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Abstract

Derbenev’s helical cooling channel is investigated by comparison of
analytical and numerical results including particle tracking and cool-
ing simulation. Optimization of the channel and estimation of its
ultimate potentiality are presented as well.

1 Introduction

Helical channel for ionization cooling of muons is proposed by Y. Derbenev
[1] and most minutely presented in Ref. [2]. Cooling simulation performed
by K.Yonehara et al. confirms the idea on the whole [3, 4]. However, detailed
analysis and comparison of analytical and numerical results are not developed
yet. This is an important issue because the theoretical analysis is based
essentially on paraxial approximation and therefore has restricted areas of
application. This is main objective of presented work including estimation of
ultimate properties of the channel and its optimization with help of analytical
methods, particle tracking and cooling simulation.

A compendium of some related formulae is given in Sec. 2. Most of them
coincide with similar expressions in [2], though partly different method and
notation are used to provide more convenience of comparison with numerical
results.
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Particle tracking and cooling simulation are presented in next sections.
It is assumed that the cooling is provided by ionization energy loss in a
gas of constant density which fills the channel. Investigation of betatron
motion is the main objective of Sec. 3–6 where the simplest accelerating field
is applied (“inductive regime”). RF regime is shortly considered in Sec. 7
demonstrating significant degradation of the cooler parameters. The results
are summarized in the Conclusion.

2 Some analytical formulae

Some general formulae are collected in this section in a convenient form to
use them for subsequent analysis and comparison with tracking/simulation
results. Most of them were obtained first in Ref. [1, 2].

2.1 Magnetic field and equations of motion

Components of the helical magnetic field in cylindrical frame z-r-θ are [2]:

Bz = −
∞
∑

n=1

BnIn(nκr) cos n(θ − κz) −B0, (1)

Br =
∞
∑

n=1

BnI
′

n(nκr) sinn(θ − κz), (2)

Bθ =
1

κr

∞
∑

n=1

BnIn(nκr) cosn(θ − κz) (3)

where In(X) is modified Bessel function of n-th order 1, Bn are arbitrary
coefficients, and 2π/κ is the helix period. Using z as an independent variable,
one can write equations of motion in the form:

d

dz

(

vzdr

dz

)

=
e

mγc

(

rBz
dθ

dz
− Bθ

)

+ rvz

(

dθ

dz

)2

, (4)

d

dz

(

vzrdθ

dz

)

=
e

mγc

(

Br − Bz
dr

dz

)

− vz
dr

dz

dθ

dz
(5)

1Only first kind functions are used in Ref. [1, 2] and in this paper. However, second kind
functions are acceptable also if the channel does not include line r = 0 being separated by
a coil.
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where γ is normalized energy. Relation of longitudinal velocity vz to total
velocity v will be used as 3rd equation:

vz

v
=

dz

vdt
=

[

1 +
(dr

dz

)2

+
(rdθ

dz

)2
]−1/2

. (6)

At motion in magnetic field, v and γ are invariable. Equation for energy will
be added later to take into account ionization energy loss and compensating
accelerating field.

2.2 Equilibrium helical trajectories

Series (1)–(6) has partial solutions which will be referred further as equilib-
rium ones:

r = R = X/κ = const, θ = κz (7)

where the helix parameter X depends on momentum p = mγv and satisfies
the equation:

(

1 + F (X)
1 +X2

X2

)√
1 +X2 =

κpc

eB0

. (8)

Used function F is the most important characteristic of the helical field:

F (X) =
1

B0

∞
∑

n=1

BnIn(nX) . (9)

Note that −B0[ 1 + F (X) ] is z component of the field on equilibrium tra-
jectory of radius R = X/κ.

2.3 Reference orbit and dispersion

Resolving Eq. (8), one can find dependence X(p) = κR(p) that is dispersion.
The equilibrium trajectory of momentum p0 is used below as a reference one.
Corresponding dispersion function D = p0R

′(p0) can be presented in the
form:

κD =
[ 1 +X2

0
] [ 2 −G(X0) ]

X0 [ 2 −G(X0) ] + [ 1 +X2
0 ]G′(X0)

(10)

where

G(X) =
X2 + 2(1 +X2)F (X)

X2 + (1 +X2)F (X)
. (11)
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It will be shown soon that this function is actually the coupling parameter of
betatron oscillations. With help of this function, Eq. (8) obtains the form:

√
1 +X2

2 −G(X)
=
κpc

eB0

.

