
Optimizing the Performance and Structure of the

D0 Collie Confidence Limit Evaluator

Mark Fischler∗,

July 27, 2010

Abstract

D0 Collie is a program used to perform limit calculations based on ensembles of
pseudo-experiments (“PEs”). Since the application of this program to the crucial
Higgs mass limit is quite CPU intensive, it has been deemed important to carefully
review this program, with an eye toward identifying and implementing potential
performance improvements. At the same time, we identify any coding errors or
opportunities for potential structural (or algorithm) improvement discovered in
the course of gaining sufficient understanding of the workings of Collie to sensibly
explore for optimizations.

Based on a careful analysis of the program, a series of code changes with po-
tential for improving performance has been identified. The implementation and
evaluation of the most important parts of this series has been done, with gratifying
speedup results.

The bottom line: We have identified and implemented changes leading to a
factor of 2.19 speedup in the example program provided, and expected to translate
to a factor of roughly 4 speedup in typical realistic usage.

∗Fermi National Accelerator Laboratory

1

FERMILAB-TM-2468-CD

2 CONTENTS

Contents

1 Executive Summary 4

1.1 This Technical Memo . 4

2 Introduction and Overall Structure 5

2.1 Review Ground Rules . 6

2.2 Test and Evaluation Programs . 7

3 Time Profiling: Targets For Improvement 9

3.1 What Does Collie Do? . 9

3.2 Calculating CL For a Given Signal Strength 9

3.3 Where Does Collie Spend Its Time? 11

3.4 Time Profile for the Initial Program 12

4 Most Promising Performance Improvement Suggestions 13

4.1 Caching of Partial Likelihoods . 13

4.2 Factoring Out fval Logic For Each s Value 17

4.3 Pre-computing s-dependent Part of Interpolating Function 18

4.4 Low-efficiency Cut Folding . 18

4.5 Rectifying Inefficiency in Calculating Chi2 LLR 19

4.6 Non-limit Minuit Variables . 19

4.7 Improved Fit Starting Points . 20

4.8 Partial Caching Extended to the 2-Change Case 20

5 Principal Other Performance Improvement Suggestions 21

5.1 Data Structured For Rapid Expectation Calculation 21

5.2 Recopying Parent Distributions . 22

5.3 Enabling the Analytic Derivatives 22

5.4 Options for Tuning Fit Starting Points 23

5.5 Combining Expectation Calculation With LLR Accumulation 24

5.6 Ideas that Won’t Help . 24

5.7 Controversial Changes . 25

6 Effects of Implemented Suggestions 28

6.1 Summary of Speedups . 28

6.2 Profiling this Code – General Points 29

6.3 Profiling Results – Initial Program 29

6.4 Profiling Results After First Optimizations 30

6.5 Profiling Results After “Most Promising” Optimizations 32

6.6 Non-performance Perturbations . 33

7 Other Suggested Changes 34

7.1 Erroneous Code . 34

7.2 Erroneous Interface with Root . 36

7.3 Erroneous Accumulation of Parent Expectations 36

CONTENTS 3

7.4 Memory Leaks . 37
7.5 Possibly Unintended Physics Behavior 37
7.6 Poor Style Impacting Performance 39
7.7 Bad Style That Could Be Corrected 40
7.8 Clean-up Opportunities . 41

8 Summary/Results of the Review 41
8.1 Modified Code Provided . 41
8.2 Performance Differential Measurements 42
8.3 Expectations in More Realistic Running 43
8.4 Tricks That Did Not Help . 43
8.5 Further Opportunities For Tuning 43
8.6 Issues the Developer Should Consider 45

A Coding Steps 46
A.1 Files Affected . 46
A.2 Setup for meaningful exploration of performance 46
A.3 Partial Likelihood Caching . 48
A.4 Use of vectors in optimization . 52
A.5 Optimization of calculateChi2LLR 52
A.6 Cleanup of Errors and Serious C++ Faux-Pas 52
A.7 Moving inline Code Where Appropriate 53
A.8 Minor cleanups . 54

B Math of Collie Calculations 54
B.1 Computing Expectations Based on Systematics 54

C Using the SimpleProfiler 55

D Finding Signal Strength for a Given CL 57

E Status of Investigations and Implemented Changes 58

4 1 EXECUTIVE SUMMARY

1 Executive Summary

The goal of this project was to analyze the D0 Collie program, specifically trying
to make it faster. This project is delivering a tarball containing modifications to
the code which result in a factor of 2.2 speed increase for the example program,
with expectation that that factor will be larger when the problem has more bins
and s-parameters. The project is also delivering this detailed document, explaining
the reasoning and measurements leading to these optimizations, so that a future
maintainer will not be in the dark about what the new code is doing.

Most of the speed increase comes about as a result of four changes:

• A rearrangement of loop ordering over bins and “systematic” parameters (s-
parameters) allowed the most critical loop in the creation of model expecta-
tions to use a much smaller stride through memory being accessed (thus much
less frequent cache misses).

• Analysis of the pattern of Minuit function evaluation requests allowed us to
cache much of the work needed to evaluate the function, from one request to
the next, greatly reducing the total work needed in all but a small fraction of
cases.

• The final step of calculation of the chi-squared likelihood ratio was restruc-
tured such that a cut which had required a division and the computation of a
logarithm for every bin now pre-computes an exponential and amortizes that
cost over all the bins.

• The use of bounded variables in Minuit turns out to be unnecessary for this
application, and was costing a noticeable amount for internal transformations;
unbounded variables were substituted.

The tarball, collieOptimization-v1.tar was emailed to D0, for use in pro-
duction running.

1.1 This Technical Memo

The concepts underlying Collie are much the same as the statistical techniques
being proposed for confidence limits at CMS. The motivation for issuing this publi-
cation as a Fermilab Technical Memo is that other experiments (CMS in particular)
are or will be relying on similar programs, and perhaps by reading about key op-
timizations, developers can write superior code.

Another motivation for making this document available is as an illustration of
the kind of optimizatonis which can be done due to the availability of the SIm-
pleProfiler, developed by the CET group at Fermilab. Although an early version
of the profiler was used in this work, the current version, while being less awkward
to use, operates along the same lines.

This document’s primary purpose was in assisting D0 software people in under-
standanding what was done to achieve the speedup (and attain confidence that the
program remains correct). As such, it was confined to a D0 note. Since the Collie

5

program and details of its performance are the “property” of the D0 experiment,
publication as a Fermilab Technical Memo was delayed until permission was given
by a D0 software leader; thus the date of the TM is substantially later than the
February 2009 date of the original document. Changes consist of this section, along
with correction of minor typos.

2 Introduction and Overall Structure

D0 Collie is a program used to perform limit calculations based on ensembles of
pseudo-experiments (“PEs”). The theory behind the way D0 performs these limit
calculations is described in slides from the 2008 Prague D0 Workshop [1]. The
ideas and operation of Collie are explained in some detail in the Collie Tutorial [2];
this note will not try to replicate that explanation. But for the purposes of others
who may be reading the review without necessarily being expert in Collie usage
and theory, and to provide a discussion framework about the steps the program
performs, we explain the general idea as follows:

A SignalBkgdDist (sbd) consists of three distributions: One concrete, holding
actual (or manufactured) data, and two conceptual, representing expected distribu-
tions if there is signal+background or background only. The object of the program
is to take these distributions, and decide with what confidence limit we could reject
the signal+background hypothesis. But the situation is made complicated by the
presence of a number of systematic (s) parameters, whose values are not known
a priori. The actual value of each systematic parameter can affect the value ex-
pected in each bin, in a roughly linear way. (The effect of each s-parameter may
be different for the background-only and the signal+background case.)

In the Systematic Uncertainties presentation [1] it is explained that these pa-
rameters are not the quantities which can be obtained based on data outside the
critical region and applied to the models; those sorts of systematics parameters are
in fact incorporated into the models and do not add further complexity to the limit
calculations. The s-parameters of concern to Collie come from poorly understood
features of data measurement leading to “shape uncertainties” and from uncertain
theoretical modeling aspects. That is, they are the parameters whose estimates
(according to the best physics conclusions D0 can reach) need to be refined by
fitting the shape of the data being analyzed.

The naive data analysis mantra would be to fit the data to the background-
only hypothesis (using a best likelihood fit), and then to the signal+background
hypothesis (possibly arriving at different best values of the s-parameters for the two
models). By comparing these likelihoods, one could assign a degree of improbability
to the signal+background hypothesis.

But this naive approach ignores the fact that tuning for the best s-parameters
could very easily affect the likelihood for the signal+background case much more
(or less) heavily than for the background-only case. Thus a log-likelihood ratio
LLR of some value tells you nothing honest about whether to accept or reject the
hypothesis.

6 2 INTRODUCTION AND OVERALL STRUCTURE

To get a feel for what a meaningful LLR difference would be, one does a large
ensemble of pseudo-experiments (PEs). For each PE, you pick a hypothetical set
of s-parameter values, and generate a pair of fake data distributions based on
those values (with Poisson variation in each bin): One distributions based on the
signal+background hypothesis, the other on background-only. Then for each of
these two “data” distributions, you do what the naive analysis would have done
with that experiment data: Fit the s-parameters, and find a LLR.

If you gather the LLR’s calculated based on the signal+background distribu-
tions you end up with some roughly Gaussian histogram of LLR values. Similarly
the LLR’s calculated based on background-only distributions gives some different
histogram. Together these two histograms provide an honest basis for evaluating
whether some LLR value is more “signal+background-like” or more “background-
like”, and for quantifying that evaluation. And finally, one applies that honest
evaluation on the LLR found for the actual observed data.

So this is what Collie does – forming an ensemble of thousands of PE results
takes up almost all the time. The primary goal of this review is to provide code
changes that will reduce the total time taken. Since the code was created by a
sophisticated physicist but not a coding expert, it was hoped that there would be
some easily achieved major performance improvements.

2.1 Review Ground Rules

This is existing, working code, incorporating physics and statistics technique con-
sensus among the body of D0 scientists. The primary objective is to create a version
of the code with the identical result behavior, which runs faster.

Accordingly, the desirable changes will be those which do not alter the algorithm
at all, but by eliminating wasteful techniques or rearranging structures, gain in
speed. (Memory size usage is, to first order, not a serious issue for this application.)

Equally desirable would be assembler-level coding to exploit special hardware
for large gains in performance in critical loops. We have not pursued this potential,
because it looks to be fairly difficult. But since the number of ”hot-spots” can be
made to be small, it is not out of the question that after restructuring the code
for optimal memory access patterns, work on hand-coding the one or two critical
loops, making use of the SSE vector floating point registers, might pay.

Another equally desirable improvement would be changes that allow better
exploitation of multicore architectures or multiple processors. We do not pursue
this at all, since the problem is “embarrassingly parallel”: Full parallel resource
usage can be achieved by farming different m-value combinations to different cores,
and that is assumedly already being done.

Less Straightforward Changes

While any change that modifies order of operations may have the potential for
altering results at the last-bits level, and that is fine, there are also some types of
changes which are attractive from the performance standpoint but which have the

2.2 Test and Evaluation Programs 7

potential of causing larger differences in results. Suggestions for such changes are
less desirable as an outcome of this work, and we are presenting only a very few.
These are chosen on the basis of being fairly safe in the physics sense, or having
potential for great improvement with little loss of physics precision.

In each case, I can easily supply the coding for the modified algorithm. However,
it will take physics judgment (or in one case statistical reasoning) to decide whether
a given change is worth pursuing, and I don’t have the standing to make that
decision for D0.

Two sorts of changes, in particular, are deemed not to be in the scope of this
review. The first is the use of Minuit as the minimization driver. It is alleged that
there are superior minimization programs, but the physics community is by far
more comfortable with Minuit, and it is not my business to question that comfort.

The second is the algorithm used for automatic finding of the cross section limit
for a given confidence level. This involves using Ridder’s algorithm to find the value
of signal strength which yields the specified CL; but each step in this algorithm
uses a different ensemble of PE’s. The issues of whether it is better to use the same
ensemble of PE’s for some sub sequences of steps, of perhaps using fewer PE’s in
earlier steps, and in general, of creating a superior algorithm is out of scope for
this review. This is particularly so since the critical use of Collie does not use the
automated cross section limit search capability anyway.

Expected Deliverables

What is wanted is a set of modified source codes, along with performance mea-
surements that quantify how much performance is gained when each modification
is implemented.

Along the way, it is necessary to take a careful look at the code, and this will
uncover various “unimportant” problems. A secondary deliverable is a collection
of erroneous code fragments, which assumedly are innocuous in the current mode
of usage but which clearly do not reflect the developer’s intentions.

Poor coding techniques from the viewpoint of easily understanding, maintain-
ing, optimizing and enhancing the program will also be mentioned if they are
particularly serious, but this is not the purpose of the review.

2.2 Test and Evaluation Programs

For initial exploration, I have started with exampleLimitCalculation.cc. This is
a (fairly) clean example program, but has the long-range drawback of using atypical
values for the numbers of bins (20) and s-parameters (6, of which 3-4 actually vary
in the fits). I was told that the typical application uses more like 50 bins and 10 s-
parameters. The heavy time consumers (which assumedly are critical to optimize)
use up to 2500 bins and 100 s-parameters (of which assumedly many more than 4
will vary.)

The initial program is fine for learning what we can from profiling, and for
trying out the effect of various optimizations. However, quantitative statements

8 2 INTRODUCTION AND OVERALL STRUCTURE

about performance gains need to be made in the context of more realistic uses of
Collie. This is particularly so because one key optimization will involve improving
memory striding behavior; for small cases such as the example, it is possible that
the lowest level cache will hold enough that this optimization will not help, even
though on the realistic cases it may be the most important improvement.

Modifications for easier exploration

In the context of the example program, I have made several modifications to try
to make examination of performance easier without changing the overall behavior
(except in trivial ways).

• I change the example program to use CLfit2 in place of CLfast.

• I freely insert a line at the beginning of calculateCLs to set the PE iteration
limit (effort) to some reasonably small number. Depending on whether the
code is being profiled, timed, or debugged, this can vary.

• For profiling purposes, I moved some code which had been inlined (but was
large enough that the compiler might not be inlining it anyway) into non-
inlined code, which the profiler would see.

• I temporarily split the huge fillArrrays method into 5 parts, so that I could
validate the assumptions about where time was being used.

Probably the most important temporary modification is the removal of irrepro-
ducible behavior. It was observed that identical runs of the example would yield
wildly different (by about a factor of 1.5) numbers of fits, even though the time
taken per function evaluation in those fits remained steady. I surmised that this
was because of some randomization at initialization time; this is desirable behavior
in a Monte-Carlo application (to avoid accidental replication of statistics). How-
ever, it makes it difficult to compare times, and nearly impossible to check the
invariance of results with coding changes.

For the purposes of these investigations, temporary changes in how rp_ is con-
structed in CLfit2.cc and in how m_randgaus is constructed in SigBkgdDist.cc

appear to be the only ones needed to eliminate this variation.

• In CLfit2.cc and SigBkgdDist.cc, instead of basing initial engine states on
gettimeofday, I substitute a constant.

(rp_ in CLfit2.cc and m_rp in FitTest.cc also construct random engines
using gettimeofday, but these do not occur in the timing tests concerning this
project.)

Finally, to get a handle on how the speed improvements vary with numbers of
bins and/or s-parameters, I made changes in collieIOexample.cc, to produce a
different root output file with more bins and so forth.

• collieIOexample.cc is, during the measurement phase, adjusted to use
larger numbers of bins and/or more s-parameters. Performance behavior can
be plotted against problem “size.”

9

3 Time Profiling: Targets For Improvement

3.1 What Does Collie Do?

Collie has an overall structure that loops over mass combinations, but for the
purposes of this note, we care about what happens for one particular combination.
The physics information (about histogram shapes) originates, for this purpose, in
a file read in; the action begins when CollieLoader::get(...) is called, to form
a SigBkgdDist.

This SigBkgdDist is used as a basis for computing confidence limits correspond-
ing to various signal strengths (that is, rescalings of the signal in the model implied
in the SigBkgdDist). A key number delivered by Collie, at least in the exam-
ple program, is the signal strength at which we can reject the signal+background
model at a confidence limit of 95%. This is calculated by the CrossSectionLimit

class, in the crucial line

csLim.calculate(*sbd,clresults);

which is where almost all the time is spent.

