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Abstract

We examine the stability of intense flat bunches in barrier buckets used in the Recycler.

We consider some common stationary distributions and show that they would be unstable

against rigid dipole oscillations. We then discuss an analytical model for the line density that

best describes measured bunch profiles. We include space charge in this model to predict the

bunch intensity at which Landau damping would be lost. The dependence of this threshold on

the bunch length is studied and related to the results of an experimental study with shorter

bunch lengths. The threshold for the microwave instability is estimated. These studies will

be followed by more detailed numerical studies.
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I. INTRODUCTION

The creation of long flat bunches is under study for the LHC upgrade as a way of

increasing the luminosity [1]. The stability of such bunches is one of the key issues of

interest. At the Fermilab Recycler [2], long flat bunches are created using rf barriers.

At present intensities these bunches are observed to be stable with lifetimes around

20-50 hours (depending on intensity). When electron cooling is enabled, the lifetime
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Parameter Value Units

Circumference 3331.0 m

Energy 8.93 GeV

Bunch intensity 4.5×1012

γt 19.97

Rf voltage V0 1.8 kV

T1 48.0 0.0189µ sec

T2 324.0 0.0189µ sec

Bunch area 100.0 eV-sec

νmax
s 9.97×10−6

TABLE I: Recycler bunch parameters

reaches ∼ 500 hours at bunch intensities below 4.5×1012. We explore the longitudinal

stability of these bunches at higher intensities [3, 4].

Bunches are confined within a barrier bucket by two voltage pulses of equal mag-

nitude and opposite polarity. The pulses, of equal duration T1, are separated by a

duration T2 with no applied voltage. The body of the bunch is contained within the

interval T2 but the head and tail of the bunch penetrate into the barrier on either

side. Between the barrier pulses, the beam particles feel no longitudinal focusing force

and can be considered to be coasting. Changing T2 adiabatically changes the bunch

length while preserving the bunch area. The main longitudinal parameters of the Re-

cycler bunches are shown in Table I. Single particle dynamics within such a bucket

was studied in [5]. Collective effects were numerically studied in the context of a low

energy heavy ion ring [6]. Longitudinal stability in the Recycler may be influenced by

several factors. For example, the synchrotron period is rather long, hence even slowly

growing instabilities which normally be would not be of concern can in this case be

important. Furthermore, since the bunches are long, they can be excited by relatively

low frequency excitations.

In this paper we will consider primarily the thresholds for the loss of Landau damp-
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ing and also discuss the results of experiments to determine the impact of a local

instability possibly induced at short bunch lengths. In Section II we discuss single

particle dynamics in a barrier bucket for the sake of completeness and handy reference.

In Section III we consider two stationary distributions that are widely used to describe

bunches confined by conventional harmonic rf systems as candidates to describe the

Recycler bunches. In Section IV we calculate the coherent frequency of rigid dipole

oscillations for these distributions and the relationship to the maximum of the bare

incoherent frequency. In Section V we find an analytical distribution that adequately

describes the measured profiles. This distribution is then used to calculate the incoher-

ent frequency distribution in the presence of space charge. The intensity threshold at

which Landau damping would be lost is predicted while keeping other bunch param-

eters unchanged. In Section VI we consider the experimental results obtained when

the bunch length is changed and discuss the dependence of the threshold for loss of

Landau damping. Section VII has a brief discussion of the microwave instability and a

rough estimate of the threshold intensity. We conclude in Section VIII. In a subsequent

paper we plan to a) discuss the stability diagrams for the Recycler bunches and b) use

numerical simulations to study the stability limits in greater detail.

II. SINGLE PARTICLE DYNAMICS

As mentioned above, a barrier bucket consists of two voltage pulses of equal and

opposite polarity, each lasting for time T1 and separated by a time T2. The pulses

can be of arbitrary shape, rectangular, triangular, half-sinusoidal etc. In most of this

report we will consider a rectangular pulse profile.

Let τ be the time delay between an off-energy particle and the synchronous particle

which arrives at the center of the bucket τ = 0. The equations of motion are

d

dt
τ = −η

∆E

β2E0

d

dt
∆E =

eV (τ)

T0

(1)

Here η is the slip factor, and T0 the revolution period. Since the bucket is centered at
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τ = 0, there is no change of energy for −T2/2 ≤ τ ≤ T2/2. The second order equation

of motion for τ is
d2

dt2
τ +

η

β2E0T0
eV (τ) = 0 (2)

From the first order equations of motion it follows that the Hamiltonian is

H = −1

2

η

β2E0
(∆E)2 − e

T0

∫ τ

0

V (s)ds = − η

2β2E0
(∆E)2 − e

T0
U(τ) (3)

where U is the potential function.

At the bucket boundary or separatrix, the bucket height in energy ∆Ebucket is de-

termined by

Hbucket = −1

2

η

β2E0

(∆Ebucket)
2 =

e

T0

∫ T2/2+T1

T2/2

V (s)ds (4)

Hence the bucket height is

∆Ebucket =

[

2β2E0

T0

∣

∣

∣

∣

∣

1

η

∫ T2/2+T1

T2/2

eV (s)ds

∣

∣

∣

∣

∣

]1/2

(5)

On any other level curve inside the boundary, the maximum time extent of a particle

is T2/2+W , where the parameter W is the barrier penetration depth for that particle.

