
LFSC – Linac Feedback
Simulation Code

Valentin Ivanov

Version 1.0 – January 2008

Fermilab, IL 60510, U.S.A.

FERMILAB-TM-2409-CD

ABSTRACT

The computer program LFSC (« Linac Feedback Simulation Code ») is a
numerical tool for simulation beam based feedback in high performance linacs. The code
LFSC is based on the earlier version developed by a collective of authors at SLAC
(L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during
1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and
NLC projects1,2,3. It can simulate as pulse-to-pulse feedback on timescale corresponding
to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and
Beam Delivery System.

The code LFSC is running under Matlab for MS Windows operating system. It
contains about 30,000 lines of source code in more than 260 subroutines. The code uses
the LIAR4 (“Linear Accelerator Research code”) for particle tracking under ground
motion and technical noise perturbations. It uses the Guinea Pig code to simulate the
luminosity performance.

A set of input files includes the lattice description (XSIF format), and plane text
files with numerical parameters, wake fields, ground motion data etc. The Matlab
environment provides a flexible system for graphical output.

1 P.N.Burrows et al., Nanosecond-timescale intra-bunch-train feedback for the linear collider, SLAC-
PUB-11185, 2004
2 L.I.Hendrickson et al., Beam-based Feedback for the NLC Linac, SLAC-PUB-10493, 2004
3 A.Seryi et al., Effects of dynamic misalignment and feedback performance of luminosity stability in linear
colliders, SLAC-PUB-9896, 2003
4 LIAR – A Computer Program for the Modeling and Simulation of High Performance Linacs,
SLAC/AP-103, 1997

2

Contents

1. MATHEMATICAL BACKGROUND …………………………………….. 4
a. The Kalman filter algorithm for optimal control …………………….. 4
b. General feedback model in LFSC …………………………………….. 6
c. Exponential model ……………………………………………………. 7

2. THE CODE STRUCTURE …………………………………………………. 8
a. Calibration module FB_CAL_LINAC ……………………………….. 8
b. Simulation module SIM2 …………………………………………….12

3. GETTING START …………………………………………………………..15

4. RESULTS OF NUMERICAL SIMULATION FOR ILC PROJECT…… 19
a. Simple benchmarks …………………………………………………..19

i. Static perturbation, perfect BPM resolution ………………… 20
ii. Dynamic response ……………………………………………21
iii. Effect of BPM resolution …………………………………… 22
iv. Stability of exponential model vs. Gain and Weight factors …23

b. Short linac of 50 FODO cells …………………………………………27
i. Vertical emittance under GM with no feedback ……………...27

ii. Effect of BPM resolution ……………………………………..28
iii. Effect of time intervals ……………………………………….30

c. Entire ILC linac of 114 FODO cells ………………………………….31
i. Effect of feedback control for 10 hrs of GM, model B ….........31

ii. Effect of initial misalignment …………………………………32
iii. Effect of beam and quad jittering ……………………………..33

3

1. MATHEMATICAL BACKGROUND

a. The Kalman filter algorithm for optimal control

Kalman filters are based on linear dynamical system discretised in the time
domain. They are modeled on a Markov chain built on linear operators perturbed by
Gaussian noise. The state of the system is represented as a vector of real numbers. At
each discrete time increment, a linear operator is applied to the state to generate the new
state, with some noise mixed in, and optionally some information from the controls on
the system if they are known. Then, another linear operator mixed with more noise
generates the visible outputs from the hidden state. The Kalman filter may be regarded as
analogous to the hidden Markov model, with the key difference that the hidden state
variables take values in a continuous space (as opposed to a discrete state space as in the
hidden Markov model). Additionally, the hidden Markov model can represent an
arbitrary distribution for the next value of the state variables, in contrast to the Gaussian
noise model that is used for the Kalman filter. There is a strong duality between the
equations of the Kalman Filter and those of the hidden Markov model. A review of this
and other models is given in Roweis and Ghahramani (1999).

In order to use the Kalman filter to estimate the internal state of a process given only a
sequence of noisy observations, one must model the process in accordance with the
framework of the Kalman filter. This means specifying the matrices Fk, Hk, Qk, Rk, and
sometimes Bk for each time-step k as described below.

Model underlying the Kalman filter is shown in Figure 1. Circles are vectors, squares are
matrices, and stars represent Gaussian noise with the associated covariance matrix at the
lower right.