CrossSectionLimit::calculate(), in turn, explores in the space of signal
strength, using a root-finding method (Ridder’s algorithm) to look for that strength
at which the confidence level is 95% (or whatever desired level has been set).
That means that it needs to repeatedly call a function which delivers the CL
for some given trial value of signal strength. Each of these is done by calling
CLfit2::calculate() (or some other corresponding calculate() method depend-
ing on the chosen treatment of systematics).

The bulk of the work is then done within CLfit2::calculate() calls (and their
descendants in the call tree). This is the code being optimized in this review.

One can ask how optimal is the pattern of trials done by CrossSectionLimit::calculate(),
and whether significant performance improvement could be obtained by tweaking
this. That question arose late in the review process, and potential things to inves-
tigate appear in appendix D. At any rate, this has been deemed to be out of scope
for this review.

3.2 Calculating CL For a Given Signal Strength

The calculate() method in a clcompute class such as CLfit2 is based on a
SigBkgdDist instance defining the data and models, a signal strength which rescales
the signal model, and a choice of how many PE’s to to to evaluate this one confi-
dence limit.

The SigBkgdDist class holds 3 collections of CollieDistributions, correspond-
ing to data, signal, and background. It also holds 5 vectors of doubles, logi-
cally containing expectation values (or data values): data, signal-parent, signal,
background-parent, and background. These are derived from the CollieDistribu-
tions when fillArrays() is called; the constructor calls fillArrays(). (This call
to fillArrays() uses varySyst as false. In consequence, signal and signal-parent

10 3 TIME PROFILING: TARGETS FOR IMPROVEMENT

end up identical, formed for each bin by adding results of getEfficiency for several
distributions; similarly for background and background-parent.)

The SigBkgdDist object is passed to doCLs as the sbd argument. The first
thing done by doCLs is to create two reference SigBkgdDists, by (deep) copying
sbd and replacing its data with either its background alone (blike) or its background
plus signal (sblike). Two other copies are also created: sbBase is hardwired as the
SigBkgdDist that fitProfile() works with, and rand is used in the PE loop while
pseudo-data is being formed. The fates of these four SigBkgdDists are:

sbBase has signal and background expectations which which always remain the
expectations from sbd. But it takes its data from either sblike or blike for
purposes of various fits.

sblike is used to hold the expectation data for the signal plus background model.
When that model is being used in a fit, data is copied from sblike to sbBase.
This is an inefficiency which could easily be eliminated by building the data
in sblike itself and setting the SigBkgdDist used in pfLH to sblike; internal
code evidence indicates that may have been the original intent. However,
profiling indicates that this copying cost is negligible, so that change is not
worth making.

blike is used to hold the expectation data for the background-only model. When
that model is being used in a fit, data is copied from blike to sbBase.

rand is used as a place to compute the s+b and b models based on “fluctuated”
s-parameters. After rand.fluctuate() is called, the signal and bkgd arrays
in rand are used to provide mean values for Poisson variates which go into
the data arrays for sblike and blike, respectively.

At this point, we calculate three log-likelihood ratios (LLRs), all based on ex-
pectations which do not include any fluctuation of systematics: that for the actual
data; that for data which matches the expected signal+background, and that for
data which is purely the expected background.

Now we do a bunch of pseudo-experiments, all of which are based on the
SigBkgdDist rand: Each PE has the following steps:

1. Fluctuate the systematic parameters used by rand to compute its expected
distributions. (This is the rand.fluctuate(), which does varySystematics()
and then does fillArrays(). In this call to fillArrays, the effect of systematics
changing is turned on.)

2. Based on the signal and background expected distributions for rand, the data
for sblike and blike are set, using Poisson variates for each bin.

3. The s+b pseudo-data in sblike is used to do two fits, one with signal included,
then one without signal. This gives a log likelihood ratio for this sample s+b,
based on this sample underlying systematics.

4. The b pseudo-data in blike is used to do two fits, one with signal included,
then one without signal. This gives a log likelihood ratio for this sample
b-only.

3.3 Where Does Collie Spend Its Time? 11

5. Some bookkeeping, mostly irrelevant for performance considerations, is done
on these LLR’s.

One can notice that most of the arrays in the four SigBkgdDist objects are
moot. For example, the parent distributions in rand are never used. While this
is inefficient and somewhat misleading style, it has negligible effect on the overall
performance, and it is not worth changing.

Finally, Collie uses the collection of LLR’s produced in the course of these
pseudo-experiments (and the LLR’s calculated using the actual data) to produce
the confidence limits and other result quantities.

What determines how many doCLs are called?

Although it may not make a difference for optimization, it is notable that while
calculateCLs (in CLfit2 or another systematics-treatment class) calls doCLs with
some fixed number of iterations, and each doCLs call creates a semi-fixed number
of pseudo-experiments (between its iterations argument and twice that), the limit
calculation for a given mass point may do many calculateCLs calls. While exploring
the nature of program time consumption, it would be useful to have a handle on
this. The relevant code is in CrossSectionLimit.cc.

When the number of PE’s in each outer iteration is changed, the effective ran-
dom sequences driving each PE after the first become completely different. The
response of both the the bracket mechanism and the ensuing Ridder’s algorithm
to such changes (which fluctuate the value of confidence level obtained for a given
fixed signal strength) are difficult to anticipate. For example, using the repro-
ducible seeding put in place for study purposes, a sample change of 2% in number
of doCLs per PE yielded a 35% change in number of sets of PE’s used overall.

Therefore, when studying performance, one must simply use as the metric time
per PE, and studying small deviations from linearity in that metric is not feasible
within the context of the example program.

3.3 Where Does Collie Spend Its Time?

Of course, virtually all the time in the program is spent analyzing the many pseudo-
experiments. A general analysis of the flow of calculation for each experiment shows
that almost all the time will be spent evaluating the likelihood function during the
fitting of the s-parameters. That is, Minuit calls chiFun() many times for each
fit. Any large loops occurring in the course of chiFun() would be expected to
dominate the time used.

The original guess was that most of the time would be spent in calculate-
Chi2LLR(), in particular, on a line reading

if(m_bkgdParent[i]>0)

sigLog = log10(1.0+m_signalParent[i]/m_bkgdParent[i]);

12 3 TIME PROFILING: TARGETS FOR IMPROVEMENT

Actually, the entire calculateChi2LLR() function occupies only about 20% of the
total time spent, and that is expected to decrease as the number of s-parameters
grows.

By far the largest fraction of time is spent in fillArrays(). This is where the
effects of changing s-parameters are translated to changes in the expected b and
s+b distributions. For every bin, and for each s-parameter, some contribution
to the overall efficiency into that bin is computed based on asymmetric response
parameters σ+

s,i and σ+
s,i (where s is an s-parameter index and i a bin index).

Minuit samples by changing the s-parameters; for each trial point, several calls to
calculateChi2LLR() will result in that same number of calls to fillArrays().

Within fillArrays, almost the entire time is spent in the two loop structures that
loop over signal or background channels, the distributions in those channels, binX,
and binY. For each bin in each distribution, a call is made to getNormalizedBinValueVaried()
(which is inlined in io/CollieDistribution.hh in the original code). That, in turn,
loops over the s-parameters, computing the efficiency contribution for each “active”
s-parameter for this bin.

3.4 Time Profile for the Initial Program

To get a baseline, we profiled time spent in the version of Collie we started with.

Profiling was done using an early but good version of the Paterno/Kowalkowski
“SimpleProfiler,” which was already present on clued0. Since it might be useful in
the future for D0 users to do some profiling, instructions are given in appendix C.

Thus far, only the standard Collie example program (but with CLfit2 used in
place of CLfast) has been carefully profiled. Although at first the headache of doing
different problems each time (due to use of gettimeofday to seed the randoms) was
present, that only caused variations in the profiler results for each function by
about a fifth of a percent. (Of course, subsequently a more stable seeding approach
was temporarily put in place, so that overall timings could easily be compared–see
section A.2.)

The principle consumers of CPU time were:

• getNormalizedBinValueVaried() consumed 46.4% of the time. Of this, other
profiling runs indicated that about 2/3 was in the key fillArrays() loop done
for background distributions, and 1/3 in the loop for signal distributions; this
is easy to understand as there were 2 of the former and one of the latter.

• calculateChi2LLR() consumed 18.9% of the time. (No further breakdown of
this routine was done.)

• The background and signal loops in fillArrays consumed 8.9% and 4.0% re-
spectively. At the time of initial analysis, I had not looked carefully at whether
this can be streamlined. (It turns out that some routine cleanups up unnec-
essary computation have cut this time by a factor of four.)

• The next heaviest consumer is the sin() function, which assumedly is being
called internally to Minuit to implement parameter limits. This consumes

13

3.6% of the time in the example profile looked at for these numbers; it was
more like 4% in other profiles.

• The sum of all the various Minuit routines (other than the fact that it calls
sin() and of course the user function) amounts to about 4.7%. No single one
of these is itself more than 0.8%, so they would not make this list. Of course,
nothing can be done about this cost, except if the use of improved starting
points reduces the number of migrad steps taken.

• dist->getEfficiency(binX,binY), called from fillArrays(), consumes 2.7%.
About half of that probably consists of recopying parent distributions which
can be done much more efficiently.

• The chiFun() function in ProfileLH consumes 1.0%. Other than permuting
the parameters used in Minuit to those known but Collie, this is pure scaffold-
ing for calls to fluctuate() (which calls fillArrays), calculateChi2LLR(), and
others.

This adds up to just over 90%; the remaining time is spread over quite a few
functions, and would be too much work to optimize, given the small possible payoff.

4 Most Promising Performance Improvement

Suggestions

This section describes a unified set of performance improvement suggestions, with
the following motivation: Within the bounds of the scope of the review, I consider
a primary idea: the single change with the greatest potential performance gain.
(This is “Caching of Partial Likelihoods”, as described in section 4.1.)

It is, of course, possible that the choice of primary idea is a failure: Either
the technique is too difficult to implement, or after implementing it the speedup
obtained is completely disappointing. But assuming the speedup is good, then this
can be used as a base for the improved Collie.

I then look at the other principle performance improvement ideas, and include
any which meet two criteria:

1. The idea must be compatible with the primary idea, in the sense of not
complicating its coding and not clashing with what it is trying to do.

2. The idea must have potential for significant speedup.

After implementing these most promising suggestions, a delivered faster Collie
should be made available. If the speedup is adequate, it may be right to call it
quits rather than doing other suggested improvements described in section 5.

4.1 Caching of Partial Likelihoods

At a late date in the review thought process, the following notion arose:

14 4 MOST PROMISING PERFORMANCE IMPROVEMENT SUGGESTIONS

Migrad (the algorithm used in Minuit) computes the gradient and (implicitly
via prior trial points) the Hessian of the function at the trial point, by taking small
steps in the various directions and subtracting values from the value at the trial
point itself. This means that relative to some reference trial point, the fval values
for all but one of the s-parameters will be the same as for the trial point!

There is certainly the potential here for saving these values and only computing
(in a loop over bins) the one fval for the changed s. This is just a bit awkward as
currently structured, since the savings comes from not having to do the bin-loop,
but you do have to do the bin-loop for the single changed value of s. However, by
creating a single-s-value version of the critical getNormalizedBinValueVaried()
function, one could probably make this work without too much grief.

Of course, one would have to verify that the anticipated pattern of sampling
points is what actually happens; one would be vulnerable to changes in the Minuit
technique that change this pattern; and one has to cope with the fact that we don’t
know the number of s-parameters at compile time. Probably, one would need to
investigate the pattern of same and different s-values, and verify in code that the
expected pattern is valid before taking the shortcut of using partial values. (This
study has been done; see section 4.1.)

Also, the example program, which uses only 3-4 active s-parameters, might not
gain a lot from this technique. There may be better potential in cases where the
number of fitted parameters is large.

The main worry in this technique is that the natural ordering of computation
becomes s-parameter major rather than bin-major (since the overhead of checking
which s-parameters need not be recomputed would be large if done for each bin
separately. Thus the idea cannot easily be combined with the promising data
restructuring technique discussed in section 5.1. Also, it probably does not combine
well with gains obtained from supplying explicit gradients (section 5.3) if those are
put in place. Finally, while possibly very beneficial, this technique contains some
subtle possibilities for losing back all the speedup (particularly if there are relatively
few bins).

Caching of partial likelihoods is not easy to implement in a promising way. The
simplest thing to try would be to check, in the inner loop in getNormalizedBinValueVaried(),
whether a given s value is changed relative to some stored base value (or relative to
its prior value), and if it has not, simply look up the corresponding result on a by-
bin basis. That approach would almost certainly be comparable to or more costly
than the current code. Instead, one has to re-order the loops in the fillArrays-
getNormalizedBinValueVaried() combination, such that the s loop is the outer
loop. This is a substantial change.

Caching of partial likelihoods should be be tried, because the large potential
payoff. The experiment will be more meaningful if realistic test cases are available.

Observations relevant for partial likelihood caching

In the example program, Minuit is moving in 5-parameter space, and the distribu-
tions have 3 to 4 active s-parameters. The pattern of function requests for each

4.1 Caching of Partial Likelihoods 15

obvious trial point looks like:

• The trial point itself. I’ll call this the base point.

• One of the parameters increased by a little bit.

• That same parameter decreased by the same little bit.

• (Usually; in 4 of 5 cases) That same parameter increased by about twice as
much.

• That same parameter increased by the larger amount.

• Move on to another parameter, resetting the one that had moved to its base
value. (The parameters are not done in any particular order.)

• Often, but not always, a way-off sample point not used as a base.

• The computed next trial point - a new base.

• The pattern repeats.

Thus much of the time exactly one parameter has changed relative to some base
point. To quantify this for the example, in which there are 3 distributions with 3,
3, and 4 active s-parameters:

• One pattern consists of 20 evaluation points.

• That adds to 20 times (3+3+4) = 200 f-value computations for each bin.

• Two of the points are base (actually, one is the base of nothing in particular,
but costs as much as a true base point since we can’t anticipate that storing
its information is a waste of time.) 20 f-value computations per bin.

• Of the 18 remaining cases (which in principle require one f-value per bin for
each of three distributions) only 2/3 of the s-parameters that change are active
for the distribution being looked at. That gives 36 f-value computations per
bin.

After about 5 or 6 such patterns, minuit does a block of one base point and 15
points which each differ in 2 parameters from that base. While in principle caching
can speed these up as well, this was considered a potential future optimization step
(see section 4.8). Effectively, this amortizes to roughly 3 base points per pattern –
30 f-value computations per bin.

Thus the example program could take only 86/230 = 37% as long as before. Of
course, storing and retrieving the cached numbers will give back some time, and
once the fillArrays() work is reduced by this much, the remaining pieces of code
will become more important. Still, the net reduction could be significant.

Techniques for caching of partial likelihoods

In coding the caching of partial likelihoods, we have to be careful not to add
significant conditional logic in the innermost loop, since that would immediately
give back all the potential gains. We also have to watch out for trading some

16 4 MOST PROMISING PERFORMANCE IMPROVEMENT SUGGESTIONS

easy computations of fval for equally costly (or worse) memory accesses to look up
cached values.

The code section which is to be overhauled is the pair of huge loops in SigBkgdDist::fillArrays,
that is, the loops over channel (iterSB), Collie Distribution (iter or dist), binY,
binX, and (internal to the invoked (getEfficiencyVaried()) s. In order to avoid
alterations scattered throughout the package, we will still place the results in
m_signal and m_bkgd by calling signal() and bkgd(). The strategy for restruc-
turing these loops is:

1. Distinguish the case where varySyst is true from the case where it is not.
The latter takes much less time and, for the purposes of this optimization,
can be left as is. The routine that is called when varySyst is true will be
named adjustExpectations() and will take as arguments:

• channelStart

• channelEnd

• perhaps other control handles

2. adjustExpectations() will see if this is a totally new trial point, or if only
one s has changed relative to the last “base point.” Note that his logic is
done just once per trial point.

3. Assume this is a tweak on an existing base point, with parameter s changing.
(The new-base-point alternative will be considered separately.) Then:

4. Loop over Channels (other than the excluded channel, if any) and distribu-
tions within the channel:

5. Translate s to the “local” s′ for this distribution. If this s is moot to the
distribution, simply move on to the next distribution.