2.4 Small oscillations

We represent general solution of series (1)–(6) in the form:

r = R0 + ρ , θ = κz +
κξ

√

1 +X2
0

X0

. (12)

where new variables ρ and ξ are normal deviations from the reference orbit.
In linear approximation, they satisfy the equations:

d2ρ

dz2
+Q2

ρκ
2ρ =

κG(X0)
√

1 +X2
0

dξ

dz
+ κ2R0

∆p

p
, (13)

d2ξ

dz2
+Q2

ξκ
2ξ =− κG(X0)

√

1 +X2
0

dρ

dz
(14)

where ∆p/p = (p−p0)/p0 is relative momentum deviation, and the tunes are:

Q2

ρ =
X2

0

1 +X2
0

+
X0G

′(X0)

2 −G(X0)
, Q2

ξ =
2 [ 1 −G(X0) ]

1 +X2
0

− X0G
′(X0)

2 −G(X0)
(15)

Note the relation D = R0/Q
2

ρ which is inherent also in symmetric ring
accelerators. Subindex ’0’ will be omitted below: X = X0, G = G(X0), etc.

2.5 Eigenmodes and eigentunes

General solution of system (13)–(14) is:

ρ = A1 cosψ1 + α2A2 sinψ2, ξ = α1A1 sinψ1 + A2 cosψ2 (16)

where ψ1,2 = κν1,2z + φ1,2, A and φ are arbitrary constants. Eigentunes
ν and coefficients α have to be found from the relations:

ν2

1,2 =
1

2

(

Q2

ρ +Q2

ξ +
G2

1 +X2

)

∓ 1

2

√

(

Q2
ρ +Q2

ξ +
G2

1 +X2

)2

− 4Q2
ρQ

2

ξ (17)
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α2

1,2 =
ν2

1,2 −Q2

ρ

ν2
1,2 −Q2

ξ

. (18)

Geometrically, the eigenmodes are elliptical helixes around the reference tra-
jectory with relation of axis ξ/ρ = α1 for 1st mode and ρ/ξ = α2 for 2nd
one. We will choose sign in Eq. (17) to get ν2

1
< ν2

2
at Q2

ρ < Q2

ξ and
vice versa. Then α2

1,2 < 1, and A1,2 are simply maximal deviations from the
reference line.

2.6 Integrals of motion

Squares of the amplitudes A1,2 in Eq. (16) are integrals of motion. For future
convenience, we represent them in the form A2

i = C2

i + S2

i where

C1 =
ν2ρ+ α2ξ

′

z/κ

ν2 + α1α2ν1

, S1 =
ρ′z/κ− α2ν2ξ

ν1 + α1α2ν2

, (19)

C2 =
ν1ξ + α1ρ

′

z/κ

ν1 + α1α2ν2

, S2 =
ξ′z/κ− α1ν1ρ

ν2 + α1α2ν1

, (20)

and ξ′z = dξ/dz, etc. In these terms, 4D rms emittance of the beam in space
of transverse coordinates – normalized momenta is:

ερ,pρ,ξ,pξ
= ε1ε2, ε1 = βγ

A2

1

β̂1

, ε2 = βγ
A2

2

β̂2

(21)

where β = v/c is normalized beam velocity, and β̂ can be treated as beta-
functions:

β̂1 =

√
1 +X2

κ(ν1 + α1α2ν2)
, β̂2 =

√
1 +X2

κ(ν2 + α1α2ν1)
. (22)

2.7 Cooling decrements

Beam cooling provided by ionization energy loss in a gas of constant den-
sity which fills the channel is considered in this work. Without stochastic
processes, this produces additional force:

~Fi = −Ei(p) ~p

p
(23)
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where Ei is ionization energy loss per unit length. For reference particle, this
force should be compensated by accelerating field. The simplest field which
has required properties and satisfies Maxwell equations is: 2

~Fa =
Ei(p0)~a√
1 +X2

, (az, ar, aθ) =
(

1, 0,
XR

r

)

. (24)

It will be used firstly for investigation of transverse cooling. Peculiarities of
FR cooling are shortly discussed in Sec. 7.

At assumptions (23)–(24), linearized equation for energy of a particle is:

d∆E

dz
= −

√
1 +X2

dEi

dE
∆E − EiXκρ√

1 +X2
(25)

where ∆E = E−E0 = β2E∆p/p is deviation of the energy from central value.
The additional force in Eq. (4)–(5) does not effect on the reference trajectory,
but changes equations of small betatron oscillations (13)–(14) which turn to

d2ρ

dz2
+Q2

ρκ
2ρ =

κG√
1 +X2

dξ

dz
− Ei

√
1 +X2

β2E

dρ

dz
+
κ2R∆E

β2E
, (26)

d2ξ

dz2
+Q2

ξκ
2ξ = − κG√

1 +X2

dρ

dz
− Ei

√
1 +X2

β2E

dξ

dz
− 2Eiκρ

β2E
− dEi

dE

X∆E

β2E
(27)

