account in the simulations. These errors will

definitely affect the effectiveness and accuracy of the results which we have not attempted

to examine in this long paper. This means that further study will need to be done to see

if this method is competitive with FROG or even works well at all in real life.
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Appendix I: Demonstration of the Bootstrap Algorithm and

the Enhanced Bootstrap Algorithm with Least Squares Fit
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Demo of Bootstrap Method
This is a demonstration of the boostrap method which will allow us to reconstruct the input signal from two of its fractional
Fourier intensity spectra.

Discrete Fractional Fourier Transform

An n point Α-order discrete fractional Fourier transform (DFrFT) of a function s[t] is:

In[1]:= DFrFT�s_, n_, Α_, �t_, m_� :� Exp�I Α � 2�
I Sin�Α� �t

Sum�s�k �t� Exp�I Π m Sin�Α�
n �t

2

� �k �t�2 Cot�Α� � I 2 Π k m � n�, �k, �n � 2, n � 2 � 1��;
Arguments of DFrFT[] are:

s: function to be transformed
n: number of points to be transformed. Must be power of 2
Α: order of the transform
�t: time step
m: returns value of transform at m �f

It is assumed that the time step gives the frequency step with the relationship �f �t= Sin[Α]/n.

Example Input Function sinput[t]

The example input function sinput[t] comes from Cong et al. (second example). Note: We have shifted Cong's example by 0.5
units so that the symmetry point is at t=0 rather than at t=1. It is assumed that the input signal is zero out side +/- 0.5 units. Note
that in the reconstruction, we will only reconstruct s[t] within +/- 0.5. We have also reduced the magnitude from 1 to 0.1.

In[2]:= sinput�t_� :� Η�t� 0.1 Exp��0.2 �t � 0.5�2� Exp�I �Sin�5 Π �t � 0.5�� � Cos�8 Π �t � 0.5����;
Η�t_� :� If��0.5 � t � 0.5, 1, 0�;

In[4]:= Plot�Arg�sinput�t��, �t, �2, 2�, PlotRange � All�

Out[4]=

�2 �1 1 2

�1.5

�1.0

�0.5

0.5

1.0

1.5

2.0
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In[5]:= Plot�Abs�sinput�t��, �t, �2, 2��

Out[5]=

�2 �1 1 2

0.02

0.04

0.06

0.08

0.10

� Measurement Parameters

We select Α = Π/2 and Γ = Π/4. The nonzero part of the signal is divided into n = 32 samples in the time interval +/-0.5. Therefore
�t = 1/32. We pad the signal outside this interval with zeroes, we go from -nm/2 to -n/2-1 and n/2 to nm/2-1.

In[6]:= nm � 256; ��total number of samples��
n � 32; �� number of samples where s is the real signal and not padding��
Α � Π � 2;
Γ � Π � 4;
�t � 1.0 � n;
�fΑ � Sin�Α� � �nm �t�;
�fΓ � Sin�Γ� � �nm �t�;

Check that the �t sampling samples the input data well.

In[13]:= ListPlot�Table��i �t, Abs�sinput�i �t���, �i, �nm � 2, nm � 2 � 1��,
Joined � True, PlotRange � ���2, 2�, All��

Out[13]=
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In[14]:= ListPlot�Table��i �t, Arg�sinput�i �t���, �i, �nm � 2, nm � 2 � 1��,
Joined � True, PlotRange � ���2, 2�, All��

Out[14]=
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� Create the IΑ and IΓ

We need nm points of intensity from IΑand IΓ to create n points of s.

In[15]:= iΑ � Table��m �fΑ, Abs� DFrFT�sinput, nm, Α, �t, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;
iΓ � Table��m �fΓ, Abs� DFrFT�sinput, nm, Γ, �t, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;

Make functions for the data sets

In[17]:= IΑ�f_� :� iΑ��Round�f � �fΑ� � nm � 2 � 1����2��;
IΓ �f_� :� iΓ��Round�f � �fΓ� � nm � 2 � 1����2��;

Plot them out 

In[19]:= ListPlot�iΑ, Joined � True, PlotRange � All�

Out[19]=
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In[20]:= ListPlot�iΓ, Joined � True, PlotRange � All�

Out[20]=
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IΑand IΓ are the intensities which we measure.

The Bootstrap Method

We define the equations for the bootstrap method defined as equation (19) in the paper.

In[21]:= u�Θ_, m_� :� Exp�I 2 Π ��n � 2� �n � m� ��t�2 Cot�Θ��;
v�Θ_, m_� :� Exp�I 2 Π ��n � 2 � m � 1� �n � m� ��t�2 Cot�Θ��;
CΑ�k_� :�

Sin�Α�
nm �t2

Exp��I Π �k �t�2 Cot�Α�� Sum�IΑ� m �fΑ� Exp�I 2 Π k m

nm
�, �m, �nm � 2, nm � 2 � 1��;

CΓ�k_� :� Sin�Γ�
nm �t2

Exp��I Π �k �t�2 Cot�Γ�� Sum�IΓ� m �fΓ� Exp�I 2 Π k m

nm
�, �m, �nm � 2, nm � 2 � 1��;

��Θ_, m_� :� Sum� Conjugate�s��n � 2 � j��
s�n � 2 � m � j� Exp�I 2 Π �n � m� ��n � 2 � j� ��t�2 Cot�Θ��, �j, 1, m � 2��;

d�m_� :� Det�� u�Α, m� v�Α, m�
u�Γ, m� v�Γ, m� ��;

Check that CΑ[0] = CΓ[0]

In[27]:= CΑ�0�
Out[27]= 0.283636

In[28]:= CΓ�0�
Out[28]= 0.283636

They are equal, so at least energy is conserved!

Without loss of generality, we will set s[-N/2]=Σ=1 first and then use equation equation (25) to solve for s[-N/2] because every
s[n] is either multiplied or divided by s[-N/2].  The correct value of Σ in the "Calculate the magnitude s[-n/2]" section below

In[29]:= Σ � 1;

Calculate cΑ and cΓ using Eq(20)
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In[30]:= cΑ � CΑ�n � 1� Exp�I Π n �n � 1� �t2 Cot�Α��
Out[30]= 0.00815697 � 0.00147171 �

Check that the above is the same when CΓ is used

In[31]:= CΓ�n � 1� Exp�I Π n �n � 1� �t2 Cot�Γ��
Out[31]= 0.00815697 � 0.00147171 �

From equation (20), 

In[32]:= s�n � 2 � 1� � cΑ � Σ
Out[32]= 0.00815697 � 0.00147171 �

They are equal as expected!

From equation (21), we can solve for s[n/2-2] and s[-n/2+1]

In[33]:= s�n � 2 � 2� � Chop� First� 1

Conjugate�Σ� d�2� � v�Γ, 2� �v�Α, 2� �.� CΑ�n � 2�
CΓ�n � 2� ����1���

Out[33]= 0.00826918 � 0.00140695 �

In[34]:= s��n � 2 � 1� � Chop�First� Σ

Conjugate�cΑ d�2�� Conjugate�� �u�Γ, 2� u�Α, 2� �.� CΑ�n � 2�
CΓ�n � 2� �����1���

Out[34]= 0.983918 � 0.177522 �

Now we can continue the bootstrap process until every element is done

In[35]:=

For�m � 3, m � n � 2, m��,

s�n � 2 � m� �
Chop�First� 1

Conjugate�Σ� d�m� � v�Γ, m� �v�Α, m� �.� CΑ�n � m� � ��Α, m�
CΓ�n � m� � ��Γ, m� ����1���;

s��n � 2 � m � 1� � Chop�First� Σ

Conjugate�cΑ d�m��
Conjugate�� �u�Γ, m� u�Α, m� �.� CΑ�n � m� � ��Α, m�

CΓ�n � m� � ��Γ, m� �����1���;�;
� Calculate the magnitude s[-n/2]

We can calculate the magnitude of s[-n/2] using equation (25) of the paper. We will denote s[-n/2] = Σ

In[36]:= s��n � 2� � Σ; �� placeholder for the above calculations ��
In[37]:= sol � Solve�Σ2 Sum�Abs�s��n � 2 � m � 1��2, �m , 1, n � 2�� �

1

Σ2
Sum�Abs�s�n � 2 � m��2, �m, 1, n � 2�� � CΑ�0�, Σ2�

Out[37]= ��Σ2 � 0.00826499�, �Σ2 � 0.01��
We select between the two solutions by using equation (26)
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We select between the two solutions by using equation (26)

s0 = s[-n/2] GΑΓ[n/2 + 1]

In[38]:= Sqrt�Σ2� Chop�First� 1

Conjugate�cΑ d�n � 2 � 1�� Conjugate�
� �u�Γ, n � 2 � 1� u�Α, n � 2 � 1� �.� CΑ�n � �n � 2 � 1�� � ��Α, n � 2 � 1�

CΓ�n � �n � 2 � 1�� � ��Γ, n � 2 � 1� �����1��� �. Last�sol�
Out[38]= 0.0513951 � 0.0800432 �

The other part which is also s[0] from equation (26)

s0 = 1
s��n�2� FΑΓ�n �2�

In[39]:=
1

Sqrt�Σ2� Chop�First� 1

d�n � 2� � v�Γ, n � 2� �v�Α, n � 2� �.� CΑ�n � n � 2� � ��Α, n � 2�
CΓ�n � n � 2� � ��Γ, n � 2� ����1��� �.

Last�sol�
Out[39]= 0.0513951 � 0.0800432 �

Therefore,   the  second  solution  in  sol  is  the  correct  one  because   the  s0's  calculated  above  are  the  same  whether  using
ΣGΑΓ[n/2+1] or 1

Σ
FΑΓ�n �2�, i.e.

In[40]:= Σ � Sqrt�Σ2 � �. Last�sol�
Out[40]= 0.1

� Check other solution

This is a quick check that the other solution is not correct

In[41]:= Sqrt�Σ2� Chop�First� 1

Conjugate�cΑ d�n � 2 � 1�� Conjugate�� �u�Γ, n � 2 � 1� u�Α, n � 2 � 1� �.
� CΑ�n � �n � 2 � 1�� � ��Α, n � 2 � 1�
CΓ�n � �n � 2 � 1�� � ��Γ, n � 2 � 1� �����1��� �. First�sol�

Out[41]= 0.0467243 � 0.0727688 �

In[42]:=
1

Sqrt�Σ2� Chop�First� 1

d�n � 2� � v�Γ, n � 2� �v�Α, n � 2� �.� CΑ�n � n � 2� � ��Α, n � 2�
CΓ�n � n � 2� � ��Γ, n � 2� ����1��� �.

First�sol�
Out[42]= 0.0565329 � 0.0880447 �

They clearly do not agree, therefore this is the wrong solution to pick.

� Normalize s 

Once we have Σ,  we can normalize all the s's
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In[43]:= For�m � 1, m � n � 2, m��,
sn��n � 2 � m � 1� � Σ s��n � 2 � m � 1�;�;

For�m � 1, m � n � 2, m��,

sn�n � 2 � m� � 1

Σ
s�n � 2 � m�;

�;
In[45]:= sMag � Table��k �t, Abs�sn�k���, �k, �n � 2, n � 2 � 1��;

sArg � Table��k �t, Arg�sn�k���, �k, �n � 2, n � 2 � 1��;
sRe � Table��k �t, Re�sn�k���, �k, �n � 2, n � 2 � 1��;
sIm � Table��k �t, Im�sn�k���, �k, �n � 2, n � 2 � 1��;

� Plots

In[49]:= ListPlot�sMag, Joined � True, PlotStyle � RGBColor�1, 0, 0�, PlotRange � �0, 0.1��

Out[49]=
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In[50]:= ListPlot�sArg, Joined � True, PlotStyle � RGBColor�1, 0, 0��

Out[50]=
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� Compare the solution to sinput

In[54]:= Show��4, �50, PlotRange � ���1, 1�, All�, AxesLabel � �"Time t", "Phase s�t� �radians�"��

Out[54]=
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In[55]:= Show��5, �49, PlotRange � ���1, 1�, All�, AxesLabel � �"Time t", "Magnitude s�t�"��

Out[55]=
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In[56]:= GraphicsGrid����54, �55��, ImageSize � Large�

Out[56]=
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In[57]:= Export�"��papers�frog�phaseAmp.eps", �56�
Out[57]= ��papers�frog�phaseAmp.eps
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Enhanced Bootstrap Algorithm with Least Squares Fit
We will demonstrate the enhanced bootstrap algorithm by applying it to the data with noise.
We will use the previous sinput[] but with the addition of noise.

Discrete Fractional Fourier Transform

An n point Α-order discrete fractional Fourier transform (DFrFT) of a function s[t] is:

In[1]:= DFrFT�s_, n_, Α_, �t_, m_� :� Exp�I Α � 2�
I Sin�Α� �t

Sum�s�k �t� Exp�I Π m Sin�Α�
n �t

2

� �k �t�2 Cot�Α� � I 2 Π k m � n�, �k, �n � 2, n � 2 � 1��;
Arguments of DFrFT[] are:

s: function to be transformed
n: number of points to be transformed. Must be power of 2
Α: order of the transform
�t: time step
m: returns value of transform at m �f

It is assumed that the time step gives the frequency step with the relationship �f �t= Sin[Α]/n.

Example Input Function sinput[t]

The input function sinput[t] which we had used previously

In[2]:= sinput�t_, �Τ_� :�
Η�t, �Τ� 0.1 Exp��0.2 �t � 0.5�2� Exp�I �Sin�5 Π �t � 0.5�� � Cos�8 Π �t � 0.5����;

Η�t_, �Τ_� :� If���Τ � t � �Τ, 1, 0�;
In[4]:= Plot�Arg�sinput�t, 0.5��, �t, �2, 2�, PlotRange � All�

Out[4]=
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In[5]:= Plot�Abs�sinput�t, 0.5��, �t, �2, 2��

Out[5]=
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� First measurement parameters with a small chunk

We select Α = Π/2 and Γ = Π/4. The first chunk which we will use is size n1=16 in the time interval +/- 0.3. Therefore �t = 0.6/n1
= 0.6/16. The signal outside this interval are zeroes which go from -nm/2 to -n1/2-1 and n1/2 to nm/2-1.

In[6]:= nm � 256; ��total number of samples��
n1 � 16; �� number of samples where s is the real signal and not padding��
Α � Π � 2;
Γ � Π � 4;
�Τ � 0.6; �� total temporal interval ��Τ�2 to ��Τ�2��
�t � �Τ � n1;
�fΑ � Sin�Α� � �nm �t�;
�fΓ � Sin�Γ� � �nm �t�;

� Create the new input sinput1[t]

In[13]:= sinput1�t_� :� sinput�t, �Τ � 2�;
Check that the �t sampling samples the input data well.

In[14]:= ListPlot�Table��i �t, Abs�sinput1�i �t���, �i, �nm � 2, nm � 2 � 1��,
Joined � True, PlotRange � ���2, 2�, All��

Out[14]=

�2 �1 1 2

0.02

0.04

0.06

0.08

0.10

2   enhanced.nb

45



In[15]:= ListPlot�Table��i �t, Arg�sinput1�i �t���, �i, �nm � 2, nm � 2 � 1��,
Joined � True, PlotRange � ���2, 2�, All��

Out[15]=
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� Create the IΑ and IΓ with noise

We need nm points of intensity from IΑand IΓ from sinput1[t].

In[16]:= iΑ1 � Table��m �fΑ, Abs� DFrFT�sinput1, nm, Α, �t, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;
iΓ1 � Table��m �fΓ, Abs� DFrFT�sinput1, nm, Γ, �t, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;

Add in uniform noise that has a maximum relative range of +/- 0.01 

In[18]:= perr � 0.01;

In[19]:= iΑ � Table��iΑ1��i, 1��, iΑ1��i, 2�� �1 � Random�Real, ��perr , perr ����, �i, Length�iΑ1���;
iΓ � Table��iΓ1��i, 1��, iΓ1��i, 2�� �1 � Random�Real, ��perr , perr ����, �i, Length�iΓ1���;

Make functions for the data sets

In[21]:= IΑ�f_� :� iΑ��Round�f � �fΑ� � nm � 2 � 1����2��;
IΓ �f_� :� iΓ��Round�f � �fΓ� � nm � 2 � 1����2��;

Plot them out 

In[23]:= ListPlot�iΑ, Joined � True, PlotRange � All�

Out[23]=

�10 �5 5 10

0.0002

0.0004

0.0006

0.0008

0.0010

enhanced.nb   3

46



In[24]:= ListPlot�iΓ, Joined � True, PlotRange � All�

Out[24]=
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IΑand IΓ are the intensities which we measure.