6. Decide whether for this particular s you will use the large-negative, central,
or large-positive formula. Three separate but similar routines are potentially
invoked. While we are at it,, this is the point to accommodate any sort of
bridge functions other than the (−1, 1) quadratic bridge, and to detect the
need for exponentiation for form a log-normal efficiency–this avoids the need
for conditionals inside the loop over bins. Each combination of choices leads
to a separate small routine.

7. Pre-compute the coefficients (functions of s) to be used with σP and σN to
form the interpolating function for each bin. In the case of the quadratic
bridge, this saves just one multiply and perhaps two adds per bin. But if the
interpolating function used is more heavyweight, such as a true sigmoid, but
is not different for each bin (other than in the values of σP and σN), then this
implements the suggestion in section 4.3, at perhaps a significant gain.

8. Decide whether the linLog model is used for this s on this distribution. If
so, all three branches will revert to the common linLog formula involving an
exponential.

9. Having done all possible preparatory work so as to minimize the work needed
for each bin, now loop over bins:

4.2 Factoring Out fval Logic For Each s Value 17

10. Apply the appropriate formula to compute the factor. In the large negative
and positive cases, only one sigma needs to be looked up.

11. Truncate to ǫ if too small or negative.

12. Multiply by dist->partialProduct [s′][i].

13. Although we may want to eliminate this conditional in the near future, be-
cause a similar truncation will happen after scaling, again truncate to ǫ if too
small or negative.

14. Finally, multiply by the sigScale , re-truncate, and increment the appropriate
signal or background expectation.

Memory usage for partial likelihoods

For each active s-parameter in each distribution, the caching of partial likelihoods
method requires storing one value per bin: The product over all the other s-
parameters of the smeared efficiencies. This can be compared to the two num-
bers σN and σP already stored. Thus the total memory usage in this category is
increased by about 50%.

To get some feel for the sizes we are talking about, let us consider an extremely
large problem, in which 2500 bins are used, and there are 8 channels with an
average of 3 distributions in each. Say we have 100 s-parameters, and for a typical
distribution 50 of those are active. Then the current storage need is about 48
Mbytes, and this would be increased to 72 Mbytes. This does not have the feel of
a prohibitive increase.

4.2 Factoring Out fval Logic For Each s Value

The logic in the critical step in of computing fval in getNormalizedBinValueVaried()

does different things depending on whether s (the named variable in the routine
is rand) is between -1 and 1, greater than 1, or less than 1. These if statements
may be interrupting instruction flow, particularly if one s is in one range and the
next is in a different range.

This can be cured completely by looping over s more slowly than the loop over
bins. The point is that s does not change, so by doing one overall decision of which
looping routine to call, you can eliminate all the decision logic within the routine
itself. It is plausible that this was not tried because it implies storing some result
for each bin, and at the end going back over the bins to take a product (or storing
the “product-thus-far” for each bin and pulling it back in for each s). So it is
unclear whether such a restructuring, on its own, would represent a gain or a loss.

However, this restructuring meshes perfectly with restructuring already needed
for caching partial likelihoods. The matter of storing things for each bin is already
settled in that case; factoring out the fval logic would not add extra memory traffic.
So when that optimization is done, this change should be made as well.

18 4 MOST PROMISING PERFORMANCE IMPROVEMENT SUGGESTIONS

4.3 Pre-computing s-dependent Part of Interpolating
Function

Let’s say it is decided that for physics reasons, the interpolation between a sen-
sitivity of σN for large negative s and σP for large negative s ought to be a true
sigmoid. Taking the exponential once per bin is overly costly, but that exponential
depends only on s and not on the specific bin number.

When this optimization is done, it will be allowable for different distributions to
use different choices of interpolating functions for a given s. Of course, to exploit
that, somebody would have to apply physics thought to the issue of which choices
are best. For now, we will just hardwire in either some fixed sigmoid or the original
quadratic bridge.

4.4 Low-efficiency Cut Folding

When taking the product of partial efficiencies, where each is a monotonic function
of the relevant s-parameter, it is always possible that some partial efficiency will
come out negative. this, of course, would give ridiculous results, particularly if two
negative likelihoods were multiplied to give a non-zero positive likelihood.

To deal with this, Collie truncates values in three (!) places:

1. Each individual fval is truncated to be above 10−5.

2. Then the overall fluctuation for one distribution (in one bin) is truncated,
again at 10−5. (It is easy for this to happen if two or more individual fval’s
were small. But in many such cases, the third cutoff would also take effect.)

3. Finally, the overall contribution to the bin from this distribution, which is the
“efficiency” times the signal scale, is truncated to be above 10−6. (This can
happen if fLinBins[i] times the fEfficiency times the signal scale is below 0.1,
since getEfficiencyVaried() will return the fluctuation times fLinBins[i] times
the distribution fEfficiency.)

(See section 7.5 for a discussion of the nature of these truncations.)

The first of these truncations is an ugly necessity based on non-physical prop-
erties of the simplified interpolation scheme (for sigmoid interpolation it would not
be needed).

The third is a practical desire, to avoid bins with expectations so small that
they distort all fitting if there is any data there at all.

But the second overall fluctuation cutoff is not serving any vital purpose; it
looks to be there so as to avoid zero bins, but that is already done by the third
cutoff. The impact of this second cutoff, on performance, is that it requires an
extra conditional and prevents combining the effects of sigScale and fEfficiency.
Since the physics impact must be extremely low (given tolerance of the peculiar
existing cutoff mechanism as discussed in section 7.5) it must be sensible to do this
combining, and use only the two cutoff stages.

4.5 Rectifying Inefficiency in Calculating Chi2 LLR 19

After talking with Wade Fisher, it was determined that as long as the purpose
of the cuts is upheld, any approach is OK. In the end, we have a single cut when
the partial efficiency is computed, and this does the trick.

4.5 Rectifying Inefficiency in Calculating Chi2 LLR

There are minor inefficiencies in calculateChi2LLR(). Since this method con-
sumes close to a fifth of the total time, any easy fixes here are worth trying.

The opportunities for improvement that we see are, in order of code appearance
(not, that is, in order of potential impact):

• The if(!fitSig) test can be pulled out of the bin loop, breaking that loop
into two separate loops. This saves one conditional in each iteration; I would
expect that savings to be negligible since the chip almost surely will do suc-
cessful code look-ahead on this.

• The two lines starting with sigLog = 10 can profitably be combined into
a single sigLog = (m_bkgdParent[i] <= 0) ? 10 : whatever. Again,
expected savings are small.

• The whole business of checking whether to skip because of the sigLLR cutoff
is done in a very inefficient way. Rather than comparing sigLLR to the log10
of 1 + the parent signal-background ratio, it is equivalent to compare the
parent background to a number (dependent on sigLLR) times the parent
signal. The point is that this number can be computed at the start; it is
the same for all bins. (This is so even ignoring the probable situation that
sigLLR is passed as the same value many consecutive times). The expected
savings are about 25% of the total time taken for :calculateChi2LLR() since
one transcendental calculation out of four, plus one division out of three, are
eliminated.

• The loop over m_delbins[jdel] looks to be disastrously inefficient; much
better is to create a single look-up array of bools and break if this specific
bin is among the deleted. (Note that his loop is also the subject of a possible
error in coding, discussed in section 7.5.)

• In the test for data and model both being positive, I believe the model is
inherently positive since small minimum is applied if it is less than or equal
to zero. Thus one comparison can be avoided.

These changes are fairly safe and do not require substantial or global code
reorganization, so even though the potential payoff is not huge, they are worth a
try.

4.6 Non-limit Minuit Variables

It is observed by profiling that about 4% of the original program time is being
spent in the sin routine. I infer that this is called by Minuit, in translating from

20 4 MOST PROMISING PERFORMANCE IMPROVEMENT SUGGESTIONS

the internal value of a fitting parameter, to the external value of one of our s-
parameters. (Minuit uses an arcsin transformation and needs to invert it to deliver
the point values to our chiFun.) It should be possible to allow unlimited parameter
variation; our function is sufficiently well behaved far from the origin that the
various pathologies people worry about when forcing limits are not going to occur.

To eliminate this cost, I would need to (re-)learn how to tell Minuit to not limit
the parameter ranges. This may be an easy thing to try.

The potential gain is 4%; this is of course increased in proportion to whatever
other gains are achieved by other optimizations. However, as the number of bins
increases, I’m fairly certain the relative amount of time spent doing these transfor-
mations will fall reciprocally.

4.7 Improved Fit Starting Points

The current code starts each fit at s-parameters all zero. While we know the values
are centered somewhere near there, we may be able to do better. The possibilities
are discussed in more detail in section 5.4; here we describe only the most promising
choice.

Cross-informed starting points

The most interesting thing to try is something which can also be done in the
actual data analysis: Having fit the s-parameters for the background-only case,
you have what might be an excellent starting point for the s-parameters for the
signal+background case. This does not help at all in half the fits, but might help
a lot in the other half.

4.8 Partial Caching Extended to the 2-Change Case

During the fit, Minuit generally either changes all the non-pinned s-parameters, or
changes just one relative to a recent “base” point (see section 4.1).

However, by looking at the pattern of trial points, we observe that the last group
of FCN calls starts from a base point and varies two parameters for each request.
Clearly, this is being done to formulate off-diagonal terms in an error matrix.

It is conceivable that the error matrix is not needed for the pseudo-experiment
fits, and in that case it may be possible to change the way ProfileLH controls
Minuit such that the unneeded function calls are eliminated. But if not, since the
number of these calls grows quadratically with the number of s-parameters, it is
worth trying to speed these up.

A technique very similar to single-change partial caching can apply to this case.
The idea is that for each bin and distribution you store, for each s-parameter, the
fval produced for that parameter along with the product of fvals at the base point
over all the other s-parameters. This allows rapid computation (though not quite
as rapid as for the single-change case) of the 2-change efficiency.

21

(A slight refinement would be to store the reciprocal of the fval for the param-
eter; this changes a per-bin divide into a multiply. This is not necessarily a win,
however, since it requires a divide for each point whenever a new base point is
detected.)

Although this is closely related to the improvement discussed in section 4.1,
it is right to wait on implementing it, to see if the extra calls can be eliminated
altogether by appropriate Minuit control.

5 Principal Other Performance Improvement

Suggestions

5.1 Data Structured For Rapid Expectation Calcula-
tion

The current loop structure in the critical chiFun path (executed every time one
new-s-parameters step in the LLR fit is done) is a loop over bins i (or (i, j)).
For each bin, there is a loop over values of “internal” parameter s (that is, the
parameters being varied by Minuit), in which:

• The internal parameter s is translated to an “external” parameter s′ via a
look-up array.

• σP and σN are looked up in an array whose fast-varying index is the bin
index, and whose slow-varying index is s′.

• The deviation of the parameter is combined with σP and σN so as to form an
efficiency number fs.

• The expectation for that bin is proportional to the product of those fs.

Later, the calculateChi2LLR function retrieves this overall bin value, which
is an expectation value, and compares it to some (pseudo-)data value to form a
contribution to the likelihood ratio.

The problem (or more cheerily, the optimization opportunity) is that the in-
nermost loop over s deals with data for one particular bin, that is, data which is
maximally spaced in the expectation fluctuation arrays. In the example program,
the number of bins is 20, so we are walking two arrays (for σP and σN) with a
stride of 160 bytes. In most chip architectures, a single read brings in, from the
lowest level of cache, about 16-32 bytes; the miss latency to the L1 cache is not
disastrous but probably burns several cycles.

For the realistic applications, the number of bins is larger (at least 50) and the
number of s-parameters is more like 10. This introduces the likelihood of frequent
misses in L1 cache due to the stride size of 400 bytes. And for the largest and most
time-consuming applications, there are 500 bins (and 100 s-parameters), virtually
guaranteeing frequent cache misses in this loop. While it is conceivable that the
chip architecture is so sophisticated that this latency is completely hidden, the

22 5 PRINCIPAL OTHER PERFORMANCE IMPROVEMENT SUGGESTIONS

presence of conditionals in the remainder of the loop makes it more likely that
some memory access time hit is being taken.

The change to reduce this inefficiency is to prepare data in the best possible
format for walking through to compute the efficiency value for each bin. (While
we are at it, the data should be arranged in order of internal s-parameters, so that
the translation for each s is not needed.)

This auxiliary data, which we shall call ResponseCache consists of an array
(indexed by bin) of a structure of the form:

• ns pairs of (σP , σN) corresponding to the values for each (inner) s, for one
specific bin. Only active s values should be present, and the ordering should
be such that a simple linear traversal in s gives the needed values.

• nbins such sets, one for each bin.

Who “owns” each ResponseCache? And when is it prepared?
Since CollieDistribution holds the fLinSystPos and fLinSystNeg arrays,

a natural possibility is to also have each distribution hold its own segment of the
ResponseCache. The loop over distributions in fillArrays() is outside the loop
over bins, so the time lost in the “gaps” between one distribution and the next
should not be large compared to the time that is currently lost in going from one
s-parameter to the next.

CollieDistribution::linearize()prepares the fLinSystPos and fLinSystNeg

arrays, based on data from the root file. It also prepares the maps from “inner”
to “outer” s-parameters. Thus it is very natural for CollieDistribution to own the
ResponseCache, and to fill it as part of the linearize() method. (Yes, it would be
superior C++ style to construct it in the initializer list, but that would require
code reorganization not aimed at performance, which this review should not do.)

Eventually, I believe the current fLinSystPos and fLinSystNeg arrays will be-
come superfluous, so the net memory usage will actually decrease when ResponseCache

is fully deployed. At first, a version of the code using both methods of computation
should be prepared, to check that results are identical.

5.2 Recopying Parent Distributions

Every time fillArrays() is called, the parent distributions are recomputed. Since
this is just a matter of summing looked-up efficiencies times a scale factor, this is
not a disastrous cost, but it is unnecessary since they certainly don’t change within
a single fit. We can come up with some way to skip that work when it is unneeded.

5.3 Enabling the Analytic Derivatives

The way the migrad method of Minuit works is that a trial point is chosen, and
then a quadratic model of the function near that point is created–the minimum
point of that model is found analytically, and used as the next trial point. To form
this quadratic model, migrad needs the gradient and Hessian (second derivative
matrix) at the trial point. In usual usage, it obtains this by evaluating the function

5.4 Options for Tuning Fit Starting Points 23

at the trial point, at two straddling points in each dimension (which allows an
estimate of diagonal terms in the Hessian), and at one “corner” point for each pair
of distinct directions (to give the off-diagonal Hessian terms).

Minuit allows the user to help it by providing a function to use directly as the
gradient.

Enabling the use of analytic derivatives will entail three steps of work:

1. Learning how to tell Minuit to use explicit gradients. This should be relatively
easy.

2. Figuring out and coding up what those derivatives are. There is already code
in Collie that attempts just that; of course, any optimizations applying to the
function evaluation are relevant to the derivative evaluation as well.

3. Evaluating whether the use of gradients was a net gain or loss.

Perhaps the toughest part of this would be the evaluation of the gain. The
example program uses a fixed number of active s-parameters in each distribution,
and a fixed number of overall s-parameters. The gain from use of derivatives is
highly sensitive to the dimensionality of the problem (there is a much bigger gain
fro large numbers of parameters). To explore the performance for realistic running,
I would need to see how to increase the dimensionality of the s-parameter space.
But that involves the generation of the root files; this may not be easy.

It is quite possible that for the example case, explicit derivatives hurts perfor-
mance, but that for larger cases it helps significantly. When I do this optimization,
I will need to ask for help in evaluating whether it is worth keeping.

5.4 Options for Tuning Fit Starting Points

The current code starts each fit at s-parameters all zero. While we know the values
are centered somewhere near there, we may be able to do better. A better starting
point would likely reduce the number of fit iterations needed by Minuit; even a 10%
improvement there would match the effect of some difficult code optimizations.

However, we must be careful not to use a method which “cheats” in utiliz-
ing information known for the pseudo-experiment but not available as part of the
analysis of real data. For example, we could use “super-improved” starting points
by starting at the actual values of s-parameters used to form the distributions in
each PE. But unless we somehow know that the minimization is going to always
converge top the same point regardless of starting point, this sort of “peeking” will
ruin our confidence in the physics results because the ensemble of PE’s will have
been analyzed slightly differently than the actual data–“don’t go there.”

Central-value starting points

The example code has no non-zero central values for s-parameters, so this issue is
probably moot. But if there are non-zero central values, it is clearly better to use
those rather than zero for the starting points.

