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Abstract. Scaling laws of the emittance growth factor (EGF) for a beam crossing
the 6th order systematic space-charge resonances and the random 4th order resonance
driven by octupoles are obtained by numerical multi-particle simulations. These scaling
laws can be important in setting the minimum acceleration rate, and the maximum
tolerable resonance strength for the design of the non-scaling fixed-field alternating
gradient (FFAG) accelerators.
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1. Introduction

Fixed-field alternating gradient accelerators (FFAGs) were first proposed in the
1950’s [1], but the idea has soon been abandoned by favoring high energy accelerators
with the construction of the Alternating Gradient Synchrotron (AGS) at Brookhaven
National Laboratory. Recently the FFAG idea has been revived as high beam power
is in demand. The beam pulse repetition rate in an accelerator is determined by the
ramping rate of the pulsed guide-field and the achievable voltage in rf cavities. The
FFAGs have an important advantage over conventional synchrotrons owing to the fact
that the guide field is constant so that the repetition rate can be made considerably
higher up to a kHz.

The original scaling FFAG design requires large magnet aperture with high
nonlinear magnetic fields in order to maintain constant betatron tunes in the ramping
cycle. For example, the 150-MeV FFAG constructed recently in Japan has a radial
beam excursion from 4.4 to 5.3 m in an accelerating cycle from 12 MeV to 150 MeV,
where the betatron tunes are v, € (3.69,3.80) and v, € (1.14,1.30). The difficulties in
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the magnet design can be partially overcome by the non-scaling design [2], where linear
fields are employed leaving the betatron tunes to vary as the beam energy increases.
The non-scaling design has been considered as a favorable candidate for the acceleration
of the muon beams, where the acceleration rate can be very high because of its small
rest mass.

Recently, the non-scaling FFAG has been considered as a proton driver. For
example, Ruggiero suggested to use three concentric FFAGs as a proton driver to replace
the Brookhaven AGS [3] for reaching a final beam power of more than 10 MW. For
each FFAG, the beam closed orbit has a radial excursion of less than 18 c¢cm during
the acceleration cycle. The betatron tunes vary from v, , = (40.0, 38.1) to (19.1, 9.3)
during acceleration. As shown in Fig. 1, the ramping cycle will cross both the systematic
4th and 6th order resonances, 4v, = P, 4v, = P, 2v, + 2v, = P, 6y, = P, 6v, = P,
v, +2v, = P, and 2v, + 4v, = P, where P = 1306 is the periodicity of the lattice.
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Figure 1. Tune diagram of FFAGs proposed by Ruggiero [3] to replace the
Brookhaven AGS. Notice that the betatron tunes of the FFAGs ramp from
(Vg v;) = (40.0, 38.1) to (19.2, 9.3) crossing the systematic 4th and 6th order
resonances.

For the proton driver in the non-scaling FFAG design, the betatron tune-ramp rate
is approximately given by

Av, . ] D\ v,. AE (1)
An R ) 232E An’

where D/R is the ratio of dispersion function to the ring’s radius and AE/An is the

energy gain per revolution, which depends essentially on the achievable rf voltage in
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cavities. During the acceleration cycle, the beam motion encounters many resonances.
The beam quality is an important issue as systematic and random resonances are crossed.

Recently, Lee pointed out that the systematic nonlinear resonances driven by the
self-space-charge force may cause substantial emittance growth when the resonances
are crossed [4]. He demonstrated a simple scaling property for the emittance growth
across the 4th order space-charge resonance. A later article by Lee et al. shows that
parametric linear and nonlinear resonances driven by random field errors also lead to
emittance growth depending on how fast these resonances are crossed [5].

The purpose of this paper is to continue the investigation of emittance growth
on crossing the systematic 6th order resonances as well as the parametric 4th order
resonances driven by random nonlinear magnetic fields. We would like to establish
scaling laws for these resonances. Given a space-charge tune shift and a resonance
strength, we wish to obtain the minimum resonance crossing rate so that emittance
growth remains tolerable.

The paper is organized as follows. In Sec. 2, we layout our model of multi-particle
simulation calculations. The effect of emittance growth due to crossing the 6th order
systematic resonances driven by the self space-charge force is studied in Sec. 3. The
effect of random 4th order resonance driven by octupole-like nonlinearity is examined
in Sec. 4. The conclusion is given in Sec. 5.

2. The Model

Our investigation bases mostly on multi-particle simulations. The lattice used here
is similar to that of the Fermilab Booster, which can be modeled as 24 superperiod
FODO-cells, composing of 48 combined-function F-magnets and 48 combined-function
D-magnets. The betatron functions are §,r = 40 m, f,r = 8.3 m at the center of
the F-magnets and 8, p = 6.3 m, 8,p = 21.4 m at the center of the D-magnets. The
dispersion functions are D, p = 4.5 m and D, p = 2.54 m at the mid-point between two
F and two D magnets respectively. The betatron tunes will be varied according to the
requirement of the simulations. Four-by-four transfer matrices are employed for each
period from the center of two D-magnets to the center of the next two F-magnets and
from the center of the two F-magnets to the center of the next two D-magnets, thus
completing a FODO cell.