Let's normalize iΑ and iΓ so that their power is 1

��iΑ � iΑ� � Sin�Α�
nm ��t�2 Sum�iΑ��i,2��, �i, Length�iΑ����;

iΓ � iΓ� � Sin�Γ�
nm ��t�2 Sum�iΓ��i,2��, �i, Length�iΓ����;��

The Bootstrap Method

We define the equations for the bootstrap method defined as equation (19) in the paper.

In[25]:= u�Θ_, m_� :� Exp�I 2 Π ��n1 � 2� �n1 � m� ��t�2 Cot�Θ��;
v�Θ_, m_� :� Exp�I 2 Π ��n1 � 2 � m � 1� �n1 � m� ��t�2 Cot�Θ��;
CΑ�k_� :�

Sin�Α�
nm �t2

Exp��I Π �k �t�2 Cot�Α�� Sum�IΑ� m �fΑ� Exp�I 2 Π k m

nm
�, �m, �nm � 2, nm � 2 � 1��;

CΓ�k_� :� Sin�Γ�
nm �t2

Exp��I Π �k �t�2 Cot�Γ�� Sum�IΓ� m �fΓ� Exp�I 2 Π k m

nm
�, �m, �nm � 2, nm � 2 � 1��;

��Θ_, m_� :� Sum� Conjugate�s��n1 � 2 � j��
s�n1 � 2 � m � j� Exp�I 2 Π �n1 � m� ��n1 � 2 � j� ��t�2 Cot�Θ��, �j, 1, m � 2��;

d�m_� :� Det�� u�Α, m� v�Α, m�
u�Γ, m� v�Γ, m� ��;

Check that CΑ[0] = CΓ[0]

In[31]:= CΑ0 � CΑ�0�
Out[31]= 0.144402

In[32]:= CΓ0 � CΓ�0�
Out[32]= 0.144497

Clearly they are different because of the noise in the measurement of IΑ and IΓ.
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Solving s�t�
First set  s[t] = 0 for -n1/2 to -nm/2+1 and nm/2 to n1/2-1

In[33]:= For�i � �nm � 2, i � �n1 � 2 � 1, i��,
s�i� � 0;�;

For�i � n1 � 2, i � nm � 2 � 1, i��,
s�i� � 0;�;

Without loss of generality, we will set s��N/2]=Σ=1 first and then use equation equation (25) to solve for s��n/2] because every
s[n] is either multiplied or divided by s��n/2].

From equation (15), 

In[35]:= Σ � 1;

In[36]:= cΑ � Chop� CΑ�n1 � 1� Exp�I Π n1 �n1 � 1� �t2 Cot�Α���
Out[36]= 0.00885039 � 0.000728109 �

In[37]:= cΓ � Chop�CΓ�n1 � 1� Exp�I Π n1 �n1 � 1� �t2 Cot�Γ���
Out[37]= 0.00876743 � 0.000753852 �

Clearly cΑ is not equal to cΓ because of noise.

� Iteration 

In[38]:= s��n1 � 2� � Σ
Out[38]= 1

Average cΑ and cΓ because they are supposed to be the same.

In[39]:= s�n1 � 2 � 1� � �cΑ � cΓ� � �2.0 Σ�
Out[39]= 0.00880891 � 0.000740981 �

Also set cΑ to the average since it is used below

In[40]:= cΑ � s�n1 � 2 � 1�
Out[40]= 0.00880891 � 0.000740981 �

From equation (16), we can solve for s[n/2-2] and s[-n/2+1]

In[41]:= s�n1 � 2 � 2� � Chop�First� 1

Σ d�2� � v�Γ, 2� �v�Α, 2� �.� CΑ�n1 � 2�
CΓ�n1 � 2� ����1���

Out[41]= 0.00771265 � 0.00355241 �

In[42]:= s��n1 � 2 � 1� �
Chop�First� Σ

Conjugate�cΑ d�2�� Conjugate�� �u�Γ, 2� u�Α, 2� �.� CΑ�n1 � 2�
CΓ�n1 � 2� �����1���

Out[42]= 1.0341 � 0.104501 �

Now we can continue the bootstrap process until every element is done
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Now we can continue the bootstrap process until every element is done

In[43]:=

For�m � 3, m � n1 � 2, m��,

s�n1 � 2 � m� �
Chop�First� 1

Conjugate�Σ� d�m� � v�Γ, m� �v�Α, m� �.� CΑ�n1 � m� � ��Α, m�
CΓ�n1 � m� � ��Γ, m� ����1���;

s��n1 � 2 � m � 1� � Chop�First� Σ

Conjugate�cΑ d�m��
Conjugate�� �u�Γ, m� u�Α, m� �.� CΑ�n1 � m� � ��Α, m�

CΓ�n1 � m� � ��Γ, m� �����1���;�;
� Calculate the magnitude s[-n/2]

We can calculate the magnitude of s[-n/2] using equation (25) of the paper. We will denote s[-n/2] = Σ
Σ2 MUST BE REAL so that s[-n/2] is REAL. See eq(25)

In[44]:= s��n1 � 2� � Σ; �� placeholder for the above calculations ��
In[45]:= sol � Chop�Solve�Σ2 Sum�Abs�s��n1 � 2 � m � 1��2, �m , 1, n1 � 2�� �

1

Σ2
Sum�Abs�s�n1 � 2 � m��2, �m, 1, n1 � 2�� � CΑ�0�, Σ2��

Out[45]= ��Σ2 � 0.00792997�, �Σ2 � 0.0100484��
Σ2 must be real. So just select the real parts only for the calculations below

In[46]:= Σfirst � Re�Σ2� �. First�sol�
Out[46]= 0.00792997

In[47]:= Σlast � Re�Σ2� �. Last�sol�
Out[47]= 0.0100484

We select between the two solutions by using equation (26)

s0 = s[-n/2] GΑΓ[n/2 + 1]

In[48]:= firstsol1 �

Sqrt�Σ2� Chop�First� 1

Conjugate�cΑ d�n1 � 2 � 1�� Conjugate�� �u�Γ, n1 � 2 � 1� u�Α, n1 � 2 � 1� �.
� CΑ�n1 � �n1 � 2 � 1�� � ��Α, n1 � 2 � 1�
CΓ�n1 � �n1 � 2 � 1�� � ��Γ, n1 � 2 � 1� �����1��� �. Σ2 � Σfirst

Out[48]= �0.0126781 � 0.0862064 �

The other part which is also s[0] from equation (26)

s0 = 1
s��n�2� FΑΓ�n �2�
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In[49]:= firstsol2 �
1

Sqrt�Σ2� Chop�First� 1

d�n1 � 2� � v�Γ, n1 � 2� �v�Α, n1 � 2� �.� CΑ�n1 � n1 � 2� � ��Α, n1 � 2�
CΓ�n1 � n1 � 2� � ��Γ, n1 � 2� ����

1��� �. Σ2 � Σfirst
Out[49]= �0.0120715 � 0.102767 �

� Check the second solution

This is a quick check that the other solution is not correct

In[50]:= secondsol1 �

Sqrt�Σ2� Chop�First� 1

Conjugate�cΑ d�n1 � 2 � 1�� Conjugate�� �u�Γ, n1 � 2 � 1� u�Α, n1 � 2 � 1� �.
� CΑ�n1 � �n1 � 2 � 1�� � ��Α, n1 � 2 � 1�
CΓ�n1 � �n1 � 2 � 1�� � ��Γ, n1 � 2 � 1� �����1��� �. Σ2 � Σlast

Out[50]= �0.0142714 � 0.0970402 �

In[51]:= secondsol2 �
1

Sqrt�Σ2� Chop�First� 1

d�n1 � 2� � v�Γ, n1 � 2� �v�Α, n1 � 2� �.� CΑ�n1 � n1 � 2� � ��Α, n1 � 2�
CΓ�n1 � n1 � 2� � ��Γ, n1 � 2� ����

1��� �. Σ2 � Σlast
Out[51]= �0.0107238 � 0.0912938 �

Select between the two solutions by looking at their differences

In[52]:= If�Abs�firstsol1 � firstsol2� � Abs�secondsol1 � secondsol2�,
Σ � Sqrt�Σ2� �. Σ2 � Σfirst,
Σ � Sqrt�Σ2� �. Σ2 � Σlast�

Out[52]= 0.100242

� Normalize s 

Once we have Σ,  we can normalize all the s's

In[53]:= For�m � 1, m � n1 � 2, m��,
sn��n1 � 2 � m � 1� � Σ s��n1 � 2 � m � 1�;�;

For�m � 1, m � n1 � 2, m��,

sn�n1 � 2 � m� � 1

Σ
s�n1 � 2 � m�;

�;
In[55]:= sMag � Table��k �t, Abs�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;

sArg � Table��k �t, Arg�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;
sRe � Table��k �t, Re�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;
sIm � Table��k �t, Im�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;
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� Plots

In[59]:= ListPlot�sMag, Joined � True, PlotStyle � RGBColor�1, 0, 0�, PlotRange � ���1, 1�, All��

Out[59]=

�1.0 �0.5 0.5 1.0

0.090

0.095

0.100

In[60]:= ListPlot�sArg, Joined � True, PlotStyle � RGBColor�1, 0, 0�, PlotRange � ���1, 1�, All��

Out[60]= �1.0 �0.5 0.5 1.0

�1.5

�1.0

�0.5

0.5

1.0

1.5

� Compare the result and the original chunk

In[62]:= Show��15, �60, PlotRange � ���0.5, 0.5�, All��

Out[62]=
�0.4 �0.2 0.2 0.4

�1.5

�1.0

�0.5

0.5

1.0

1.5

2.0
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In[64]:= Show��14, �59, PlotRange � ���0.5, 0.5�, All��

Out[64]=

�0.4 �0.2 0.2 0.4

0.02

0.04

0.06

0.08

0.10

Extending the Bootstrap Algorithm
Using the sn[t] which we calculated, we will extend the solution for the next chunk.

The chunk has been increased by a factor of 2 from n1 to n2=2*n1. 

In[65]:= n2 � 2 n1; �� number of samples where s is the real signal and not padding��
�t � 1.2 � n2;
�fΑ � Sin�Α� � �nm �t�;
�fΓ � Sin�Γ� � �nm �t�;

� Create the new input sinput2[t]

In[69]:= sinput2�t_� :� sinput�t, 0.5�;
Check that the �t sampling samples the input data well.

In[70]:= ListPlot�Table��i �t, Abs�sinput2�i �t���, �i, �nm � 2, nm � 2 � 1��,
Joined � True, PlotRange � ���2, 2�, All��

Out[70]=

�2 �1 1 2

0.02

0.04

0.06

0.08

0.10
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In[71]:= ListPlot�Table��i �t, Arg�sinput2�i �t���, �i, �nm � 2, nm � 2 � 1��,
Joined � True, PlotRange � ���2, 2�, All��

Out[71]=

�2 �1 1 2

�1.5

�1.0

�0.5

0.5

1.0

1.5

2.0

� Create the IΑ and IΓ with noise

We need nm points of intensity from IΑand IΓ from sinput1[t].

In[72]:= iΑ2 � Table��m �fΑ, Abs� DFrFT�sinput2, nm, Α, �t, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;
iΓ2 � Table��m �fΓ, Abs� DFrFT�sinput2, nm, Γ, �t, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;

Add in the noise

In[74]:= iΑ � Table��iΑ2��i, 1��, iΑ2��i, 2�� �1 � Random�Real, ��perr , perr ����, �i, Length�iΑ2���;
iΓ � Table��iΓ2��i, 1��, iΓ2��i, 2�� �1 � Random�Real, ��perr , perr ����, �i, Length�iΓ2���;

Plot them out 

In[76]:= ListPlot�iΑ, Joined � True, PlotRange � All�

Out[76]=

�10 �5 5 10

0.001

0.002

0.003
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In[77]:= ListPlot�iΓ, Joined � True, PlotRange � All�

Out[77]=

�5 5

0.001

0.002

0.003

0.004

IΑand IΓ are the intensities which we measure.

Create the Matrix Vector Equation

Clear previous definition of Σ

In[78]:= Clear�Σ�;
Clear�Σs�;

Define the equations that are the entries of the matrix S

In[80]:= Σs�k_, l_, Θ_� :� Conjugate�sn�k�� Exp�� 2 Π k l ��t�2 Cot�Θ��;
Σ�k_, l_, Θ_� :� sn�k� Exp�� 2 Π �k � l� l ��t�2 Cot�Θ��;

Filling in the SΘmatrix shown in Eq. (29)

In[82]:= SΑ � Table�0, �i, n1 � 2 � 1�, �j, n1��;
SΓ � Table�0, �i, n1 � 2 � 1�, �j, n1��;
For�i � 1, i � n1 � 2 � 1, i��,

For�j � 1, j � n1 � 2, j��,
SΑ��i, j�� � Σs��n1 � 2 � �j � 1� � �i � 1�, n1 � �i � 1�, Α�;
SΓ��i, j�� � Σs��n1 � 2 � �j � 1� � �i � 1�, n1 � �i � 1�, Γ�;�;�;

For�i � 1, i � n1 � 2 � 1, i��,
For�j � 1, j � n1 � 2, j��,

SΑ��i, j � n1 � 2�� � Σ��j � 1� � �i � 1�, n1 � �i � 1�, Α�;
SΓ��i, j � n1 � 2�� � Σ��j � 1� � �i � 1�, n1 � �i � 1�, Γ�;�;�;

The CΘvector showin in Eq. (31)
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In[86]:= CCΑ � Table�0, �i, n1 � 2 � 1�, �j, 1, 1��;
CCΓ � Table�0, �i, n1 � 2 � 1�, �j, 1, 1��;
For�i � 1, i � n1 � 2 � 1, i��,

CCΑ��i, 1�� � CΑ�n1 � �i � 1�� � Sum�Conjugate�sn�� n1
2
� j � 1��

sn� n1
2
� j � i� Exp�� 2 Π � n1

2
� j � 1 �n1 � �i � 1�� ��t�2 Cot�Α��, �j, 1, i � 1��;

CCΓ��i, 1�� � CΓ�n1 � �i � 1�� � Sum�Conjugate�sn�� n1
2
� j � 1�� sn� n1

2
� j � i�

Exp�� 2 Π � n1
2
� j � 1 �n1 � �i � 1�� ��t�2 Cot�Γ��, �j, 1, i � 1��;

�;
Create the matrix equation which we solve for the unknown s[] entries Eq. (28)

In[89]:= S � Table�0, �i, n1 � 2�, �j, n1��;
CC � Table�0, �i, n1 � 2�, �j, 1, 1��;
For�i � 1, i � n1 � 2 � 1, i��,

For�j � 1, j � n1, j��,
S��i, j�� � SΑ��i, j��;�;�;

For�i � 1, i � n1 � 2 � 1, i��,
For�j � 1, j � n1, j��,

S��i � �n1 � 2 � 1�, j�� � SΓ��i, j��;�;�;
For�i � 1, i � n1 � 2 � 1, i��,

CC��i, 1�� � CCΑ��i, 1��;�;
For�i � 1, i � n1 � 2 � 1, i��,

CC��i � �n1 � 2 � 1�, 1�� � CCΓ��i, 1��;�;
The number of equations is greater than the number of variables. Therefore, we'll have to use a least squares method to solve for
s[]

In[95]:= sol � LeastSquares�S, CC�;
Now,  get the answers to the unknowns using Eq (30)

In[96]:= For�i � 1, i � n1 � 2, i��,
sn�n1 � 2 � �i � 1�� � sol��i, 1��;�;

For�i � 1, i � n1 � 2, i��,
sn��n1 � �i � 1�� � Conjugate�sol��n1 � 2 � i, 1���;�;

� Plots

In[98]:= sMag � Table��k �t, Abs�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
sArg � Table��k �t, Arg�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
sRe � Table��k �t, Re�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
sIm � Table��k �t, Im�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
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In[102]:= ListPlot�sMag, Joined � True, PlotStyle � RGBColor�1, 0, 0�, PlotRange � ���1, 1�, All��

Out[102]=

�1.0 �0.5 0.5 1.0

0.02

0.04

0.06

0.08

0.10

In[103]:= ListPlot�sArg, Joined � True, PlotStyle � RGBColor�1, 0, 0�, PlotRange � ���1, 1�, All��

Out[103]=
�1.0 �0.5 0.5 1.0

�2

�1

1

2

In[106]:= Show��102, �5, AxesLabel � �"Time t", "Magnitude s�t�"��

Out[106]=

�1.0 �0.5 0.5 1.0
Time t

0.02

0.04

0.06

0.08

0.10

Magnitude s�t�

enhanced.nb   13

56



In[107]:= Show��103, �4, AxesLabel � �"Time t", "Phase s�t� radians"��

Out[107]=

�1.0 �0.5 0.5 1.0
Time t

�2

�1

1

2

Phase s�t� radians
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APPENDIX II: OPTICS ANALYSIS

In this appendix, we will analyse of the optics setup shown in the yellow panel of

Figure 4.