Then the maximum energy extent of a particle as a function of W is

∆Ê =

[

2β2E0

T0

∣

∣

∣

∣

∣

1

η

∫ T2/2+W

T2/2

eV (s)ds

∣

∣

∣

∣

∣

]1/2

(6)

The particle energy deviation stays constant at this value for −T2/2 ≤ τ ≤ T2/2. At

other times, the energy deviation can be found from

∆E(τ) =

[

(∆Ê)2 − 2β2E0

|η|T0

∫ T2/2+W

T2/2

eV (s)ds

]1/2

=

[

2β2E0

|η|T0

∫ T2/2+W

T2/2+τ

eV (s)ds

]1/2

(7)

From the first of Equations (1) it follows that the time period on a phase curve is

Ts =
β2E0

|η| [2
T2

∆Ê
+ 4

∫ W

0

dτ

∆E(τ)
] (8)

where ∆E in the integral is determined from the expression in Equation (7).
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We now specialize to the case of rectangular pulse profiles, i.e. the voltage is given

by

V (τ) = −V0 − (
1

2
T2 + T1) ≤ τ ≤ −1

2
T2

= 0 − 1

2
T2 ≤ τ ≤ 1

2
T2 (9)

= V0
1

2
T2 ≤ τ ≤ 1

2
T2 + T1

The potential which is only determined up to an additive constant can be written as

U(τ) = −V0[τ +
1

2
T2] < 0 − (T1 +

1

2
T2) ≤ τ ≤ −1

2
T2

= 0 − 1

2
T2 ≤ τ ≤ 1

2
T2

= V0[τ − 1

2
T2] > 0

1

2
T2 ≤ τ ≤ 1

2
T2 + T1 (10)

Here we have chosen the additive constant so that the potential also vanishes where

the voltage does. The potential is zero outside this range defined above.

For this profile, the peak energy deviation on a phase curve with barrier penetration

depth W , the bucket height and the time period on an orbit are

∆Ê =

[

2
β2E0

|η|T0

eV0W

]1/2

,

∆Ebucket =

[

2
β2E0

|η|T0
eV0T1

]1/2

Ts = 2
β2E0

|η|
T2

∆Ê
+ 4

T0

eV0

∆Ê (11)

Note that the period does not go to infinity on the separatrix, as is the case for harmonic

rf.

The peak energy offset, at which the period reaches a minimum, is

∆Ê|minTs
=

[

β2E0eV0

2 |η|
T2

T0

]1/2

=

√

T2

4T1
∆Ebucket (12)

This leads to the conclusions that (a) if T2 > 4T1, the period minimum occurs outside

the bucket, i.e. the synchrotron period just decreases monotonically inside the bucket

and (b) if T2 < 4T1, there is a point where the period reaches a minimum and then
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increases up to the bucket. The region of zero slope in the period is associated with

local loss of Landau damping. This simple stability criterion requires that the interval

between pulses be greater than four times the pulse width.

The synchrotron tune on an orbit and the maximum tune when it occurs inside the

bucket are respectively

νs =
T0

Ts
=

[

2
β2E0

|η|
T2

∆ÊT0

+ 4
∆Ê

eV0

]−1

= (
|η| eV0T0

2β2E0
)1/2

√
W

T2 + 4W

νs,max =

[ |η| eV0

32β2E0

T0

T2

]1/2

(13)

Note that this maximum tune is independent of the pulse width T1.

The peak energy ∆Ê on a phase curve is related to the barrier penetration depth

W by
∆Ê

∆Ebucket

=

√

W

T1

(14)

The synchrotron tune on a phase curve is related to the maximum tune as

νs

νs,max
= 4

κ

1 + 4κ2
, κ =

√

W

T2
=

√

T1

T2

∆Ê

∆Ebucket
(15)

where we have defined a dimensionless parameter κ to label a phase curve.

On the phase curve where the synchrotron tune is maximum, κ = 1/2. At the

bucket boundary, it has its maximum value κbucket =
√

T1/T2.

Area under phase curve

The phase curve for a rectangular pulse profile consists of straight lines at ±∆Ê

between −T2/2 and T2/2 closed by parabolic paths. On these parabolic paths, the

relation between the time delay coordinate and the energy deviation is

τ =
ηT0

2β2E0eV0

[(∆Ê)2 − (∆E)2], (16)

while the area under each parabolic path is

∫ ∆Ê

−∆Ê

τd(∆E) =
2

3

|η|T0

β2E0eV0
(∆Ê)3 (17)
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Hence the area under a phase curve is

A = 2∆ÊT2 +
4

3

|η|T0

β2E0eV0
(∆Ê)3 = 2∆ÊT2[1 +

4

3
κ2] (18)

while the bucket area is

Abucket = 2∆EbucketT2[1 +
4

3

T1

T2
] = 2

[

2
β2E0

|η|T0
eV0T1

]1/2

T2[1 +
4

3

T1

T2
] (19)

If the maximum energy spread of the bunch ∆Êbunch is known, e.g. from a longitudinal

Schottky measurement, then the bunch area can be found from Equation (18). Cur-

rently the energy spread and the bunch area of the Recycler beam are measured using

a 1.7GHz Schottky detector. For a beam with energy spread less than ±23 MeV, the

Schottky frequency spread is less than ±40 kHz, Hence in practice, the area under the

Schottky spectrum between -40 MHz and 40 MHz is calculated, and the energy spread

corresponding to 95% of this area is found. This value is used to calculate the bunch

area which contains 95% of the particles.

Bunch length

The bunch barrier penetration depth Wb can also be determined from the maximum

energy spread in the bunch using Equation (14), i.e. Wb = (∆Êbunch/∆Ebucket)
2T1. The

bunch length is τb = T2/2 + Wb. These equations express the fact that larger initial

energy spread in the bunch lead to deeper barrier penetration.

III. STATIONARY DISTRIBUTION IN A BARRIER BUCKET

The time evolution of the phase space density ρ follows from

dρ

dt
=

∂ρ

∂t
+ {ρ, H} (20)

If the density is not explicitly time dependent and it is a function of the Hamiltonian

H so that the Poisson bracket {ρ, H} vanishes, then the density is stationary.

