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Abstract: Obit Response Matrix (ORM) Fit method has been successfully used to calibrate linear optics at Recycler 
Ring at Fermilab.  The  linear model of the Recycler optics ring has been significantly improved.  Based on the 
build-up model, lattice measurement of the Recycler ring has been done several times, each after some magnets 
move and the tunes change.   Large beta-wave(~20%) has been found in horizontal plane after the working point  
was moved from (0.424,0.434) to (0.456, 0.467) for the reason of lowering the beam instabilities.   The source of the 
beta-wave, and the correction will be presented in this paper. In addition, we found an easy way to extend the tuning 
range in the recycler lattice. A new application program for adjusting the tunes operationally was introduced and 
the measured results will be presented.  

 

Introduction 

Obit Response Matrix (ORM) Fit method has been successfully used to calibrate linear optics at 
Recycler Ring at Fermilab [1].  Based on differential orbit measurement, the linear model of the Recycler 
optics has been significantly improved. With the build-up linear modeling, the measurements of the 
Recycler lattice have been done several times.    The first orbit response measurement was done in Oct. 
2005 and a full set of data consisting of roughly 150 orbits was taken on Feb.25, 2006. The data was then 
split into 3 sets which were analyzed separately. The found 3 sets of quadrupole errors were different but 
the values of beta-functions resulting from application of these errors were within 2% from each other, 
shown in Fig.1.  Also it was found that there is a little bata-wave although the relative beta function errors 
are up to 40% in horizontal and 20% in vertical planes compared to those of the designed lattice.   

 

Fig.1 Beta-functions obtained from differential orbit measurement at working point of (25.424, 24.434) 
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During 2006 summer shut down,   we did some magnet move in the ring so that the corrector’s strength 
can be reduced after orbit smooth. We also moved the recycler ring’s working point from (0.424, 0.434) 
to (0.456, 0.467) primarily for the reason of lowering the beam instability during the mining process.  
With all these change, we repeat the orbit response measurements with a larger number of the differential 
orbits taken and found a very large bata-wave in horizontal plan, shown in Fig.2.  

 

Fig.2 Beta-functions obtained from differential orbit measurement at working point of (25.455,24.464) 
before TROMBONE program ungraded. 

The source of the beta-wave was track down to the phase trombone straight section. The Recycler Ring 
is an 8-GeV fixed energy ring using permanent magnets. Instead of distributing remotely adjustable 
quadrupoles around the ring, 9 pairs of independently power supplied adjustable quadrupoles are located 
in RR-60 straight section, called phase trombone section [2]. The principle of the trombone section is to 
adjust the phase advances, i.e. tunes in the ring, but keeping the Beta-functions unchanged at two ends, 
shown in Fig.3 at MRK601, MRK609.  

             

                                       Fig.3 Phase trombone section in the Recycler ring 

A phase trombone program has been used operationally for tuning up the betatron tunes.  In March 
2004, the phase trombone program was migrated once based on designed lattice functions of Recycler 
Ring [3].  Currently the trombone section is segmented into 5 families to maintain a symmetrical structure 
as follows: 
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 By adjusting these circuits, a tune variation of up to ±0.06 in horizontal and 0.18 in vertical plane is 
attainable.   Obviously, this program which was based on designed lattice beta-functions is not proper. 
Table 1 listed the beta-functions calculated from designed lattice and from the build-up model. We can 
see that the differences are significant.  For old working point, the adjustments of the current of 9 quads 
are relatively small, the beta function leak from the trombone section must be small so that we don’t see 
beta-wave in the rest of the ring. However, at new working point near 0.45, the beta-leak is severe. 
Therefore, it is necessary to update the trombone program based on measured beta-functions.                       

                  Table 1 beta‐functions calculated from designed lattice and from the build‐up model 

Beta-functions @MRK601 Beta-functions@MRK609  
 
 
 

βx1 βy1 αx1 αy1 βx1 βy1 αx1 αy1 

Calculated from Designed 
lattice 

 
10.103 

 
46.958 

  
-0.098 

 
0.014 

 
10.114 

 
46.367 

 
0.008     

 
0.012 

Calculated from build-up 
model obtained from ORM 
measurement 

 
8.733     

 
48.016 

  
-0.099    

 
0.047 

 
8.683 

 
47.8152 

 
-0.063    

 
0.033 

   
 

Matching conditions 

We know that each of 9 pairs of quadrupoles in RR-60 straight section has their own power supply.  In 
principle, each of them can be adjusted independently as long as keeping the conditions that the Twiss 
parameters at the two ends of the straight section unchanged.    

We know the changes of the tunes in x and y planes are as follows:                          
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)( isk  is the strength of ith quadrupole, )(, iyx sβ  is the beta-function of the quadrupole.  