The cooling results in a damping of transverse amplitudes and energy devi-
ation, a process which we present in the form:

A2

1,2 and ∆E ∝ exp
(

−Eiλs

β2E

)

= exp
(

−Eiλ
√

1 +X2 z

β2E

)

(28)

where s = z
√

1 +X2 is the way measured along the reference trajectory, and
the factors λ are partial normalized decrements. Their sum can be found
with help of Jacoby theorem, and substitution ρ = D∆p/p in Eq. (25) allows
to separate energy decrement resulting in

λ1 + λ2 + λE = 2 + β2
d lnEi

d lnE
, λE =

XDκ

1 +X2
+ β2

d lnEi

d lnE
. (29)

2The field can be realized as a combination of inductive azimuthal component and
inductive or electrostatic longitudinal one. Therefore, further we will treat it as an “in-
ductive” field.
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The approximation

Ei ∝
1

β2
(30)

is acceptable in many cases because coefficient of proportionality depends
on momentum enough weakly to use its central value in practice. Then
equations (29) give:

λ1 + λ2 + λE = 2β2 , λE =
XDκ

1 +X2
− 2

γ2
. (31)

All the decrements could be found by substitution of a solution ∝ exp (iκνz) in
series (25)–(27) and by solution of obtained dispersion equation. This is sim-
ply in principle but general formula is extremely cumbersome. Therefore,
only concerned particular results will be presented in next sections.

2.8 Equilibrium emittances

With both the ionization cooling and multiple Coulomb scattering taken into
account, equilibrium rms amplitudes are:

〈A2

1,2〉eq =
Csct

2γλ1,2
(β̂2

1,2 + α2

2,1β̂
2

2,1), Csct =
1

mEi

d〈p2

⊥
〉

ds
(32)

wherem is muon mass, d〈p2

⊥
〉/ds is rms momentum of scattering in any trans-

verse direction per unit of path . Using Eq. (21), one can find equilibrium
emittances:

(ε1)eq =
βCsct(β̂

2

1
+ α2

2
β̂2

2
)

2λ1β̂1

, (ε2)eq =
βCsct(β̂

2

2
+ α2

2
β̂2

2
)

2λ2β̂2

(33)

Equilibrium rms energy spread is conditioned by longitudinal cooling and
straggling, and can be presented in the form:

(σE)2

eq =
E2β4(γ2 + 1)

2λEγ
Cstr , Cstr =

1

mc2Eiβ2(γ2 + 1)

d〈E2〉
ds

. (34)

Besides of this, straggling and dispersion bring some additions to the trans-
verse emittances:

(∆ε1)eq =
β(γ2 + 1)ν2

2
β̂2

2
κ2D2Cstr

2λ1β̂1(1 +X2)
, (∆ε2)eq =

β(γ2 + 1)ν2

1
α2

1
β̂2κ

2D2Cstr

2λ2(1 +X2)
.

(35)

7



Note that parameters Csct and Cstr depend only slightly on momentum like
coefficient of proportionality in Eq. (30). Further we will apply the values:

Csct = 6.9 × 10−3, Cstr = 2.0 × 10−4

which inhere in hydrogen at momentum 250 MeV/c. Note that general vari-
ables r, θ and corresponding momenta pr, pθ are used in the computer
code. Relations of the coordinates are given by Eq. (12), and corresponding
relations for the momentum components are:

p√
1 +X2

dρ

dz
= pρ = pr,

p√
1 +X2

dξ

dz
= pξ = pθ

√
1 +X2 − pX − pρκ

1 +X2

(36)

3 HCC without linear coupling

The nearest goal is a comparison and mutual checking of analytical and
numerical results. Globally uncoupled system G(X) ≡ 0 would be the most
convenient for this. However, it follows from Eq. (10) and (31) that λρ =
0 at any X in this case, a fact which makes impossible full analysis of the
cooling. Therefore, we consider in this section a locally uncoupled system
with reference radius X0 = 1 and parameters

G(1) = 0, G′(1) = 0.9, p = 264 MeV, κ = 2π/m, Ei = 17.3 MeV/m

Then the main solenoid field B0 = 5.53 T. The formulae of previous section
are applicable in this case at ν1 = Qρ = 0.975, ν2 = Qξ = 0.742, α1,2 = 0.