The Kalman filter model assumes the true state at time k is evolved from the state at
(k − 1) according to

 xk = A xk-1 + B uk-1 + wk-1,

where

• Ak is the state transition model which is applied to the previous state xk−1;
• Bk is the control-input model which is applied to the control vector uk;
• wk is the process noise which is assumed to be drawn from a zero mean

multivariate normal distribution with covariance Qk.

At time k an observation (or measurement) zk of the true state xk is made according to

zk = Hk xk + vk,

4

where Hk is the observation model which maps the true state space into the observed
space and vk is the observation noise which is assumed to be zero mean Gaussian white
noise with covariance Rk.

The initial state, and the noise vectors at each step {x0, w1, ..., wk, v1 ... vk} are all
assumed to be mutually independent.

Many real dynamical systems do not exactly fit this model; however, because the Kalman
filter is designed to operate in the presence of noise, an approximate fit is often good
enough for the filter to be very useful. Variations on the Kalman filter described below
allow richer and more sophisticated models.

Figure 1. Computational scheme for the Kalman Filter algorithm.

The Kalman filter is a recursive estimator. This means that only the estimated
state from the previous time step and the current measurement are needed to compute the
estimate for the current state. In contrast to batch estimation techniques, no history of
observations and/or estimates is required. It is unusual in being purely a time domain
filter; most filters (for example, a low-pass filter) are formulated in the frequency domain
and then transformed back to the time domain for implementation. In what follows, the
notation represents the estimate of the state at time n given observations up to, and
including time m.

The state of the filter is represented by two variables:

• xk, the estimate of the state at time k;

Process
Measure-

ment

u
1

u
2

u
n

x
1

x
2

x
m

state

Predict the state ahead
 x

k
= A x

k-1
+ B u

k

Project the error covariance
ahead
P

k
 = A P

k-1
 AT + Q

Compute the Kalman gain
 K

k
 = P

k
HT (H P

k
 HT + R)-1

Update estimate with measurement z
k

 x
k
= x

k
+ K

k
 (z

k
– H x

k
)

Update the error covariance
 P

k
= (I – K

k
 H) P

k

z
1

z
2

z
s

5

• Pk, the error covariance matrix (a measure of the estimated accuracy of the state
estimate).

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses
the state estimate from the previous timestep to produce an estimate of the state at the
current timestep. In the update phase, measurement information at the current timestep is
used to refine this prediction to arrive at a new, (hopefully) more accurate state estimate,
again for the current timestep.

Two feedback models were implemented in the code LFSC: general and exponential one.

b. General feedback model in LFSC

General model is described by the system of linear equations

)
~

(
~~

1 kkkk XHyLuXX −+Γ+Φ=+

where
Φ – system matrix describes the dynamics of
accel. Model;
Γ – control input matrix;
L – Kalman filter;
H – output matrix;
K – gain matrix;
N – controller-ref.-input matrix;
X – physical state vector;
u – actuator vector;
r – vector of system set points;
g – gain factor.

).~(

,
~~

1

1

kkkk

kk

uuguu

NrXKu

−+=
+−=

+

+

6

c. Exponential model

The corresponding equations for exponential model are

where
ek – exponential change,
y – BPM reading,
w – exponential weight.

It will be shown later that exponential model for some cases has higher
convergence rate than general one, but there is a correlation between gain and weight
factors to provide the stability of iterations for this model.

).~(

,
~~

1

1

kkkk

kk

uuguu

NrXKu

−+=
+−=

+

+

),()](
~

[*
~

1 ryryXweX kkk −+−−+=+

7

2. THE CODE STRUCTURE

The code LFSC has two separate modules. First one makes the calibration for
each feedback loop. It saves the calibration results to some files are used in further
simulations. Second one does the linac simulation for N beams, where N=1,2,3. First two
beams correspond to electrons and positrons. Setting N=3 means that both beams and
Interaction Point (IP) are included into the feedback loop. Each FB loop is an
independent variable parameter for optimal control.

The current version of LFSC code has considerable difference from the original
SLAC version in respect of data organization. Earlier version had two main
disadvantages: 1) the code and data were not totally separated, many data items were
embedded in the code; 2) too many input files, many of them contains just one number.
Most part of these problems was resolved in current version, but user should make
changes in the code, when he changes the BPM and corrector’s arrangement in FB loops.

a. Calibration module FB_CAL_LINAC

The module reads a set of initial data using subroutine INITLIAR, then makes the
calibration with Fb_CALIB, creates the feedback matrices with Fb_DES, and save the
results into the file FBKCAL_LINAC.MAT.