24 5 PRINCIPAL OTHER PERFORMANCE IMPROVEMENT SUGGESTIONS

Cross-informed starting points

The most interesting thing to try is something which can also be done in the
actual data analysis: Having fit the s-parameters for the background-only case,
you have what might be an excellent starting point for the s-parameters for the
signal+background case. This does not help at all in half the fits, but might help
a lot in the other half.

This is the technique described in section 4.7. I may try to see if it improves
speed.

Least-squares-optimal starting points

In principle, with some math and a lot of coding, you can find a best-fit to the
s-parameters based on a linear least-squares fit. This does not match the best fit
for maximizing likelihood, but is probably a really good starting point. The CPU
work done to perform such a fit is small – a bunch of summing and a small matrix
inversion.

However, the coding work and problem analysis that would be needed is signif-
icant. I will not be trying to do this as part of this review.

5.5 Combining Expectation Calculation With LLR Ac-

cumulation

The current code loops over bins, finding and storing expectations, and then uses
those expectations to compute the likelihoods. It is plausible that by immediately
computing the contribution to the likelihood function one could avoid some memory
accesses.

However, this would require some code restructuring in the direction of less
clarity. Since the expected speedup is rather small, and goes down with increasing
number of fitted s-parameters, I do not propose to try this speed improvement.

5.6 Ideas that Won’t Help

The following ideas were considered and looked possibly promising, but turn out
to be dead ends:

Caching fvals for inactive parameters

One idea was that the loop computing the likelihood was perhaps doing all the
s-parameters, even the non-active ones. In that case, one could gain by carefully
caching the efficiency effect of the non-active parameters and using those values for
each bin.

It turns out this inefficiency is not happening. the code is looping only over “ac-
tive” s-parameters; the effect of the values of the inactive parameters is assumedly
taken into account. (I did not verify that this is being done properly, but given
that the program has been validated, changing the way the non-fitted systemics

5.7 Controversial Changes 25

are treated would be like changing the physics being done–out of scope for this
review.)

5.7 Controversial Changes

The following changes may make a lot of sense, but they do change the physics of
the program and thus should not be implemented without the necessary physicist’s
input.

Improved interpolating function between σN and σP

Given some value of an s-parameter, what is the effect of that value on the content
that will be added to some bin b in the expectation for this model? Collie allows for
asymmetric effects, where if the s-parameter is negative, some different response
factor (σN instead of σP) is used. (By the way, the term “sigmaP” as a variable
name for that quantity is a bit misleading because it is in no way a measure of
deviation; instead it is a slope of a response, or a measure of the response when s is
one sigma from zero. But I wouldn’t suggest changing nomenclature at this point.)

It was observed that the simple approach of letting the fval multiplier corre-
sponding to the value r of each s-parameter be given by

f =

{

σNr r < 0
σP r r ≥ 0

is flawed, in that it presents a discontinuous gradient wherever one of the s-
parameters is near zero. In one dimension, f looks like a pair of straight lines
meeting at the origin. Migrad exhibits poor convergence near such a situation, and
the origin is the most common region for the underlying s-parameters.

As long as the same asymmetry function is used when generating the σN and
σP based on the model, as when using σN and σP for the fit, some other form of
asymmetry could be used without improperly distorting the physics. In fact, one
can validly study the effect of different functions as long as the same form is used
for generating the expectations as for fitting the s-parameters; and this is automatic
in the Collie structure.

Ideally, what one would want is a function which is continuous and twice- dif-
ferentiable. For example, a sigmoid

f = r

(

σN +
σN + σP

1 + 9r

)

smoothly interpolates between slopes of σN and σP , and is nine-tenths of the way
to either asymptotic slope at r = ±1. However, the cost of evaluating eαr is
non-trivial.

The current code uses a compromise: A “quadratic bridge” of the form

f =

{

rσP +σN

2 + r2 σP −σN

2 |r| < 1
σP +σN

2 r |r| ≥ 1

26 5 PRINCIPAL OTHER PERFORMANCE IMPROVEMENT SUGGESTIONS

This function looks like a straight line σNr to the left of r = −1, a straight line
σP r to the right of r = +1, and these are joined by a parabola passing through
(−1, σN), (0, 0), and (+1, σP). The first derivative of this curve is composed of
three line segments: Horizontal lines at σN and σP at the far left and right, and a
line overshooting these, going from (−1, σN − σP−σN

2) to (+1, σP P σP−σN

2). We see
that there remains a discontinuity in the first derivative (actually two of them now,
and their magnitudes sum to the same amount as in the simple case). However,
these are displaced to |r| = 1 which is a rarer region.

Exploration using the simple formula, the sigmoid, and the quadratic bridge in
the context of the example program reveals that:

• The simple formula averages about 161 function evaluations per fit.

• The quadratic bridge averages about 126 function evaluations per fit. This
is quantitatively understandable on the assumption that the dominant cause
of extra evaluations comes in the regions near the gradient discontinuities. A
single quadratic bridge computation is a bit more time-consuming that the
simple formula (especially since the latter need not look up both σN and σP

for a given r), but the savings in number of evaluations more than makes up
for that.

• The sigmoid formula also averages about 125 function evaluations per fit.
However, the work involved in taken an exp() each time more than doubles
the time spent in this code, and swamps any conceivable gain.

The number of evaluations needed with the sigmoid function was a bit unex-
pected; I would have guessed about 95 based on the gain in going from the simple
formula to the quadratic bridge. What this tells me is that the “penalty” in the
simple formula case comes more from the fact that we are always starting right
at the origin, where the discontinuities are all concentrated, than from encounters
with the discontinuities near the convergence point of the fit.

However, an “accidental” experiment with a pure quadratic function (which is
way steeper than σN and σP would imply when an s-parameter is greater than 1
in absolute value) showed an improvement in number of function calls per fit over
the quadratic bridge of only about 0.4%, so this is consistent with the notion that
the latter is not doing much thrashing do to discontinuous derivatives. By the way,
the overall time for the pure quadratic function is about 16% faster than that for
the quadratic bridge. (But the physics makes a lot less sense.)

This, in turn, tells us that the currently used quadratic bridge is pretty much
optimal, at least if we assume we can’t pre-compute things based on the s-parameter
for all the bins in a distribution (and thus use a sigmoid almost without extra cost).
Although it is tempting to try increasing the range of the quadratic interpolation
region (for example,

f =

{

rσP +σN

2 + r2 σP −σN

6 |r| < 3
σP +σN

2 r |r| ≥ 3

matches the simple formula outside |r| = 3 instead of one), we would not gain
much by such a change. Thus it is not worth the extra work (which includes

5.7 Controversial Changes 27

physics thought about the consequences of the form of the interpolation for this
asymmetry) if all we are trying to do is improve speed–it won’t help much at all.

Super-informed starting points

If we were confident that the fitting always converges to a unique best point we
could probably improve performance a lot by the following “cheat”: In each pseudo-
experiment, take as the starting point for the s-parameters the values that were
actually used to generate the data used in that PE. The data generated will not
perfectly reproduce these values for two reasons: The data is formed using Poisson
variates, which change the shape a bit, and we are including in our likelihood
function some prior assumption about the likelihood of a given deviation of some
s-parameter from its central value. Still, this “almost right answer” must be a
much better starting point than the origin, and it can be used for both the s+b
and b-only fits.

Of course, the analysis of the actual data would have to start at the origin (or
at the optimal point found for the other fit if we so choose). So unless we know that
the answer is independent of the starting point, this “cheat” will have introduced
worries that we are not comparing “apples to apples.” Since the whole purpose of
Collie is to avoid such uncontrollable uncertainties about technique, I don’t think
this approach is worth trying.

Analysis of optimal number of pseudo-experiments

Probably the most important opportunity for physics or statistics thought to sig-
nificantly impact time taken by this program is in deciding what the best number
of pseudo-experiments should be.

For a given actual data set (containing some number of entries into the his-
togram bins) there is some level of precision in any confidence-level statement you
could make, such that claims to better precision than that would be meaningless.
This level corresponds (but not in a trivial way) to the purely Poisson-statistical
fluctuations that could have occurred in the bin data (ignoring entirely fluctuations
in the values of systematics parameters).

Let’s say, for example, that the Poisson data uncertainty leads (at average) to a
fluctuation in LLR which is 1/10 as large as the spread due mainly to systematics
uncertainties. In that case, your confidence level is inherently imprecise to some
degree; you could just as easily have gotten data which is a tiny bit different, and
it makes no sense at all to refine your ensemble to the point where your ensemble
error is much smaller than this fluctuation. So perhaps 400 ensemble members are
more than enough. (Collie itself can tell you something about the spread of the
LLR including systematics, of course, and it can do so with much fewer than 10000
PEs.)

Absent a fairly careful analysis of the statistics involved, the finest sensible
granularity for the PE curves (hence the diminishing-returns point for the number
of PEs) is just a guess. D0 is guessing 15000 because (I suppose) they want quotes

28 6 EFFECTS OF IMPLEMENTED SUGGESTIONS

of CL to be meaningful at the less-than-1% level. If the data quantity does not
support that degree of precision, then they ought to cut back on the number of
PE’s. This, of course, would linearly reduce the CPU time consumed.

My point is that the choice of how many PEs to use, currently embedded
by a fixed choice of fine, veryfine, veryveryfine, fast, and so forth, requires some
careful physics thought for optimal performance without loss of true precision. It
is entirely possible that this thought has already been done, and that the data does
support precision corresponding to ensembles of thousands of PE’s. In that case,
the current fixed levels for fine, veryfine, etc. may be quite sensible. Of course at
some point the experiment has to decide whether being able to quote CL’s at the
0.1% (or 0.01%) level is worth taking the time for 50,000 PE’s (or whatever that
would require).

But if the data inherent uncertainty makes it statistically meaningless to go be-
yond some number of PEs, then this fact should be embedded into Collie. Perhaps
the matter should be automate by estimating the spread of the LLR distributions
in samples of 100 or so and then basing the number of PEs on those spreads.

Such an improvement, if indeed it is available, is not in the scope of this review,
but the review is hereby raising the issue as a possible (and perhaps huge) way to
save total CPU time.

6 Effects of Implemented Suggestions

6.1 Summary of Speedups

Looking exclusively at the example program (but using CLfit2) we have achieved
the following speedups in the time per evaluation of chiFun:

• The original code took about 10.32 µsec per chiFun.

• Re-arranging the innermost s-parameter and bin loops when computing ex-
pected profiles cut the time taken by 29%, to 7.38 µsec.

• Eliminating parent distribution computation in places where it will not be
used shaved off a further 0.35 µsec.

• Storing quantities which would later be used by partial likelihood caching
gave back that 0.35 µsec.

• Implementing partial likelihood caching cut the time to 5.74 µsec.

• A small tuning of the method of discovering opportunities for using the cache
shaved off another 2%.

• An improvement in the calculation of chi2LLR after the bin expectations have
been computed reduced the time to 5.09 µsec.

• Eliminating the use of bounded parameters for Minuit reduced the time to
4.72 µsec per chiFun.

This represents a net speedup by a factor of almost 2.2.

6.2 Profiling this Code – General Points 29

6.2 Profiling this Code – General Points

For various versions of the code, it is advantageous to compare times for various
steps; then when optimizations are in place, one can see where the gains lie, and
where there remain fertile areas of potential speedup.

All the measured times are, of course, profoundly affected by the number of calls
to the chiFun function. Although some optimizations (e.g. section 4.7) focus on re-
ducing the number of calls needed per fit, and there is potential for reduction in the
number of fits needed by improving the algorithm used in CrossSectionLimit::calculate(),
the fundamental comparison is how much time is needed per chiFun.

Even dividing out the number of chiFun calls, there are three categories of time
measurements, based on analysis of how work grows with number of s-parameters
and with number of bins:

1. Work that is proportional to the number of s-parameters times the number
of distributions times the number of bins. (In analyzing this, we will assume
that the fraction of “active” s-parameters per distribution is f , which tends
to be about 1/2 to 2/3 in the example and in the typical cases described by
D0.)

2. Work that is proportional to the number of bins alone.

3. Work that is proportional to the number of s-parameters.

Note that the effect of “we have more s-parameters so that requires more trial
points per fit” is not taken into consideration. The reason is that we are comparing
performance of the improved versus the original code on specific problems; the
fact that both methods scale as some identical non-unity power of the number of
s-parameters would be moot.

In this and analogous subsections, we will state times taken by time per the
appropriate unit, and present the multiplied-out breakdown per chiFun in terms
of:

d number of distributions

s number of s-parameters

f average fraction of s-parameters active for a distribution

b number of bins

We also illustrate for the example program (d=3, s=6, f=5/9, b=20) and for a
hypothetical “typical” computation (d=6, s=10, f=0.6, b=50). All timings are
quoted for running on driel-clued0.fnal.gov, which is not the fastest machine avail-
able in the clued0 cluster, but which was found to be otherwise idle almost all the
time (crucial for wall-clock overall timing).

6.3 Profiling Results – Initial Program

The example (using CLfit2 and forcing a reproducible sequence of random seeds)
program took 10.32 µsec per chiFun. The time occupied by each function is ex-
pressed in µsec in the last column of this chart:

30 6 EFFECTS OF IMPLEMENTED SUGGESTIONS

gNBVV 46.4% per d*s*f*b 23.9 nsec = 4.788
fAloops 12.9% per d*b 22.2 nsec = 1.331

gEff 2.7% per d*b 4.6 nsec = 0.279

chi2LLR 18.9% per b 97.5 nsec = 1.950
chiFun 1.0% = 0.103

sin 3.6% per s 61.9 nsec = 0.372
minuit 4.7% per s 80.5 nsec = 0.483

other 9.8% = 1.013
Here, gNBVV is the time taken to compute and accumulate the distributions ef-
ficiency responses to the fluctuated s-parameters (done in getNormalizedBinVal-
ueVaried()). fAloops is the loop and bookkeeping and accumulation overhead in
fillArrays; this is done per bin per distribution. gEff is the non-fluctuated getEffi-
ciency() called from fillArrays(). The total of those three – 6.398 µsec per chiFun
– represents the time spent preparing the expectations for the various bins.

chi2LLR is the time taken to compute the likelihood function once the expec-
tations have been filled in. chiFun is the chiFun code scaffolding itself.

sin is the sin function internal to Minuit. minuit represents the rest of the time
taken by the internals of minuit. This time would go up roughly linearly in the
number of s-parameters.

The formula, in nsec per chiFun, is

T = 23.9dsfb + 26.8db + 142.4s + 97.5b + 1126 (1)

For the “typical” case, this would become 58.43 µsec per chiFun; and of course
the number of chiFun calls needed will be expected to grow with the number of
s-parameters as well.

6.4 Profiling Results After First Optimizations

The initial optimizations were related to partial likelihood caching (section 4.1).
These focus on reducing the time taken by the gNBVV and fAloops portions of
fillArrays, in particular, when minuit trial points vary from some base point only
in one parameter.

The net speedup is by a factor of 1.80 – 5.737 µsec per chiFun instead of the
initial 10.32 µsec per chiFun.

The pre-optimization time (per chiFun) taken for this part of the code was 6.019
µsec, which includes by far the largest chunk of time consumed but is only 60%
of the total. (Thus, Amdahl’s rule will get us if we speed this part greatly; our
theoretical best speedup would be by an overall factor of 2.5.)

The first step in this optimization was to rearrange the two inner loops over s
and bin, placing s on the outside so that we could later exploit the caching for a
given sole perturbed s-parameter. This rearrangement had a side effect of mostly
correcting the “large stride” issue mentioned in section 5.1. When this was put into
place, the time per chiFun dropped to 6.93 µsec. This represented an immediate
speedup by a factor of 1.4, due to the reduction in time for these two combined
activities by a factor of 1.9. (This was a bit of a pleasant surprise; I would have

6.4 Profiling Results After First Optimizations 31

expected a change by 20% or so.) After a few other preliminary cleanups were put
into place, the time per chiFun dropped to 6.93 µsec. I did not profile the code
at this point to get a more detailed background, since I was anxious to put in the
actual caching. Since this would reduce the work done in filling the expectation
arrays by a further factor of .37 (in principle), I naively expected another factor of
2 speedup, and wanted to verify this as soon as I could.