Due to the symmetry of the barrier, the phase curves are also symmetrical, each

phase curve extending from −W − 0.5T2 to W + 0.5T2 on the τ axis (this defines W )
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and from −∆Ê to ∆Ê on the energy axis. The peak energy ∆Ê on a phase curve can

be found from

(∆Ê)2 =
2β2E0e

|η|T0

∫ 0.5T2+W

0.5T2

V (s)ds =
2β2E0e

|η|T0
[U(

1

2
T2 + W ) − U(

1

2
T2)] (21)

At the bunch boundary on the τ axis τ = τb and ∆E = 0, and the Hamiltonian takes

on the value

H = Hb = − e

T0

U(τb) ≡ − e

T0

Ub (22)

written in terms of the potential function Ub at τ = τb.

A. Binomial distribution

Consider a general binomial distribution for the density

ρ(∆E, τ) = c1[Hb − H ]p (23)

where p is a real number and c1 is the normalization constant.

The density can be expanded to the form

ρ(∆E, τ) = c1[
η

2β2E0

]p[
2β2E0e

ηT0

[U(τ) − Ub] − ∆E2]p

= c1[
η

2β2E0
]p[∆Eb(τ)2 − ∆E2]p (24)

where we have used the fact that at any point on the bunch boundary, the energy

deviation can be found from

∆Eb(τ)2 =
2β2E0e

|η|T0
[U(τ) − Ub] (25)

The line density is obtained by projecting the phase space density on to the τ axis,

λ(τ) =

∫ ∆Eb(τ)

−∆Eb(τ)

ρ(∆E, τ)d(∆E) = 2c1[
η

2β2E0
]p

∫ ∆Eb(τ)

0

[∆Eb(τ)2 − ∆E2]p (26)

where in the second equality we have used the fact that the integrand is even. Using

the integration result
∫ ∆Eb

0

[∆E2
b − ∆E2]pd(∆E) =

Γ(p + 1)

Γ(p + 3/2)
[∆Eb(τ)]2p+1
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we obtain for the line density

λ(τ) = λ0[U(τ) − Ub]
p+1/2, λ0 = Nb[

∫ τb

−τb

(U(τ) − Ub)
p+1/2]−1 (27)

where we have absorbed the constant c1 and the other parameters into a new constant

λ0.

The distortion of the potential due to external inductive impedances and space

charge can be included with the concept of an effective impedance. The effective

impedance at frequency ω is defined as

Zeff

n
= i(ω0L − g0Z0

2βγ2
) ≡ iω0Leff (28)

where n = ω/ω0 is the harmonic of the revolution frequency, L is the inductive

impedance of the machine, Z0 = 377Ω is the vacuum impedance. The geometric

space charge factor g0 for a round beam in a round beam pipe is given by

g0 =
1

2
+ 2 ln(b/a) (29)

where b is the radius of the beam-pipe and a is the beam radius.

The induced voltage due to this impedance is

Vind = −Leff
dI

dt
= −Leff

dI

dτ
(30)

From the bunch current I(τ) = eλ(τ), it follows that for a binomial distribution,

dI

dτ
= eλ0(p +

1

2
)[U(τ) − Ub]

p− 1

2 V (τ) (31)

Introducing the notation

u(−τb, τb) =

∫ τb

−τb

[U(τ) − Ub]
p+ 1

2 dτ (32)

the induced voltage can be written as

Vind = − eNb(p + 1
2
)

ω0u(−τb, τb)
Im[

Zeff

n
][U(τ) − Ub]

p− 1

2 V (τ) (33)
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T1 T2

V0

τ

λ(τ)

b

Wb

FIG. 1: Rectangular barrier bucket voltage profile and the line density (in blue) in a stationary

elliptic distribution. T1 is the width of each pulse, T2 is the duration between the pulses, τb

is half the bunch length and Wb is the barrier penetration depth.

B. Elliptic distribution

The elliptic distribution is obtained by choosing p = 1/2 which yields

λ(τ) = λ0[U(τ) − Ub] (34)

As we will see, this distribution has some special properties, first pointed out by Hof-

mann and Pedersen [7].

The line density for an elliptic distribution with boundaries at (−τb, τb) is

λ(τ) = λ0[U(τ) − U(τb)] =
Nb

u(−τb, τb)
[U(τ) − U(τb)] (35)

Hence the stationary elliptic distribution in this rectangular barrier bucket is

λ(τ) =
Nb

[τ 2
b − (1

2
T2)2]

(τ + τb) − τb ≤ τ ≤ −1

2
T2

=
Nb

[τ 2
b − (1

2
T2)2]

(τb −
1

2
T2) − 1

2
T2 ≤ τ ≤ 1

2
T2

= − Nb

[τ 2
b − (1

2
T2)2]

(τ − τb)
1

2
T2 ≤ τ ≤ τb (36)

This has a trapezoidal shape as shown in Figure 1.
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For an elliptic distribution the induced voltage is

Vind = − eNb

ω0u(−τb, τb)
Im[

Zeff

n
]V (τ) (37)

In this case it has the same form as the rf voltage so the total voltage is related to the

focusing rf voltage by a change of scale. The total voltage is

Vt(τ) = V (τ) + Vind(τ) =

{

1 − eNb

ω0u(−τb, τb)
Im[

Zeff

n
]

}

V (τ) (38)

By definition of the voltage waveform, a synchronous particle sees no focusing volt-

age. Hence the ratio of the total focusing voltage to the rf focusing voltage is

kt =
Vt

V
= 1 − eNb

ω0u(−τb, τb)
Im[

Zeff

n
] (39)

The maximum synchrotron tune in the presence of space charge and external

impedances is

νmax
s = [

eVt |η|
32β2E0

T0

T2
]1/2 =

√

ktν
max
s,0 (40)

where νmax
s,0 is the maximum tune in the absence of space charge and external

impedances. Similarly the area under a phase curve with turning points (τ1, τ2) on

the τ axis is given by

At(τ1, τ2) =
√

ktA(τ1, τ2) (41)

The area of the bucket is reduced by the factor
√

kbucket
t given by Equation (39) with

τb = 0.5T2 + T1. The maximum theoretical intensity that can be stored in the bucket

corresponds to the case where the space charge and external impedances distort the

potential sufficiently to reduce the bucket area to zero. In practice, the limiting bunch

intensity will be lower than this value, for example when the reduced bucket area can

just accomodate the longitudinal emittance of bunches from the Booster.