Figure 2. Flowchart for the calibration module FB_CAL_LINAC.

Fb_Fb_cal_linac.
m

Fb_des(ibeam)

Fb_calib(ibeam)

initliar

Save fbkcal_linac.mat

ibeam = 1, N

Fb_global

Fbstruc

initializes the LIAR code

moves each corrector in turn to set up
the model for feedback system

Creates the feedback matrices for
further simulations

8

The file FBKCAL_LINAC.MAT includes two structures of dimension N:
Fb_GLOBAL with the parameters set for each beam and FBSTRUC with the feedback
data. Structure FBSTRUC of dimension Nloop includes the feedback matrices and other
data for each loop.

Figure 3. An example of feedback data FB_GLOBAL and FBSTRUC.

Procedure INITLIAR reads the lattice, loads wakefields and makes setup for
beam and Twiss parameters. As the result it produces output files for emittance and rays.

9

Figure 4. Initialization for the LIAR code.

Figure 5. Procedure FB_DES creates the global matrices, and saves the results
into structures FB_GLOBAL (global parameters) and FBSTRUCT (feedback structure).

nlc_mlbd_basic nlc_mlbd_config

Read lattice Emit.out

Rays.out

Restore_config

Load wakes

Beam setup

Twiss setup

10

Iloop=1:nloops

Fb_des_input

Fdesign

Fb_copy_mats

Fb_calc_trans

Save

Save

Fb_global

Fbstruct

Create matrices for each

Calculate cascade transport

Get matrices into global

Figure 6. Routine FDESIGN creates the global matrices for FB simulations.

Figure 7. Routine FDES_CHECK – feedback step simulation.

Load Init Scale in Plant Gain Kalman

Check

Scale out Write to disk

Good_enough=1

|gamma|>0

i=1:npstate

Wgtstate(i)>0

Dcbreject(i) ¬[-3,-200]

Good_enough=0

Good_enough<1

Print(for bad results)Plot Graphs

Feedback step simulationInit_misc

Gamma, wgtstate

Calculates an actuator
response state

Fdes_check

Fdes_act

Iter=1:niter

Calculates the state vector X

[y2, t2, x2] = lsim

Get physical state

Convert to expected raw state

Calculates dc bias rejection

11

b. Simulation module SIM2

Module SIM2 provides the beam based feedback simulation for a linac with
Nbeams. Parameter Nbeams=1 corresponds to a single beam linac, Nbeams=2 – electron-
positron linac, Nbeams=3 – IP simulation to maximize the luminosity factor. The
algorithm makes particle tracking pulse-by-pulse up to Npulses with using subroutine
SIM2_ITER, then it saves the results into two files. File SAVESIM.MAT includes the
results of last run: two structures FB_STRUC described above, and FB_RESULTS,
which keep the data for beam position and emittance for each pulse. It will be renewed in
the next run.

Figure 8. Flowchart for linac simulation module SIM2.

The file EMIT<…>.MAT keep the results for emittance evolution. It has the
additional parameters in its name:

• Fn – n=0 – no feedback; n=1 – FB loops in main linac (default); n=2 – includes
BDS cascades; n=3 – dispersion correction (loads the dispersion initial data); n=4
– measure dispersion every 40 pulses on 10th pulse, dispersion correction;

• Sn – n – number of GM seeds;
• In – mode of quad pulse jitter (n=0,…,18; 0 – no jittering);

Sim2
SetMarks Fb_inittn Ibeam=1:nbeams

Setup GM model Get rid of perturb & step

Dofeed Fb_initfb

Fb_zeroit

Dofeed=2
Disable X bds fb

Nbeams>1NLC_track(nbeams)
NLC_track(4)

Gp_out
Ibeam=1:nbeams

Ibeam=1
Mat_liar

Mat_liar2
Get_bpm Get_bpmd Get_emit Fb_results

Exp_wgt>

-

-

-

-

+

+

+

+
Feed_fast Read lattice Fast collide Put corrects

-
iter=1:npulses

Sim2_iter
Save savesim.mat

Save emitf!_s!_j!_ij!_bm!.mat

Linac simulation

12

IP simulation

• IJn – mode of klystron jitter (n=0,…,10; 0 means no jittering);
• BMn – n – number of beams.