Transmission grating diffraction grating

Figure 19 A simple transmission diffraction grating spectrometer.

A simple transmission diffraction grating spectrometer is shown in Figure 19. By tilting

the incident beam so that it intersects the diffraction grating at an angle, the diffracted

light will contain information about its longitudinal distribution. In this presentation we

will apply scalar diffraction theory for the analysis of the diffraction pattern and so there

cannot be any explicit time dependence.

In general, the transmission diffraction grating transmission function is the convolution
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of a sum of δ-functions which are separated by a period a with the width of each slit b.e

tD(x) =




� ∞

−∞
dx
�




∞�

p=−∞
δ(x� − pa)



W (x− x
�)



 P (x) (42)

where the W is described by

W (x; b) =






1 if |x| < b/2 < a/2

0 otherwise
(43)

We have also added an aperture function P (x) to describe the finite size of the diffraction

grating.

P (x) =






1 if |x| < Ma/2

0 otherwise
(44)

where M is the total number slits.

M → ∞ diffraction grating model

For the analytic calculations, we will simplify diffraction grating model by making it

infinite in size, i.e. M →∞. Therefore, the transmission function is

t
�
D

(x) =
� ∞

−∞
dx
�

∞�

p=−∞
δ(x� − pa)W (x− x

�; b)

=
∞�

p=−∞
W (x− pa; b)






(45)

Diffraction analysis

We will first consider the rays to the left of the diffraction grating and assume that it

is a plane wave with a propagation vector k = k(sin θi, cos θi) = 2π

λ
(sin θi, cos θi). Then at

e Note: Commercial diffraction gratings have a sinusoidal structure or a sawtooth structure.
Sinusoidal gratings have been analysed by Goodman.7
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r = (x, 0−), we have

u
g(x, 0; θi; φ) = s(φ)e−(x cos θi)2/w

2
e
ik·r

= s(φ)e−(x cos θi)2/w
2
e
ikx sin θi




 (46)

where s ∈ C is the “temporal” description of the laser pulse in its propagation direction

which we have reparametrised in terms of phase (Note: we have to be careful in the defini-

tion of u
g because u

g satisfies the Helmholtz equation which means it is time independent),

and e
−(x cos θi)2/w

2
is the Gaussian spatial profile of the laser beam in its transverse direc-

tion projected onto the z-axis, and w is the radius of the beam where the field amplitude

has fallen by 1/e.

Since, our calculation cannot have any time dependence, let us consider a snapshot of

the fields at the grating when φ = 0 for ray 0 which we will use as the reference ray and so

ray 0 = u
g(0, 0; θi; 0) (47)

For ray 1, we have

ray 1 = u
g (a, 0; θi; ka sin θi) (48)

because it arrives earlier than ray 0, and so at any later sampling time, we will see a later

part of the pulse compared to ray 0. See Figure (c).

For ray (−1), we have

ray (−1) = u
g (−a, 0; θi; −ka sin θi) (49)

because it arrives later than ray 0 and so at any later sampling time, we will see an earlier

part of the pulse compared to ray 0.

And in general

ray p = u
g (pa, 0; θi; pka sin θi) (50)
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Fresnel approximation confined to xz-plane

In general, the Fresnel approximation for diffraction is

u(x, y, z) =
e
ikz

e
ik(x2+y

2)/2z

iλz

� ∞

−∞
dx
�
� ∞

−∞
dy
�

�
u(x, y, 0)eik(x�2+y

�2)/2z
�
e
−ik(xx

�+yy
�)/z

(51)

We will confine our analysis only to the xz-plane. To do this, we will set y = 0 in (51) and

define u(x, 0, z) ≡ u(x, z) to get

u(x, z) =
e
ikz

e
ikx

2
/2z

iλz

� ∞

−∞
dx
�
u(x, 0)eikx

�2
/2z

e
−ikxx

�
/z

� ∞

−∞
dy
�
e
iky

�2
/2z (52)

The integral
�∞
−∞ dy

�
e
iky

�2
/2z = −i

�
λz/i and when we substitute it into (52), we get the

Fresnel approximation which we desire

u(x, z) = −e
ikz

e
ikx

2
/2z

√
iλz

� ∞

−∞
dx
�
u(x, 0)eikx

�2
/2z

e
−ikxx

�
/z (53)

Fresnel diffraction pattern

If we describe the diffraction pattern on the the plane Pg by the Fresnel approximation

(53), then it is

u
(1−)(x, dg; θi) = −e

ikdge
ikx

2
/2dg

�
iλdg

×
� ∞

−∞
dx
�
�
u

g(x�, 0; θi; kx
� sin θi)t�D(x�)eikx

�2
/2dg

�
e
−ikxx

�
/dg

= −e
ikdge

ikx
2
/2dg

�
iλdg

×

∞�

p=−∞

� ∞

−∞
dx
�

��
u

g(x�, 0; θi; kx
� sin θi)eikx

�2
/2dg

�
W (x� − pa; b)

�
×

e
−ikxx

�
/dg

(54)
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When we only keep the non-zero parts of the integral we get the Fresnel diffraction pattern

for a transmission diffraction grating

u
(1−)(x, dg; θi) = −e

ikdge
ikx

2
/2dg

�
iλdg

×

∞�

p=−∞

�
b/2

−b/2
dx
�

�
u

g
�
x
� + pa, 0; θi k(x� + pa) sin θi

�
e
ik(x�+pa)2/2dg

�
×

e
−ikx(x�+pa)/dg

(55)

In general, (55) is not integrable for arbitrary u
g and even if it is, the results will clearly

not be very illuminating. Therefore, in the section Extremely narrow slits , we will make

the slits very small so that we can simplify (55). But first, we will check out (55) for the

special case of u
g = 1.

Check

We will check that (55) gives us the well known solution for a diffraction grating for

the case when u
g = 1. Substituting this into (55) we get

u
(1−)(x, dg; 0) = −e

ikdge
ikx

2
/2dg

�
iλdg

∞�

p=−∞

�
b/2

−b/2
dx
�
e
ik(x�+pa)2/2dge

−ikx(x�+pa)/dg (56)

In the Fraunhofer approximation k(x� + pa)2/2dg ≈ 0 and so

u
(1−)(x, dg; 0) = −e

ikdge
ikx

2
/2dg

�
iλdg

∞�

p=−∞

�
b/2

−b/2
dx
�
e
−ikx(x�+pa)/dg

= −b
e
ikdge

ikx
2
/2dg

�
iλdg

�
sin kbx/2dg

kbx/2dg

� ∞�

p=−∞
e
−i2πpax/λdg

= −b
e
ikdge

ikx
2
/2dg

a

�
λdg

i

�
sin kbx/2dg

kbx/2dg

� ∞�

p=−∞
δ

�
x− p

λdg

a

�






(57)
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where the last line comes from the Poisson sum formula for complex exponentials
∞�

p=−∞
e
±i2πpfT =

1
T

∞�

p=−∞
δ(f − p/T ) (58)

Hence, we have obtained the well-known solution of a diffraction grating in (57). The

width of the slit b gives the sinc() modulation of the spectrum which are an infinite number

of δ-functions separated by λdg/a.

Extremely narrow slits

The Fresnel solution for a finite sized slit is very complicated. We can simplify it by

making the slits extremely narrow, i.e. b/λ � 1 so that u
g(x)eikx

2
/2dg is constant in the

slit. We can simplify (55) to

u
(1−)(x, dg; θi) = −b

e
ikdge

ikx
2
/2dg

�
iλdg

∞�

p=−∞
u

g(pa, 0; θi; pka sin θi)eik(pa)2/2dge
−ipkax/dg

(59)

When we substitute (46) into (59), we have

u
(1−)(x, dg; θi) = −b

e
ikdge

ikx
2
/2dg

�
iλdg

×

∞�

p=−∞

�
s (pka sin θi) e

ik(pa)2/2dge
ipka sin θi

�
e
−(pa cos θi)2/w

2
e
−ipkax/dg

(60)

Notice the quadratic phase term e
ik(pa)2/2dge

ipka sin θi above. This means that the phase

at every point pka sin θi is increased by (k(pa)2/2dg + pka sin θi). Since all the parameters

in this phase term are known, we can correct the for it in the phase calculated by the

bootstrap algorithm.

Let us define a new variable

s̄(pka sin θi) ≡ s(pka sin θi)eik(pa)2/2dge
ipka sin θi

or s̄(φ) = s(φ)eiφ
2
/(2kdg sin2

θi)eiφ




 (61)
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because we can always reconstruct s from s̄ and so (60) becomes

u
(1−)(x, dg; θi) = −b

e
ikdge

ikx
2
/2dg

�
iλdg

∞�

p=−∞
s̄ (pka sin θi) e

−(pa cos θi)2/w
2
e
−ipkax/dg (62)

Note: Although the reconstruction of s(φ) from s̄(φ) is trivial, there are some technicalities

which must be understood for the reconstruction to work. Appendix III details the solution

of these technicalities.

Case I: θi = π

2

We want to show that (62) is the Fourier transform of s̄(ϕ�). Let us consider the special

case when the incident angle θi = π/2 then

u
(1−)(x, dg; 1

2π) = −b
e
ikdge

ikx
2
/2dg

�
iλdg

∞�

p=−∞
s̄ (pka) e

−ipkax/dg (63)

If we only consider the sum on the rhs of (63), and identify ka = µ∆ϕ
� and µx/dg/2π = ϕ

where µ ∈ R+ is an arbitrary constant (see Example A.II.1 ) then

S̄(ϕ) =
∞�

p=−∞
s̄(pka)e−ipka(x/dg−1) =

∞�

p=−∞
s̄(p∆ϕ

�)e−i2π(p∆ϕ
�)ϕ (64)

It is clear that (64) is the Fourier transform of s̄(ϕ�).

We can transform (64) into a DFT by first defining a new variable

∆ϕ =
µ

2π

�
∆x

dg

�
(65)

and demanding that

∆ϕ ∆ϕ
� =

µ

2π

�
∆x

dg

�
× ka

µ
= 1/N (66)

where N is the number of points used to sample s̄(ϕ�) which we have assumed to be a

finite pulse, thus

∆x =
�

2π

Nka

�
dg (67)
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Therefore, the DFT of s̄(ϕ�) is

S̄(q∆ϕ) =
N/2−1�

p=−N/2

s̄(p∆ϕ
�)e−i2πpq/N (68)

and u
(1−)(x, dg; 1

2π) when discretised is

u
(1−)(q∆x, dg; 1

2π) = −b
e
ikdge

ik(q∆x)2/2dg

�
iλdg

S̄(q∆ϕ) (69)

Example A.II.1

We will verify that the DFT of s̄(φ�) for a rectangle function

rect(φ�/φ
�
len) = H(φ� + φ

�
len/2)−H(φ� − φ

�
len/2) (70)

where H(φ�) is the Heaviside operator, is the well known normalised sinc function

FT
�
rect(φ�/φ

�
len)

�
(φ) = |φ�len|

sin πφ
�
lenφ

πφ
�
lenφ

(71)

using (68).

The parameters used for our example are shown in Table AII.2. For a rectangle pulse

which is “on” for tp = 100 fs or φ
�
len = 75π radians and µ = 4 so as to reduce the sampling

period to ∆φ
� = ka/4, we can plot S(φ)/S(0) and sin πφ

�
lenφ/πφ

�
lenφ and superimpose

them in Figure 20.

Case II: θi = π

2 − δθi

In general, the incident angle θi is at some value smaller than π/2. For the success of

the optical setup, θi must be as close to π/2 as possible, i.e.

θi = π/2− δθi (72)

65



!0.10 !0.05 0.05 0.10
Φ

!0.2

0.2

0.4

0.6

0.8

1.0

S!Φ"#S!0", Sin!Π ΦlenΦ'"#Π ΦlenΦ'

Figure 20 We superimpose S(φ)/S(0) (blue trace) and sinπφlenφ
�

πφlenφ�

(red trace) and see that the two results are very close. The phase
difference between these two functions gets smaller as the sampling
period ∆φ

� → 0.

where δθi � 1. Therefore,

cos θi = δθi + O(δθ3)

sin θi = 1 + O(δθ2)




 (73)

When we substitute the above into (62), we have

u
(1−)(x, dg; 1

2π − δθi) = −b
e
ikdge

ikx
2
/2dg

�
iλdg

∞�

p=−∞
s̄ (pka) e

−(paδθi)2/w
2
e
−ipkax/dg (74)

and so the sum on the rhs of (74) is still the Fourier transform of s(φ�) without any coupling

to the transverse plane as long as

(i) the sum is not to infinity, i.e. s(±pmax∆φ
�) = 0 for |p| > pmax.

(ii) (pmaxaδθi/w)2 � 1.

If the above conditions are met then

u
(1−)(x, dg; 1

2π − δθi) ≈ −b
e
ikdge

ikx
2
/2dg

�
iλdg

pmax/2−1�

p=−pmax/2

s̄ (pka) e
−ipkax/dg (75)
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Figure 21 We have made the incident angle θi very shallow in this
figure in order to illustrate the temporal dependence of the Fourier
spectrum. The leading edge of the pulse represented by ray 2 inter-
sects the diffraction grating first. As time progresses, the entire pulse
will eventually leave the grating.

and the previous arguments of the section Case I: θi = 1
2π apply. We will not consider the

case when δθi is large.

Sampling frames

In the previous sections, we have considered only the static situation of one snapshot.
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However, we have a dynamical situation where each snapshot shows a sampled pulse which

moves across the grating. See Figures 21 and 22. Because of this motion, we require the

number of frames which contain the entire pulse to be much greater than the frames which

only contain a partial part of the pulse. If the full frames are dominant then the only

concern that we have is the phase shift between each frame, i.e.

Frame 1 = u(x)

Frame 2 = e
iψ

u(x)

Frame 3 = e
i2ψ

u(x)

... =
...

But even in this case the CCD camera is only sensitive to the magnitude of each frame

and so the integral is simply

CCD integral = u(x)u∗(x) +
�
e
iψ

u(x)
� �

e
iψ

u(x)
�∗

+
�
e
i2ψ

u(x)
� �

e
i2ψ

u(x)
�∗

+ . . .

=
�

Nframes

|u(x)|2

which means that any phase shift ψ arising from each frame is irrelevant.

The final part of this section is to calculate the optimum θi and number of samples n

per frame for a pulse width tp.

The angle θi must not be so large that the pulse from the first incident ray completely

leaves the slit before the subsequent rays enter their slits. If the sampling time is ∆t, we

want

∆t =
a

c
sin θi (76)

If we want n samples of the pulse, we must have

∆t = tp/n ⇒ a

c
sin θi = tp/n (77)

Therefore, the maximum incident angle allowed is

θ
max
i

= sin−1
�

ctp

na

�
where 0 ≤ θ

max
i

≤ π/2 (78)
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Figure 22 The sampling frames of the input pulse. As the pulse
moves across the diffraction grating, some of the slits sample the pulse.

We need to ensure that the number of full frames exceed the partial frames which depends

on the transverse width of the laser beam. If the transverse 1/e width is w, then the

projected width wproj onto the grid is

cos θi = 2w/wproj (79)

(Note: the “2” in the above equation is because w is the “radius” of the laser beam) which

means that the total number of full frames are

Nframes = wproj/na ⇒ Nframes =
2w

na cos θi

(80)

Example A.II.2

We can calculate the number of sample points n per frame using (78) when we use the
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numbers in Table AII.2 and set θi = (90◦ − 5◦) = (π/2− 0.087) rad.

n =
ctp

a sin θ
=

(3× 108)[m/s]× (100× 10−15)[s]
(1.67× 10−6)[m]× sin(π/2− 0.087)

= 18 (81)

We can compare this number, n = 18, to FROG numbers in Trebino’s review paper.8 We

see that this number seems to be typical.

The number of full frames using (80) is (w = 0.25 cm)

Nframes =
2× (0.25× 10−2)[m]

18× (1.67× 10−6)[m] cos(π/2− 0.087)
= 1914 (82)

Correcting the quadratic phase

Let us recall from (69) that u
(1−) is

u
(1−)(q∆x, dg) = −b

e
ikdge

ik(q∆x)2/2dg

�
iλdg

S̄(q∆ϕ) (83)

where we have suppressed the θi argument of u
(1−) because we will always be in the regime

which satisfies the conditions for this approximation. (See section Case II: θi = π

2 − δθi.)