1. Energy distribution

The energy distribution can be found by projecting the phase space density on to

the energy axis. Let µ(∆E) represent the energy distribution, then

µ(∆E) ≡
∫

ρ(∆E, τ)dτ = c1[
|η|

2β2E0

]1/2

∫ τb

−τb

[
∣

∣∆E2
b (τ) − ∆E2

∣

∣]1/2 (42)
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Note that µ is even in the energy. The energy offset on the bunch boundary is defined

in Equation (25). Over the three regions we have

∆E2
b (τ) = −∆E2

bucket

τ + τb

T1
− τb ≤ τ ≤ −1

2
T2

= −∆E2
bucket

τb − 1
2
T2

T1

− 1

2
T2 ≤ τ ≤ 1

2
T2

= ∆E2
bucket

τ − τb

T1

1

2
T2 ≤ τ ≤ τb (43)

Consequently

µ(∆E) = c1[
eV0

T0
]1/2

{

∫ −T2/2

−τb

|τ + τb − T1
∆E2

∆E2
bucket

|1/2dτ + |τb −
1

2
T2 − T1

∆E2

∆E2
bucket

|1/2T2

+

∫ τb

T2/2

| − τ + τb − T1
∆E2

∆E2
bucket

|1/2dτ

}

= c1[
eV0T1

T0

]1/2

{

T2

∣

∣

∣

∣

∆E2

∆E2
bucket

− Wb

T1

∣

∣

∣

∣

1/2

− 4

3
T1

[

∣

∣

∣

∣

∆E

∆Ebucket

∣

∣

∣

∣

3

−
∣

∣

∣

∣

∆E2

∆E2
bucket

−Wb

T1

∣

∣

∣

∣

3/2
]}

(44)

This has its maximum at ∆E = 0 and vanishes at

∆Emax = ±∆Ebucket

[

b +
1

2a(2 − 3ab)
[3a2b2 − 1 +

√

(3a2b2 − 1)2 + 4a3b3(2 − 3ab)]

]1/2

(45)

where a = (4/3)T1/T2, b = Wb/T1. For the Recycler parameters shown in Table I,

this yields a vanishing of the energy distribution at ±7.87 MeV well below the bucket

height ∆Ebucket = 17.38 MeV.

A sketch of the density distribution is shown in Figure 2, the parameters are those

of the Recycler. The plotted density is normalized to its maximum value at ∆E = 0.

As is the case for the line density, there is a well defined value beyond which the

distribution µ(E) vanishes.

C. Exponential distribution

The energy distribution for the elliptic phase space distribution does not match

the approximately Gaussian energy distribution that is observed in the longitudinal
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FIG. 2: The energy distribution as a function of the energy spread, for the Recycler param-

eters, assuming an elliptic phase space distribution.

Schottky spectrum of Recycler bunches. We therefore consider another distribution

which naturally leads to a Gaussian energy distribution. Consider the density to be an

exponential function of the Hamiltonian.

ρ(H) = ρ0 exp[H/H0] = ρ0 exp{ 1

H0
[

−η

2β2E0
(∆E)2 − eU(τ)

T0
]} (46)

The line density obtained by projecting the density onto the time axis is

λ(τ) =

∫

ρ(∆E, τ)d∆E = λ0 exp[−eU(τ)

H0T0
] (47)

where λ0 is a normalization constant and H0 is a scale constant to be defined later.

From the expression in Eq (10) for the potential function in a rectangular barrier

bucket, it follows that the line density for this distribution is

λ(τ) = λ0 exp[
eV0

H0T0

(τ +
1

2
T2 + T1)] − (T1 +

1

2
T2) ≤ τ ≤ −1

2
T2

= λ0 exp[
eV0

H0T0

T1] − 1

2
T2 ≤ τ ≤ 1

2
T2

= λ0 exp[− eV0

H0T0

(τ − 1

2
T2 − T1)]

1

2
T2 ≤ τ ≤ 1

2
T2 + T1 (48)

Figure 3 shows a sketch of the distribution.
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FIG. 3: Sketch of the line density for an exponential distribution. Parameters are arbitrary.

Note that the density does not exactly vanish at τb, instead λ(−τb) = λ(τb) =

λ0 exp[−(eV0[T1 − Wb])/(H0T0)] where as before Wb = τb − 1
2
T2. If eV0[T1 −

Wb]/(H0T0) ≫ 1, then the density is small and can be effectively taken to vanish

at τ = τb.