This trick makes it possible to keep a bunch of different results for different set of
input parameters with no rename of files.

Figure 9. Routine SIM2_ITER provides the feedback iterations.

Dofeed
=4

Meas_eta Set_rf

Save dispersion

iter=ipu
lse

Fb_do_perturb

Pulsejit
>0

put_dyn

Keep corrs

Read lattice

tpulse>
dt

t = t + dt

GM_move
+ +

+

+

- -

-

put_dyn

Quad.dx+=newjit

Read lattice

+

Pulsejit
>0

track

Dofeed
>0

fb_feed

get_emitget_BPM Save results anal_bunch

nbeam
s>2

fb_feedIP

Save GP in&out

Save corrs

Save gmj.mat

Savesim.mat

 return

+

+

-

-

13

Figure 10. Routine FB_FEED calculates the correction vector for different FB models.

Bunch.out Bunch data: SLICE#, X, XANG, Y, YANG, EX, EY, E, Q, Z, NE,
XX, XXA, XAXA, YY, YYA, YAYA, XSIZ, XPSZ, YSIZ, YPSZ

Emit.out Tracking data for beam1: N, S, X, Y, EMX, EMY, PSIX, PSIY,
BETAX, BETAY, BMAGX, BMAGY, XLUMR, YLUMR, E,
SIGE/E, SIGX, SIGXP, SIGY, SIGYP, SIGE, ALPHAX, ALPHAY,
BEAMYAW, BEAMPITCH

Emit0.out Similar tracking data for unjittered reference beam (X=Y=0.0)
Train.out Train data: # BUNCH, X, XANG, Y, YANG, JX, JY, EX, EY, E, Q,

EX_ALL, EY_ALL, YNORM, YPNORM, XSIZ, YSIZ, XPSIZ,
YPSIZ

Bpmnames.out List of names for the BPM’s
Xcornames.out List of names for X-correctors
Ycornames.out List of names for Y-correctors
Matliarlog.out Log-file for LIAR code running
XSIF.ERR Xsif parser error-file
XSIF.STR Xsif parser log-file
Xsiftemp.out Temporary output file for parser
gm.out Ground motion histograms

Figure 11. Structure of the output files for the code LFSC.

Dp = Phys_state – setpoint;

State = exp_change + exp_wgt (state – Dp)+Dp

Du = -gain * NMPT * state;

U = U + Du;

 exp_change = BMPT * Du; (initialize to 0)

Act = U + Act
ref

;

Xcor_data = Act(ixcor); Ycor_data = Act(iycor).

Meas = [xbpm_data; ybpm_data]

Phys_state = HHPT * (meas – meas
ref

)

fb_fastfeedfb_feed1

14

 i=1:nloops

Calcra(iloop,ibeam)

 i=1:nloops

Exp_op

fb_feedexp1Exp_op

 return

 i=1:nloops

3. GETTING START

We assume that user can get all the information about the LIAR code from its
User’s Guide.

Typical configuration of file system for the code LFSC has the main folder which
contains a set of subfolders:

• MFILES – Matlab source code for LFSC program;
• MFILES_WINDOWS – wrappers, interface for the LIAR code;
• FDESIGN – Matlab source code for the Kalman Filter algorithms;
• INFILES – common initial data (Ground Motion models A,B,C,J,K; lattice files

with extension XSIF; longitudinal and transversal wakes; energy dispersion, GM
seeds);

• RUN<n> - set of initial data and results for different runs.

You should create new folder for a new problem, then copy there the following
set of files from any RUN-folder:

• FB_CAL_LINAC.M, SIM2.M – calibration and simulation modules;
• MATLIAR.DLL, MATLIAR2.DLL – dynamic linked libraries for the LIAR

code;
• ELECTRONC.CFG, POSITRONC.CFG – configuration settings for electron and

positron beams;
• TRLRFILE.DAT – path and name for the wakefield data;
• XSIFLINE.DAT – the name of beamline at corresponding lattice file;
• PARAMS.TXT – file with the global parameters of the problem.