We can correct for the quadratic phase e
ikx

2
/2dg in (83) with a converging lens by a

suitable choice of parameters because it is well known that the transmission function of a

lens is

t� = e
−ikx

2
/2f� (84)

where f� is the focal length of the lens. And so if we choose the focal length of lens 1 to

be dg then the quadratic phase in u
(1−) is compensated and thus we get

u
(1+)(x) = t�u

(1−) = −b
e
ikdg

�
iλdg

S̄

�
ϕ(x)

�
(85)

Propagating through Lens 2

We have to add two more lenses after lens 1 to recover S̄ without introducing anymore

quadratic phases because when we place lens 2 a distance equal to its focal length f2 from
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lens 1 and look at the image at its back focal plane we have

u
(2)(x, f2) = b

e
ikdg

iλ
�

dgf2

� ∞

−∞
dx
�
S̄

�
ϕ(x�)

�
e
−i2πxx

�
/λf2 (86)

Note: it is trivial to prove that applying the Fourier transform twice to a function s(t)

produces s(−t).

Propagating through Lens 3

Lens 3 is used for creating the FrFT of the image from Lens 2. We have fixed the

“local” focal length to F3 and so the position for Len 3 is RQF3 = (tan α/2)(sin α)f3 from

(34) (also see Figure 4).

For α = π/2, we can set f3 = f2 we can show that S̄ can be recovered because at this

position Lens 3 performs a Fourier transform of an object placed at the front focal length

of Lens 3.

Let us consider the case when we place lens 3 f2 from from the focal plane of lens 2

and look at the image f2 from the back of lens 3. The final image is thus

u
(3)(x, f2) = −b

e
ikdg

iλ3/2f2
�

dg

� ∞

−∞
dx
��

�� ∞

−∞
dx
�
S̄

�
ϕ(x�)

�
e
−i2πx

�
x
��
/λf2

�
e
−i2πx

��
x/λf2

= −b
e
ikdg

λ3/2f2
�

dg

� ∞

−∞
dx
�
S̄

�
ϕ(x�)

� � ∞

−∞
dx
��

e
−i2π(x�+x)x��/λf2

= −b
e
ikdg

�
λdg

� ∞

−∞
dx
�
S̄

�
ϕ(x�)

�
δ(x + x

�)

= −b
e
ikdg

�
λdg

S̄

�
ϕ(−x)

�

(87)

The complete setup for producing the α-order FrFT of s̄ is shown in Figure 4.
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Table AII.2 Simulation Parameters

Parameter Value Comments

λ 800 ns Ti-Sapphire laser wavelength

tp 100 fs longitudinal pulse width

w 0.25 cm transverse 1/e radius of the laser

a 1.67 µm 600 lines/mm diffraction grating (600 lines/mm)

a
� 0.83 µm 1200 lines/mm diffraction grating for Numerical

Demonstration 2

∆xpixel 14 µm length of CCD pixel (Hamamatsu S10420)

Npixel 2048 true number of CCD pixels is 2068

dg = f1 5 cm focal length of lens 1

f2 100 cm focal length of lens 2

F3 100 cm “local” focal length of lens 3
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APPENDIX III: EXTRACTING s(φ) FROM s̄(φ)

We note that the input pulse s(t) is sampled spatially at a distance a sin θi just before

the diffraction grating. See Figure 23. If the number of slits used is pmax, then the

maximum transverse length of the sampled pulse is pmaxa sin θi

However, also from Figure 23, just after the diffraction grating, the intensity pattern

is spaced a apart. Therefore, the maximum transverse length is pmaxa = ∆xgrid. The

magnification between the object at the diffraction grid and the image on P2 is given byf

magnification ν = f2/f1 (88)

For example, if we use the numbers in Table AII.2 and (82), pmax = 18 fs, then ∆xgrid =

30 µm. We expect the size of the image ∆xP2
on P2 to be

∆xP2
=

�
f2
f1

�
∆xgrid (89)

For f1 = 0.05 m and f2 = 1.0 m, we have

∆xP2
=

�
1.0
0.05

�
× 30[µm] = 20× 30[µm] = 0.60mm

This is exactly what we see in Figure 10.

s̄(ϕ) was defined in (61) which we repeat here but with s(ϕ) on the lhs

s(ϕ) = s̄(ϕ)e−iϕ
2
/(2kdg sin2

θi)e−iϕ (90)

But because of the magnification factor shown in (88), we actually measure s̄(−νx) (the

negative sign of the argument comes the two Fourier Transforms of s̄(x). See (87))and so

our correction must reflect this magnification factor (including the sign)

s(−νx) = s̄(−x)e−i(−x)2/(2kdg sin2
θi)e−i(−x) (91)

f The proof is trivial: The Fresnel integral between the grid and Pg contains e
−ixx

�
/λf1 while

between Pg and P2 it contains e
−ixx

�
/λf2 . Therefore, the ratio f2/f1 relates the size of the

object on the grid to the image on P2.
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Finally, we must take into account the slow sampling compared to the oscillations of

e
ikx sin θi = e

iϕ. We can superimpose the under-sampled version of s̄ to the “highly”

sampled s̄. This is shown in Figure 11. The Mathematica programme in the section

Numerical Demonstration 1 shows how we perform the extraction.

Figure 23 The input pulse is sampled at an interval of a sin θi in
the spatial domain to the left of the diffraction grating. To the right
of the grid, the optics looks at a pulse which is sampled at a intervals.
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Appendix IV: Numerical Demonstration of the Optical Setup
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Demonstration 1
The goal is to see how well we can reconstruct the s[t] signal using reasonable parameters for the Ti:Sapphire laser. In this
demonstration grating size is very small here b=1nm and incident angle Θi � 85 deg = 1.48 rad is near grazing. The input is a
rectangle pulse so that we can understand the mechanics.

Simulation Parameters

� Ti : Sapphire laser parameters

In[1]:= Λ � 800 � 10�9; ��wavelength of TiS, m��
c � 3 � 108; �� speed of light, m�s��

In[3]:= k � 2 Π � Λ; �� wave number m��
1/e radius of the laser

In[4]:= w � 0.25 � 10�2; ��m��
� Grating parameters

The parameters of the grating, assuming 600 grooves/mm.
The period of the grating

In[5]:= a � 10�3 � 600.; ��m��
The size of the slit

In[6]:= b � 10�9; ��m��
� CCD parameters

The size of a pixel and number of pixels on a CCD camera, for example Hamamatsu S10420

In[7]:= �xpixel � 14 � 10�6; ��m��
In[8]:= Npixel � 2048; �� set it to 2048, actual number of pixels is 2068x70 ��
� Integration Step Size

For convenience, we will make the integration step size, the same as the CCD camera

In[9]:= �x � �xpixel;

In[10]:= N�x � Npixel;
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� Optics parameters

Lens 1 focal length

In[11]:= f1 � 0.05; ��m��
Lens 2 focal length

In[12]:= f2 � 1.0; ��m��
� Input pulse parameters

The incident angle

In[13]:= Θi � 85 Π � 180;
The input pulse is 100fs long

In[14]:= tp � 100 � 10�15; ��s��
In[15]:= Η�t_� :� If��0.5 � t � �tp� � 0.5, 1, 0�;
In[16]:= sinput�t_� :� Η�t�
In[17]:= Plot�Arg�sinput�t��, �t, �tp � 2, tp � 2�,

PlotRange � All, AxesLabel � �"time �s�", "Phase �rad�"��

Out[17]=

�4.�10�14 �2.�10�14 2.�10�14 4.�10�14
time �s�

�1.0

�0.5

0.5

1.0

Phase �rad�

In[18]:= Plot�Abs�sinput�t��, �t, �tp, tp�, AxesLabel � �"time �s�", "Amplitude"��

Out[18]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13
time �s�

0.2

0.4

0.6

0.8

1.0
Amplitude

This is from Eq (46) which describes the distribution just before the diffraction grating. Note that the argument of sinput is
converted from phase Φ  to time.

2   demo1.nb
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This is from Eq (46) which describes the distribution just before the diffraction grating. Note that the argument of sinput is
converted from phase Φ  to time.

In[19]:= ug�x_, Φ_� :� sinput� Φ

2 Π

Λ

c
� Exp���x Cos�Θi��2 � w2� Exp�� k x Sin�Θi��;

� The Diffraction Grating

From Example AII.2, Eq (81), we know that pmax=18

In[20]:= pmax � 18;

� Use the u1 approximation

We will use the approximation from Eq (75)

In[21]:= u1approx�x_� :�
�b

Exp�� k f1� Exp�� k x2

2 f1
�

� Λ f1
Sum�sinput� p k a Sin�Θi�

2 Π

Λ

c
� Exp�� k �p a�2

2 f1
� Exp�� p k a Sin�Θi��

Exp���p a Cos�Θi��2 � w2� Exp��� p k a x � f1�, �p, �pmax � 2, pmax � 2 � 1��
In[22]:= Lu1approx � Table��i �x, u1approx�i �x��, �i, �N�x � 2, N�x � 2 � 1��;
In[23]:= Lu1approxr � Table��Lu1approx��i, 1��, Re�Lu1approx��i, 2����, �i, Length�Lu1approx���;

Lu1approxi � Table��Lu1approx��i, 1��, Im�Lu1approx��i, 2����, �i, Length�Lu1approx���;
In[25]:= ListPlot�Lu1approxr, Joined � True, PlotRange � All, AxesLabel � �"x �m�", "Re�u�1���"��

Out[25]=

�0.010 �0.005 0.005 0.010
x �m�

�0.00005

0.00005

Re�u�1���

demo1.nb   3
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In[26]:= ListPlot�Lu1approxi, Joined � True, PlotRange � All, AxesLabel � �"x �m�", "Im�u�1���"��

Out[26]=

�0.010 �0.005 0.005 0.010
x �m�

�0.00005

0.00005

Im�u�1���

Looks pretty good! The rapid oscillations are from Exp[� k x2 �2 f1�which we will correct with lens 1 in the next section. Note:
the x axis has dimensions of length which is required for input into Lens 2.

� Correct Quadratic Phase

Correct the quadratic phase with lens 1. 

In[27]:= u1p�x_� :� Exp��� k x2

2 f1
� Lu1approx��Round�x � �x � N�x � 2 � 1�, 2��

In[28]:= Lu1p � Table��i �xpixel, u1p�i �xpixel��, �i, �N�x � 2, N�x � 2 � 1��;
In[29]:= Lu1pr � Table��Lu1p��i, 1��, Re�Lu1p��i, 2����, �i, Length�Lu1p���;

Lu1pi � Table��Lu1p��i, 1��, Im�Lu1p��i, 2����, �i, Length�Lu1p���;
In[31]:= ListPlot�Lu1pr, Joined � True, PlotRange � All, AxesLabel � �"x �m�", "Re�u�1���"��

Out[31]=

�0.010 �0.005 0.005 0.010
x �m�

�0.00006

�0.00004

�0.00002

0.00002
Re�u�1���
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In[32]:= ListPlot�Lu1pi, Joined � True, PlotRange � All, AxesLabel � �"x �m�", "Im�u�1���"��

Out[32]=

�0.010 �0.005 0.005 0.010
x �m�

0.00002

0.00004

0.00006

Im�u�1���

� Propagating through Lens 2

x must have dimensions of length for input into lens 2. Fortunately we do have this criteria satisfied in the construction of
Eq(86). The output x axis also has the dimensions of length.

Instead of performing the integral in Eq(86) with NIntegral[], we will replace it with a Sum[] instead to speed things up.

In[33]:= u2�x_� :� � 1

� Λ f2
Sum� u1p�i �x� Exp��� 2 Π x �i �x�

Λ f2
�, �i, �N�x � 2, �N�x � 2 � 1��� �x

In[34]:= Lu2 � Table��i �x, u2�i �x��, �i, �N�x � 2, N�x � 2 � 1��;
In[35]:= Lmagu2 � Table��Lu2��i, 1��, Abs�Lu2��i, 2����, �i, Length�Lu2���;

Largu2 � Table��Lu2��i, 1��, Arg�Lu2��i, 2����, �i, Length�Lu2���;
Lu2r � Table��Lu2��i, 1��, Re�Lu2��i, 2����, �i, Length�Lu2���;
Lu2i � Table��Lu2��i, 1��, Im�Lu2��i, 2����, �i, Length�Lu2���;

In[39]:= ListPlot�Lmagu2, Joined � True, PlotRange � ���0.001, 0.001�, All�,
AxesLabel � �"x �m�", "Abs�u�2��"�, PlotLabel � "�a�"�

Out[39]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.00005

0.00010

0.00015

Abs�u�2���a�
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In[40]:= ListPlot�Largu2, Joined � True, PlotRange � ���0.001, 0.001�, All�,
AxesLabel � �"x �m�", "Arg�u�2��"�, PlotLabel � "�b�"�

Out[40]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Arg�u�2���b�

In[41]:= ListPlot�Lu2r, Joined � True, PlotRange � ���0.001, 0.001�, All�,
AxesLabel � �"x �m�", "Re�u�2��"�, PlotLabel � "�c�"�

Out[41]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�0.0001

�0.00005

0.00005

0.0001

Re�u�2���c�

In[42]:= ListPlot�Lu2i, Joined � True, PlotRange � ���0.001, 0.001�, All�,
AxesLabel � �"x �m�", "Im�u�2��"�, PlotLabel � "�d�"�

Out[42]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�0.0001

�0.00005

0.00005

0.0001

Im�u�2���d�

Aperture Stop

We have to put in an aperture stop for the Enhanced Bootstrap Algorithm to work. 

Define the aperture function

6   demo1.nb
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Define the aperture function

In[43]:= ap�x_, xstop_� :� If� �xstop � x � xstop, 1, 0�
Create a interpolation of Lu2 at the exit of Lens 2

In[44]:= u2fi � Interpolation�Lu2�
Out[44]= InterpolatingFunction����0.014336, 0.014322��, ���
and adding the aperture function

In[45]:= u2f�x_, xstop_� :� ap�x, xstop� u2fi�x�
� Chunk 1

The first chunk which picks out the centre of the distribution (16 �x)

In[46]:= Plot�Abs�u2f�x, 16 �x��, �x, �0.001, 0.001�,
PlotRange �� All, AxesLabel � �"x �m�", "Abs�u�2��"��

Out[46]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014
Abs�u�2��

In[47]:= Plot�Arg�u2f�x, 16 �x��, �x, �0.001, 0.001�,
PlotRange �� All, AxesLabel � �"x �m�", "Arg�u�2��"��

Out[47]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Arg�u�2��

In[48]:= Export�"��papers�frog�math�demo1chunk1.dat",
Table��N�i �x�, N�u2f�i �x, 16 �x���, �i, �N�x � 2, �N�x � 2 � 1����

Out[48]= ��papers�frog�math�demo1chunk1.dat
� Chunk 2
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�

Chunk 2

The second chunk which encompasses the entire pulse (32 �x)

In[49]:= Plot�Abs�u2f�x, 32 �x��, �x, �0.001, 0.001�,
PlotRange �� All, AxesLabel � �"x �m�", "Abs�u�2��"��

Out[49]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.00005

0.00010

0.00015

Abs�u�2��

In[50]:= Plot�Arg�u2f�x, 32 �x��, �x, �0.001, 0.001�,
PlotRange �� All, AxesLabel � �"x �m�", "Arg�u�2��"��

Out[50]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Arg�u�2��

In[51]:= Export�"��papers�frog�math�demo1chunk2.dat",
Table��N�i �x�, N�u2f�i �x, 32 �x���, �i, �N�x � 2, �N�x � 2 � 1����

Out[51]= ��papers�frog�math�demo1chunk2.dat
Chunks 1 and 2 will be analysed in demo1a.nb
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Demonstration 1 using Type 1 Optics
Demonstration 1 produced chunk1 and chunk2 for the "Enhanced Bootstrap Algorithm" to be analysed here with the type I optics.