Since the density does not exactly vanish at ±τb, it would be more accurate to

extend the region of non-zero density to the entire extent of the barrier bucket. In that

case the normalization condition is
∫ T1+

1

2
T2

−(T1+ 1

2
T2)

λ(τ)dτ = Nb which yields

Nb = λ0

[

2H0T0

eV0

(1 − exp[−eV0T1

H0T0

]) + T2

]

(49)

If the line density is known in the flat region, e.g. at the center τ = 0, then from

the expression for the line density in Eq (48) above, it follows that the normalization

constant is known, i.e. λ0 = λ(τ = 0) and the normalization condition can be used

to find the scale constant H0. It is simpler here to determine this constant from the

energy distribution which in this case is a Gaussian

µ(∆E) ≡
∫

dτρ(∆E, τ) = µ0 exp[−(∆E)2

2σ2
E

] (50)

where the rms energy deviation σ2
E = β2E0H0/η. If the rms energy deviation is mea-

sured from the Schottky spectrum, then H0 is known.
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The line density written above is not self-consistent as it does not take into account

the potential well distortion due to space charge. Including this intensity dependent

effect, the line density is

λ(τ) = λ0 exp[−eUt(τ)

H0T0
] (51)

Ut(τ) = Urf(τ) +

∫ τ

0

Vind(s)ds = Urf(τ) +
e

ω0
Im[

Zeff

n
][λ(0) − λ(τ)]

It follows that the density at time τ = 0 is λ(0) = λ0 exp[−eUrf (0)/(H0T0)]. Since we

have defined the rf potential such that Urf(0) = 0, it follows that λ(0) = λ0. Hence

the self-consistent density is the solution of the following equation

λ(τ) exp[− e2

2πH0
Im[

Zeff

n
]λ(τ)] = λ0 exp[− e2

2πH0
Im[

Zeff

n
]λ0] exp[−eUrf (τ)

H0T0
] (52)

This is the equivalent of the Hassinski equation which defines a self-consistent station-

ary solution for a sinusoidal rf and an arbitrary wake field. This equation can be solved

numerically to find the self-consistent density at a given intensity. At low intensities

this solution will reduce to the form in Equation (48).

IV. FREQUENCY OF COHERENT MOTION

Imagine that the bunch is displaced from its center by ∆τ as a result of which it

starts to perform small amplitude oscillations. If we let λ̄(τ) be the line density of the

displaced bunch, then it follows that λ̄(τ) = λ(τ − ∆τ). The infinitesimal force on a

slice of thickness δτ is

dF = − e

βc
λ(τ − ∆τ)dτ

∂U

∂τ
(53)

The total force on the bunch is

F = − e

βc

∫ τb+∆τ

−τb+∆τ

λ(τ − ∆τ)
∂U

∂τ
dτ

=
e

βc
∆τ

∫ τb

−τb

λ′(τ)
∂U

∂τ
dτ + O[(∆τ)2] (54)

where we have expanded the displaced density to first order in ∆τ and used the fact

that the average force on the undisplaced bunch vanishes. From the equation of motion
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and the force law F ≡ −eV (τ)/(βc) = meff τ̈ , it follows that the effective mass of a

particle is meff = βE0T0/(cη) and hence the effective mass of the bunch is mbunch
eff =

NbβE0T0/(cη). If the centroid is oscillating at a frequency ωc, then from the small

amplitude equation of motion F/mbunch
eff ≡ τ̈c = −ω2

c∆τ , it follows that the coherent

frequency is

ω2
c =

e |η|
β2E0T0Nb

∫ τb

−τb

λ′(τ)
∂U

∂τ
dτ (55)

This coherent frequency is independent of intensity. It turns out that for parabolic

bunches in a single harmonic rf potential, the coherent frequency and the small ampli-

tude incoherent frequency coincide. In general these frequencies are not the same for

other distributions and other rf systems.

A. Landau damping for an elliptic distribution

We will consider the rigid dipole mode to be Landau damped if the frequency of

the rigid dipole mode is within the band of incoherent synchrotron frequencies and

undamped if it lies outside this band. First we evaluate the coherent dipole frequency

for an elliptic distribution. Using the line density of a matched binomial distribution,

the coherent frequency using Eq. (55) is

ω2
c =

e |η| (p + 1
2
)

β2E0T0u(−τb, τb)

∫ τb

−τb

[U(τ) − U(τb)]
p−1/2(

∂U

∂τ
)2dτ (56)

This frequency, in the absence of external forces, is independent of the bunch intensity.

For the elliptic distribution this reduces to

ω2
c =

e |η|
β2E0T0u(−τb, τb)

∫ τb

−τb

V 2(τ)dτ =
2eV0 |η|

β2E0T0(τb + 1
2
T2)

(57)

As remarked above, the total focusing voltage is changed by space charge and ex-

ternal impedances. For an elliptic distribution, the total voltage is related to the rf

voltage by the factor kt calculated above and the synchrotron frequency is related to

the bare synchrotron frequency by
√

kt. In a barrier bucket, the incoherent frequency

as a function of amplitude rises from zero at the origin to a maximum value which may

occur at an amplitude within the bucket. The maximum bare incoherent synchrotron
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angular frequency ωmax
s,0 can be found from Equation (13). In the presence of space

charge and external impedances it is modified to

ωmax
s =

√

ktω
max
s,0 = [1 +

eNbIm(Zeff/n)

ω0V0[τ 2
b − (1

2
T2)2]

]1/2ωmax
s,0 (58)

In terms of the bare maximum frequency ωmax
s,0 , the coherent frequency can be written

as

ωc =
4

π
[

T2

τb + 1
2
T2

]1/2ωmax
s,0 (59)

Writing τb = T2/2 + Wb, where Wb can be considered as the barrier penetration depth

of the bunch, the requirement that the coherent frequency be less than the maximum

bare incoherent tune is Wb/T2 ≥ 16
π2 − 1.