3.1 Field composition

According to Eq. (9) and (11), function F (X) should be composed from
Bessel functions to provide F (1) = −0.25, F ′(1) = −0.1375. Minimal set
includes 2 terms:

B1/B0 = −0.680, B2/B0 = 0.195

providing the field which is plotted in Fig. 1 by red line. However, it turned
out that dynamic aperture of this channel is rather small being compara-
ble with equilibrium beam size. Because of this, a noticeable particles loss
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Figure 1: Two- and three-
component longitudinal field on
the reference trajectory. Linear
field 1+F = 0.75−0.1375(X−1)
is shown for comparison.
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Figure 2: Dispersion and tunes vs
relative particle momentum at 3-
component field. High precision
tracking, distinction from theory is
less of 1 × 10−6 at ∆p/p = 0.
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Figure 3: Phase trajectories of transverse motion. Initial particle deviation
is taken in radius (left) or in azimuth (right), and corresponding trajectories
are plotted by solid lines. Attendant projections on another plane are plotted
by thin dotted lines of the same color.
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appears at the cooling simulation, hampering the analysis. Therefore, more
promoted 3-component field is taken for the investigation

B1/B0 = −0.733, B2/B0 = 0.294, B2/B0 = −0.040

providing blue line field in Fig. 1. 3

3.2 Dispersion and chromaticity

Normalized dispersion and tunes vs ∆p/p are plotted in Fig. 2. Dispersion is
found by solution of Eq. 8 with 3-component composed field. Tracking with
step 5 µm at betatron amplitude 0.1 mm is used to determine the tunes.
At ∆p/p = 0 analytical and numerical results differ not more of 10−6. Step
100 µm is used at cooling simulation providing tracking accuracy ∼ 10−4.

3.3 Phase trajectories

Phase trajectories are plotted in Fig. 3 at central particle momentum. The
variables ρ′ = dρ/dz, etc. defined according to Eq. (36) are used in the
graphs. At small amplitude, the trajectories are circles at this scale. This fact
is in a full agreement with Eq. (22) for beta-functions, resulting numerically:
βρ = 23.1 cm and βξ = 30.4 cm. Distortions at large amplitudes let us to
estimate dynamic aperture of the channel aperture as 0.4/κ ∼ 7 cm. Note
that without sextupole correction it is almost 2 times less.

3.4 Cooling decrements

Eq. (31) predicts the normalized cooling decrements:

λρ = 0.474, λξ = 1, λE = 0.250 .

At accepted ionization energy loss, corresponding cooling lengths ∆z are
21.1 m, 10.0 m, and 40.0 m. This is confirmed by single particle tracking
shown in Fig. 4. Solid lines represent the cooling when the only coordinate
is non-zero in the beginning and demonstrate full agreement with the theory.

3Following [2], we will treat these terms as dipole, quadrupole, and sextupole compo-
nents, though actually each Bessel function generates all nonlinearities on the reference
trajectory.
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Figure 4: Single particle track-
ing at ionization cooling without
stochastic effects. Dashed lines –
all variables 6= 0 in the beginning,
solid lines – only one of them 6= 0.
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tic effects. Solid lines – theory,
circles – simulation of 1000 parti-
cles. Gaussian distribution in all
degrees of freedom.
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Figure 6: Cooling simulation of
1000 particles. Solid lines – theory,
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More complicated case is when all the variables differ from 0 initially, a case
which is presented in the graph by dashed lines. Because actually G = 0 at
∆E = 0 only, there is transverse coupling at non-equilibrium energy which
results in noticeable oscillations of azimuthal amplitude and some redistri-
bution of transverse decrements. However, this effect is an odd function of
energy deviation, which appears only slightly in the beam. The statement is
confirmed by cooling simulation of 1000 particles which is presented in Fig. 5
together with theoretical data. In this case, the parasitic coupling causes
only tiny little changes of the transverse decrements.

3.5 Cooling emittances

According to Eq. (33)–(35), equilibrium emittances should be in this case:

(ερ)eq = 1.8 mm, (εξ)eq = 1.0 mm, (σE)eq = 8.6 MeV .

Expected evolution of the beam at zero initial emittances is shown in Fig. 6
by solid lines. Results of simulation of 1000 particles are shown also by circles
of the same color. Radial emittance and energy spread are in good agreement
with theory, but azimuthal emittance is about 25% more. Most probably, this
is the effect of coupling at non-equilibrium energy again, a statement which
is confirmed by simulation at excluded straggling. Corresponding azimuthal
emittance is presented by blue stars and much better meets the theory (the
change of radial emittance is not shown because corresponding numerical and
theoretical data are in full agreement, as before).

Cooling at non-zero initial emittances is demonstrated by Fig. 7 (strag-
gling included). It is seen that both radial and azimuthal decrements are
about the same in this case, a fact confirming parasitic transverse coupling.
There is particle loss about 30% especially at very beginning, suggesting small
acceptance of the channel 4 (a particle believed to be lost if its deviation ex-
ceeds 3σinitial in any direction, no decay loss). However, final emittances are
about the same as in Fig. 6.