Type 1 Optics DFrFT

The Type 1 dimensionfull DFrFT is given by Eq (36)

In[1]:= DFrFT�s_, n_, Α_, �t_, F_, Λ_, m_� :�
Block���xp, F3�, F3 � �Sin�Α� F�; �xp � Λ F3 Sin�Α�

n �t
; Return� Exp�I Α � 2�

I Λ F3 Sin�Α� �t
Sum�s�k �t� Exp� I Π

Λ F3
��m �xp�2 � �k �t�2� Cot�Α� � I 2 Π k m � n�, �k, �n � 2, n � 2 � 1����;

Arguments of DFrFT[] are:
s: function to be transformed
n: number of points to be transformed. Must be power of 2
Α: order of the transform
�xp: pixel size of the CCD camera
F: focal length of the lens
Λ: wavelength of the laser
m: returns value of transform at m �xp

It is assumed that the time step gives the frequency step with the relationship �x �xp= Λ F1 Sin[Α]/n.
For type I configuration, F1 = Q F  and z = R F1 = RQ F. For type I: Q = sin[Α]  R = Tan[Α/2]

Type I Optics Setup

Laser wavelength

In[2]:= Λ � 800 � 10�9; ��m��
Fixed "local" focal length

In[3]:= F3 � 1; ��m��
Focal length of the lens used for Type 1 optics for Α and Γ

In[4]:= Α � Π � 2;
Γ � Π � 4;

In[6]:= F3Α � F3 � Sin�Α� ��m��
Out[6]= 1

In[7]:= F3Γ � F3 � Sin�Γ� ��m��
Out[7]= 2

Size of CCD pixel
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In[8]:= �xpixel � 14 � 10�6; ��m��
Number of CCD pixels. Technically there are 2068 pixels, but just to make things a power of 2, we are setting it to 2048

In[9]:= Npixel � 2048;

For convenience, set the sampling size as the CCD pixel size

In[10]:= �x � �xpixel;

Define the normalization factor from Eq (37)

In[11]:= Μ � Sqrt�Λ F3� �� N
Out[11]= 0.000894427

Read in the chunk1 and chunk2 data

The input function sinput[t] which we had used previously

In[12]:= Lchunk1 � ReadList�"��papers�frog�math�demo1chunk1.dat", �Number, Expression��;
Lchunk2 � ReadList�"��papers�frog�math�demo1chunk2.dat", �Number, Expression��;

Select out the signal part

In[14]:= Lchunk1a � ��;
For�i � 1, i � Length�Lchunk1�, i��,

If�Abs�Lchunk1��i, 2��� � 0,
Lchunk1a � Join�Lchunk1a, �Lchunk1��i����;�;�;

In[16]:= fchunk1 � Interpolation�Lchunk1a, InterpolationOrder � 1�
Out[16]= InterpolatingFunction����0.000224, 0.000224��, ���
For numeric reasons, we are increasing the size of the signal by 103. The first aperture is +/- 16�x

In[17]:= fapchunk1�x_� :� If��16 �x � x � 16 �x, 103 fchunk1�x�, 0�
In[18]:= Lchunk2a � ��;

For�i � 1, i � Length�Lchunk2�, i��,
If�Abs�Lchunk2��i, 2��� � 0,

Lchunk2a � Join�Lchunk2a, �Lchunk2��i����;�;�;
In[20]:= fchunk2 � Interpolation�Lchunk2a, InterpolationOrder � 1�
Out[20]= InterpolatingFunction����0.000448, 0.000448��, ���
The second aperture is +/- 32�x

In[21]:= fapchunk2�x_� :� If��32 �x � x � 32 �x, 103 fchunk2�x�, 0�
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In[22]:= Plot��Arg�fapchunk2�x��, Arg�fapchunk1�x���, �x, �10�3, 10�3�,
PlotRange � All, AxesLabel � �"x �m�", "Phase �radians�"��

Out[22]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Phase �radians�

In[23]:= Plot��Abs�fapchunk2�x��, Abs�fapchunk1�x���,�x, �10�3, 10�3�, PlotRange � All, AxesLabel � �"x �m�", "Magnitude"��

Out[23]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.05

0.10

0.15

Magnitude

� First measurement parameters with a small chunk

We select Α = Π/2 and Γ = Π/4 and work on the first chunk

In[24]:= nm � Npixel;��total number of samples which is
approximately equal to the number of pixels on the CCD��

n1 � 16 � 2; �� number of samples where s is the real signal and not padding��
Α � Π � 2;
Γ � Π � 4;
�t � �x � Μ; ��dimensionaless temporal variable created from �x��

Make dimensionless �fΑ and �fΓ. Note: ΛF1/Μ = Μ

In[29]:= �fΑ � Λ F3 Sin�Α� � �Μ nm �t� �� N;
�fΓ � Λ F3 Sin�Γ� � �Μ nm �t� �� N;

� Create the IΑ and IΓ from chunk 1

We need nm points of intensity from IΑand IΓ from sinput1[t].
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In[31]:= iΑ �
Table��m �fΑ, Abs� DFrFT�fapchunk1, nm, Α, �x, F3Α, Λ, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;

iΓ � Table��m �fΓ, Abs� DFrFT�fapchunk1, nm, Γ, �x, F3Γ, Λ, m��2�,�m, �nm � 2, nm � 2 � 1�� �� N;
Make functions for the data sets

In[33]:= IΑ�f_� :� iΑ��Round�f � �fΑ� � nm � 2 � 1����2��;
IΓ �f_� :� iΓ��Round�f � �fΓ� � nm � 2 � 1����2��;

Plot them out 

In[35]:= ListPlot�iΑ, Joined � True, PlotRange � All,
AxesLabel � �"x'", "Magnitude"�, PlotLabel � "Α � Π�2, �16x2��x aperture"�

Out[35]=

�0.02 �0.01 0.01 0.02
x'

0.001

0.002

0.003

0.004

Magnitude
Α � Π�2, �16x2��x aperture

In[36]:= ListPlot�iΓ, Joined � True, PlotRange � All,
AxesLabel � �"x'", "Magnitude"�, PlotLabel � "Γ � Π�4, �16x2��x aperture"�

Out[36]=

�0.02 �0.01 0.01 0.02
x'

0.001

0.002

0.003

0.004

0.005

0.006

Magnitude
Γ � Π�4, �16x2��x aperture

IΑand IΓ are the intensities which we measure. And note that the x-axis which is now frequency is dimensionless.

� Let's normalize iΑ and iΓ so that their power is 1

In[37]:= totalPower �
Sin�Α�
nm ��t�2 Sum�iΑ��i, 2��, �i, Length�iΑ���;
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In[38]:= iΑ � iΑ � totalPower;
iΓ � iΓ � totalPower;

The Bootstrap Method

We define the equations for the bootstrap method defined as equation (19) in the paper.

In[40]:= u�Θ_, m_� :� Exp�I 2 Π ��n1 � 2� �n1 � m� ��t�2 Cot�Θ��;
v�Θ_, m_� :� Exp�I 2 Π ��n1 � 2 � m � 1� �n1 � m� ��t�2 Cot�Θ��;
CΑ�k_� :�

Sin�Α�
nm �t2

Exp��I Π �k �t�2 Cot�Α�� Sum�IΑ� m �fΑ� Exp�I 2 Π k m

nm
�, �m, �nm � 2, nm � 2 � 1��;

CΓ�k_� :� Sin�Γ�
nm �t2

Exp��I Π �k �t�2 Cot�Γ�� Sum�IΓ� m �fΓ� Exp�I 2 Π k m

nm
�, �m, �nm � 2, nm � 2 � 1��;

��Θ_, m_� :� Sum� Conjugate�s��n1 � 2 � j��
s�n1 � 2 � m � j� Exp�I 2 Π �n1 � m� ��n1 � 2 � j� ��t�2 Cot�Θ��, �j, 1, m � 2��;

d�m_� :� Det�� u�Α, m� v�Α, m�
u�Γ, m� v�Γ, m� ��;

Check that CΑ[0] = CΓ[0]

In[46]:= CΑ0 � CΑ�0�
Out[46]= 1.

In[47]:= CΓ0 � CΓ�0�
Out[47]= 1.

Solving s�t�
First set  s[t] = 0 for -n1/2 to -nm/2+1 and nm/2 to n1/2-1

In[48]:= For�i � �nm � 2, i � �n1 � 2 � 1, i��,
s�i� � 0;�;

For�i � n1 � 2, i � nm � 2 � 1, i��,
s�i� � 0;�;

Without loss of generality, we will set s��N/2]=Σ=1 first and then use equation equation (25) to solve for s��n/2] because every
s[n] is either multiplied or divided by s��n/2].

In[50]:= Σ � 1;

In[51]:= cΑ � Chop� CΑ�n1 � 1� Exp�I Π n1 �n1 � 1� �t2 Cot�Α���
Out[51]= 0.0288895 � 0.00669871 �

In[52]:= cΓ � Chop�CΓ�n1 � 1� Exp�I Π n1 �n1 � 1� �t2 Cot�Γ���
Out[52]= 0.0288895 � 0.00669871 �

Clearly cΑ and cΓ are equal as required.

� Iteration 
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�

Iteration 

In[53]:= s��n1 � 2� � Σ
Out[53]= 1

Average cΑ and cΓ because they are supposed to be the same.

In[54]:= s�n1 � 2 � 1� � �cΑ � cΓ� � �2.0 Σ�
Out[54]= 0.0288895 � 0.00669871 �

Also set cΑ to the average since it is used below

In[55]:= cΑ � s�n1 � 2 � 1�
Out[55]= 0.0288895 � 0.00669871 �

From equation (16), we can solve for s[n/2-2] and s[-n/2+1]

In[56]:= s�n1 � 2 � 2� � Chop�First� 1

Conjugate�Σ� d�2� � v�Γ, 2� �v�Α, 2� �.� CΑ�n1 � 2�
CΓ�n1 � 2� ����1���

Out[56]= 0.0278015 � 0.0121123 �

In[57]:= s��n1 � 2 � 1� �
Chop�First� Σ

Conjugate�cΑ d�2�� Conjugate�� �u�Γ, 2� u�Α, 2� �.� CΑ�n1 � 2�
CΓ�n1 � 2� �����1���

Out[57]= 1.06447 � 0.117289 �

Now we can continue the bootstrap process until every element is done

In[58]:=

For�m � 3, m � n1 � 2, m��,

s�n1 � 2 � m� �
Chop�First� 1

Conjugate�Σ� d�m� � v�Γ, m� �v�Α, m� �.� CΑ�n1 � m� � ��Α, m�
CΓ�n1 � m� � ��Γ, m� ����1���;

s��n1 � 2 � m � 1� � Chop�First� Σ

Conjugate�cΑ d�m��
Conjugate�� �u�Γ, m� u�Α, m� �.� CΑ�n1 � m� � ��Α, m�

CΓ�n1 � m� � ��Γ, m� �����1���;�;
� Calculate the magnitude s[-n/2]

We can calculate the magnitude of s[-n/2] using equation (25) of the paper. We will denote s[-n/2] = Σ
Σ2 MUST BE REAL so that s[-n/2] is REAL. See eq(25)

In[59]:= s��n1 � 2� � Σ; �� placeholder for the above calculations ��
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In[60]:= sol � Chop�Solve�Σ2 Sum�Abs�s��n1 � 2 � m � 1��2, �m , 1, n1 � 2�� �
1

Σ2
Sum�Abs�s�n1 � 2 � m��2, �m, 1, n1 � 2�� � CΑ�0�, Σ2��

Out[60]= ��Σ2 � 0.0285318�, �Σ2 � 0.0285889��
Σ2 must be real. So just select the real parts only for the calculations below

In[61]:= Σfirst � Re�Σ2� �. First�sol�
Out[61]= 0.0285318

In[62]:= Σlast � Re�Σ2� �. Last�sol�
Out[62]= 0.0285889

We select between the two solutions by using equation (26)

s0 = s[-n/2] GΑΓ[n/2 + 1]

In[63]:= firstsol1 �

Sqrt�Σ2� Chop�First� 1

Conjugate�cΑ d�n1 � 2 � 1�� Conjugate�� �u�Γ, n1 � 2 � 1� u�Α, n1 � 2 � 1� �.
� CΑ�n1 � �n1 � 2 � 1�� � ��Α, n1 � 2 � 1�
CΓ�n1 � �n1 � 2 � 1�� � ��Γ, n1 � 2 � 1� �����1��� �. Σ2 � Σfirst

Out[63]= �0.178392 � 0.00763894 �

The other part which is also s[0] from equation (26)

s0 = 1
s��n�2� FΑΓ�n �2�

In[64]:= firstsol2 �
1

Sqrt�Σ2� Chop�First� 1

d�n1 � 2� � v�Γ, n1 � 2� �v�Α, n1 � 2� �.� CΑ�n1 � n1 � 2� � ��Α, n1 � 2�
CΓ�n1 � n1 � 2� � ��Γ, n1 � 2� ����

1��� �. Σ2 � Σfirst
Out[64]= �0.178392 � 0.00763894 �

� Check the second solution

This is a quick check that the other solution is not correct

In[65]:= secondsol1 �

Sqrt�Σ2� Chop�First� 1

Conjugate�cΑ d�n1 � 2 � 1�� Conjugate�� �u�Γ, n1 � 2 � 1� u�Α, n1 � 2 � 1� �.
� CΑ�n1 � �n1 � 2 � 1�� � ��Α, n1 � 2 � 1�
CΓ�n1 � �n1 � 2 � 1�� � ��Γ, n1 � 2 � 1� �����1��� �. Σ2 � Σlast

Out[65]= �0.17857 � 0.00764658 �
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In[66]:= secondsol2 �
1

Sqrt�Σ2� Chop�First� 1

d�n1 � 2� � v�Γ, n1 � 2� �v�Α, n1 � 2� �.� CΑ�n1 � n1 � 2� � ��Α, n1 � 2�
CΓ�n1 � n1 � 2� � ��Γ, n1 � 2� ����

1��� �. Σ2 � Σlast
Out[66]= �0.178213 � 0.0076313 �

Select between the two solutions by looking at their differences

In[67]:= If�Abs�firstsol1 � firstsol2� � Abs�secondsol1 � secondsol2�,
Σ � Sqrt�Σ2� �. Σ2 � Σfirst,
Σ � Sqrt�Σ2� �. Σ2 � Σlast�

Out[67]= 0.168914

� Normalize s 

Once we have Σ,  we can normalize all the s's

In[68]:= For�m � 1, m � n1 � 2, m��,
sn��n1 � 2 � m � 1� � Σ s��n1 � 2 � m � 1�;�;

For�m � 1, m � n1 � 2, m��,

sn�n1 � 2 � m� � 1

Σ
s�n1 � 2 � m�;

�;
Plot out dimensionfull pictures

In[70]:= sMag � Table��k �t Μ, Abs�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;
sArg � Table��k �t Μ, Arg�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;
sRe � Table��k �t Μ, Re�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;
sIm � Table��k �t Μ, Im�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;

� Plots

In[74]:= ListPlot�sMag, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ���10�3, 10�3�, All�, AxesLabel � �"x �m�", "Magnitude"��

Out[74]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.172

0.174

0.176

0.178

0.180

0.182
Magnitude
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In[75]:= ListPlot�sArg, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ���10�3, 10�3�, All�, AxesLabel � �"x �m�", "Phase �radians�"��

Out[75]=
�0.0010 �0.0005 0.0005 0.0010

x �m�

�3

�2

�1

1

2

3
Phase �radians�

� Compare the result and the original chunk

In[76]:= Show��23, �74, PlotRange � ���10�3, 10�3�, All��

Out[76]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.05

0.10

0.15

Magnitude

In[77]:= Show��22, �75, PlotRange � ���10�3, 10�3�, All��

Out[77]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Phase �radians�

These two plots match very well the input phase up to a constant and magnitude up to a gain which is expected because the input
power was normalised to 1.

Enhanced Bootstrap Algorithm
Using the sn[t] which we calculated, we will extend the solution for the next chunk.

The chunk has been increased by a factor of 2 from n1 to n2=2*n1. 
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The chunk has been increased by a factor of 2 from n1 to n2=2*n1. 

In[78]:= n2 � 2 n1; �� number of samples where s is the real signal and not padding��
� Create the IΑ and IΓ from chunk 2

We need nm points of intensity from IΑand IΓ from sinput1[t].