Below transition with space charge as the dominant impedance, the net focusing

voltage is reduced and the incoherent frequency decreases with intensity. At the thresh-

old for the loss of Landau damping, the maximum incoherent frequency equals the co-

herent dipole frequency and falls below it at higher intensities. The threshold intensity

for the loss of Landau damping found by equating ωmax
s and ωc is

N thresh
b = −ω0V0(τ

2
b − (1

2
T2)

2)

eIm(Zeff/n)
[1 − (

4

π
)2 T2

τb + 1
2
T2

] (60)

Putting in numbers for the Recycler, we find that

ωc

ωmax
s

= 1.25 (61)

This says that even at zero intensity, the coherent frequency would be outside the

incoherent band. As the intensity increases, the incoherent frequencies will decrease

and the ratio above will increase. Hence there would be no Landau damping at any

intensity. We conclude that this distribution cannot be suitable to describe the Recycler

longitudinal density.
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B. Landau damping for an exponential distribution

The coherent frequency can be found using Eq (55) except that we now extend the

region of integration so

ω2
c =

e |η|
β2E0T0Nb

∫ 1

2
T2+T1

−( 1

2
T2+T1)

λ′(τ)
∂U

∂τ
dτ (62)

We find

ω2
c =

2eV0 |η|
β2E0T0

1 − exp[−eV0T1

H0T0

]

2H0T0

eV0

(1 − exp[−eV0T1

H0T0

]) + T2

(63)

Expressed in terms of the maximum of the bare incoherent frequency ωmax
s,0 ,

ωc

ωs0,max

=
4

π
[

1 − exp(−χWb)

1 + (2/(χT2))[1 − exp(−χWb)]
]1/2, χ = β2E0eV0/(|η|σ2

ET0) (64)

Putting in the Recycler numbers we find that in this case

ωc

ωs0,max
= 1.27 (65)

This distribution is also unsuitable.

V. MEASURED DISTRIBUTIONS

During a study in April 2009, protons were injected into the Recycler with a in-

creasing number of Booster batches. The bunch profiles were measured with a wall

current monitor at three different intensities. Longitudinal Schottky spectra were also

recorded. The measured bunch length profiles are well described by the function

λfit(τ) = Nba {[1 + tanh(bτ + c)]θ(−τ) + [1 − tanh(bτ − c)]θ(τ)} (66)

λfit(0) = Nba(1 + tanhc)

Here θ is the step function, a, b, c are the three parameters of the fit. a sets the overall

normalization for the density, b is a measure of the slope in the rising and falling

regions and the width of each half section is directly proportional to c. Note that the

same parameters describe both the head and the tail of the profile, implying perfect

symmetry about the center.
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The measured profiles and the fit function are shown for all three sets in Figure 4.

This fitted function appears to describe the measured profiles with very good accuracy.

Note that the same fit works equally well at all the intensities suggesting that distortion

due to intensity effects are not yet important at these levels. This also suggests that

the tanh fit is probably not the result of a self-consistent solution to the “Hassinski

equation” (52), the assumption being that the fit is also good for lower intensities

than those measured here. There is some bunch lengthening as the intensity increases

showing the impact of the capacitive space charge impedance.

The line density can also be calculated as a function of the incoherent synchrotron

tune. Figure 6 shows the density relative to the density at the center as a function of ν0
s ,

the bare incoherent tune. The Main Injector ramping frequency is also shown in this

figure; beam particles resonant with this frequency can be driven to larger amplitudes

and lost. However the relative density at this frequency is about 2%, the net effect due

to this resonance should be small at present parameters.

We can now use this form of the line density to calculate the coherent frequency.

From the expression for the coherent frequency in Equation (55)

ω2
c =

|η| eV0

β2E0T0Nb
{−[λ(−1

2
T2) − λ(−τb)] + [λ(τb) − λ(

1

2
T2)]}

=
2 |η| eV0a

β2E0T0

{tanh(bτb − c) − tanh(
1

2
bT2 − c)} (67)

Hence the ratio of the coherent frequency to the maximum of the bare incoherent

frequency is
ωc

ωs0,max
=

4

π

√

aT2

√

tanh[bτb − c] − tanh[
1

2
bT2 − c] (68)

Here we use the value of the parameter a determined by the normalization condition,

i.e.

a =
1

2
[
1

2
T2 + T1 +

1

b
log(

cosh c

cosh[b(T2/2 + T1) − c]
)]−1 (69)

Using the values of the fit parameters b, c for the data measured in the April 2009 study

we find that
ωc

ωmax
s

= 0.93 (70)
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i.e. at zero intensity the coherent frequency is within the incoherent spread. Figure

7 shows the coherent tune for the three distributions considered here and the bare

incoherent tune as a function of the parameter W .

A. Threshold for loss of Landau damping

We can now take into account the potential well distortion due to space charge and

find the incoherent tune in the presence of space charge. The total voltage for an

arbitrary distribution is

Vt = V0 −
e

ω0
Im(

Zeff

n
)
dλ

dt
(71)
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The energy deviation on a curve with barrier penetration W at time τ is

(∆E)2(τ ; W )=
2β2E0

|η|T0

∫ T2/2+W

T2/2+τ

eVt(s)ds

=
2β2eE0

|η|T0

{

V0(W − τ) − e

ω0
Im(

Zeff

n
)[λ(

1

2
T2 + W ) −λ(

1

2
T2 + τ)]

}

(72)

Introducing the function f(W ) and the parameters ζ, d as

f(W ) = W + ζtanh(bW + d), ζ =
e

ω0V0

Im(
Zeff

n
)Nba, d =

1

2
bT2 − c (73)

we can write

(∆E)2(τ ; W ) =
2β2eV0E0

|η|T0
[f(W ) − f(τ)] (74)

while the peak energy is found from ∆Ê = ∆E(0, W ). The intensity dependence is

contained in the parameter ζ .