Placing code for storing information needed for the partial product caching gave
back those further cleanup improvements (but left in place the speedup factor of
1.4). Then when the partial caching was implemented, the time per chiFun dropped
to 5.73 µsec. This represents a further reduction of time in the two combined filling
activities by almost precisely a factor of 2. (Not the factor of 2.5 I had expected,
because the simple and quick bookkeeping for the non-changing s-parameters now
becomes noticeable compared to the lesser amount of computational work for the
changed partial efficiencies.) We have entered the realm of Amdahl’s rule – we
can’t gain much by speeding this component up further because it is no longer the
dominant component.

Profiling illustrates this:

bEQbase 7.1% per d*s*f*b 2.0 nsec = 0.407
abeBase 2.6% per d*s*f 14.9 nsec = 0.149
bEQpert 4.8% per d*b 4.6 nsec = 0.275
abePert 3.7% per d*s*b 0.6 nsec = 0.212
pExProd 2.9% per d*s*f*b 0.6 nsec = 0.166
fArrays 2.4% per d*b 0.2 nsec = 0.138
areDiff 2.4% per s 23.0 nsec = 0.138
fsoleD 1.1% per s 10.5 nsec = 0.063

chi2LLR 35.1% per b 100.6 nsec = 2.013
chiFun 2.2% = 0.126

sin 6.8% per s 65.0 nsec = 0.390
minuit 10.5% per s 100.3 nsec = 0.603

other 18.4% = 1.106

Here, gNBVV disappears, or rather it and most of fAloops together are broken into
several other identified pieces. bEQbase is the time taken by binEfficienciesQbridge
to compute and multiply into products the efficiencies for each bin for a specific s-
parameter, under the request of addBinEfficiencies done for a base point. bEQpert
is that same time, taken by the same routine, only requested while doing perturbed
points. abePert and abeBase are the rest of the work done by addBinEfficiencies.
pExProd is prepareExclusionProducts, where the overall products are divided by
the baseEfficiency for each s-parameter.

areDiff is the function areDifferent(). This is a new and annoying place to lose
time: In order to decide whether a point is a perturbation off the prior base point,
we are comparing various s-parameter values. It is observed that sometimes these
differ by a negligible amount (less than a part in 1013), purely because Minuit
has or has not used a value in a register. This would significantly increase the
apparent number of base points, for no good reason. So when testing for equality,
it seems we need to test for a relative difference being less, in absolute value, than

32 6 EFFECTS OF IMPLEMENTED SUGGESTIONS

this epsilon. Surprisingly, (because this is not proportional to the number of bins
or distributions) this occupies non-negligible time. fsoleD is findSoleDifference(),
which calls areDifferent(). (Shortly after preparing this table, and after being
annoyed by the time cost discovered, I made a change to these two functions,
causing the total time to drop from 3.5% to 1.6%. This will be reflected in future
charts analyzing further optimization steps.)

gEff disappears from the list of leading time hogs because one of the cleanups
took it out of the critical loops. fArrays is the entire rest of the fillArrays() function.
The total of the above eight functions – – 1.548 µsec per chiFun – represents the
time spent preparing the expectations for the various bins. This is the work this
optimization step was concerned about, and it is done about 4.1 times faster than
before.

Finally, the apparent minuit contribution has grown (from 416 to 511 nsec per
chiFun) because several more of the smaller routines were counted this time.

The formula, in nsec per chiFun, is

T = 2.6dsfb + 0.6dsb + 14.9dsf + 4.8db + 198.8s + 100.6b + 1232 (2)

Compare this to the earlier formula:

T = 23.9dsfb + 26.8db + 142.4s + 97.5b + 1126 (3)

For the “typical” case (d=6, s=10, f=0.6, b=50), the optimized time would be-
come about 16 µsec per chiFun, a speedup of a factor of 3.6. Why do we expect a
speedup factor that is so much better than the factor of 1.8 we see in the test exam-
ple? Partly, it is because as the number of bins increases the relative importance
of the unimproved overheads (such as minuit’s computations) falls. But mostly
it is because when we double the number of s-parameters, the gain from partial
caching goes up for two reasons: The number of perturbed points per base point
increases, and the gain in using the exclusionProduct rather than recomputing for
every s-parameter increases.

6.5 Profiling Results After “Most Promising” Opti-
mizations

After most of the remaining “promising” optimizations were done, code was deliv-
ered. In addition to the optimizations profiled above, which dealt with preparation
of expectation values for the bins, we now include optimizations of findSoleDiffer-
ence (discussed above), of the chi2LLR calculation (section 4.5), and elimination of
the overhead associated with use of limits on Minuit variables (the costs of the sin
function – see section 4.6). The following profile still does not include the effects of
improved fit starting points (section 4.7) which would not, in any case, be reflected
in a “per chiFun” number. And extending partial caching to the two-change case
(section 4.8) was not done.

The net speedup is by a factor of 2.19 – 4.722 µsec per chiFun instead of the
initial 10.322 µsec per chiFun.

6.6 Non-performance Perturbations 33

The pre-optimization time (per chiFun) taken for calculating chi2LLR and for
the sin function is about 42% of the total left after the first round of optimizations.
(Thus, our theoretical best speedup would be by an overall factor of 1.7 relative to
that first round result. The actual relative speedup factor is a bit more than 1.2.)

The most glaring optimization opportunity is that of pre-computing the sigLLR
cut information when sigFit is false, so that instead of taking a log for each bin,
the code need only compare the parent value to the background times some pre-
computed number. As mentioned earlier, this was expected to slash about 25% of
the time of this function, and in fact it did. The remaining efficiency optimiza-
tions caused no measurable change in performance, and since they significantly
obfuscated the code, I rolled them back out.

One thing that did not impact efficiency in our case, but would tremendously
affect efficiency if the array of m_delBins were fairly long, is correcting the ineffi-
cient and incorrect loop described in section 7.1. This has no impact in the example
program because evidently no bins are ever deleted.

The sin optimization turned out to be almost trivial to implement and had the
expected effect of wiping out that contribution to the time per chiFun.

bEQbase 8.6% per d*s*f*b 2.0 nsec = 0.406
abeBase 2.2% per d*s*f 10.3 nsec = 0.103
bEQpert 5.7% per d*b 4.5 nsec = 0.269
abePert 3.7% per d*s*b 0.5 nsec = 0.175
pExProd 3.5% per d*s*f*b 0.6 nsec = 0.165
fArrays 3.1% per d*b 0.2 nsec = 0.146
fsoleD 1.6% per s 13.0 nsec = 0.078

chi2LLR 34.4% per b 80.1 nsec = 1.622
chiFun 2.5% = 0.117

minuit 11.2% per s 88.0 nsec = 0.528

other 23.2% = 1.096
Here, sin disappears, and fsoleD absorbs all of what used to be itself and areDiff.

The formula, in nsec per chiFun, is

T = 2.6dsfb + 0.5dsb + 10.3dsf + 4.7db + 101.0s + 80.1b + 1313 (4)

Compare this to the initial formula:

T = 23.9dsfb + 26.8db + 142.4s + 97.5b + 1126 (5)

For the “typical” case (d=6, s=10, f=0.6, b=50), the optimized time would
become about 14 µsec per chiFun, a speedup of a factor of 4.1. Notice that while
the impact of the first set of optimizations is expected to be more pronounced as
the numbers of s-parameters and bins increase, the impact of this second round of
optimizations on larger problems is more modest - roughly a fixed factor.

6.6 Non-performance Perturbations

Some changes done to speed up performance yielded, or potentially could yield,
changes in results. Although we were careful to stay away from changes that could

34 7 OTHER SUGGESTED CHANGES

affect the physics, it is worth noting all such differences, so that the D0 physicists
can make the call on whether to say that some difference might be a problem.

The first change comes from repairing the lack of variety in random seed values
(see section 7.5). Obviously, this changes the results for each PE, and thus can
change the overall results. Equally obviously, the extent to which this changes any
overall measurement or result is bounded by the existing uncertainty on that result.

An interesting observation was made with the number of PE’s per Ridder it-
eration pinned at 1000 (which is, of course, laughably low). We accidentally saw
the effect of using a different set of random seeds (stemming from a cleanup elimi-
nating the Mtwist engine that had been created to randomize the fortran lun; this
was no longer being done, but the engine was still being created and seeded). The
effect changed the number of PE’s generated from 38000 to 63000 (note that our
timing figures are per chiFun, thus still valid), demonstrating how unstable Rid-
der’s algorithm can be when faced with randomized sample points. But the final
numbers output changed only from 2.334 (med) and 2.622 (obs) to 2.348 and 2.637
respectively.

Another change comes from the rearrangement of the s-parameter and bin loops.
This causes different round-off to occur, and because Minuit magnifies this round-
off effect when numerically estimating derivatives, it makes a small difference in the
values of points tried when finding the minimum. Again, if the round-off particulars
were to matter in the end physics, something would be fundamentally wrong in the
first place. At any rate, the net effect of this change is undetectable in the program
results.

Another potential change comes from the way we are handling positivity cutoffs
on bin efficiencies. We don’t even have to worry about saying that if the particulars
of this non-physics cutoff matter, something is wrong in the first place – because
this change has no detectable effect on our results or any intermediates.

Finally, the switch to non-limit Minuit parameters (see section 4.6) can perturb
details of the minimization process. As expected, the details of points requested
by Minuit change slightly. Also as expected, the ultimate results are unaffected (to
at least the 4 digits of precision output).

7 Other Suggested Changes

The following observations are not part of the primary deliverable of this review,
but were thought to warrant some interest for the person responsible for Collie.

7.1 Erroneous Code

Although the purpose of this review was not to uncover incorrect coding (since
the program does work properly in practice), the following palpable mistake was
discovered in the course of learning what the code does. Although the uses thus far
by actual D0 applications do not encounter adverse consequences of these mistake
(or if they do, the incorrect results have not been noticed) it should be corrected.

7.1 Erroneous Code 35

One deliverable of this review is modified version of the relevant files, with these
flaws corrected.

Improper ProfileLH initialization

Improper use of default constructor to initialize data members.

///Constructor with SBD initializer

ProfileLH::ProfileLH(SigBkgdDist* asbd){

ProfileLH::ProfileLH();

// ...

Calling the constructor the way it is done in this conversion constructor from
SigBkgdDist* merely creates a temporary unnamed additional ProfileLH object
on the stack; that object goes away upon completion of the statement in which it
was constructed. None of the initialization applies to the ProfileLH actually being
constructed!

The fix is to perform the necessary initialization explicitly. There are tricks to
avoid duplication of code for this (and the coming standard will provide a clean
way to do it), but for now I will just fix it the simple and mechanical way.

By the way, as a matter of good programming practice, a single-argument con-
structor which can inadvertently effect an automatic conversion (thus my calling
this a “conversion constructor”) should be declared explicit unless the intent was
to supply a conversion constructor (which it clearly was not in this case). I will
make this change as well.

Invalid behavior when skipping deleted bin

In calculateChi2LLR, when a bin is skipped because m_delbins[jdel] == i, the
coder took a shortcut of simply incrementing i to skip that bin. The code looks as
follows:

for(jdel=0; jdel<db; jdel++) if(i==m_delBins[jdel]){ i++; break; }

Two incorrect consequences accrue:

The first, and most disastrous, is that the test for loop termination does not
occur. So if the last bin is deleted, the code will in fact use the number past the
end of m_bkgd and similarly for the signal, giving meaningless contributions to the
total LLR.

The second adverse consequence is that the tests for deleted bins and for skip-
ping contributions to bins with very low parent background are not applied to the
next bin. This might give unintended results.

Since calculateChi2LLR is an area for serious optimization and will be altered
anyway, this error will be corrected in the delivered code.

36 7 OTHER SUGGESTED CHANGES

Incorrect build behavior

I have observed that when a header file changes, the need to compile the corre-
sponding .cc file is often missed by the gmake. For example, I changed CrossSec-
tionLimit.hh to get some verbosity, and gmake saw no need to recompile anything;
I had to touch CrossSectionLimit.cc.

I don’t propose to correct the Makefile myself unless requested, but this is a bit
of an annoyance.

7.2 Erroneous Interface with Root

The nature of Root I/O is such that you need to declare, in the header, the size
of arrays, even if they are expressed as simply double*. The way to do that is
to add a comment like //[fNsyst] where you specify the class variable that tells
the array size. Or, if you have variables for which you don’t care about Root I/O
handling, as in the comment in CollieDistribution.hh

///non-ROOT tools for fast linearized systematic calculations...

Int_t fNsyst;

int* fSystIndexOuter; //!

you can add a comment of the form //! as shown.

I have modified CollieDistribution.hh in this way, and now the messages like

Error: *** Datamember CollieDistribution::fLinBins: no size indication!

Error: *** Datamember CollieDistribution::fLinBins: pointer to fundamental type

no longer are issued when gmake is done.

It is suggested by a strong Root expert that it is best to migrate to use the
newer Root IO interface which has better support for STL containers and is much
more efficient. This should be done by creating a linkdef.h file containing lines
like

#pragma link C++ class CollieDistribution+;

However, I don’t think this issue is material in terms of performance of the actual
big computations.

7.3 Erroneous Accumulation of Parent Expectations

In fillArrays(), m_signalParent and m_bkgdParent are accumulated in the main
loop, but are never cleared. So as Minuit tries more and more points to do the fit,
the expectations in these arrays get larger and larger.

In the key activity of fitting for the s-parameters, these arrays are unused (thus
the program as actually used was not haywire). However, I will fix this flaw in case
other paths rely on proper values here.

7.4 Memory Leaks 37

7.4 Memory Leaks

Although we were not looking for memory leaks per se, Walter Brown and I noticed
a few cases of new-ing variables which are not later deleted. These likely are slow
enough leaks that they don’t make a performance difference (nor do they crash the
program by exhausting memory) but they are worth repairing when we see them.

Use of std::vector where appropriate would have avoided most or all of these.

7.5 Possibly Unintended Physics Behavior

Strange low-end cutoff behavior

The way the code is currently written, bin expectations that come out at or below
zero are reset to 10−6. This makes sense, but introduces the following glitch: If
the expectation comes out to some positive number less than 10−6, it is left intact.
Thus s-values that should produce a less severe likelihood penalty (if there is any
content in the bin) produce a more severe penalty. This probably has little impact
on the physics results, but if Minuit ever probes that region the discontinuity and
quirky behavior could well cause more iterations than are necessary. The fix for
this issue is trivial: When truncating at 10−6 (or 10−5 in the case of certain partial
likelihoods, for which a similar issue arise), instead of testing for positivity, test for
being greater than the truncation value.

However, when timing code where this change was done in the critical loop,
I have found that the technique originally used is about 5% faster that doing
std::max(fval, 1e-5). The reason appears to be that comparison against zero is a
bit faster than comparison against a constant double. I will be doing the “strange”
truncation, therefore.

I would suggest that physics thought be applied here; it is easy to change to
the less quirky approach, but at the cost of a few percent in performance.

Strange sigLLR cutoff for zero bins

If the background in the parent distribution is zero for a bin, then this bin is
skipped if and only if the sigLLR cutoff happens to be less than 10. given that the
default value appears to be a million, and that only numbers less than 10 make
much sense, this behavior is a bit unsettling. It is almost certainly not what was
intended.

Possible incorrect behavior regarding sigLLR

If a bin has high enough ratio of signal to background in the parent distributions,
then it will be skipped (driven by sigLLR). However, it will only be skipped when
just the background is being fit. When the signal is included in the fit, this bin
will not be skipped. This means that the set of bins used to evaluate the fit to
signal+background is different from that used to evaluate the fit to background
only.

38 7 OTHER SUGGESTED CHANGES

Since the computation of likelihood ratios does the same thing for the data
fitted to background and the PE pseudo-data fitted to background, the code is
still comparing “apples to apples,” and is not biased. It is also possible that it
was intended that when fitting the background, you don’t want to distort things
by having a huge penalty for data in a bin that the model says should be nearly
empty, while you do want to keep the measure of how well the data fits when the
signal models says it should not be empty. So I will work on the assumption that
this is in fact the intended behavior.

Usestat might not have sensible behavior

The m_usestat member of SigBkgdDist appears not to ever be enabled, at least in
the CLfit2 program I looked at. In the way it is currently used, I believe enabling
it would be dreadfully costly and might not make physics sense anyway.

m_usestat enables the use of BinStatError. The idea appears to be that for
each bin, along with the Poisson fluctuations from the expected bin content used
when forming the data, there is to be a Gaussian fluctuation in the expectation
value itself. This is in addition to the induced fluctuations in the expected value
stemming from the Gaussian random fluctuations in the values of s-parameters
used to produce the expectations.