In[79]:= iΑ �
Table��m �fΑ, Abs� DFrFT�fapchunk2, nm, Α, �x, F3Α, Λ, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;

iΓ � Table��m �fΓ, Abs� DFrFT�fapchunk2, nm, Γ, �x, F3Γ, Λ, m��2�,�m, �nm � 2, nm � 2 � 1�� �� N;
Plot them out 

In[81]:= ListPlot�iΑ, Joined � True, PlotRange � All,
AxesLabel � �"x'", "Magnitude"�, PlotLabel � "Α � Π�2, �16x4��x aperture"�

Out[81]=

�0.02 �0.01 0.01 0.02
x'

0.002

0.004

0.006

0.008

Magnitude
Α � Π�2, �16x4��x aperture

In[82]:= ListPlot�iΓ, Joined � True, PlotRange � All,
AxesLabel � �"x'", "Magnitude"�, PlotLabel � "Γ � Π�4, �16x4��x aperture"�

Out[82]=

�0.02 �0.01 0.01 0.02
x'

0.002

0.004

0.006

0.008

0.010

Magnitude
Γ � Π�4, �16x4��x aperture

IΑand IΓ are the intensities which we measure.
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� Normalize w.r.t. the power from the initial bootstrap

In[83]:= iΑ � iΑ � totalPower;
iΓ � iΓ � totalPower;

Create the Matrix Vector Equation

Clear previous definition of Σ

In[85]:= Clear�Σ�;
Clear�Σs�;

Define the equations that are the entries of the matrix S

In[87]:= Σs�k_, l_, Θ_� :� Conjugate�sn�k�� Exp�� 2 Π k l ��t�2 Cot�Θ��;
Σ�k_, l_, Θ_� :� sn�k� Exp�� 2 Π �k � l� l ��t�2 Cot�Θ��;

Filling in the SΘmatrix shown in Eq. (29)

In[89]:= SΑ � Table�0, �i, n1 � 2 � 1�, �j, n1��;
SΓ � Table�0, �i, n1 � 2 � 1�, �j, n1��;
For�i � 1, i � n1 � 2 � 1, i��,

For�j � 1, j � n1 � 2, j��,
SΑ��i, j�� � Σs��n1 � 2 � �j � 1� � �i � 1�, n1 � �i � 1�, Α�;
SΓ��i, j�� � Σs��n1 � 2 � �j � 1� � �i � 1�, n1 � �i � 1�, Γ�;�;�;

For�i � 1, i � n1 � 2 � 1, i��,
For�j � 1, j � n1 � 2, j��,

SΑ��i, j � n1 � 2�� � Σ��j � 1� � �i � 1�, n1 � �i � 1�, Α�;
SΓ��i, j � n1 � 2�� � Σ��j � 1� � �i � 1�, n1 � �i � 1�, Γ�;�;�;

The CΘvector showin in Eq. (31)

In[93]:= CCΑ � Table�0, �i, n1 � 2 � 1�, �j, 1, 1��;
CCΓ � Table�0, �i, n1 � 2 � 1�, �j, 1, 1��;
For�i � 1, i � n1 � 2 � 1, i��,

CCΑ��i, 1�� � CΑ�n1 � �i � 1�� � Sum�Conjugate�sn�� n1
2
� j � 1��

sn� n1
2
� j � i� Exp�� 2 Π � n1

2
� j � 1 �n1 � �i � 1�� ��t�2 Cot�Α��, �j, 1, i � 1��;

CCΓ��i, 1�� � CΓ�n1 � �i � 1�� � Sum�Conjugate�sn�� n1
2
� j � 1�� sn� n1

2
� j � i�

Exp�� 2 Π � n1
2
� j � 1 �n1 � �i � 1�� ��t�2 Cot�Γ��, �j, 1, i � 1��;

�;
Create the matrix equation which we solve for the unknown s[] entries Eq. (28)
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In[96]:= S � Table�0, �i, n1 � 2�, �j, n1��;
CC � Table�0, �i, n1 � 2�, �j, 1, 1��;
For�i � 1, i � n1 � 2 � 1, i��,

For�j � 1, j � n1, j��,
S��i, j�� � SΑ��i, j��;�;�;

For�i � 1, i � n1 � 2 � 1, i��,
For�j � 1, j � n1, j��,

S��i � �n1 � 2 � 1�, j�� � SΓ��i, j��;�;�;
For�i � 1, i � n1 � 2 � 1, i��,

CC��i, 1�� � CCΑ��i, 1��;�;
For�i � 1, i � n1 � 2 � 1, i��,

CC��i � �n1 � 2 � 1�, 1�� � CCΓ��i, 1��;�;
The number of equations is greater than the number of variables. Therefore, we'll have to use a least squares method to solve for
s[]

In[102]:= sol � LeastSquares�S, CC�;
Now,  get the answers to the unknowns using Eq (30)

In[103]:= For�i � 1, i � n1 � 2, i��,
sn�n1 � 2 � �i � 1�� � sol��i, 1��;�;

For�i � 1, i � n1 � 2, i��,
sn��n1 � �i � 1�� � Conjugate�sol��n1 � 2 � i, 1���;�;

� Plots

Plot out dimensionfull pictures

In[105]:= sMag � Table��k �t Μ, Abs�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
sArg � Table��k �t Μ, Arg�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
sRe � Table��k �t Μ, Re�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
sIm � Table��k �t Μ, Im�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;

In[109]:= ListPlot�sMag, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ���10�3, 10�3�, All�, AxesLabel � �"x �m�", "Magnitude"��

Out[109]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.05

0.10

0.15

0.20

Magnitude
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In[110]:= ListPlot�sArg, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ���10�3, 10�3�, All�, AxesLabel � �"x �m�", "Phase �radians�"��

Out[110]=
�0.0010 �0.0005 0.0005 0.0010

x �m�

�3

�2

�1

1

2

3
Phase �radians�

In[111]:= Show��23, �109, AxesLabel � �"x �m�", "Magnitude"��

Out[111]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.05

0.10

0.15

0.20

Magnitude

In[112]:= Show��22, �110, AxesLabel � �"x �m�", "Phase �radians�"��

Out[112]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Phase �radians�

EBA works as expected!

Correct the quadratic phase
There is a phase contribution which was introduced by lens 1. See Eq (90).  We can correct for this.

The size of the diffraction grating and incident angle

In[113]:= a � 10�3 � 600.; ��m��
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In[114]:= Θi � 85 Π � 180;
focal length of lens 1

In[115]:= f1 � 0.05; ��m��
focal length of lens 2

In[116]:= f2 � 1.0; ��m��
The magnification factor

In[117]:= Ν � f2 � f1
Out[117]= 20.

The wave number of the laser

In[118]:= k � 2 Π � Λ;
From Example AII.2, Eq (81), we can calculate the number of samples

In[119]:= c � 3 � 108; �� speed of light, m�s��
In[120]:= tp � 100 � 10�15;

In[121]:= pmax � IntegerPart� c tp

a Sin�Θi� �
Out[121]= 18

The phase correction comes from Eq (61) and add in a possible phase offset

In[122]:= phasecorr�x_, Θ_� :� Arg�Exp�� Θ� Exp�� k x2

2 f1
� Exp�� k x Sin�Θi���

We generate a table of the phase corrections which are spaced a apart. Note that we are undersampling the phase correction and
also the magnification factor Ν (the negative sign in the argument of phasecorr[] comes from performing the Fourier transform
twice, see Eq (40)). We anticipate that the phase offset is Π.

In[123]:= pcorr � Table��p a Ν , phasecorr��p a, Π��, �p, �pmax, pmax��;
In[124]:= ListPlot�pcorr, Joined � True, PlotStyle � RGBColor�0, 0, 0��

Out[124]=
�0.0006 �0.0004 �0.0002 0.0002 0.0004 0.0006

�3

�2

�1

1

2

3

Show that the phase matches what we have calculated
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In[125]:= Show��110, �124�

Out[125]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Phase �radians�

Create the phase correction function which includes the magnification factor from pcorr

In[126]:= fcorr � Interpolation�pcorr, InterpolationOrder � 1�
Out[126]= InterpolatingFunction����0.0006, 0.0006��, ���
Perform the corection

In[127]:= corrArg � Table��sArg��i, 1��, sArg��i, 2�� � fcorr�sArg��i, 1����, �i, Length�sArg���;
In[128]:= ListPlot�corrArg, Joined � True, PlotRange � � ��10�3, 10�3�, All�,

AxesLabel � �"x �m�", "Phase �radians�"�, PlotLabel � "Corrected Phase"�

Out[128]=
�0.0010 �0.0005 0.0005 0.0010

x �m�

�6

�4

�2

2

4

Phase �radians�Corrected Phase

� Unwind the phase

There are phases which outside the range +/- Π. We can correct this with phaseUnwind below.

In[129]:= phaseUnwind�Θ_� :� If��Π � Θ � Π, Return�Θ�,
If�Θ � �Π, Return�Θ � 2 Π�, Return�Θ � 2 Π���;

In[130]:= ucorrArg � Table��corrArg��i, 1��, phaseUnwind�corrArg��i, 2����, �i, Length�corrArg���;
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In[131]:= ListPlot�ucorrArg, Joined � True, PlotRange � � ��10�3, 10�3�, All�,
AxesLabel � �"x �m�", "Phase �radians�"�, PlotLabel � "Corrected Phase Unwound"�

Out[131]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�2

�1

1

2

Phase �radians�Corrected Phase Unwound

Notice the small discontinuity near the centre of the corrected phase. This is comes from imperfect phase correction.

Comparing with the input pulse

Rescale the magnitude and phase by Ν to take out the magnification from Lens1 and Lens2 and change it to time on the xaxis.
Also reverse the x axis, i.e. x-> -x because of the mirroring of the object by lens1 and lens2.

In[132]:= rescaleMag � Table��� sMag��i, 1��
c Ν

, sMag��i, 2���, �i, Length�sMag���;
rescaleArg � Table��� ucorrArg��i, 1��

c Ν
, ucorrArg��i, 2���, �i, Length�corrArg���;

In[134]:= ListPlot�rescaleMag, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � �0, 0.5�, AxesLabel � �"time �s�", "Magnitude"� �

Out[134]=

�6.�10�14�4.�10�14�2.�10�14 0 2.�10�144.�10�146.�10�14
time �s�

0.1

0.2

0.3

0.4

0.5
Magnitude
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In[135]:= ListPlot�rescaleArg, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ��Π, Π�, AxesLabel � �"time �s�", "Phase �radians�"� �

Out[135]=

�6.�10�14�4.�10�14�2.�10�14 2.�10�144.�10�146.�10�14
time �s�

�3

�2

�1

1

2

3
Phase �radians�

� Input pulse

The input pulse is 100fs long and a constant pulse

In[136]:= Η�t_� :� If��0.5 � t � �tp� � 0.5, 1, 0�;
In[137]:= sinput�t_� :� Η�t�
In[138]:= Plot�Arg�sinput�t��, �t, �tp � 2, tp � 2�, PlotRange � All,

AxesLabel � �"time �s�", "Phase �rad�"�, PlotStyle � Thickness�0.01��

Out[138]=

�4.�10�14 �2.�10�14 2.�10�14 4.�10�14
time �s�

�1.0

�0.5

0.5

1.0

Phase �rad�

In[139]:= Plot�Abs�sinput�t��, �t, �tp, tp�, AxesLabel � �"time �s�", "Magnitude"��

Out[139]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13
time �s�

0.2

0.4

0.6

0.8

1.0
Magnitude

� Comparison
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�

Comparison

In[140]:= Show� �135, �138, PlotRange � ���10�13, 10�13�, ��2 Π, 2 Π���

Out[140]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13
time �s�

�6

�4

�2

2

4

6
Phase �radians�

In[141]:= Show��134, �139, PlotRange � ���10�13, 10�13�, All��

Out[141]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13
time �s�

0.2

0.4

0.6

0.8

1.0
Magnitude

Everything looks good! Magnitude needs rescaling as expected. Phase match looks great.
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Demonstration 2
The goal is to see how well we can reconstruct the s[t] signal using reasonable parameters for the Ti:Sapphire laser. In this
demonstration grating size is b=a/8=0.1 Μm and a = 0.83Μm, and incident angle Θi � 85 deg = 1.48 rad is near grazing.

Simulation Parameters

� Ti : Sapphire laser parameters

In[1]:= Λ � 800 � 10�9; ��wavelength of TiS, m��
c � 3 � 108; �� speed of light, m�s��

In[3]:= k � 2 Π � Λ; �� wave number m��
1/e radius of the laser

In[4]:= w � 0.25 � 10�2; ��m��
� Grating parameters

The parameters of the grating, assuming 1200 lines/mm.
The distance between slits

In[5]:= a � 10�3 � 1200.; ��m��
The size of the slit

In[6]:= b � a � 8 ��m��
Out[6]= 1.04167 � 10�7

� CCD parameters

The size of a pixel and number of pixels on a CCD camera, for example Hamamatsu S10420

In[7]:= �xpixel � 14 � 10�6; ��m��
In[8]:= Npixel � 2048; �� set it to 2048, actual number of pixels is 2068x70 ��
� Integration Step Size

For convenience, we will make the integration step size, the same as the CCD camera

In[9]:= �x � �xpixel;

In[10]:= N�x � Npixel;
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� Optics parameters

Lens 1 focal length

In[11]:= f1 � 0.05; ��m��
Lens 2 focal length

In[12]:= f2 � 1.0; ��m��
� Input pulse parameters

The incident angle

In[13]:= Θi � 85 Π � 180;
The input pulse is 100fs long

In[14]:= tp � 100 � 10�15; ��s��
Using Cong's example Eq (27)

In[15]:= sinput�t_� :�
Η�t� 0.1 Exp��0.2 �t � �tp� � 0.5�2� Exp�I �Sin�5 Π �t � �tp� � 0.5�� � Cos�8 Π �t � �tp� � 0.5����;

Η�t_� :� If��0.5 � t � �tp� � 0.5, 1, 0�;
In[17]:= Plot�Arg�sinput�t��, �t, �tp, tp�, PlotRange � All�

Out[17]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13

�1.5

�1.0

�0.5

0.5

1.0

1.5

2.0

In[18]:= Plot�Abs�sinput�t��, �t, �tp, tp��

Out[18]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13

0.02

0.04

0.06

0.08

0.10

This is from Eq (46) which describes the distribution just before the diffraction grating. Note that the argument of sinput is
converted from phase Φ  to time.
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This is from Eq (46) which describes the distribution just before the diffraction grating. Note that the argument of sinput is
converted from phase Φ  to time.

In[19]:= ug�x_, Φ_� :� sinput� Φ

2 Π

Λ

c
� Exp���x Cos�Θi��2 � w2� Exp�� k x Sin�Θi��;

� The Diffraction Grating

From Example AII.2, Eq (81), we can calculate the number sampling frames

In[20]:= pmax � IntegerPart� c tp

a Sin�Θi� �
Out[20]= 36

� The Diffraction Grating

Check that b/Λ is much less than 1 so that the u1 approximation from Eq(75) can be used

In[21]:= b � Λ �� N
Out[21]= 0.130208

This should be small enough for the u1 approximation

� Use the u1 approximation

We will use the approximation from Eq (75)

In[22]:= u1approx�x_� :�
�b

Exp�� k f1� Exp�� k x2

2 f1
�

� Λ f1
Sum�sinput� p k a Sin�Θi�

2 Π

Λ

c
� Exp�� k �p a�2

2 f1
� Exp�� p k a Sin�Θi��

Exp���p a Cos�Θi��2 � w2� Exp��� p k a x � f1�, �p, �pmax � 2, pmax � 2 � 1��
In[23]:= Lu1approx � Table��i �x, u1approx�i �x��, �i, �N�x � 2, N�x � 2 � 1��;
In[24]:= Lu1approxr � Table��Lu1approx��i, 1��, Re�Lu1approx��i, 2����, �i, Length�Lu1approx���;

Lu1approxi � Table��Lu1approx��i, 1��, Im�Lu1approx��i, 2����, �i, Length�Lu1approx���;
In[26]:= ListPlot�Lu1approxr, Joined � True, PlotRange � All, AxesLabel � �"x �m�", "Re�u�1���"��

Out[26]=
�0.010 �0.005 0.005 0.010

x �m�

�0.0010

�0.0005

0.0005

0.0010

Re�u�1���
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In[27]:= ListPlot�Lu1approxi, Joined � True, PlotRange � All, AxesLabel � �"x �m�", "Im�u�1���"��

Out[27]=

�0.010 �0.005 0.005 0.010
x �m�

�0.0010

�0.0005

0.0005

0.0010

Im�u�1���

Looks pretty good! The rapid oscillations are from Exp[� k x2 �2 f1�which we will correct with lens 1 in the next section. Note:
the x axis has dimensions of length which is required for input into Lens 2.

� Correct Quadratic Phase

Correct the quadratic phase with lens 1. 

In[28]:= u1p�x_� :� Exp��� k x2

2 f1
� Lu1approx��Round�x � �x � N�x � 2 � 1�, 2��

In[29]:= Lu1p � Table��i �x, u1p�i �x��, �i, �N�x � 2, N�x � 2 � 1��;
In[30]:= Lu1pr � Table��Lu1p��i, 1��, Re�Lu1p��i, 2����, �i, Length�Lu1p���;

Lu1pi � Table��Lu1p��i, 1��, Im�Lu1p��i, 2����, �i, Length�Lu1p���;
In[32]:= ListPlot�Lu1pr, Joined � True, PlotRange � All, AxesLabel � �"x �m�", "Re�u�1���"��

Out[32]= �0.010 �0.005 0.005 0.010
x �m�

�0.0008

�0.0006

�0.0004

�0.0002

0.0002

0.0004

Re�u�1���
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In[33]:= ListPlot�Lu1pi, Joined � True, PlotRange � All, AxesLabel � �"x �m�", "Im�u�1���"��

Out[33]=

�0.010 �0.005 0.005 0.010
x �m�

�0.0004

�0.0002

0.0002

0.0004

0.0006

Im�u�1���

� Propagating through Lens 2

x must have dimensions of length for input into lens 2. Fortunately we do have this criteria satisfied in the construction of
Eq(86). The output x axis also has the dimensions of length.