As the intensity increases, the bucket height and bucket area decrease. A threshold

for the maximum intensity that can be stored in the bucket is set when the bucket area
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falls to the initial bunch area. Figure 8 shows that at intensities even up to 200 times

larger than present, the bucket area and height are larger than the initial bunch area

and energy spread respectively. The threshold is at an intensity of 2.3×1015, where the

bucket height equals the initial bunch energy spread of 12 MeV.

The incoherent synchrotron tune as a function of W can then be found using Eq

(8) as

νs(W ) = (
|η| eV0T0

2β2E0
)1/2

[

T2

[f(W ) − ζtanhd]1/2
+ 2

∫ W

0

dτ

[f(W ) − τ − ζtanh(bτ + d)]1/2

]−1

(75)

The integral in the above expression can be performed numerically. For comparison,

the bare synchrotron tune without space charge is given in Equation (13).

The top plot in Figure 9 shows the relative difference of the incoherent tunes with

and without space charge at intensities varying over two orders of magnitude . The

relative tune depression due to space charge is the largest at the inner edge of the voltage
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pulse since the tune is also smallest there. The incoherent frequency decreases as the

intensity increases and at a threshold frequency, the maximum of the incoherent tune

will will equal the coherent frequency. At higher intensities, the coherent frequency will

be outside the spread and Landau damping is lost. For the nominal value of T2 = 324

’bkts’, this threshold is reached when the intensity exceeds 4.7×1014, about 100 times

higher than present intensities.

VI. INSTABILITY THRESHOLDS AT DIFFERENT BUNCH LENGTHS

It has been observed in the SPS that a region where the incoherent frequency as a

function of amplitude has an extremum is associated with the appearance of a local

instability [8]. In a barrier bucket, the maximum of the incoherent tune occurs when

the ratio of the peak energy on the orbit to the bucket height is
√

T2/(4T1), see Equa-

tion (12). If this ratio is greater than unity, as is the case for the nominal Recycler

parameters T2/(4T1) = 324/(4×48), the maximum lies outside the bucket. The effects

of this local instability are not present under normal operation but can be studied by

changing the separation T2.

The energy acceptance or bucket height depends on the area under the voltage pulse

V0T1 but not on T2. If we change the bunch length by adiabatically changing T2, the

bunch area will be preserved and the energy acceptance will also be constant. The

bucket area however is determined by the bucket height and the value of T2. The value

of T2 when the bucket area just encloses the bunch area is

Tmin
2 =

1

2

√

|η|T0

2β2E0eV0T1
Abunch −

4

3
T1 (76)

Lower bunch area leads to a lower value for T min
2 and hence allows a wider range of

variation with T2 < 4T1.

These studies were carried out in the Recycler using protons. The beam cooling

systems as well as the transverse dampers were turned off during the experiment. For

these measurements, a bunch with much lower intensity than normal was injected -

the initial bunch area was about 27 eV-sec compared to a more typical value of 100
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eV-sec. The bunch was injected into a gap which was 84 Booster buckets long, i.e.

T2 = 84 ’bkts’ (a ’bkt’= 0.01893µsec). We chose T1 = 48 bkts and pulse height

of 1.8kV, these being the usual values during regular operation. Once equilibrium

was reached after injection, beam intensity along with data from the wall current and

Schottky monitors were recorded to establish the initial parameters. Subsequently the

beam was expanded or compressed adiabatically by changing T2 to different values of

interest without changing T1.

Figure 10 shows the measured longitudinal profiles along with the fits by the tanh

function. In all cases, the fit describes the measured profile quite well. One slight

exception is for the shortest bunch with T2 = 14 bkts where the fit at the center

does not quite match the flatness of the measured profile. Furthermore, it cannot

be explained by the wall current monitor saturation which occurs at a minimum of 5

times the bunch intensity used in this experiment. However the rising and falling edges

match very well. These edges in the barrier pulses determine the coherent frequency,

not the bunch profile in the center.

Assuming that the bunch area is preserved, compressing the bunch length increases

the energy spread and conversely. Figure 11 shows the maximum energy spread deduced

from the Schottky spectrum and the theoretical values (shown by the curve) assuming

that the initial bunch area was conserved. There are discrepancies between the two,

especially at the shortest T2 = 14 bkts. Some of this can be attributed to measurement

errors of the energy spread from the Schottky spectrum. It is also likely that several

beam dynamics processes lead to an increase in bunch area and loss of particles as the

gap T2 was decreased. This is confirmed by the measured Schottky spectra for the

different profiles shown in Figure 12. At the smallest values of T2, the energy spread

exceeds the energy acceptance of 17.4 MeV. However the spectral amplitudes, shown

in db, also show that the losses were of the order of 1%.

We now consider the coherent frequency and the ratio of this frequency to the

maximum of the bare incoherent frequency as a function of the bunch length, using the

energy spread and the fitted values of the parameters b, c for each of the bunch profiles

shown in Figure 10. This ratio is shown in Figure 13. First, the ratio increases with
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FIG. 10: Measured bunch profiles in March 2009. The value of T2 was changed while T1 was

kept constant. The sequence of T2 values is the measurement order. The measured data and

the fits with the tanh function are shown for the eight profiles.

28



 2

 4

 6

 8

 10

 12

 14

 16

 50  100  150  200  250  300

∆E
bu

nc
h 

[M
eV

]

T2 [bkts]

Maximum energy spread of bunch

Bunch area= 27 eV-sec 
Data

FIG. 11: The maximum energy spread as a function of T2. The data points are the values

obtained from the Schottky spectrum while the curve shows the expected value assuming

that the initial bunch area is preserved and no beam is lost. Over this range of T2 from
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The deviations between the data and the curve show that the bunch area was not preserved,

especially at the smallest value of T2 = 14bkts.

the bunch length or T2 before falling at the largest value of T2. Note that both the

coherent frequency and the maximum of the bare incoherent frequency decrease with

T2 . ωs0,max decreases as 1/
√

T2 while the coherent frequency decreases at a slower

rate, hence the ratio increases with T2. One would conclude from this observation that

for bunches with the same (or nearly the same here) longitudinal emittance, shorter

bunches have a higher threshold for the loss of Landau damping. Secondly, we observe

that except for T2 = 14, this ratio is greater than one implying that Landau damping

was lost for most of the bunches in this study. This may explain some of the observed

increase in bunch area.