In my not-so-humble opinion, the way to introduce such a fluctuation is to
adjust the central expected distribution when it is first created in the PE. What
is currently coded for the case where useStat is true applies the Gaussian random
fluctuation to each expectation every time the chi2LLR function is evaluated.

There are two significant problems with doing what is currently coded: As an
in-principle matter, what does it even mean to change the bin expectations for a
given set of s-parameters during the process of fitting the systematics? Remember,
the Minuit fitting is not itself a model of some physics, only the results of the fit
are meaningful.

The second problem is practical, and if the magnitude of the Gaussian fluctu-
ation is of any appreciable size, is extremely costly. The issue is that most of the
Minuit calls to the function being minimized are done for the purpose of computing
derivatives. Some trial point is evaluated, and then Minuit asks for the function
at some carefully chosen small distance from the trial point. The first and second
derivatives are built up by differences in these results. The currently coded fluc-
tuation would defeat this utterly, by introducing random differences which, as the
algorithm begins to converge and step sizes get small, will inevitably swamp the
tiny differences in function value.

The minimization will end when Minuit “gives up,” which if you are very lucky
will be when the change in function due to the step used in computing derivatives
becomes comparable to the Gaussian fluctuations. In all likelihood, turning this
feature on would greatly increase the number of fitting iterations, and thus the
total time consumed.

7.6 Poor Style Impacting Performance 39

Lack of variety in seeds for random engine

Each time a random engine is instantiated, the engine is based on a random integer
obtained by taking getTimeOfDay and taking the result mod 456. This may (I
am speculating) be an artifact of some mis-understanding about how the CLHEP
MTwistEngine is seeded. Thus there are a total of about 456 different sequences
available.

This would be a complete disaster if each PE instantiated a different engine. It
would mean that the LLR curves would have a maximum granularity of 456 levels,
and imply that any ensemble using more than 456 PE’s would be an exercise in
futility. Fortunately, this is not the case.

Each mass combination does instantiate four engines. Since the seed is based
on the microseconds field supplied by getTimeOfDay, one can hope that these four
are seeded differently (though in today’s hardware, a microsecond can be a long
time). The engines are then used for all the thousands of PE’s, so in that sense the
random generation is fine, and each LLR curve has the expected granularity.

However, the restriction to 456 possible seed values means that of the many
mass combinations done, some will share identical random sequences. (The example
program does about 49 combinations; real applications will do many more.) This
may not be a disaster but is assumedly not the intended behavior.

The fix for this, assuming that a couple of billion distinct sequences will be
enough, is easy. I propose to substitute for the code sequence (which occurs several
times in SigBkgdDist and once in CLfit2 and each of the other CL routines such
as CLfit)

timeval a;

gettimeofday(&a,NULL);

m_randgaus = new RandGauss(new MTwistEngine(a.tv_usec%456+7),0,1);

the similar sequence

m_randgaus = new RandGauss(new MTwistEngine(timeBasedSeed()),0,1);

where timeBasedSeed() utilizes both the microseconds and seconds delivered by
gettimeofday, to form a seed integer with a greater range of possible values and
which inherently avoids sequential repetition for two requested seeds.

The fix in CLfit2 is very similar, except there it seems gettimeofday is called
once and the result used to form two related seeds; each case is changed to use
timeBasedSeed().

7.6 Poor Style Impacting Performance

The coder does not use initializer lists in his constructors, preferring instead to set
the data members inside the constructor body. This introduces double-initialization
of each data member, which is some performance hit. The compiler can sometimes
catch this and optimize it away, but particularly in constructors with large bodies,

40 7 OTHER SUGGESTED CHANGES

it usually won’t. This issue is easy to correct in any given case, and when cor-
recting the actually erroneous constructor for SigBkgdDist I will also move the
initialization to where it belongs. Frankly, however, the cost associated with this
problem is tiny (since the coder was careful not to construct objects inside the key
loops), so it is not worth serious pursuit.

There are the usual stylistic faux-pas occurring whenever a talented Fortran-
comfortable physicist programs in less-familiar C++. These include the use of post-
increments where pre-increments would be faster, awkward constructs in some for

loops, and use of allocated data arrays where std::vector might actually be more
performant. In Collie, none of these appear to be of any performance importance.

7.7 Bad Style That Could Be Corrected

The following areas were discovered in which really bad violations of the usual and
expected object semantics appear. Since in the cases described here the flaws do not
impact performance, and do not cause incorrect behavior in the current program,
there is no urgency about correcting these issues. However, these deviations from
usual expectations would make it more difficult for future maintainers to enhance,
correct, or further optimize the code.

The copy constructor for SigBkgdDist creates a not-exactly-equivalent object.
It varies in two important ways: Firstly, the copy ctor does a whole bunch of setup
(including adding all the distributions) that at least one other ctor never does,
leading to the fact that you can use a copied sbd for some purpose but if you
substituted the sbd you took a copy of, that would fail mysteriously. Secondly,
you assign a new random engine using a new seed based on time of day. Giving
copy ctor’s non-copy semantics is a misleading coding practice. (The latter actually
burned me when I was trying to get reproducible results, but not badly because I
“knew” the only source of irreproducibility must be calls to gettimeofday.) The fix
for this particular case of copy-plus-more semantics is probably to factor out the
remaining setup work; this review is not going to do that.

It is considered poor practice to introduce a using declaration in a header file.
For example, ProfileLH.hh does using namespace std; while this is perhaps the
most innocuous introduction of a namespace, it is still a bad habit to be in. (using
declarations in the corresponding .cc file are fine.)

The SigBkndDist class tries to do an inappropriately large portfolio of duties.
This probably led to a few actual inefficiencies, where the entire class is prepared
just to do some small subset of what it can do; these are indirectly discussed
above. However, it does not look to be productive to do the massive overhaul it
would take to make this and other classes more comfortable from a “what is my
role” viewpoint.

I’m not certain how wise or unwise it is to have a class template fully enclosed
in the .cc file for anther class, as Seeker1d is relative of CrossSectionLimit. At any
rate, it is more usual to place it into a header; if there were problems caused by
this peculiar structure, they would have something to do with dynamic loading. I
don’t know if this is a trap for future maintainers or not.

7.8 Clean-up Opportunities 41

In ProfileLH.cc, the code fragment

if(pf_params!=NULL) delete [] pf_params; pf_params = NULL;

pf_params = new double[m_systNames.size()];

has a minor inefficiency (the if is superfluous and the set to 0 is not needed) and
a genuine C++ mistake: You don’t want to use the C macro NULL, you would
rather use 0, which gets correct typing.

7.8 Clean-up Opportunities

This review did not by intent go through the code looking for places to clean up
obvious things such as unused code–except where it might have affected perfor-
mance. But I list here those opportunities that were noticed while looking at the
code for optimization. These have not been cleaned up, but somebody could do so.

In CLfit2, the MTwistEngine twist is apparently constructed but never used.
It was in the past evidently used to randomize the logical output unit lun_.

In SigBkgdDist, the distinction between n_bins and n_truebins is too subtle
for me to follow. I believe there is no place where n_truebins is set to something
other than n_bins, but there are cases where fillArrays is reached with varySyst
true, where n_truebins is zero. Knowledge of what n_truebins was meant to
represent would go a long way toward rationalizing this situation.

In CollieDistribution.cc, the copy ctor and copy assignment operator do not
(at least manifestly) obey the expected C++ semantics of yielding an identical
object. Other than adding code to properly copy any new data members added for
the optimization, we are not touching these, because of the risk that the program
subtly depends on the non-standard behavior. However, it is strongly suggested
that if the copy is an “almost copy”, somebody should do what it takes to make
it a true copy and ensure that the code is not relying on hinky side-effects or
modifications magically appearing in the copy.

8 Summary/Results of the Review

8.1 Modified Code Provided

A list of modified and new files is presented in section A.1 of the Coding Steps
Appendix. The key changes are:

The CollieDistribution class, which previously contained a function getNor-
malizedBinValueVaried() which provided the value for a single bin (based on the
changes in each of the s-parameters, the efficiency for this distribution, and the
basic unvaried value for the bin) now has in addition a couple of key variants on
this theme. The first is addBinEfficiencies, which takes the fluctuation map and a
pointer to the destination signal or background profile, and accumulates into that
profile the changes for all the bins. The second is a different signature for addBinEf-
ficiencies, taking – instead of the fluctMap – the identity and new value of only one

42 8 SUMMARY/RESULTS OF THE REVIEW

s-parameter. This routine uses previous stored “exclusion products” to compute
how much to accumulate for a bin, based on only this s-parameter and the stored
result for all the other s-parameters, which are assumed to be unchanged. This is,
when valid, a much faster substitute for the other form of addBinEfficiencies.

We have factored out the calculation of the partial efficiency for a single bin,
(into routines like binEfficienciesQbridge), and re-structured the code such that
all manipulations which depend on the value of the s-parameter but are not bin-
dependent are pulled out of the loop over bins. Because of this re-structuring, the
cost of a more careful treatment of the asymmetric sensitivities is amortized over
all the bins. For example, our timing tests use a quadratic bridge with cutoff to the
linear sensitivity at |s| > 1, and this does not cost noticeable time compared to the
simpler (but physically problematical) pure quadratic bridge. Further modifications
to use a sigmoid transition from the positive to the negative realm are now easy to
incorporate, at very little performance cost.

The SigBkgdDist class is the other end of the major optimization path for
computing the expected “model” profiles. Here, the major change is in fillArrays(),
particularly in the paths taken when varysyst && m_sigFluct is true (which s
the code executed when filling the models for each chiFun call in all the pseudo-
experiments. Here, we detect (using a new function in findSoleDifference.hh) the
case of only one s-parameter changing (relative to a saved “base” point), and call
one of two new methods, which set either new or perturbed expectations, relying
on the new varieties of addBinEfficiencies for each distribution.

A second type of change is also present in SigBkgdDist, namely, an optimization
of the sigLLR cut computation in calculateChi2LLR.

ProfileLH has a few minor changes to align with the way SigBkgdDist expects its
parameters passed, and a performance tweak affecting Minuit’s internal treatment
of variables.

Various classes are modified to utilize the new function timeBasedSeed, repair-
ing a couple of potential headaches in the way random engines were seeded from
getTimeOfDay.

Finally, cleanups were done in a couple of header files and in ProfileLH.cc, to
eliminate all the compiler fictitious error messages and warnings about code not
used.

The developer of the code can enable certain changes which help to better
performance-measurements (for example, by tracking and outputting the num-
ber of chiFuns and the number of fits). This is most easily done by adding
-DSTUDY_TIMING to the DEPENDFLAGS line in the Makefile.

8.2 Performance Differential Measurements

As discussed in detail in section 6.2, looking exclusively at the example program
(but using CLfit2) we have achieved a net speedup by a factor of 2.19 in the time
per evaluation of chiFun.

This was the result of a series of optimization steps:

• The original code took about 10.32 µsec per chiFun.

8.3 Expectations in More Realistic Running 43

• Re-arranging the innermost s-parameter and bin loops when computing ex-
pected profiles cut the time taken by 29%, to 7.38 µsec.

• Eliminating parent distribution computation in places where it will not be
used shaved off a further 0.35 µsec.

• Storing quantities which would later be used by partial likelihood caching
gave back that 0.35 µsec.

• Implementing partial likelihood caching cut the time to 5.74 µsec.

• A small tuning of the method of discovering opportunities for using the cache
shaved off another 2%.

• An improvement in the calculation of chi2LLR after the bin expectations have
been computed reduced the time to 5.09 µsec.

• Eliminating the use of bounded parameters for Minuit reduced the time to
4.72 µsec per chiFun.

8.3 Expectations in More Realistic Running

In section 6.2, the times for individual parts of the program are presented. Sen-
sible assumptions about the scaling behavior (with number of bins, number of s-
parameters, number of distributions, etc.) of the time needed for each activity help
translate these measured numbers into a formula for time taken, which yields the
wall-clock measured time for the test example. We thus have before (optimization)
and after formulas.

We can then plug the approximate characteristics of more typical physics runs
into this formula, getting a good estimate of the time the original code would
take, and the time the new code will take. The ratio does not remain constant;
because a major part of the optimization saves chunks of time which grow faster
than linearly in the number of s-parameters, we expect the optimized code to show
a larger improvement factor for the larger realistic problems.

Extrapolation is not an exact process, but we confidently expect that the op-
timized code will run at least 3.5 times faster (our best estimate is 4.1) than the
original on typical 10-parameter, 50-bin problems.

8.4 Tricks That Did Not Help

Aside from a pre-computation of a quantity allowing for applying the sigLLR cut to
be applied without needing to take a logarithm for each bin, all the other efficiency
cleanups of the calculateChi2LLR method yielded immeasurably slight improve-
ments, and were rolled back out in favor of cleaner code.

Other than that, pretty much everything that looked promising panned out.

8.5 Further Opportunities For Tuning

With one exception, I believe we have reached the point of diminishing returns on
optimizations which reduce the time taken per chiFun.

44 8 SUMMARY/RESULTS OF THE REVIEW

The exception is implementation of the 2-change caching described in section
4.8, or elimination of the routine per-PE requests for error matrices if those are
unused and are causing the sequence of such trial points. This optimization would
gain little in the test example (where a typical distribution only has 3 active s-
parameters, and needs to deal with 2 of them even in the “fast” case), but might
be worthwhile for larger problems.

Further optimization would need to focus on reducing the number of chiFun
calls needed. Several avenues of work could do this, if deemed necessary; none have
any certainty of payoff:

1. The effect of analytic derivatives could be tried. This will not be easy, partic-
ularly because of the complicated set of cutoffs and interpolations currently
in use, but with some physics thought that can be simplified and handled.
The potential for gain is greater the more systematics parameters are being
varied. However, the way Minuit works with analytic derivatives will be to
obviate the need for as many function evaluations per trial point. This might
negate most of the gains we have achieved by partial likelihood caching.

There is probably the opportunity for some net gain, but it might be small.
It would take a fair amount of work (including some physics thought) to
implement this optimization, study the new trial point pattern, and optimize
the equivalent of partial likelihood caching for that pattern.

2. Some sort of improved starting points might be worth our while. For example,
the cross-informed starting points (described in section 4.7 use the best-fit
points for one model in a PE as the starting guess for the other. This is a
sound possible analysis technique and does not introduce bias in the context of
Collie. If this eliminates, at average, one of the roughly five Minuit trial points
per fit, it will show a ten percent improvement (since it is applicable half the
time). I don’t think the likely improvement will be that great, however.

A more important change, and one which is very easy to do, would be to
use the center of the a priori s-parameter distributions, rather than zero, as
the starting point for Minuit fitting. Although the current example program
always uses s-parameter distributions centered on zero, so that this is moot
here, if that is not always the case, the code should be adjusted to use the
actual center.

3. I believe it is possible to automate the search for the signal strength yielding
a given confidence limit, in a way which is much more efficient (in number of
PEs needed) than the current Ridder’s algorithm (see section D). Although
a thorough analysis of the situation to produce a near-optimal scheme for
deciding what scalings to try would require significant statistics thought, a
reasonable scheme that significantly improves on the current method should
not be hard to develop.

It has been stated that for actual production, this search is done by hand
rather than in an automated way; I think this is a consequence of the fact
that the current algorithm is not very efficient (nor very stable), and one can
reach the obviously intended goal of automation without too much effort.

8.6 Issues the Developer Should Consider 45

8.6 Issues the Developer Should Consider

The suite of validation and test programs was very limited, so there is some chance
that changes which did not adversely effect the example program will nonetheless
prove problematic when Collie is used in other contexts. The person of principle
responsibility for the use of Collie ought to pay attention to checking the following
issues, in particular:

1. There are two approaches to walking through all the bins. In several places,
SigBkgdDist explicitly considers Ny and Nx separately; yet by the time calcu-
lateChi2LLR is reached, it is all folded into one array of bins. The optimiza-
tions rely on this being valid under all cases (at least during fits). It certainly
is valid for all work in the example program. Somebody should check that
this assumption is not incorrect under some other circumstances.

2. I have done only one mathematical transformation; it appears in the new
version of calculateChi2LLR() routine, where the sigLLR cut is applied when
fitSig is false. I would appreciate if somebody glance at this and verify that
it is mathematically equivalent to the original code.

I have introduced some replication of data, in that the sensitivity factors sigmaP
and sigmaN are stored both as raw-pointer-based arrays as originally, and as mem-
bers of a newly-introduced structure containing info for partial likelihood caching.
The old arrays are sill being used elsewhere in the code. This could be unified,
though I doubt that one would see any performance improvement.