4The loss is about 50% without sextupole correction
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4 Helical Cooling Channel with linear cou-

pling (Yonehara design)

The principal drawback of the coupling-free channel is very uneven distribu-
tion of decrements on degrees of freedom, because only radial oscillations are
involved into the emittance exchange. Transverse coupling should be used
to involve both transverse modes and to reach more uniform distribution. A
suitable design proposed by K. Yonehara [3] is analyzed below. In terms of
this paper, its main parameters are:

κ = 2π/ m, p0 = 250 MeV/c, X0 = 1, G0 = 0.1189, G′

0
= 0.1236.

According to Eq. (8) and (11), main solenoid field is B0 = 6.96 T in this case.
Ionization energy loss is accepted as large as 14.7 MeV/m at the simulation.
Other essential parameters will be presented at the analysis.

4.1 Field composition

Required parameters of the longitudinal field are: F (1) = −0.234, F ′(1) =
−0.217. They can be assured by 2-components field

B1/B0 = −0.5091, B2/B0 = 0.0777

which was proposed in Ref. [3] and is plotted in Fig. 8. The curve is more
smooth in comparison with previous example (Fig. 1). Therefore, sextupole
correction is not required now – a fact which is also noted in Ref. [3].

4.2 Dispersion and chromaticity

Normalized dispersion and eigentunes are plotted in Fig. 9 vs ∆p/p. At
∆p/p = 0 , theoretical/numerical values are: ν1 = 0.7423/0.7423, ν2 =
0.9150/0.9152, κD = 1.768/1.767. The dispersion function is about 2 times
bigger now then in Fig. 2, a property which provides more intense emittance
exchange and higher longitudinal damping.

4.3 Phase trajectories

Transverse phase trajectories are plotted in Fig. 10 at central momentum.
Variables Ci and Si defined by Eq. (19)–(20) are presented there, and Eq. (36)
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Figure 8: Two-component normal-
ized longitudinal field on the refer-
ence trajectory. Linear field 1 +
F = 0.766−0.217(X−1) is shown
for comparison.
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Figure 9: Dispersion and tunes vs
relative particle momentum at the
composed field. Tracking/theory
difference does not exceeds 0.02%
at ∆p/p = 0.
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Figure 10: Phase trajectories of transverse motion. Variables Ci and Si de-
fined by Eq. (19)–(20) are plotted. Only first eigenmode is initially excited in
the left-hand graph (solid lines), but second mode appears later due to par-
asitic coupling (dotted lines). Opposite case is considered in the right-hand
plot.
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is used to tie them to cylindrical coordinates. In full agreement with Eq. (19)–
(22), the modes are uncoupled at small amplitudes, and corresponding beta-
functions are: β1 = 28.0 cm and β2 = 23.3 cm. However, the coupling and
other nonlinear effects appear at more amplitudes resulting in distortions of
the trajectories. It allows to estimate the channel aperture as about 0.4/κ ∼
7 cm.

4.4 Cooling decrements

In this case, solution of Eq. (25)–(27) results in almost equal decrements of
the cooling:

λ1 = 0.552, λ2 = 0.564, λE = 0.581 .

Therefore, at ionization energy loss 14.7 MeV/m, characteristic cooling length
∆z should be 20.0 m for 1st transverse mode, 19.6 m for 2nd mode, and 19.0
m for energy. Results of tracking and cooling simulation without stochastic
effects are presented in Fig. 11 and 12 at the same format as in Fig. 4 and
5. The amplitudes and emittances of eigenmodes are calculated by Eq. (19)–
(21). Corresponding decrements differ from theoretical values not more then
by 2%.

4.5 Cooling emittances

According to Eq. (33)–(35), equilibrium emittances should be in this case:

(ε1)eq = 2.0 mm, (ε2)eq = 1.4 mm, (σE)eq = 5.2 MeV .

Simulation at zero initial conditions presented in Fig. 13 together with the-
oretical curves. Emittance of 2nd transverse mode is distinctly higher of the
expected theoretical value (blue line). A possible explanation is that used
theoretical eigenmodes are particularly true for reference energy and not fully
adequate if energy spread is present. It can be added in support that the
difference becomes less and does not exceed statistical error if the spread is
kept small by excluding of straggling.

Cooling simulation at non-zero initial emittances is presented in Fig. 14.
In this case, final emittances are almost the same as before though particles
loss about 20% is observed in very beginning, and energy spread of the beam
rapidly decreases at the same time. This allows to think that an excessive
energy spread of injected beam is the main reason of the loss, and acceptable
rms energy spread is about 40 MeV in this channel.
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Figure 11: Single particle track-
ing at ionization cooling without
stochastic effects. Dashed lines –
all variables 6= 0 in the beginning,
solid – only one of them 6= 0.