On the other hand, we have 
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For both x and y planes.  where M11,M12, M21 and M22 are the elements of the transfer matrix M of the 
straight section, which are also the functions of the quadrupole strengths.  We know γ  is a function of 
α and β , we actually only get two independent equations in each plane. Totally, we get 6 independent 
equations.  



To calculate the transfer matrix M of the straight section, first we output transfer matrices from code 
OPTIM [4] between two trim quads, and take each quad as thin element, with integrated strength (kL) 
≈10-3,  as follows: 
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and then concatenate the transfer matrix for whole section 

                                                              )(MMMMMMMMMM d1q601d2q601d18q609d19q609d20 4⋅⋅⋅⋅⋅⋅⋅= L

where Md1, Md2, … Md20 are the matrices of drift space between two quads, Mq601, Mq602, … Mq609 are the 
matrices of the quads 601, 602 to 609. Note that each quadrupole is split into two pieces in the machine.    

Console application program TROMBONE upgrade 

A test program was written in Mathematica. The transfer matrix for whole section is first concatenated in 
the program as given in Equation (4), and then the equations are linearized so that only first order terms of 
ith quadrupole strength ki are kept. The general equations are obtained for keeping 9 variables in the role, 
as follows:  
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 It turns out to be a least-squares problem, which can be solved by SVD (Singular Value Decomposition). 
There are five cases for the conditions of matching and constrains, listed as follows. Note that K in the 
following equations represents the integrated strength of the quadrupole,                 

ILAmpmkLK ××⋅== )/(00297.0  

Where I  is circuit current, L is the length, L=0.3048m. 

For a given tune changes, we have tested 5 different cases, including 

(1) 4 equations, 5 families (symmetric): The beta-functions at two ends are not guaranteed unchanged 



(2) 6 equations, 5 families (symmetric): it Can not get expected tunes!! 
(3) 6 equations, 6 families --- unique solutions. However,  there always have one or two circuits 

current exceed the limits (6.5Amps) 
(4) 6 equations, 7 families (K1,K2,….,K5,K6,K8): there still has one of the circuit current exceeds 

the limit. 
(5) 6 equations, 9 families (K1,K2,….,K9): all the currents are reasonably, evenly distributed and the 

beta-functions at two ends can be guaranteed unchanged. For example, given tune change of Δνx 

=0.0385, Δνy=0.042, the currents of 9 circuits are as follows(unit in Amps): 
I1,I2,…,I9=(-1.300, 1.823, -1.810, 1.707, -1.248, 1.561, -1.859, 1.940, -1.229) 

Therefore, a console application program TROMBONE was upgraded using 9 independently adjusted 
qudrupoles. 3 expected tune changes set in the console and the respective Schottky spectrum are shown in 
Fig.4 We can see that the difference between expected and measured tune change is about 0.001. 

 

                         Fig. 4 Console tune settings and the respective Schottky spectrum 

Lattice measurement after TROMBONE program upgraded 

Differential orbits of 24 correctors were taken at the tunes set to (0.4578, 0.4656), and  LOCO (Linear 
Optics from Closed Orbit) fittings were done with the rest of the orbit data.   Fig.5 shows the orbit before 
and after LOCO fittings.  Beta-functions obtained from this measurement are shown in Fig.6. We can see 
that the beta-waves are significantly reduced now in the Recycler ring, compared to those in Fig. 2 

 



            

 

                                                Fig 5 orbits before and after LOCO fittings 

 

Fig. 6 Beta-functions obtained from differential orbit measurement at working point of (25.455, 24.464) 
after TROMBONE program ungraded. 

Extend Trombone tuning range 

It was asked to explore beam’s performance at the lower end of tune diagram if the intensity of the stored 
pbars is increased to 600E10. However, maximum tune changes can only be approximately Δνx =-0.06, 
Δνy=-0.18 with the limit of qudrupole current up to 6.5 Amperes. Several suggestions were proposed. 
With the upgraded program, it was found that if the given tune change is  Δνx =-0.2, Δνy=-0.2, the current 
of 9 quadrupole circuits would be in:  

I1,I2,…,I9 = (5.984,  -9.308,  8.900,  -8.762,  6.018,  -8.007,  8.810,  -9.913, 6.225) 

If we install one more pair of trim quads at the existing location, the current of each circuit will be 
brought down to less than5.0 Amperes. It would be working for us to adjust the tunes down to (.20 ~ .25) 
region, and it would be easiest way to extend trombone tuning range. 

During 2007 Summer Shutdown, two additional quadrupoles were installed at each pair of the existing 
trim quads location, shown in Fig.7 

  



 

                                        Fig.7 New trombone section from MRK601 to MRK609. 