Instead of performing the integral in Eq(86) with NIntegral[], we will replace it with a Sum[] instead to speed things up.

In[34]:= u2�x_� :� � 1

� Λ f2
Sum� u1p�i �x� Exp��� 2 Π x �i �x�

Λ f2
�, �i, �N�x � 2, �N�x � 2 � 1��� �x

In[35]:= Lu2 � Table��i �x, u2�i �x��, �i, �N�x � 2, N�x � 2 � 1��;
In[36]:= Lmagu2 � Table��Lu2��i, 1��, Abs�Lu2��i, 2����, �i, Length�Lu2���;

Largu2 � Table��Lu2��i, 1��, Arg�Lu2��i, 2����, �i, Length�Lu2���;
Lu2r � Table��Lu2��i, 1��, Re�Lu2��i, 2����, �i, Length�Lu2���;
Lu2i � Table��Lu2��i, 1��, Im�Lu2��i, 2����, �i, Length�Lu2���;

In[40]:= ListPlot�Lmagu2, Joined � True, PlotRange � ���0.001, 0.001�, All�,
AxesLabel � �"x �m�", "Abs�u�2��"�, PlotLabel � "�a�"�

Out[40]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
Abs�u�2���a�
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In[41]:= ListPlot�Largu2, Joined � True, PlotRange � ���0.001, 0.001�, All�,
AxesLabel � �"x �m�", "Arg�u�2��"�, PlotLabel � "�b�"�

Out[41]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Arg�u�2���b�

In[42]:= ListPlot�Lu2r, Joined � True, PlotRange � ���0.001, 0.001�, All�,
AxesLabel � �"x �m�", "Re�u�2��"�, PlotLabel � "�c�"�

Out[42]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�0.002

�0.001

0.001

0.002

Re�u�2���c�

In[43]:= ListPlot�Lu2i, Joined � True, PlotRange � ���0.001, 0.001�, All�,
AxesLabel � �"x �m�", "Im�u�2��"�, PlotLabel � "�d�"�

Out[43]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�0.002

�0.001

0.001

0.002

0.003
Im�u�2���d�

Aperture Stop

We have to put in an aperture stop for the Enhanced Bootstrap Algorithm to work. 

Define the aperture function
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Define the aperture function

In[44]:= ap�x_, xstop_� :� If� �xstop � x � xstop, 1, 0�
Create a interpolation of Lu2 at the exit of Lens 2

In[45]:= u2fi � Interpolation�Lu2, InterpolationOrder � 1�
Out[45]= InterpolatingFunction����0.014336, 0.014322��, ���
and adding the aperture function

In[46]:= u2f�x_, xstop_� :� ap�x, xstop� u2fi�x�
� Chunk 1

The first chunk which picks out the centre of the distribution (16 �x)

In[47]:= Plot�Abs�u2f�x, 16 �x��, �x, �0.001, 0.001�,
PlotRange �� All, AxesLabel � �"x �m�", "Abs�u�2��"��

Out[47]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
Abs�u�2��

In[48]:= Plot�Arg�u2f�x, 16 �x��, �x, �0.001, 0.001�,
PlotRange �� All, AxesLabel � �"x �m�", "Arg�u�2��"��

Out[48]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Arg�u�2��

In[49]:= Export�"��papers�frog�math�demo2chunk1.dat",
Table��N�i �x�, N�u2f�i �x, 16 �x���, �i, �N�x � 2, �N�x � 2 � 1����

Out[49]= ��papers�frog�math�demo2chunk1.dat
� Chunk 2
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�

Chunk 2

The second chunk which encompasses the entire pulse (32 �x)

In[50]:= Plot�Abs�u2f�x, 32 �x��, �x, �0.001, 0.001�,
PlotRange �� All, AxesLabel � �"x �m�", "Abs�u�2��"��

Out[50]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Abs�u�2��

In[51]:= Plot�Arg�u2f�x, 32 �x��, �x, �0.001, 0.001�,
PlotRange �� All, AxesLabel � �"x �m�", "Arg�u�2��"��

Out[51]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Arg�u�2��

In[52]:= Export�"��papers�frog�math�demo2chunk2.dat",
Table��N�i �x�, N�u2f�i �x, 32 �x���, �i, �N�x � 2, �N�x � 2 � 1����

Out[52]= ��papers�frog�math�demo2chunk2.dat
Chunks 1 and 2 will be analysed in demo2a.nb
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Demonstration 2 using Type 1 Optics
Demonstration 2 produced chunk1 and chunk2 for the "Enhanced Bootstrap Algorithm" to be analysed here with the type I optics.

Type 1 Optics DFrFT

The Type 1 dimensionfull DFrFT is given by Eq (36)

In[1]:= DFrFT�s_, n_, Α_, �t_, F_, Λ_, m_� :�
Block���xp, F3�, F3 � �Sin�Α� F�; �xp � Λ F3 Sin�Α�

n �t
; Return� Exp�I Α � 2�

I Λ F3 Sin�Α� �t
Sum�s�k �t� Exp� I Π

Λ F3
��m �xp�2 � �k �t�2� Cot�Α� � I 2 Π k m � n�, �k, �n � 2, n � 2 � 1����;

Arguments of DFrFT[] are:
s: function to be transformed
n: number of points to be transformed. Must be power of 2
Α: order of the transform
�xp: pixel size of the CCD camera
F: focal length of the lens
Λ: wavelength of the laser
m: returns value of transform at m �xp

It is assumed that the time step gives the frequency step with the relationship �x �xp= Λ F1 Sin[Α]/n.
For type I configuration, F1 = Q F  and z = R F1 = RQ F. For type I: Q = sin[Α]  R = Tan[Α/2]

Type I Optics Setup

Laser wavelength

In[2]:= Λ � 800 � 10�9; ��m��
Fixed "local" focal length

In[3]:= F3 � 1; ��m��
Focal length of the lens used for Type 1 optics for Α and Γ

In[4]:= Α � Π � 2;
Γ � Π � 4;

In[6]:= F3Α � F3 � Sin�Α� ��m��
Out[6]= 1

In[7]:= F3Γ � F3 � Sin�Γ� ��m��
Out[7]= 2

Size of CCD pixel
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In[8]:= �xpixel � 14 � 10�6; ��m��
Number of CCD pixels. Technically there are 2068 pixels, but just to make things a power of 2, we are setting it to 2048

In[9]:= Npixel � 2048;

For convenience, set the sampling size as the CCD pixel size

In[10]:= �x � �xpixel;

Define the normalization factor from Eq (37)

In[11]:= Μ � Sqrt�Λ F3� �� N
Out[11]= 0.000894427

Read in the chunk1 and chunk2 data

The input function sinput[t] which we had used previously

In[12]:= Lchunk1 � ReadList�"��papers�frog�math�demo2chunk1.dat", �Number, Expression��;
Lchunk2 � ReadList�"��papers�frog�math�demo2chunk2.dat", �Number, Expression��;

Select out the signal part

In[14]:= Lchunk1a � ��;
For�i � 1, i � Length�Lchunk1�, i��,

If�Abs�Lchunk1��i, 2��� � 0,
Lchunk1a � Join�Lchunk1a, �Lchunk1��i����;�;�;

In[16]:= fchunk1 � Interpolation�Lchunk1a, InterpolationOrder � 1�
Out[16]= InterpolatingFunction����0.000224, 0.000224��, ���
For numeric reasons, we are increasing the size of the signal by 103. The first aperture is +/- 16�x

In[17]:= fapchunk1�x_� :� If��16 �x � x � 16 �x, 103 fchunk1�x�, 0�
In[18]:= Lchunk2a � ��;

For�i � 1, i � Length�Lchunk2�, i��,
If�Abs�Lchunk2��i, 2��� � 0,

Lchunk2a � Join�Lchunk2a, �Lchunk2��i����;�;�;
In[20]:= fchunk2 � Interpolation�Lchunk2a, InterpolationOrder � 1�
Out[20]= InterpolatingFunction����0.000448, 0.000448��, ���
The second aperture is +/- 32�x

In[21]:= fapchunk2�x_� :� If��32 �x � x � 32 �x, 103 fchunk2�x�, 0�
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In[22]:= Plot��Arg�fapchunk2�x��, Arg�fapchunk1�x���, �x, �10�3, 10�3�,
PlotRange � All, AxesLabel � �"x �m�", "Phase �radians�"��

Out[22]=

�0.0010 �0.0005 0.0005 0.0010
x �m�
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Phase �radians�

In[23]:= Plot��Abs�fapchunk2�x��, Abs�fapchunk1�x���,�x, �10�3, 10�3�, PlotRange � All, AxesLabel � �"x �m�", "Magnitude"��

Out[23]=

�0.0010 �0.0005 0.0005 0.0010
x �m�
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Magnitude

� First measurement parameters with a small chunk

We select Α = Π/2 and Γ = Π/4 and work on the first chunk

In[24]:= nm � Npixel;��total number of samples which is
approximately equal to the number of pixels on the CCD��

n1 � 16 � 2; �� number of samples where s is the real signal and not padding��
Α � Π � 2;
Γ � Π � 4;
�t � �x � Μ; ��dimensionaless temporal variable created from �x��

Make dimensionless �fΑ and �fΓ. Note: ΛF1/Μ = Μ

In[29]:= �fΑ � Λ F3 Sin�Α� � �Μ nm �t� �� N;
�fΓ � Λ F3 Sin�Γ� � �Μ nm �t� �� N;

� Create the IΑ and IΓ from chunk 1

We need nm points of intensity from IΑand IΓ from sinput1[t].
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In[31]:= iΑ �
Table��m �fΑ, Abs� DFrFT�fapchunk1, nm, Α, �x, F3Α, Λ, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;

iΓ � Table��m �fΓ, Abs� DFrFT�fapchunk1, nm, Γ, �x, F3Γ, Λ, m��2�,�m, �nm � 2, nm � 2 � 1�� �� N;
Make functions for the data sets

In[33]:= IΑ�f_� :� iΑ��Round�f � �fΑ� � nm � 2 � 1����2��;
IΓ �f_� :� iΓ��Round�f � �fΓ� � nm � 2 � 1����2��;

Plot them out 

In[35]:= ListPlot�iΑ, Joined � True, PlotRange � All,
AxesLabel � �"x'", "Magnitude"�, PlotLabel � "Α � Π�2, �16x2��x aperture"�

Out[35]=

�0.02 �0.01 0.01 0.02
x'
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Α � Π�2, �16x2��x aperture

In[36]:= ListPlot�iΓ, Joined � True, PlotRange � All,
AxesLabel � �"x'", "Magnitude"�, PlotLabel � "Γ � Π�4, �16x2��x aperture"�

Out[36]=

�0.02 �0.01 0.01 0.02
x'

0.2

0.4

0.6

0.8

Magnitude
Γ � Π�4, �16x2��x aperture

IΑand IΓ are the intensities which we measure. And note that the x-axis which is now frequency is dimensionless.

� Let's normalize iΑ and iΓ so that their power is 1

In[37]:= totalPower �
Sin�Α�
nm ��t�2 Sum�iΑ��i, 2��, �i, Length�iΑ���;
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In[38]:= iΑ � iΑ � totalPower;
iΓ � iΓ � totalPower;

The Bootstrap Method

We define the equations for the bootstrap method defined as equation (19) in the paper.

In[40]:= u�Θ_, m_� :� Exp�I 2 Π ��n1 � 2� �n1 � m� ��t�2 Cot�Θ��;
v�Θ_, m_� :� Exp�I 2 Π ��n1 � 2 � m � 1� �n1 � m� ��t�2 Cot�Θ��;
CΑ�k_� :�

Sin�Α�
nm �t2

Exp��I Π �k �t�2 Cot�Α�� Sum�IΑ� m �fΑ� Exp�I 2 Π k m

nm
�, �m, �nm � 2, nm � 2 � 1��;

CΓ�k_� :� Sin�Γ�
nm �t2

Exp��I Π �k �t�2 Cot�Γ�� Sum�IΓ� m �fΓ� Exp�I 2 Π k m

nm
�, �m, �nm � 2, nm � 2 � 1��;

��Θ_, m_� :� Sum� Conjugate�s��n1 � 2 � j��
s�n1 � 2 � m � j� Exp�I 2 Π �n1 � m� ��n1 � 2 � j� ��t�2 Cot�Θ��, �j, 1, m � 2��;

d�m_� :� Det�� u�Α, m� v�Α, m�
u�Γ, m� v�Γ, m� ��;

Check that CΑ[0] = CΓ[0]

In[46]:= CΑ0 � CΑ�0�
Out[46]= 1.

In[47]:= CΓ0 � CΓ�0�
Out[47]= 1.

Solving s�t�
First set  s[t] = 0 for -n1/2 to -nm/2+1 and nm/2 to n1/2-1

In[48]:= For�i � �nm � 2, i � �n1 � 2 � 1, i��,
s�i� � 0;�;

For�i � n1 � 2, i � nm � 2 � 1, i��,
s�i� � 0;�;

Without loss of generality, we will set s��N/2]=Σ=1 first and then use equation equation (25) to solve for s��n/2] because every
s[n] is either multiplied or divided by s��n/2].

In[50]:= Σ � 1;

In[51]:= cΑ � Chop� CΑ�n1 � 1� Exp�I Π n1 �n1 � 1� �t2 Cot�Α���
Out[51]= 0.0315972 � 0.0034225 �

In[52]:= cΓ � Chop�CΓ�n1 � 1� Exp�I Π n1 �n1 � 1� �t2 Cot�Γ���
Out[52]= 0.0315972 � 0.0034225 �

Clearly cΑ and cΓ are equal as required.

� Iteration 
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�

Iteration 

In[53]:= s��n1 � 2� � Σ
Out[53]= 1

Average cΑ and cΓ because they are supposed to be the same.

In[54]:= s�n1 � 2 � 1� � �cΑ � cΓ� � �2.0 Σ�
Out[54]= 0.0315972 � 0.0034225 �

Also set cΑ to the average since it is used below

In[55]:= cΑ � s�n1 � 2 � 1�
Out[55]= 0.0315972 � 0.0034225 �

From equation (16), we can solve for s[n/2-2] and s[-n/2+1]

In[56]:= s�n1 � 2 � 2� � Chop�First� 1

Conjugate�Σ� d�2� � v�Γ, 2� �v�Α, 2� �.� CΑ�n1 � 2�
CΓ�n1 � 2� ����1���

Out[56]= 0.0273862 � 0.0150159 �

In[57]:= s��n1 � 2 � 1� �
Chop�First� Σ

Conjugate�cΑ d�2�� Conjugate�� �u�Γ, 2� u�Α, 2� �.� CΑ�n1 � 2�
CΓ�n1 � 2� �����1���

Out[57]= 0.940244 � 0.203553 �

Now we can continue the bootstrap process until every element is done

In[58]:=

For�m � 3, m � n1 � 2, m��,

s�n1 � 2 � m� �
Chop�First� 1

Conjugate�Σ� d�m� � v�Γ, m� �v�Α, m� �.� CΑ�n1 � m� � ��Α, m�
CΓ�n1 � m� � ��Γ, m� ����1���;

s��n1 � 2 � m � 1� � Chop�First� Σ

Conjugate�cΑ d�m��
Conjugate�� �u�Γ, m� u�Α, m� �.� CΑ�n1 � m� � ��Α, m�

CΓ�n1 � m� � ��Γ, m� �����1���;�;
� Calculate the magnitude s[-n/2]

We can calculate the magnitude of s[-n/2] using equation (25) of the paper. We will denote s[-n/2] = Σ
Σ2 MUST BE REAL so that s[-n/2] is REAL. See eq(25)

In[59]:= s��n1 � 2� � Σ; �� placeholder for the above calculations ��
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In[60]:= sol � Chop�Solve�Σ2 Sum�Abs�s��n1 � 2 � m � 1��2, �m , 1, n1 � 2�� �
1

Σ2
Sum�Abs�s�n1 � 2 � m��2, �m, 1, n1 � 2�� � CΑ�0�, Σ2��

Out[60]= ��Σ2 � 0.028556�, �Σ2 � 0.0331599��
Σ2 must be real. So just select the real parts only for the calculations below

In[61]:= Σfirst � Re�Σ2� �. First�sol�
Out[61]= 0.028556

In[62]:= Σlast � Re�Σ2� �. Last�sol�
Out[62]= 0.0331599

We select between the two solutions by using equation (26)

s0 = s[-n/2] GΑΓ[n/2 + 1]