0 20 40 60 80 100
Z (m)

−6

−5

−4

−3

−2

−1

0

1

ln
(F

)

F = ε1 (mm)
F = ε2 (mm) 
F = σE (MeV)
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all degrees of freedom.

0 20 40 60 80 100
Z (m)

0

1

2

3

4

5

6

E
m

itt
an

ce

ε1 (mm)
ε2 (mm)
σE (MeV)

0 20 40 60 80 100
Z (m)

0

5

10

15

E
m

itt
an

ce
, t

ra
ns

m
is

si
on

ε1 (mm)
ε2 (mm)
σE/5 (MeV)
Transmission x 10

Figure 13: Circles – cooling simulation of 1000 particles at different initial
conditions. Hydrogen absorber, energy loss 14.7 MeV/m. Solid lines – theory.
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5 Shorter period channel

Beta-functions of the HCC should be proportional to its period which is the
only fundamental length-dimensional parameter. 5 This allows to believe
that equilibrium transverse emittance of cooled beam is about proportional
to the period. To check this statement, we consider the same channel as in
Sec. 4, but with twice shorter period (0.5 m instead of 1 m, solenoidal field
13.9 T at momentum 250 MeV/c). Results of the simulation presented in
Fig. 14 affirm the statement as a whole. However, comparison with Fig. 13
reveals that discrepancy with the theory is more at shorter period. An effect
of energy spread (which varies only slightly in these cases) is one of the rea-
sons. An additional investigation has demonstrated that average transverse
emittance coincides with theoretical value if the spread is kept small by ex-
cluding of straggling. However, difference of the emittances is still less by
factor about 5 in comparison with the theory, probably because of nonlinear
coupling which is another cause of the discrepancy. It is necessary to em-
phasize that dynamic aperture of the channel is proportional to the period
length as well, and initial beam emittance should be decreased to avoid an
excessive particle loss.
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Figure 14: Cooling simulation of 1000 particles at different initial emittances.
The same conditions as in Sec. 4, Fig. 13 except of period length.

5Cooling length is independent parameter, but it is not so important because force of
the ionization friction is relatively small in practice. Role of wavelength at RF acceleration
will be considered later.
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6 Lower energy

Beam momentum was rather high in previous examples, requiring large
solenoid field and resulting in large energy spread due to straggling. There-
fore, a decrease of the momentum looks as a reasonable way to improve HCC
characteristics. A channel of period 1 m at p = 183 MeV/c is considered in
this section as an example. Its parameters are taken to provide uniform
distribution of the cooling decrements:

X0 = 1, G0 = 0.1835, G′

0
= 0, B0 = 4.92 T, Ei = 11.2 MeV/m.

Then λ1 = λ2 = λE = 0.5, any partial cooling length ∆z = 20 m, and
normalized equilibrium emittances are:

(ε1)eq = 2.1 mm, (ε2)eq = 1.5 mm, (σE)eq = 3.5 MeV.

Following set of coefficients is used to generate the helical field:

B1/B0 = −0.4722, B2/B0 = 0.0653, B3/B0 = −0.0030

Results of the simulation are presented in Fig. 15 which should be compared
with Fig. 13. As it was expected, behavior and value of transverse emittances
are about the same, whereas final energy spread is reduced on about 30%.
However, the channel acceptance falls even more, compelling to decrease
initial emittances about 1.5 times to avoid an extensive particle loss. As
a result, merit factor decreases almost 2 times in comparison with higher
energy design.
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Figure 15: Circles – cooling simulation of 1000 particles, solid lines – theory.
Hydrogen absorber, ionization energy loss 11.2 MeV/m.
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7 Lower radius

HCC of less radius is considered in this section at beam momentum 183
MeV/c and period length 1 m. Its other parameters are:

X0 = 0.625, G0 = 0.3192, G′

0
= 0, B0 = 5.46 T, Ei = 13.4 MeV/m.