 

 

         
                                 
                   Fig 8. The expected tunes and the measured tunes (the respective Schottky spectrum) 

 

We updated Recycler lattice for code OPTIM and MAD with the new trombone structure, and modified 
the MATHEMATICA program so that it accommodated the new trombone structure. The general 
equations with new trombone structure are as follows: 
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Consol application program TROMBONE was also modified for the new trombone structure, one of the 
tune settings and the respective Schottky spectrum are shown in the Fig 8. 

Differential orbits of 48 correctors were taken at the tunes set to current working point (0.4593, 0.4657) 
and (0.4146, 0.4299), which is corresponding to the settings of zero current of 9 groups of the 
quadrupoles.  LOCO (Linear Optics from Closed Orbit) fittings were done with all the orbit data.. Beta-
functions obtained from orbit measurement for the Recycler with new trombone structure at current 
working point and with Zero trombone quad settings are shown in Fig.9 and Fig. 10. 

 

Fig. 9 Beta-functions with new TROMBONE structure at current working point (25.4593, 24.4657) 

 

Fig. 10 Beta-functions with new TROMBONE structure at current working point at (0.4145,0.4299)  

Life time vs. tunes in the region of 0.2-0.25 of tune diagram 
 
We did lifetime scanning in the region of 0.2-0.25 of tune diagram. Fig 5 shows the current working 
points and the scanning points in the tune diagram of the Recycler ring. The procesure to measure the 
lifetime was as follows:  

(1) Inject beam and debunch;  
(2) Move a horizontal and a vertical jaw into the acceptance of the machine (and beam) so that 

emittance growth rates due to tunes will directly cause a change in lifetime quickly. A 
recommended set of values is: R:WALLJ = 10mm, R:TOPJ = 9.5mm.  

(3) Measure lifetime with D44 for at least 15 minutes using exponential fitting.  



(4) To change tunes, move the jaws back a few millimeters; use console application program 
TROMBONE to change tunes to new targets, and move the jaws back in to limit acceptance.  

 
We have checked the closed orbit at lower tunes, and compared it with the closed orbit at current working 
point tunes, however, we should have also verified that the default orbit (with minimal sextupole and 
quadrupole feed down) is intact.  The reason we did not do it was that we didn’t want to mess up the 
corrector’s setting for our present operation conditions). 

            
 
 
It’s found that there is about 10% deviation of measured tunes from expected tunes at lower tune region, 
which need larger current settings of trim qaudrupoles. It must be resulted in the linear approximations in 
obtaining linear equation. It needs to find a way to correct this deviation. Since the study time was 
limited, we only scanned  3 points in tune diagram. The lifetime obtained by the way we scanned was 3.0 
Hrs at current working point (0.463 ,0.468) and  about 2.1 hrs at both (0.232 ,0.244) and ( .242 ,.232). It 
did not show too much difference in lifetime, although the closed orbit at lower tunes was not smoothed 
well.  
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

The deviation of measured tunes from expected 
 

(base tunes:0.414,0.430) 
 

Expected 
(Mathematica)  

Optim  gives  Measured   

Qx, 
Qy  

DQx, 
DQy  

Qx, 
Qy  

DQx, 
DQy  

Deviation 

from expected  
Qx, 
Qy  

DQx, 
DQy  

Deviation 

from expected 

0.164, 
0.18  

-0.25, 
-0.25  

0.181, 
0.200  

-0.233,  
-0.230  

0.017, 
0.022  

0.186, 
0.207  

-0.228, 
-0.223  

 

0.218, 
0.223  

-0.186, 
-0.207  

0.241, 
0.235  

-0.173,  
-0.195  

0.013, 
0.012 

0.232,  
0244  

-0.182, 
-0.186  

 

0.225, 
0.210  

-0.189, 
-0.22  

0.239, 
0.222  

-0.175,  
-0.208  

0.014, 
0.012  

0.242, 
0.232  

-0.172, 
-0.198  

 

0.463, 
0.468  

0.049, 
0.038  

0.466, 
0.467  

0.052, 
0.037  

0.003, 
0.001  

0.463, 
0.466  

0.049, 
0.036  

 

0.462, 
0.473  

0.048, 
0.043  

0.465, 
0.472  

0.051,  
0.042  

0.003, 
0.001  

0.462, 
0.473  

0.048, 
0.043  

 

 
 
Conclusion 
 
The Recycler lattice has been measured and corrected to what we expected one with little beta-wave. The 
trombone tuning range was extended to reach the lowest tune of 0.2 in both planes by installing one more 
pair of the trim quads. The console application program has been upgraded several times according the 
trombone structure, and it works well in operation now. 
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