We provide the example of PARAMS-file with brief comments:

jitter pulsejit model itime time_pulse wakes beams bunches pulses dofeed loops seeds BPMres gain exp_wgt espread bpmx bpmy
quadx quady
 0 0 "B" 0 0.2 0 1 1 50 1 5 10 0.1 0.8 0.33 1 0.0 300.0
 0.0 0.0

Here
• JITTER – klystron jitter model (0 – no jittering);
• PULSEJIT – pulse jitter model (0 – no jittering);
• MODEL – Ground Motion model (model “B”);
• ITIME –
• TIME_PULSE – repetition rate for bunch train (0.2 sec = 5Hz);
• WAKES – number of wake files (0 – no wakes);
• BEAMS – number of beams (1 – main linac simulation);
• BUNCHES – number of bunches in a train (1 bunch);
• PULSES – number of pulses (50 pulses - 50*0.2 = 100 seconds);
• DOFEED – FB mode (1 – FB for main linac, no dispersion correction);
• LOOPS – number of FB loops (5 loops);

15

• SEEDS – number of GM seeds (10 seeds);
• BPMres – BPM resolution (0.1 um);
• GAIN – gain factor for FB model (0.8);
• EXP_WGT – exponential weight (0.33; zero value means general FB model);
• ESPREAD – energy spread (1% of nominal energy of beam);
• BPMX – x-BPM initial misalignment (0 – perfect alignment);
• BPMY – y-BPM initial misalignment (300 um);
• QUADX – x-quad initial misalignment (0 – perfect alignment);
• QUADY - y-quad initial misalignment (0 – perfect alignment).

The LFSC run includes the following steps:

1. Run the Matlab application;
2. Enter the appropriate Run directory;
3. Load FB_CAL_LINAC.M file;
4. Load INITLIAR1.M file and make needed changes in BPM/Corrector arrangement at

lines 233-241, in FB_SETUP.M at lines 106-109 also;
5. Select the FB_CAL_LINAC.M file and run it using hot key F5 or menu item

“Debug/Run”;
6. Select the file SIM1.M to run linac simulation or file SIM2.M to run IP simulation,

then run it;
7. The simulation modules produce graphical results for beam position and emittance

using PLOT_RESULTS.M. Load it and make needed changes when you want to get
another or additional graphics.

16

4. THE RESULTS OF NUMERICAL SIMULATION FOR ILC PROJECT

The results presented here include some simple benchmarks and realistic
simulations for short lattice (50 FODO cells) and entire ILC lattice (114 FODO cells).
These calculations give an impression on the efficiency of beam based feedback
algorithms implemented in the code LFSC.

Figure 12 presents typical layout for some NLC FB structure.

Figure 12. FB device layout for 10 loops of 2 correctors (red cross)
and 2 BPMs (green circle) each in x and y directions.

Figure
13. The response
for stepwise

perturbation for each FB loop.

17

Figure 14. Parameters of low pass Kalman Filter.

Figure 15. Amplification ratio. Red – FB off; blue – FB on.

Figures 13-15 represent the step response and parameters of Kalman Filter for
each of feedback loops.

18

a. Simple benchmarks

We present one of the simplest tests, which include one FB loop with 2 correctors
and 4 BPMs in each direction. The lattice includes total number of 100 correctors and
101 BPMs. Train repetition rate is 5 Hz.

Figure 16. Simple test for short ILC structure with one FB loop.

Initially the lattice is perfectly aligned. The perturbation is made by the quad
number 50. It is moving with harmonic law in y-direction as Y50 = A cos(2π F t) with
amplitude A=25μm and varying frequency F=0-0.5Hz.

Correctors Quad BPMs

19

i. Static perturbation, perfect BPM resolution

Figure 17 shows static response (F=0) for stepwise perturbation depending of
varying gain factor G of general Kalman Filter model. Optimal value G=1 takes 35-37
pulses to reach more or less good aligned state.

Figure 17. Static response vs. gain for general FB model. Different colors
correspond to different BMPs. Two of them work in opposite phases.

The origin of FB delay is determined by the influence of limited pass band of
used Kalman Filter. It couldn’t be substantially reduced. Our results are in good
agreement with publications2 and5.

5 I.Reyzl, Simulation of Feedback for Orbit Correction, EPAC’96.

Gain= 0.1

Gain= 1

Gain= 0.5

20

ii. Dynamic response

By varying the perturbation frequency F, we can detect that upper limit for
effective FB control is factor of 50 less than repetition rate, as it shown at Figure 18.

Figure 18. Dynamic response for general model of Kalman Filter.