This set provides the same cooling decrements as before: λ = 0.5, ∆Z =
20 m. The following field coefficients are used at the simulation:

B1/B0 = −0.1918, B2/B0 = −0.3095, B3/B0 = 0.1

The results are presented in Fig. 16. Though the attained emittances are
less than in previous example (Fig. 15), two peculiarities should be noted.
Firstly, the discrepancy between the simulation and linear theory is more
now. In particular, one can conclude from the left-hand plot that emittance
exchange strongly falls off at z >∼ 20 m (or at σE >∼ 3 MeV). Secondly,
acceptance of the channel drops drastically at less radius resulting in more
particles loss at the same initial emittances (right-hand plots). Probably,
nonlinear effects form the basis of these discrepancies. This is confirmed by
Fig. 17 where transverse phase space is presented in the same format as in
Fig. 10. It follows from the comparison that dynamic aperture of the low-
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Figure 16: The same as in Fig. 15 at less helix radius: X0 = 0.625 instead
of 1. Energy loss 13.4 MeV/m is taken to have the same cooling length
∆z = 20 m.
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radius channel is at least twice less. Therefore, a noticeable excursion of
X2 from 1 looks unreasonably.
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Figure 17: Phase trajectories of transverse motion. Variables Ci and Si de-
fined by Eq. (19)–(20) are plotted. Only first eigenmode is initially excited
in the left-hand graph (solid lines), but second mode appears later due to
parasitic coupling (dotted lines). Opposite case in the right-hand plot.

8 RF acceleration

Peculiarities produced by RF acceleration are discussed in this section. Be-
cause an engineering design is not a goal of this consideration, we will use
traveling wave approximation at frequency f . Then acceleration field (24)
has to be changed on

~Fa =
Ei0~a

√

1 +X2
0

⇒ Ei0~a
√

1 +X2
0

(cosφ− S sinφ), S =

√

√

√

√

(eV ′)2

E2

i0

− 1 (37)

where V ′ is accelerating voltage per unit of length, φ = 2πf∆t – phase
deviation of considered particle from reference one. As a result, Eq. (25) for
energy obtains the form:

d∆E

dz
=

2Ei

√
1 +X2

Eβ2γ2
∆E − EiXκρ√

1 +X2
− EiS

√
1 +X2 φ (38)
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where assumption (30) is used and subindex ’0’ is omitted. It is easy to show
that the phase satisfies the equation:

dφ

dz
=

2πf

v

(

Xκρ√
1 +X2

+
Xdξ

dz
−

√
1 +X2

β2γ2

∆E

E

)

(39)

Eq. (27) for azimuthal variable changes as well obtaining the form:

d2ξ

dz2
+Q2

ξκ
2ξ = − κG√

1 +X2

dρ

dz
− Ei

β2E

(√
1 +X2

dξ

dz
−2κρ−dEi

dE

X∆E

Ei
−SXφ

)

(40)

8.1 Synchrotron oscillations

The cooling channel considered in Sec. 4 is taken below for the numerical
investigation at f = 200 MHz, eV ′ = 2Ei = 29.5 MeV/m. Other parameters
are the same as in Sec. 4.

At commonly used approximation of uncoupled synchrotron and betatron
oscillations, the values

ρ =
D∆E

β2E
, ξ = −dEi

dE

R2∆E

XQ2

ξβ
2E

have to be substituted to Eq. (38)–(39) resulting in

d∆E

dz
= −EiS

√
1 +X2 φ+

(

κDX

1 +X2
− 2

γ2

)

Ei

√
1 +X2∆E

β2E
,

dφ

dz
=

2πf

β2E

[(

κDX√
1 +X2

−
√

1 +X2

γ2

)

∆E +
2EiR

2

β2γ2EQ2

ξ

d∆E

dz

]

Related phase trajectories are shown in left-hand Fig. 18 According it, pa-
rameters of small synchrotron oscillations are:

Period length ∆z = 7.3 m, “Beta function” β̂E =
∆(ct)

∆E
= 0.57

cm

MeV

at theoretical values 7.31 m and 0.568 cm/MeV. However, betatron oscillation
strongly interfere in the picture. The statement is illustrated by right-hand
Fig. 18 which is obtained by solution of full set of equations at ρinit = 2 cm
(typical betatron amplitude near statistical equilibrium). One can expect
that observed jitter of the traces will result in noticeable increase of the
synchrotron emittance.
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Figure 18: Phase plane of synchrotron oscillations. Left/right graphs – with-
out/with betatron oscillations taken into account.

8.2 Cooling decrements

At the RF regime, cooling decrements are comparable with synchrotron fre-
quency and somewhat differ from the “induction” ones:

λ1 = 0.677, λ2 = 0.491, λE = 0.529 .

Corresponding effective damping lengths are:

∆z1 = 16.6 m, ∆z2 = 22.5 m, ∆zE = 20.1 m

Tracking and simulation without stochastic effects are presented in Fig. 19–
20. Squares of amplitudes of a single particle are shown in Fig. 19 at the
same format as in Fig. 11. At zero betatron amplitudes, behavior of the
amplitudes is in good agreement with theory (solid lines). However, the
synchrotron amplitude is very modulated at non-zero betatron amplitudes
coinciding with the theory in average only. It cannot be doubted that the
dependence of phase φ on transverse coordinates is a reason of the modula-
tion. It almost disappears at an averaging on large number of particles as
it is seen in Fig. 20, where cooling simulation of 1000 particles is presented.
Calculated decrements are very close to theoretical ones, too.