In[63]:= firstsol1 �

Sqrt�Σ2� Chop�First� 1

Conjugate�cΑ d�n1 � 2 � 1�� Conjugate�� �u�Γ, n1 � 2 � 1� u�Α, n1 � 2 � 1� �.
� CΑ�n1 � �n1 � 2 � 1�� � ��Α, n1 � 2 � 1�
CΓ�n1 � �n1 � 2 � 1�� � ��Γ, n1 � 2 � 1� �����1��� �. Σ2 � Σfirst

Out[63]= 0.0964345 � 0.171092 �

The other part which is also s[0] from equation (26)

s0 = 1
s��n�2� FΑΓ�n �2�

In[64]:= firstsol2 �
1

Sqrt�Σ2� Chop�First� 1

d�n1 � 2� � v�Γ, n1 � 2� �v�Α, n1 � 2� �.� CΑ�n1 � n1 � 2� � ��Α, n1 � 2�
CΓ�n1 � n1 � 2� � ��Γ, n1 � 2� ����

1��� �. Σ2 � Σfirst
Out[64]= 0.0964345 � 0.171092 �

� Check the second solution

This is a quick check that the other solution is not correct

In[65]:= secondsol1 �

Sqrt�Σ2� Chop�First� 1

Conjugate�cΑ d�n1 � 2 � 1�� Conjugate�� �u�Γ, n1 � 2 � 1� u�Α, n1 � 2 � 1� �.
� CΑ�n1 � �n1 � 2 � 1�� � ��Α, n1 � 2 � 1�
CΓ�n1 � �n1 � 2 � 1�� � ��Γ, n1 � 2 � 1� �����1��� �. Σ2 � Σlast

Out[65]= 0.103918 � 0.184368 �
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In[66]:= secondsol2 �
1

Sqrt�Σ2� Chop�First� 1

d�n1 � 2� � v�Γ, n1 � 2� �v�Α, n1 � 2� �.� CΑ�n1 � n1 � 2� � ��Α, n1 � 2�
CΓ�n1 � n1 � 2� � ��Γ, n1 � 2� ����

1��� �. Σ2 � Σlast
Out[66]= 0.08949 � 0.158771 �

Select between the two solutions by looking at their differences

In[67]:= If�Abs�firstsol1 � firstsol2� � Abs�secondsol1 � secondsol2�,
Σ � Sqrt�Σ2� �. Σ2 � Σfirst,
Σ � Sqrt�Σ2� �. Σ2 � Σlast�

Out[67]= 0.168985

� Normalize s 

Once we have Σ,  we can normalize all the s's

In[68]:= For�m � 1, m � n1 � 2, m��,
sn��n1 � 2 � m � 1� � Σ s��n1 � 2 � m � 1�;�;

For�m � 1, m � n1 � 2, m��,

sn�n1 � 2 � m� � 1

Σ
s�n1 � 2 � m�;

�;
Plot out dimensionfull pictures

In[70]:= sMag � Table��k �t Μ, Abs�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;
sArg � Table��k �t Μ, Arg�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;
sRe � Table��k �t Μ, Re�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;
sIm � Table��k �t Μ, Im�sn�k���, �k, �n1 � 2, n1 � 2 � 1��;

� Plots

In[74]:= ListPlot�sMag, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ���10�3, 10�3�, All�, AxesLabel � �"x �m�", "Magnitude"��

Out[74]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.17

0.18

0.19

Magnitude
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In[75]:= ListPlot�sArg, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ���10�3, 10�3�, All�, AxesLabel � �"x �m�", "Phase �radians�"��

Out[75]=
�0.0010 �0.0005 0.0005 0.0010
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Phase �radians�

� Compare the result and the original chunk

In[76]:= Show��23, �74, PlotRange � ���10�3, 10�3�, All��

Out[76]=
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In[77]:= Show��22, �75, PlotRange � ���10�3, 10�3�, All��

Out[77]=

�0.0010 �0.0005 0.0005 0.0010
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Phase �radians�

Enhanced Bootstrap Algorithm
Using the sn[t] which we calculated, we will extend the solution for the next chunk.

The chunk has been increased by a factor of 2 from n1 to n2=2*n1. 

In[78]:= n2 � 2 n1; �� number of samples where s is the real signal and not padding��
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� Create the IΑ and IΓ from chunk 2

We need nm points of intensity from IΑand IΓ from sinput1[t].

In[79]:= iΑ �
Table��m �fΑ, Abs� DFrFT�fapchunk2, nm, Α, �x, F3Α, Λ, m��2�, �m, �nm � 2, nm � 2 � 1�� �� N;

iΓ � Table��m �fΓ, Abs� DFrFT�fapchunk2, nm, Γ, �x, F3Γ, Λ, m��2�,�m, �nm � 2, nm � 2 � 1�� �� N;
Plot them out 

In[81]:= ListPlot�iΑ, Joined � True, PlotRange � All,
AxesLabel � �"x'", "Magnitude"�, PlotLabel � "Α � Π�2, �16x4��x aperture"�

Out[81]=

�0.02 �0.01 0.01 0.02
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Magnitude
Α � Π�2, �16x4��x aperture

In[82]:= ListPlot�iΓ, Joined � True, PlotRange � All,
AxesLabel � �"x'", "Magnitude"�, PlotLabel � "Γ � Π�4, �16x4��x aperture"�

Out[82]=

�0.02 �0.01 0.01 0.02
x'

0.5

1.0

1.5

Magnitude
Γ � Π�4, �16x4��x aperture

IΑand IΓ are the intensities which we measure.

� Normalize w.r.t. the power from the initial bootstrap

In[83]:= iΑ � iΑ � totalPower;
iΓ � iΓ � totalPower;

Create the Matrix Vector Equation
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Create the Matrix Vector Equation

Clear previous definition of Σ

In[85]:= Clear�Σ�;
Clear�Σs�;

Define the equations that are the entries of the matrix S

In[87]:= Σs�k_, l_, Θ_� :� Conjugate�sn�k�� Exp�� 2 Π k l ��t�2 Cot�Θ��;
Σ�k_, l_, Θ_� :� sn�k� Exp�� 2 Π �k � l� l ��t�2 Cot�Θ��;

Filling in the SΘmatrix shown in Eq. (29)

In[89]:= SΑ � Table�0, �i, n1 � 2 � 1�, �j, n1��;
SΓ � Table�0, �i, n1 � 2 � 1�, �j, n1��;
For�i � 1, i � n1 � 2 � 1, i��,

For�j � 1, j � n1 � 2, j��,
SΑ��i, j�� � Σs��n1 � 2 � �j � 1� � �i � 1�, n1 � �i � 1�, Α�;
SΓ��i, j�� � Σs��n1 � 2 � �j � 1� � �i � 1�, n1 � �i � 1�, Γ�;�;�;

For�i � 1, i � n1 � 2 � 1, i��,
For�j � 1, j � n1 � 2, j��,

SΑ��i, j � n1 � 2�� � Σ��j � 1� � �i � 1�, n1 � �i � 1�, Α�;
SΓ��i, j � n1 � 2�� � Σ��j � 1� � �i � 1�, n1 � �i � 1�, Γ�;�;�;

The CΘvector showin in Eq. (31)

In[93]:= CCΑ � Table�0, �i, n1 � 2 � 1�, �j, 1, 1��;
CCΓ � Table�0, �i, n1 � 2 � 1�, �j, 1, 1��;
For�i � 1, i � n1 � 2 � 1, i��,

CCΑ��i, 1�� � CΑ�n1 � �i � 1�� � Sum�Conjugate�sn�� n1
2
� j � 1��

sn� n1
2
� j � i� Exp�� 2 Π � n1

2
� j � 1 �n1 � �i � 1�� ��t�2 Cot�Α��, �j, 1, i � 1��;

CCΓ��i, 1�� � CΓ�n1 � �i � 1�� � Sum�Conjugate�sn�� n1
2
� j � 1�� sn� n1

2
� j � i�

Exp�� 2 Π � n1
2
� j � 1 �n1 � �i � 1�� ��t�2 Cot�Γ��, �j, 1, i � 1��;

�;
Create the matrix equation which we solve for the unknown s[] entries Eq. (28)
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In[96]:= S � Table�0, �i, n1 � 2�, �j, n1��;
CC � Table�0, �i, n1 � 2�, �j, 1, 1��;
For�i � 1, i � n1 � 2 � 1, i��,

For�j � 1, j � n1, j��,
S��i, j�� � SΑ��i, j��;�;�;

For�i � 1, i � n1 � 2 � 1, i��,
For�j � 1, j � n1, j��,

S��i � �n1 � 2 � 1�, j�� � SΓ��i, j��;�;�;
For�i � 1, i � n1 � 2 � 1, i��,

CC��i, 1�� � CCΑ��i, 1��;�;
For�i � 1, i � n1 � 2 � 1, i��,

CC��i � �n1 � 2 � 1�, 1�� � CCΓ��i, 1��;�;
The number of equations is greater than the number of variables. Therefore, we'll have to use a least squares method to solve for
s[]

In[102]:= sol � LeastSquares�S, CC�;
Now,  get the answers to the unknowns using Eq (30)

In[103]:= For�i � 1, i � n1 � 2, i��,
sn�n1 � 2 � �i � 1�� � sol��i, 1��;�;

For�i � 1, i � n1 � 2, i��,
sn��n1 � �i � 1�� � Conjugate�sol��n1 � 2 � i, 1���;�;

� Plots

Plot out dimensionfull pictures

In[105]:= sMag � Table��k �t Μ, Abs�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
sArg � Table��k �t Μ, Arg�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
sRe � Table��k �t Μ, Re�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;
sIm � Table��k �t Μ, Im�sn�k���, �k, �n2 � 2, n2 � 2 � 1��;

In[109]:= ListPlot�sMag, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ���10�3, 10�3�, All�, AxesLabel � �"x �m�", "Magnitude"��

Out[109]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.05

0.10

0.15

0.20

Magnitude
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In[110]:= ListPlot�sArg, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ���10�3, 10�3�, All�, AxesLabel � �"x �m�", "Phase �radians�"��

Out[110]=

�0.0010 �0.0005 0.0005 0.0010
x �m�
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1
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3
Phase �radians�

In[111]:= Show��23, �109, AxesLabel � �"x �m�", "Magnitude"��

Out[111]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

0.5

1.0

1.5

2.0

2.5

3.0

Magnitude

In[112]:= Show��22, �110, AxesLabel � �"x �m�", "Phase �radians�"��

Out[112]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Phase �radians�

EBA works as expected, but quadratic phase needs to be corrected

Correct the quadratic phase
There is a phase contribution which was introduced by lens 1. See Eq (90).  We can correct for this.

The size of the diffraction grating and incident angle

In[113]:= a � 10�3 � 1200.; ��m��
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In[114]:= Θi � 85 Π � 180;
focal length of lens 1

In[115]:= f1 � 0.05; ��m��
focal length of lens 2

In[116]:= f2 � 1.0; ��m��
The magnification factor

In[117]:= Ν � f2 � f1
Out[117]= 20.

The wave number of the laser

In[118]:= k � 2 Π � Λ;
From Example AII.2, Eq (81), we can calculate the number of samples

In[119]:= c � 3 � 108; �� speed of light, m�s��
In[120]:= tp � 100 � 10�15;

In[121]:= pmax � IntegerPart� c tp

a Sin�Θi� �
Out[121]= 36

The phase correction comes from Eq (61) and add in a possible phase offset

In[122]:= phasecorr�x_, Θ_� :� Arg�Exp�� Θ� Exp�� k x2

2 f1
� Exp�� k x Sin�Θi���

We generate a table of the phase corrections which are spaced a apart. Note that we are undersampling the phase correction and
also the magnification factor Ν (the negative sign in the argument of phasecorr[] comes from performing the Fourier transform
twice, see Eq (40)). We anticipate that the phase offset is Π.

In[123]:= pcorr � Table��p a Ν , phasecorr��p a, Π��, �p, �pmax, pmax��;
In[124]:= ListPlot�pcorr, Joined � True, PlotStyle � RGBColor�0, 0, 0��

Out[124]=
�0.0006 �0.0004 �0.0002 0.0002 0.0004 0.0006

�3

�2

�1

1

2

3

Show that the phase matches what we have calculated
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In[125]:= Show��110, �124�

Out[125]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3

Phase �radians�

Create the phase correction function which includes the magnification factor from pcorr

In[126]:= fcorr � Interpolation�pcorr, InterpolationOrder � 1�
Out[126]= InterpolatingFunction����0.0006, 0.0006��, ���
Perform the corection

In[127]:= corrArg � Table��sArg��i, 1��, sArg��i, 2�� � fcorr�sArg��i, 1����, �i, Length�sArg���;
In[128]:= ListPlot�corrArg, Joined � True, PlotRange � � ��10�3, 10�3�, All�,

AxesLabel � �"x �m�", "Phase �radians�"�, PlotLabel � "Corrected Phase"�

Out[128]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�4

�2

2

4

Phase �radians�Corrected Phase

� Unwind the phase

There are phases which outside the range +/- Π. We can correct this with phaseUnwind below.

In[129]:= phaseUnwind�Θ_� :� If��Π � Θ � Π, Return�Θ�,
If�Θ � �Π, Return�Θ � 2 Π�, Return�Θ � 2 Π���;

In[130]:= ucorrArg � Table��corrArg��i, 1��, phaseUnwind�corrArg��i, 2����, �i, Length�corrArg���;

demo2a.nb   15

124



In[131]:= ListPlot�ucorrArg, Joined � True, PlotRange � � ��10�3, 10�3�, All�,
AxesLabel � �"x �m�", "Phase �radians�"�, PlotLabel � "Corrected Phase Unwound"�

Out[131]=

�0.0010 �0.0005 0.0005 0.0010
x �m�

�3

�2

�1

1

2

3
Phase �radians�Corrected Phase Unwound

Notice the small discontinuity near the centre of the corrected phase. This is comes from imperfect phase correction.

Comparing with the input pulse

Rescale the magnitude and phase by Ν to take out the magnification from Lens1 and Lens2 and change it to time on the xaxis.
Also reverse the x axis, i.e. x-> -x because of the mirroring of the object by lens1 and lens2.

In[132]:= rescaleMag � Table��� sMag��i, 1��
c Ν

, sMag��i, 2���, �i, Length�sMag���;
rescaleArg � Table��� ucorrArg��i, 1��

c Ν
, ucorrArg��i, 2���, �i, Length�corrArg���;

In[134]:= ListPlot�rescaleMag, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � �0, 0.5�, AxesLabel � �"time �s�", "Magnitude"� �

Out[134]=

�6.�10�14�4.�10�14�2.�10�14 0 2.�10�144.�10�146.�10�14
time �s�

0.1

0.2

0.3

0.4

0.5
Magnitude
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In[135]:= ListPlot�rescaleArg, Joined � True, PlotStyle � RGBColor�1, 0, 0�,
PlotRange � ��2 Π, 2 Π�, AxesLabel � �"time �s�", "Phase �radians�"� �

Out[135]=

�6.�10�14�4.�10�14�2.�10�14 2.�10�144.�10�146.�10�14
time �s�

�6

�4

�2

2

4

6
Phase �radians�

� Input pulse

Recreate the input pulse so that we can compare with the reconstructed pulse.

In[136]:= sinput�t_� :�
Η�t� 0.1 Exp��0.2 �t � �tp� � 0.5�2� Exp�I �Sin�5 Π �t � �tp� � 0.5�� � Cos�8 Π �t � �tp� � 0.5����;

Η�t_� :� If��0.5 � t � �tp� � 0.5, 1, 0�;
In[138]:= Plot�Arg�sinput�t��, �t, �tp, tp�,

PlotRange � All, AxesLabel � �"time �s�", "Phase �rad�"��

Out[138]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13
time �s�

�1.5

�1.0

�0.5

0.5

1.0

1.5

2.0
Phase �rad�

In[139]:= Plot�Abs�sinput�t�� , �t, �tp, tp�, AxesLabel � �"time �s�", "Magnitude"��

Out[139]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13
time �s�

0.02

0.04

0.06

0.08

0.10
Magnitude

� Comparison
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�

Comparison

In[140]:= Show� �135, �138, PlotRange � ���10�13, 10�13�, ��Π, Π���

Out[140]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13
time �s�

�3

�2

�1

1

2

3
Phase �radians�

In[141]:= Show��134, �139, PlotRange � ���10�13, 10�13�, All��

Out[141]=

�1.�10�13 �5.�10�14 5.�10�14 1.�10�13
time �s�

0.05

0.10

0.15

0.20

Magnitude

Everything looks good! Magnitude needs rescaling as expected. Phase match looks great.
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