Also, I did not do code cleanups except where they directly intersected code
relevant for optimizations. If there is a “long run” in this case, it may in the long
run pay for somebody to do some of these cleanups. However, the code is not in
terrible shape as it stands.

Finally, I will probably be asked by management to make this document avail-
able in the CD DocDB. However, it contains information which logically belongs to
D0, not to myself; I have not tried to hide any information about how D0 is doing
their analysis, nor have I filtered any discussion or criticism of physics or statistics
methodology or coding technique. (To the extent that little such criticism appears
in this document, that is a reflection of the fact that Collie was IMHO a pretty
well-conceived and implemented product to begin with.) The experiment has a
right to decide how much of their detailed procedures they wish to disclose pub-
licly. I ask that one of my D0 contact points for this project let me know whether
to put this in DocDB (and if so, whether to make its access permissions D0 only,
D0 and CD, or public), or perhaps they can submit it as a D0 note, or make it
available in some other way.

46 A CODING STEPS

A Coding Steps

A.1 Files Affected

The following files were either modified or added to do the optimizations and
cleanups:

In io:

• CollieDistribution.cc and CollieDistribution.hh (extensive changes)

In limit:

• SigBkgdDist.cc and SigBkgdDist.hh (extensive changes)

• findSoleDifference.hh (new file - do not forget to cvs add this)

• ProfileLH.cc and ProfileLH.hh (Use of vector for pf_params, fix of ctor, other

changes)

• CLfit2.cc (Utilize timeBasedseed, and tracking mods left available)

• CrossSectionCalc.cc (Utilize timeBasedseed, and other minor changes

• CLfit.cc, CLsyst.cc, CLfast.cc, FitTest.cc (Utilize timeBasedseed)

• CrossSectionLimit.cc (Minor performance tracking mods left available

• timeBasedSeed.cc and .hh (new files - do not forget to cvs add these)

• PerformanceStats.hh (new file; not needed unless performance tracking en-

abled)

In examples:

• ExampleLimitCalculation.cc (Activated CLfit2 instead of CLfast; this is un-

done in delivered code)

In top (collie) directory:

• Makefile

A.2 Setup for meaningful exploration of performance

Use of CLfit2 instead of CLfast

Temporary: In exampleLimitCalculation, commented out

CLfast clcompute;

and dis-commented (to make active)

CLfit2 clcompute;

to explore using CLfit2, which is more representative of the work done in the time-
consuming jobs to be optimized.

A.2 Setup for meaningful exploration of performance 47

Control of number of PE’s

Temporary: In CLfit2, added a line at start of CLfit2::calculateCLs

return doCLs(sbd,CLs,100);

where the number 100 was, in the course of studies, varied to give reasonable (not
too long) numbers of PE’s and to get a handle on the effect of all the non-PE work.

Also,, replaced the controlling loop in doCLs with a simpler one:

for (nmc=0; nmc<2*its && (denom<its/2.0 || nmc<its); nmc++) {

becomes

for (nmc=0; nmc<2*its; nmc++) {

Obtaining reproducible runs

Permanent problem-fix:

Everywhere gettimeofday is used to seed a random engine, substituted the
fix described in section 7.5 to avoid the severely restricted set of random seeds.
The fix involved changes in 3 places in SigBkgdDist and one each in CLfit2, CLfit,
CLfast, and CLsyst. Also, I changed CrossSectionCalc and FitTest (which uses
gettimeofday in one place to seed an engine), although their usage allows for a
million (instead of 456) possible seeds.

This fix is included here because I will enabled a special define in timeBasedSeed.cc

described below.
Added the timeBasedSeed method to the limit directory. This will be checked

in.
In the Makefile, added

LIMITSRCS += ${LIM_SRC}/timeBasedSeed.cc

and

LIMITHEADERS += ${LIM_INC}/timeBasedSeed.hh

Now to allow for reproducibility:
In timeBasedSeed.cc there is a special ifdef on the symbol FORCE_REPRODUCIBLE_SEQUENCES.

When this is defined, the program will deliver seeds which are reproducible num-
bers, by simply returning a linear progression. (I know enough about MTwistEngine
to know this sort of seeding will still yield excellent inter-engine randomness.)

Temporary: I enabled the reproducible sequences. But I wanted to do this in a
manner which would preclude any possibility of accidentally propagating this be-
havior into production code. To do this, I placed at the start of timeBasedSeed.cc
an include of force_reproducible.hh, which in turn defines FORCE_REPRODUCIBLE_SEQUENCES.
But force_reproducible.hhwill not be mentioned in the Makefile, and will never
be checked in. So if I were to forget to remove the include of that header, Collie
would fail to build rather than build with the reproducible seeding.

48 A CODING STEPS

Collection of execution data

To explore performance, it is useful to be able to collect cumulative numbers such as
the count of calls to chiFun and the number of fits done. Since we may want infor-
mation generated by many different classes, and since we don’t want the collecting
to unduly influence performance, what was done is to create a PerformanceStats

struct, which any .cc file can include.
The PerformanceStats struct will evolve if different information is to be gath-

ered. All members of PerformanceStats are static.
That class has a (static) print method. The issue of when collection is done and

when results are printed out is up to the individual investigation being pursued.

As a matter of not wanting to affect the normal execution, I surround all use
of this PerformanceStats with an ifdef of PERFORMANCE_STATS_TRACKED.

A.3 Partial Likelihood Caching

This step implements the partial likelihood caching described in section 4.1. While
I was doing that restructuring, I also included the improved efficiency for interpo-
lating functions described in section 4.3.

Figuring out when caching can be exploited

The first issue is how to decide whether the trial point supplied by Minuit is a single
perturbation off some “base” point, or a new base point. If it is the former, the
expectations can be computed more efficiently by exploiting saved partial results
for the unchanged s-parameters.

The s-parameters are passed into fillArrays() as fluctMap. This is the array
known in ProfileLH as pf_params. It was immediately realized that the new code
would need, at the SigBkgdDist level, to work with the s-parameters embodied in
the array pf_params in a clean manner; in particular, the size of the array (which
is known by ProfileLH but not so easy to get in SigBkgdDist) is important. So I
changed the type of pf_params to vector. This required adjusting the initialization
in the ctor and in fillSyst. The most common usage of pf_params is places where
the code references an element; this retains the identical syntax so no changes were
needed in those places. Other uses of pf_params had to be changed.

The change of type for pf_params, while cleaning up a fair bit of code, had im-
plications for other classes and functions. I wanted to contain the set of changes to
as small a set as possible. This implied changing getFitParams() to return a ref-
erence to pf_params, and changing gl_systRand to a vector, to match pf_params

because they are both passed to the same functions. Finally, I needed to modify
some of the “non-common” uses uses of gl_systRand to reflect this new type.

Now that we have fluctMap in a tamer form, determining whether it is closely
related to some cached value is easy. We wrote a class TrialPoint to deal with re-
membering the last Minuit base point and to discern whether only one s-parameter
has changed relative to that. A function findSoleDifference assists. One sub-
tlety in findSoleDifference: We noted that in some of the explorations about a

A.3 Partial Likelihood Caching 49

trial point, Minuit supplies new points which agree for all but one of the parame-
ters, but for which the matching parameters are “off” in the last bit or two. We
surmise this is a consequence of conversion to the internal variables (via the arcsin
function), with different conversion sequences leading to presentation of different
Minuit “external” variables. findSoleDifference deals with this by accepting
differences smaller than one part in 10−14 as being irrelevant. TrialPoint.hh and
findSoleDifference.hh will be checked in to cvs.

To avoid misusing a last trial point from a previous fit, fitProfile() resets its new
TrialPoint data member m_lastMinuitTrialPoint just before calling the MINI

method of Minuit.

Finally, chiFun() is adjusted to pass m_lastMinuitTrialPoint to sbd’s fluctu-
ate(). In turn, adjust fluctuate() to pass that along to fillArrays(). Since others
call fillArrays as well, the default is a value which indicates no valid remembered
point.

Structure for Cached Likelihoods

In CollieDistribution we create InfoForEfficiencyCalculation to hold both the
asymmetric sensitivities and the cached partial likelihoods. So we have a vector (on
s-values) of vectors (on bins) of these structures. This vector, fLinSyst replaces
the two double**’s fLinSystPos and fLinSystNegs (and does a bit more).

Note that with naive (but correct C++) usage, one will have trouble with a
Root streamer trying to do something with this vector of vectors, leading to a
crash. The fix is via the use of a //! comment, as indicated in section 7.2.

The use of fLinSystPos and fLinSystNegs is modified to use InfoForEfficiencyCalculation
in several places: In getNormalizedBinValueVaried() (three places); in getBinSyst-
Value(); in linearize() (both setting up the memory and establishing the values in
1D and 2D cases).

Repairing erroneous parent accumulation

In the case where m_signalParent and m_bkgdParent are used, the code as origi-
nally provided sets them incorrectly (see section 7.3). This is repaired by zero-ing
these arrays before the respective loops that accumulate them.

However, in the end, the critical loops (that is, where varySyst && m_sigFluct

is true) don’t need to deal with the parent distributions at all. (This is verified
by noting identical results and intermediate results for every value returned by
chiFun() when the code dealing with these parents was excised from the loop
done when varySyst && m_sigFluct is true.)

Branching to the Cache-Enabled Code

The main work of fillArrays() during fitting is dominated by a pair of deep loops,,
filling m_signal and m_bkgd. However, the significant work part of these loops
does not occur unless varySyst && m_sigFluct is true. To avoid unnecessary

50 A CODING STEPS

conditionals in the work loops, the overall control structure is provided via going
to new code if varySyst && m_sigFluct is true, and using the old code otherwise.

The first step is to detect the opportunity to use the shortcut. A struct
TrialPoint is created (TrialPoint.hh). With the aid of the function in find-
SoleDifference.hh, the diff() method of TrialPoint gives us an iterator which
we call onlyNonBaseS. If this matches fluctMap.end() that indicates more than
one change.

Next, we substitute two possible routines for the single big loop in fillArrays
that fills the m_signal array. (But we do this only if varySyst && m_sigFluct is
true; we keep the original code for other cases.)

if (onlyNonBaseS == fluctMap.end()) {

setNewPointSignalExpectations (&fluctMap[0], m_signal);

} else {

setPerturbedSignalExpectations (fluctMap, onlyNonBaseS, m_signal);

}

Although these are methods of SigBkdgDist and thus know about m_signal, we
pass it as an argument because these same two member functions will be called to
handle the second big loop, this time filling m_bkgd.

setNewPointSignalExpectations() does the same as the combination of ex-
isting code in the fillArrays big loop, and the code in getEfficiencyVaried() call-
ing getNormalizedBinValueVaried() in CollieDistribution. However, the meth-
ods called reverse the order of the s and bin loops (doing the bin loop inner-
most so that less simple interpolation methods could be used and so that memory
strides are minimized), and also save crucial partial likelihood information. The
main work, of course, is done in the CollieDistribution class, where a new method
addBinEfficiencies handles the bin and s-parameter loops.

setPerturbedSignalExpectations() will utilize that partial likelihood infor-
mation to compute the bin expectations by dealing with only one of the s-values,
and is thus almost N times faster, where N is the number of active s-parameters
for a typical distribution. Since most Minuit trial points are of this single-change
nature, this is a huge potential speedup.

Computing products for the base point

To avoid repeatedly multiplying by various scale factors, addBinEfficiencies

pre-computes those, and in fact keeps those products in a new vector data member
fEfficiencyProducts, because they will be needed if there are other points which are
perturbations off this base point.

It then loops over s, and since choosing between linLogNormal and ordinary for
each individual bin is costly, it makes the choice once and for all by calling either
binEfficienciesQbridge or binEfficienciesQbridgeLinLogN.

(This is the place where, if one wished to enhance the CollieDistribution by
specifying which of several interpolation methods one should use, we could place
a switch statement without costing too much time. And it has become practical,

A.3 Partial Likelihood Caching 51

now, to implement interpolations which might involve some calculation on s (such
as a true sigmoid), since now this will be amortized over the many bins to be
handled.)

binEfficienciesQbridge is coded as tightly as possible. In particular, since
there are three cases depending on whether s is below, inside, or above the range
(-1,1), we write three distinct loops over bins to avoid the cost of conditionals inside
the innermost loop. By the time this routine completes, fEfficiencyProducts has the
full contribution of each bin to the signal or background. Along the way, we take the
time to save the partial likelihood for each bin for this s in info->baseEfficiency.

Finally addBinEfficiencies accumulates those full products into the signal
(or background) array.

One might well ask where the exclusion products, needed for the partial like-
lihood shortcut, have been stored. The answer is, they have not (yet)! It is real
work to compute these, and just in case the next point will be a new base point,
we defer that work till it is known to be needed.

Perturbed Signal Expectations - the Shortcut

setPerturbedSignalExpectations() (and similarly for bkgd instead of signal) is
called when it is recognized that this point differs from the base point by only
one s-value. At this point, we check whether the exclusion products have yet been
calculated, and if not, invoke prepareSignalExclusionProducts(). This sets up
the same distribution loop structure as is used for the signals in fillArrays(), and
invokes each distribution’s prepareExclusionProducts() method.

That routine, in CollieDistribution.cc, looks at the stored vector of efficiency
products for this distribution (*fep), and at the vector (indexed by bin) of InfoFor-
EfficiencyCalculation for each active s-parameter and sets

info->exclusionProduct = (*fep) / info->baseEfficiency;

That is, we have the overall product; we have the contribution from this s, and we
divide to find the product of contributions from all the others. This is costly, but
of course it is done only the first time a perturbation off a given base is detected.

With the exclusion products calculated, we now loop over signal distributions,
calling a version of addBinEfficiencies with signature including the identity of
the perturbed s-parameter. This method looks up fSystIndexInner[perturbed_s],
and sets up to loop over the bins by loading the exclusion products into an array
which will be used by the same binEfficienciesQbridge() routine employed in
the base point case. Note that this is now done for just the one perturbed s – that
is the primary time savings.

Finally, we add the products formed by that routine, to the signal we wish to
accumulate. One subtlety: Sometimes the s-value that has changed is not active
for this distribution. In that case, the work is even easier: The efficiency products
for this distribution are added instead.

52 A CODING STEPS

A.4 Use of vectors in optimization

In the course of doing partial likelihood cache optimization, I have introduced
certain std::vector’s in place of raw pointers used as user-managed arrays. The
most important such change is that fluctMap became a vector – code which was
passed fluctMap needed its size (for the optimizations) and previously had no way
of getting it. This had spillover consequences; for example, gl systRand is used in
place of fluctMap at times, and also needed to become a vector.

Most usage of vectors matches, in syntax, the corresponding pointer code; for
example, lines like

diff = gl_systRand[s] - syst[s];

don’t care whether the objects are raw arrays or vectors. But I have not done a
change from raw pointers to vectors across the board; it is not the purview of this
review to make that sort of stylistic improvements. Thus, several routines which
expect raw pointers are left intact.

In consequence, sometimes a routine expecting a pointer needs to be passed a
pointer to a vector’s data, leading to changes looking like

&gl_systRand[0];

These changes occur in SigBkgdDist.cc and .hh,

A.5 Optimization of calculateChi2LLR

The routine SigBkgdDist::calculateChi2LLR was modified to implement the opti-
mizations discussed in section 4.5. Of the five plausible optimizations, two were
done: The major boon of pre-computing an exponential instead of repeatedly need-
ing to do a log10, and the repair of the delBins potentially disastrous inefficiency.

The other optimizations (for example, pulling the conditional on sigFit out of
the most critical loop) were coded and run, and found not to significantly affect
performance (within a 1% uncertainty). Since they made the code somewhat con-
voluted, it was decided to restrict the changes to the ones mentioned above, and
to leave most of the method intact.

This was the area originally suggested for optimization, and although the gain
is much smaller than those from re-ordering loops and partial likelihood caching,
it is about a 20% effect in the final version.

A.6 Cleanup of Errors and Serious C++ Faux-Pas

In SigBkgdDist.hh, a using namespace std; declaration is removed, and corre-
sponding changes to types used in the header itself would have been made, but
there were none needed. For convenience and readability reasons, SigBkgdDist.cc
does have such a declaration; this does not pollute the user’s namespace and is
accepted practice.