22



0 20 40 60 80 100
Z (m)

−7

−6

−5

−4

−3

−2

−1

0

1

ln
(F

)

F = A1

2
 (mm)

F = A2

2
 (mm)

F = AE

2
 (mm)

Figure 19: Single particle track-
ing at ionization cooling without
stochastic effects. Dashed lines –
all variables 6= 0 in the beginning,
solid – only one of them 6= 0.
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Figure 20: Circles – cooling sim-
ulation without stochastic effects.
1000 particles, Gaussian distribu-
tion in all degrees of freedom.
Solid lines – theory.

8.3 Cooling emittances

Transverse equilibrium emittances are determined by Eq. (33) as before,
and similar expression should be used for synchrotron emittance instead of
Eq. (34):

(εE)eq =
β̂Eσ

2

E

mc2
=
β̂EEβ

4(γ2 + 1)

2λE
Cstr

At Csct = 6.9 × 10−3, Cstr = 2 × 10−4, and βE = 0.57 cm/MeV, calculation
gives about equal emittances:

ǫ1 ≃ ǫ2 ≃ ǫE ≃ 1.65 mm.

Results of simulation and some theoretical curves are presented in Fig. 21.
It is seen that transverse emittances exceed the theoretical values by ∼ 20%
that is about as at “induction” acceleration (and for the same reasons, see
Sec. 4). Synchrotron emittance exceeds theoretical one significantly more –
by factor 1.7 – 1.8. This is not particularly surprising because of perturba-
tion caused by transverse motion and shown in Fig. 18. It follows from these
figures as well, that rms energy spread and emittance cannot exceed about

23



0 20 40 60 80 100
Z (m)

0.0

1.0

2.0

3.0

4.0
E

m
itt

an
ce

, B
un

ch
 s

iz
e

ε1 (mm)
ε2 (mm)
εE (mm)
σt/2 (cm)
σE/2 (MeV)

0 20 40 60 80 100
Z (m)

0

5

10

15

20

25

E
m

itt
an

ce
, S

iz
e,

 T
ra

ns
m

is
si

on

ε1 (mm)
ε2 (mm)
εE (mm)
σt (cm)
σE (MeV)
Transm. x 10

Figure 21: Circles – cooling simulation of 1000 particles at different initial
conditions. Solid lines – theoretical emittances.

30 MeV and 40 mm, if particles fill the separatrix at constant phase den-
sity. Approximately 18 MeV/22 mm truncated Gaussian beam was used for
cooling simulation presented in right-hand Fig. 21, causing 40% particles loss
just after injection. About double diminution of the parameters looks rea-
sonably because of mentioned difference of distributions and perturbations
of synchrotron oscillations. Nevertheless, it should be noted that almost 3
times more rms energy spread is acceptable at the “induction” acceleration
(see Fig. 13).

More detailed analysis of these problems and RF optimization requires
additional investigations which are not an object of this work.

9 Conclusion

• Reasonable momentum range of the Helical Cooling Channel is p = 200−
−250 MeV/c. More momentum requires more magnetic field and leads to
more energy spread and 6D emittance. Less momentum allows to decrease
these parameters; however, the channel acceptance falls even faster, which
circumstance requires to lower injected emittance and leads to dilution of
merit factor.
• Optimal helix radius is about L/2π where L is period length of the channel.
Enlargement of the radius causes growth of transverse beta-functions and
emittances, its reduction results in degradation of the channel acceptance.
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• Homogeneous distribution of the cooling decrements on degrees of freedom
creates nearly optimal cooling conditions and requires rather strong coupling
of radial and azimuthal betatron oscillations.
• With hydrogen absorber, achievable transverse emittance is (1.8–2)×10−3L that
is 1–2 mm at L =0.5–1 m.
• At optimal design, betatron acceptance exceeds the equilibrium emittance
by factor 6–8 at reasonable particles loss.
• Required solenoid field is

B (T) ≃ 0.03
pc (MeV)

L (m)

that is 6–7 T at L = 1 m and 25–30 T at L = 24 cm. Helical field is about
4–5 times less on the reference helix. It depends on radius and certainly more
on the coils; however, it is an engineering problem which is beyond the scope
of this work.
• Energy spread 4–6 MeV is achievable at integrated (“inductive”) accel-
erating. However, significant degradation is observed at FR acceleration,
probably because of dependence of the RF phase on transverse coordinates
and momenta. The problem requires an addition investigation.
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