F=0.01Hz

F=0.05Hz

F=0.1Hz

21

iii. Effect of BPM resolution

Our simulations show that BPM errors can be effectively suppressed by FB
system, when resolution value is 1 micrometer or less.

Figure 19. FB efficiency vs. BPM resolution for static perturbation.

Res = 1um

Res = 5um

Res = 0.1um

22

iv. Stability of exponential model vs. Gain and Weight factors

Our first runs for exponential FB model showed that unsuitable gain and weight
factors can produce the divergence in FB control. From the other hand, converged
process can produce big oscillations.

Figure 20. Different behavior of FB control for gain factor G=1.

Further study shows the lowering of G-factor can effectively suppress those
oscillations, and there is strong correlation between gain and weight factors, which can
provide stable control and effectively suppress the oscillations. Figures 21-22
demonstrate these features of exponential model. Comparing more flexible exponential
model with general one, one can see it takes 13-14 pulses to reach good alignment for
static response versus 35-37 pulses for general model.

Figure 23 demonstrate the efficiency of exponential model for harmonic
perturbations of different frequency.

Convergence. W = 0.35

Divergence. W = 0.3

23

Figure 21. Effect of Weight factor for static perturbation. Gain factor G=0.8.

W=0.33

W=0.5

W=0.2

24

Figure 22. Effect of Gain factor. Weight factor W=0.33.

G=0.5

G=0.9

G=0.75

25

Figure 23. Frequency response for exponential FB model; G=1, W=0.5.

F=0.125Hz

F=0.25Hz

F=0.05Hz

26

b. Short linac of 50 FODO cells

All further simulations for ILC lattice will have 5 FB loops. Each loop includes 2
x and y correctors with 90º phase shift between them to provide good control sensitivity
for any BPM position. We varied the number of BPMs in a loop, BPM resolution and
other parameters to study the FB efficiency.

i. Vertical emittance under GM with no feedback

We should simulate GM perturbation with no feedback control to get impression
how does FB work in different conditions. The result of this simulation is presented in
Figure 24.

Figure 24. One our of Ground Motion perturbation with no FB control.

27

ii. Effect of BPM resolution

Figures 25-26 demonstrate the effect of BPM resolution for different number of
BPMs in each loop. Our simulations show that vertical emittance < 20.7 for 8-bpm loop,
and it is < 23.7 for 4-bpm loop. As the signal is averaged over all BPMs in a group, more
BPMs can effectively suppress the BPM-reading errors.

Figure 25. Effect of BPM resolution for 4 BPMs in each loop.

These results have good correlation with BPM effect for a described before
simple static test.

Res=1um Res=5um

28

Figure 26. Effect of BPM resolution for 8 BPMs in each loop.

Beam position for
different time moments

Vertical
emittance

29

iii. Effect of time intervals

Our simulations for 1 hour and 10 hours of ground motion perturbations (model
“B”) and 1μm of BPM resolution shows that FB system can effectively neutralize the
influence of low frequency parasitic oscillations.

7

Figure 27. Vertical emittance and beam position for 1 hr and 10 hrs of GM
simulation with FB on and off.

Beam position at different time moments.

Beam position at different time moments.
10hrs

Vertical emittance. 1 hr of GM with FB

Vertical emittance. 10 hr of GM. No FB

30

c. Entire ILC linac of 114 FODO cells

i. Effect of feedback control for 10 hrs of GM, model B

The efficiency of FB system for entire linac is demonstrated in Figure 28. Here
we setup GM model “B”, simulation period is 10 hours and BPM resolution of 1μm.

Figure 28. The efficiency of FB control for entire linac.

Feedback off Feedback on

31

ii. Effect of initial misalignment

Figure 29 below shows the effect of random initial BPM-offset and quad
misalignment of 300 μm for beam position and vertical emittance of entire linac.
Simulation period for this case was 5 hours.

Figure 29. Effect of initial random misalignment for entire linac.

Beam position & V-emittance for perfect aligned linac Random initial misalignment is 300 um

32

iii. Effect of beam energy and quad jittering

The results of klystron and quad jittering simulations are presented in Figure 30.
These results show that jittering effect just add the noise, which could not be in control.

Figure 30. Effect of quad and klystron jittering for entire linac.

Vertical emittance. No Jitter

Vertical emittance & beam position with Quad jitter = 50 nm, energy jitter = 0.5%.

33