A.7 Moving inline Code Where Appropriate 53

Also in SigBkgdDist is a “fix” that has not been made: The copy constructor
gets a fresh randgaus, seeded by a new call to gettimeofday in the original code,
or to timeBasedSeed in the modified code. Also, setBaselineModel is called, which
in turn calls fillArrays. A copy ctor should have no effect other than creating
an identical copy of the argument object. But the existing code depends on the
extraneous side actions. Rather than unthreading that dependence (and possibly
having to restructure a fair bit of code and risking breaking a working program), I
have left this faux-pas untouched.

In ProfileLH.hh, a using namespace std; declaration is removed, and corre-
sponding changes to types used in the header itself have been made.

In ProfileLH.cc, the improper initialization in the constructor taking a Sig-
BkgdDist* has been repaired. To do this, I have replicated the behavior of the
default ctor (which is clearly what the code meant to do); I have placed as much
of this as possible into an initializer list. As long as this is being done, I have also
eliminated the improper (but working) use of NULL in favor of the more proper
(in this context in C++) 0.

Cleanup of delBins Error

I set out to avoid the erroneous behavior which would have occurred if any deleted
bins were established at the end of the set of bins or immediately after another
deleted bin (see section 7.1).

Although this can be done in the context of m_delBins alone, I noted that if
there are several deleted bins (the example program never has any) this will cause
massive inefficiency in the calculation of chi2LLR. To also address this matter, I
have created and a vector data member of SigBkgdDist called m_delBinsLookup.
This is set up in all places where m_delBins is changed, and is used in calculateChi2LLR().

excludeBins() and clearExludedBins() have been removed from inline be-
cause they are now less trivial.

A.7 Moving inline Code Where Appropriate

Large chunks of complex code should not be inlined. Not only is the potential
gain minuscule, but the added bulk of the code produced may actually make this
a “pessimization.” The compiler often will note this and place the inline code into
a subroutine anyway, but the inline directive costs in a couple of ways: It becomes
easier to have conflicting versions of a routine in one executable, and it become
more difficult to debug and profile the code.

I have not addressed this issue across the board, but have done so with routines
which were major players in the optimization.

The following inline routines were moved to the corresponding .cc files:

• SigBkgdDist::calculateChi2LL()

54 B MATH OF COLLIE CALCULATIONS

A.8 Minor cleanups

Elimination of twist in CLfit2.cc.
Declaration of ProfileLH(SigBkgdDist* asbd) to be explicit.
Cleanup of all the Root-originating fake error messages during the build, by

declaring (via //! comments) various raw pointers as being transient.
Cleanup of all remaining compilation warnings, by creating fake usage of the

cfortran and other externals that the build was griping about in ProfileLH.cc.
Other minor cleanups not listed here.

B Math of Collie Calculations

B.1 Computing Expectations Based on Systematics

The key part of calculating a likelihood is fitting for the best s-parameters, and
the key part of that is computing the expectation curve for a given (supplied by
Minuit) set of s-parameter values. The expectation curve is one value per bin (here,
I use b for bin index). The issue of whether the bins are arranged in one or two
dimensions is moot.

The mathematical definition of the expectation at bin b is a sum over channels
in that model and distributions within each channel, of the product of efficiency
factors for each of some subset of the s-parameters.

Let M be the model for which we want the expectations. The model is a set of
channels indexed by c ∈ M . A channel c is defined by a set of distributions d|d ∈ c.

Not every s-parameter is relevant in the efficiency of every distribution. Let
S(d) be the set of s-factors (indexed by s) relevant to d. Then the basic efficiency
for the bin is the sum over participating distributions of

Eb =
∑

c∈M

∑

d∈c

WLd
b

∏

s∈S(d)

f sd
b (6)

where: f sd
b is the response sensitivity function of that distribution d, in bin b, to the

change in value of parameter s; Ld
b is the linearized central bin value for distribution

d in bin b, and W is m_sigScale, some scaling factor which is a property of the
SigBkgdDist.

This is actually modified in several ways, and these tweaks might be very rele-
vant when trying to restructure for optimal performance.

1. For each s in a distribution, if a preliminary fval used in forming f sd
b ≤ 0 it

is replaced by 10−5 (note a critique of this in section 7.5, but the modified
suggested method would have the same issue discussed here). The best way
to look at this is to say that this is part of the computation of the overall f sd

b .

2. For most distributions, the last step is f sd
b = 1 + f , but for some, f sd

b = ef .
Again, this is best viewed as part of the computation of the overall f sd

b .

3. After multiplying all the f sd
b = 1 + f for one distribution, if the result is

non-positive, it is replaced by 10−5. This can’t be expressed as a re-definition

55

of f sd
b . Below, I introduce the notation ϑ(f sd

b , ǫ) to mean this potentially
changed value.

4. If W and/or Ld
b are small, WLd

b

∏

s ∈ S(d)f sd
b might for some distributions

might be non-positive; in that case, it is replaced by 10−6. Again, the notation
ϑ(f sd

b , ε) is handy for this situation.

5. The set of channels in play may be diminished by one explicitly excluded
channel M−c̃. The identity of the excluded channel is not changed throughout
the fit, so this variation is easily handled by replacing M by M − c̃.

6. Some bins may be excluded from the fit, but the current program nonetheless
computes the expectation value for those excluded bins; they just don’t get
processed in the chi2LLR step.

7. If m_useStat in the SigBkgdDist is set, then each term for a distribution
in a bin gets an additional Gaussian noise contribution ηd

b ζd
b where ηd

b is a
unit Gaussian variate and ζd

b is a bin statistical error scale. In that case, the
function being fit is no longer a true function; see section 7.5 for a critique of
this situation.

Combining all these tweaks, the equation becomes:

Eb =
∑

c∈M−c̃

∑

d∈c

ϑ



WLd
b

∏

s∈S(d)

ϑ
(

f sd
b , ǫ

)

+ ηd
b ζd

b , ε



 (7)

C Using the SimpleProfiler

This section was written when the optimizatoin was being done. Since
then, the SimpleProfiler has evolved and the usage is somewhat more
convenient. So while gerneralities can be followed, the particulars of this
section may by now be obsolete.

After setting up for running Collie, the profiler can be used from the col-
lie/examples directory as follows:

First, the Makefile needs a -g in the compilation options. This costs nothing in
terms of speed, and provides the symbol table. For Collie, the size of the executable
is not so large as to make one wish to strip out symbols. The Makefile supplied
with the new version changes the necessary line:

DEPENDFLAGS := -g -O3 -ffast-math -Wall ${SEARCHDIRS} -fPIC -Df2cFortran

Note that -O3 is fine; you are measuring the actual optimized code. Then:

~jbk/perf_tools/bin/RunProfiler.sh ./collieLimitCalc.exe test.root

This runs the job, with profiling turned on. Note that no rebuild or special insertion
of profiling preparation is needed; the profiler looks at the actual execution.

56 C USING THE SIMPLEPROFILER

The profiler will report some number of “frame pointer errors.” These are OK;
they occur when the profiler ticks during a system call in which the stack frame is
not of the usual type. Later versions of the profiler drastically reduce these, but as
it is, they introduce only about a one part in 104 distortion of timing results.

Next, ls − lrt to see the name of the file produced by the profiler (which has a
job id number embedded in it. It should be the latest file created, and the name
will look like prof.out.8201.

Now choose some identifying name to give this particular study; here I will call
it “chiOpt1.” Extract the key information from the profiler output by:

~jbk/perf_tools/bin/ProfParse prof_libs.out.8201 prof.out.8201 chiOpt1

This will report a bunch of addresses that it could not understand, but again, that
is OK and represents a tiny loss of statistics. (Most available profilers have a much
larger loss of statistics, both above and here. The difference is that SimpleProfiler
was intended to keep this loss as small as possible, so it reports all the glitches so
that we can deal with them. Newer versions of the profiler have yet better coverage.)
This command will produce a file chiOpt1names and other files all starting with
chiOpt1. Next, we demangle the names of functions appearing in chiOpt1names:

c++filt < chiOpt1names > chiOpt1names.dem

(This is in C-shell; Bourne shell users know how to direct input and output simi-
larly.)

Now we have a file chiOpt1names.dem with numbers pertaining to fractional
time spent in many functions. View this in an editor in a wide window. A couple
of typical lines look like:

84 0x916060 SigBkgdDist::calculateChi2LLR(bool, double) const

6122 6122 6122 0.369441 0.369441 11 4 107 80 1807 60 67 3775 211 0

83 0x936270 chiFun(int*, double*, double*, double*, int*, void (*)())

330 11234 11234 0.0199143 0.677931 19 3 102 22 12 1 4690 6091 244 50

where I have broken each line into 2 so that it fits on this page.

The relevant information in that is:

Function 84 is SigBkgdDist::calculateChi2LLR with the calling signature (bool,
double). It occupied 0.369441 of the total time in the function itself, and it and its
all descendants occupied 0.369441 of the total time. (Not a surprise that these are
equal; this routine calls nothing else.)

Function 83 is chiFun with the calling signature shown. It occupied only
0.0199143 of the total time in the function itself, but chiFun and all its descen-
dants occupied 0.677931 of the total time.

Finally, you can obtain a fairly nice call graph based on this information. Go
over to dipole-clued0 (the others are all missing a key shared library libpng.so.2)
and get to collie/examples. Then to look at the call tree involving, say, function
83 and its antecedents and descendants up to 5 levels, do:

57

setup graphviz

~jbk/perf_tools/bin/ProduceGraph.sh 83 5 chiOpt1

ghostview 83.ps

D Finding Signal Strength for a Given CL

(Here, it was hoped to place some explanation of the existing algorithm, plus
suggestions as to how the number of iterations might be dramatically improved.)

This careful thought needed for this appendix section cannot be completed on
time for changes in analysis for the Spring 2009 conferences. Therefore, it will not
be in this document; a future physics note may be forthcoming.

The idea is that the current algorithm effectively discards all but the last four
sets of PE’s. By using all the data available (with appropriate treatment and
weighting), a better estimate can be reached more quickly. The gist of the analysis
on this matter is the following:

Each set of pseudo-experiments based on some common signal strength scaling
factor yields information equivalent to saying that at that signal strength, M PE’s
analyze as more signal-like than the data, and N as more background-like. At any
given point in the calculation, you have in hand a collection of such sets, taken
at different values of signal strength. This can be fit to an error-function sigmoid
(the computation to do that is non-trivial, but minuscule compared to doing the
thousands of pseudo-experiments that go into each set.) In turn, using the fitted
mu and sigma, you can transform the scale values, such that if the match to that
sigmoid were perfect, the data of fraction more signal-like would lie on a straight
line. In reality, it will be some curve which is a small perturbation off the straight
line.

The issue becomes deciding how to select a next signal scaling value, to get
the best improvement in error on the point at which that curve intersects .95 (or
whatever confidence limit is desired.)

If that fit were assumed to be perfect, then it would be possible to determine
precisely where one would best add, say, an extra 10,000 PEs. Again, this cal-
culation is non-trivial but affordable compared to the PE cost. But the fit won’t
be perfect; small non-linear terms about the point of intersection will mean that
far-off (in signal scale) measurements are of less value (despite the fact that they
have a larger “lever arm” in determining the intersection).

I suspect that a fairly optimal algorithm is to choose the next set of points as
follows: Let ρ0 be the current best fit for the intersection point of the the curve
with the desired CL. Let ρ̂ be the “center of mass” of all the current measurements,
possibly weighted by some decreasing function of the distance from ρ0 (with the
weight function possibly depending on how far off linearity the current points are).
Then probably the optimal next set of measurements should be done at ρ0+k(ρ0−ρ̂)
where k is some constant of order 1 (perhaps 1/2). This will in the long run cause
the collection of many points near to the intersection, where the non-linearity of the
transformed data is unimportant. The fact that most of these points are at nearby

58 E STATUS OF INVESTIGATIONS AND IMPLEMENTED CHANGES

values of signal scale means that the slope of the fit line is less-well determined,
but is much less important in dictating the position of the intersection.

(This effect is implicitly acknowledged in the current algorithm, which tries as
rapidly as possible to get as close as possible to the intersection point. Unfortu-
nately, the statistical nature of the individual set measurements implies that you
don’t converge to the intersection point if you keep discarding old data.)

E Status of Investigations and Implemented

Changes

This section describes what has been learned, what steps have been tried, and what
steps are about to be tried.

• The structure of the calculation is now understood, and profiling results which
point to routines which make heavy use of CPU time make sense in terms of
the calculations. This has led to several potentially useful speedup ideas
(described in sections 4 and 5). Done.

• The structure of the code preparing the test case is understood, and it is now
known how to prepare variants which make for easier comparisons, as well
as variations on bin counts and parameter counts. this enables the coding of
some of the ideas in sections 4 and 5 and the evaluation of which, if any, are
helpful. Done.

• Create temporary accommodations that allow reproducible behavior rather
than seeding with time of day. (In the course of this, a slight flaw in that
seeding was uncovered; create changes to fix that flaw.) Done.

• Verify that the changes in collieIOexample.cc (section 2.2) have the desired
effects, and explore the time behavior when bin count or parameter count is
varied. Done.

• Carefully profile the initial version of Collie, both for a baseline and to decide
where to work to improve performance. Done.

• Rectify the one or two clear mistakes spotted in the course of the review; this
won’t speed the code up but will correct erroneous behaviors which are not
probed by the current use example. Done.

• Examine the s-parameter pattern delivered by Minuit, to see if there is po-
tential for gain by using caching of partial likelihoods (section 4.1). Done.

Large potential gain found.

• Implement caching of partial likelihoods (section 4.1). Measure speedup and
deliver code. Implementation Done. Code delivery done.

• Implement one of the physics-conservative approaches to improving fit start-
ing points (section 5.4). I suspect this will lead to a noticeable improvement,
in which case deliver the code. Postponed - likelihood of big improvement is

slight.

59

• Implement the skipping of unneeded recomputing of parent distributions dur-
ing a fit, in fillArrays() (section 5.2). I consider this change closely related to
the next one, so unless the speedup achieved is surprisingly large, I will delay
delivering the code till the restructuring of data is in place. Done.

• Implement the “Data Structured For Rapid Expectation Calculation” change
described in section 5.1. Assuming there is a speedup of 10% or better,
deliver this code. An effective equivalent was done, as part of partial likelihood

caching. A speedup of 40% was noted.

• Clean up several inefficiencies in calculateChi2LLR (see section 4.5 for a list
of these. Done.

• Tighten up memory usage by eliminating (if possible) the arrays which have
logically been replaced by the data structures described in section 5.1. Later.

Probably no speedup.

• Also make certain that D0 users know that turning on the m_usestat option
in SigBkgdDist may be very costly and probably would not do what they
intend it to do (section 7.5).

• Use non-limit internal variables for Minuit (section 4.6). This is not expected
to give a large speedup, but if it does, deliver the improved code. Done.

Following these main intended steps, there are a couple of steps which might
be considered if we are still desperate for improved performance. At this time, I
feel these will be unlikely (partly because the time limit for starting production
calculations will be approaching).

• Combine expectation calculation with LLR accumulation (section 5.5). Un-

likely to be helpful.

• Enable analytic derivatives (section 5.3). Since this potential improvement
will be highly dependent on the number of fitted s-parameters, get agreement
as to what constitutes the improvement measurement. If there is a significant
speedup, deliver this code. Whether or not these should be enabled, inform
D0 that the first round of prime opportunities is now in place; expectations
for further large improvements are diminished. Postponed: Effect clashes with

that of Partial Likelihood Caching.

• Try to find out who did the computation of the maximal appropriate number
of pseudo-experiments for a given data level, and where it is written up. Raise
the issues discussed in section 5.7 to some relevant D0 physicist (probably
Wade Fisher, possibly some statistics committee). If it turns out that there
is use for some automated calculation as part of Collie, code that up. (This
is not really in the scope of this review, but the potential payoff is so large
that it is worth raising the issue.) Not in scope.

60 REFERENCES

References

[1] Systematic Uncertainties in Higgs Searches, Prague DZero Workshop, Aug.
12, 2008
http://www-d0.fnal.gov/d0dist/dist/releases/development/
collie/examples/SystematicsDiscussion.pdf

[2] Collie: COnfidence Level LImit Evaluator,
Wade Fisher, talk presented Sept 21, 2008. In the examples directory of the
collie product in the D0 cvs repository. Note - I cannot find a better way to

access this tutorial.