Fig. 14 shows the surviving beam as a function of time. Various T2 to T1 ratios

along with the beam lifetime are also indicated. There are three distinct regions in

this plot. The first section had T2 < 4T1 with T2 assuming values of 14, 44, 84, 130, 180
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bkts. The average lifetime of the beam at 8 hours was significantly lower than in the

second section where it was about 50 hours with T2 = 228, 276 and > 4T1 in both cases.

In the third region the beam was compressed to its original value of T2 = 84 bkts. The

lifetime again decreased by about a factor of two. There are many possible sources for

these changes in lifetime as T2 was changed: different energy spread, loss of Landau

damping, local instability when T2 < 4T1, and possible resonance with the frequency of

the Main Injector ramping. The density of particles at this resonant frequency changes

with the bunch length and this resonance has been known to cause beam loss in the

past. While we do not at present know the relative importance of these effects, the

data is not inconsistent with the hypothesis that a local instability at the extremum

of the incoherent synchrotron tune can contribute to beam loss. The effects of this

instability are easily avoided in the barrier bucket by choosing appropriate values of

T1, T2

FIG. 14: Lifetime at various times with different T2 to T1 ratios.
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VII. MICROWAVE INSTABILITY

So far we’ve only discussed the effect of the capacitive space charge impedance.

However the Recycler also has a broadband resistive impedance with a cutoff at fc ∼
c/b ≈ 3.95 GHz. At sufficiently high intensities, this resistive impedance can lead to

asymmetric bunch shape distortion and eventually to turbulent bunch lengthening due

to the onset of the microwave instability. While there is as yet no satisfactory theory

of this instability for bunched beams, estimates for the threshold of the instability are

made by using the coasting beam theory and replacing the beam current by the peak

bunch current. For Gaussian bunches, the intensity threshold is given by

Nµ =

√

π

2

Z0

rp

|η| γ
β

σzσ
2
δ

∣

∣Z||/n
∣

∣

(77)

We observe that for constant bunch area A ∼ σzσδ, the threshold Nµ ∝ A2/σz. Hence

for bunches of the same area, shorter bunches have a higher threshold.

As a preliminary estimate for the threshold of this instability, we will use the rms

values of the energy spread and the bunch length for the measured distribution during

normal operation. The rms energy spread is found from the Schottky spectrum while

the rms bunch length can be found from

τrms =
√

a[

∫ 0

−(T2/2+T1)

τ 2(1 + tanh(bτ + c))dτ +

∫ (T2/2+T1)

0

τ 2(1 − tanh(bτ − c))dτ ]1/2

For the fitted values of the parameters, we find τrms = 3.095µ seconds while the

rms energy spread is σE = 4MeV. The effective wall impedance is estimated to be

Z||/n = 1.6 Ohms. Substituting the values we find that the bunch intensity threshold

for the microwave instability is

Nµ = 2.95 × 1015 (78)

This is about three orders of magnitude above present intensities. Space charge below

transition does not induce the microwave instability but some results, e.g. [6] suggest

that it may moderate the growth of the instability. Simulations may be necessary to

understand this process.
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VIII. CONCLUSIONS

Our primary findings are as follows:

• We considered two typical stationary phase space distributions as possible candi-

dates for the Recycler: an elliptic distribution and an exponential (in the Hamil-

tonian) distribution. The first has an energy distribution which does not match

observations while the second has a longitudinal profile distribution which does

not match observations. In addition, both of these distributions are above the

threshold for loss of Landau damping at present parameters.

• The longitudinal distribution that describes the Recycler bunches is a tanh dis-

tribution. This is found to be in very good agreement with observations made on

separate days and with different beam parameters. This distribution was used

to find the intensity at which the coherent dipole frequency is at the edge of the

incoherent frequency distribution in the presence of space charge. This threshold

for the loss of Landau damping is about two orders of magnitude above present

intensities.

• An experiment to determine the impact of a local instability possibly induced at

shorter bunch lengths was discussed. There are at least two competing mech-

anisms operating in this regime. On the one hand, at these bunch lengths the

extremum of the incoherent frequency lies within the bunch frequency distribu-

tion and a local instability may develop. On the other hand we found that the

threshold for the loss of Landau damping increases as the bunch is shortened

with the area preserved. Nevertheless, beam loss was observed at shorter bunch

lengths. Possible causes include higher energy spread, resonance with the Main

Injector ramp frequency and perhaps the local instability.

• A rough estimate of the microwave instability threshold shows that in the absence

of space charge, the threshold is about three orders of magnitude higher than

present intensities. Table II shows the intensity thresholds from different effects.
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Effect Intensity threshold

Loss of Landau damping 4.7×1014

Bucket height shrinks to 12 MeV 2.3×1015

Microwave instability 2.9×1015

TABLE II: Intensity thresholds for different effects, assuming T1 = 48 bkts, T2 = 324 bkts.

In a subsequent paper we will examine the stability diagrams in the presence of

space charge and a resistive impedance. We will also report on results of simulations

with a macro-particle tracking code (ESME) and a Vlasov code. The Vlasov code will

be employed to compare with the intensity thresholds found in this paper as well as to

understand the bunch behaviour following the onset of instability.
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