The transverse distribution is assumed to be bi-Gaussian all the time. At the end of
each revolution turn, the transverse rms beam radii and the position of the beam center
are computed from the multi-particle phase space distribution. Then the transverse
rms emittances are calculated. These informations are used to compute the space-
charge force, which is applied at each F-magnet set and D-magnet set in the succeeding
revolution turn. This procedure has the advantage that the noise in the calculation of
the radii is smoothed out in one turn, so that the number of macro-particles used in the
simulation, usually 2000, need not be too large. The Gaussian-distribution assumption
is certainly not self-consistent. However, this assumption simplifies the space-charge
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force and speeds up the simulations tremendously.

2.1. Space-Charge Force

Since the emittance growth rate is usually much faster than a synchrotron period,
this justifies the performance of only 2D simulation for a slice of the beam at the
longitudinal bunch center. For a beam with linear particle density N and bi-Gaussian
charge distribution
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with o, . being the rms horizontal and vertical beam radii including contribution coming
from momentum dispersion, the transverse 2D space-charge potential is
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is the space-charge perveance, with ry being the particle classical radius and 3 and v the
relativistic parameters. In the simulation, we set, for a bunch containing N particles
and rms length o5, N = Ng/ V2ro,. The space-charge force kicking the particles can
be obtained by differentiation. Thus each beam particle passing through a length ¢
experiences a space-charge kick
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It is straightforward to demonstrate that F, ;. and F, ;. can be expressed analytically
in terms of the complex error function. Unfortunately, the application of the analytic
expression is cumbersome, because it exhibits an apparent singularity whenever o, = o..
The space-charge potential can be expanded as
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with r = o0, /0,, where the first term inside the curly brackets represents the linear force,
while the second and third terms drive, respectively, the 4th and 6th order resonances.
It is not possible, however, to truncate the expansion just up to the order of resonances
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that we wish to study. This is because the truncated space-charge force is accurate
only for particles close the beam center and it will increase without limit for particles
far away. To solve this problem, an effective space-charge force is introduced for the
present investigation:
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This effective space-charge force reproduces exactly the linear and quadrupole parts of
the space-charge force in the round beam geometry, and possesses the property that it
vanishes when the particle is far away from the beam center. This effective space-charge
force has the disadvantage that it rolls off too fast away from the beam center. Worst
of all, it is not derivable from a potential. However, we think that the approximation
should be adequate, because 95% of the particles reside inside two ¢’s of the beam and
emittance growths concerning the crossing of resonances that involve the mixing of the
horizontal and vertical phase spaces are not addressed here.

3. Systematic 6th Order Resonance

The beam is injected at the rate of 2 x 10 protons per turn. Thus, 100-turn injection
implies 2 x 103 particles in the beam or Ng = 2.3 x 10! particles in each of the 84 rf
buckets. A bunching factor of B = 0.25, defined as the ratio of averaged beam current
to beam peak current, will be used. Actually, all the discussions in this paper depend on
the ratio Ng/B or the maximum linear space-charge tune shifts, but not on Ng and B
separately. The injected protons are bi-Gaussian distributed with initial horizontal and
vertical normalized rms emittances of ey s = 8.33 X 10~% 7m. The initial bare betatron
tunes are v,9 = 4.25 and v,q = 4.30. Since we are interested only in emittance increase
across resonances, the kinetic energy of the beam particles is kept constant at 1 GeV
during the tracking, while the betatron tunes are allowed to ramp starting from some
specific turn according to some specific ramping rate so that they become v,y = 3.85
and v, = 3.90 at turn 1200. The emittances at turn 1200 are read and are divided by
the initial emittances to give the emittance growth factors (EGFs). In order to minimize
all other inference to the space-charge driven systematic resonances, all random fields
errors and nonlinear fields in the magnets are turned off.

3.1. Resonance Strengths

After Floquet transformation, the terms in the space-charge potential, Eq. (6),
responsible for the 6th order resonances can be expressed in terms of action-angle
variables in the form

1
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where £ is an integer and R is the radius of the accelerator ring. In above, |G| and

Xmne are the amplitude and phase of the resonance strength and they are computed by
integrations around the accelerator ring:
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where ¢, . = fo ds/f,,. are the Floquet phase advances. These strengths are to be

evaluated just after injection before the crossing of any resonances. There are two
contributions to the resonant strengths: space charge and the lattice of the accelerator.
For simulation with equal horizontal and vertical emittances to start with, like what we
are doing here, the space-charge contribution can be factored out leaving behind the
dimensionless reduced resonant strengths g,,,s according to
KR
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where €ms = €xrms/(87) is the unnormalized rms emittance. Here, K .R/(4€mms) is just
the linear Laslett tune shift for a round beam geometry and ¢,,,, depends on the lattice
only.

In our simulations, the effective space-charge force of Eq. (7) is used, and these
resonant strengths are somewhat different from those in Eq. (9). In our model, space-
charge kicks are applied at each magnet set, or 48 times in a turn. Following the same
procedure, these reduced resonant strengths for the systematic resonances 6v, = P,
6v, = P, 4v, + 2v, = P, 2v, + 4v, = P are found to bel
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I Since the effective space-force force is not derivable from a potential, |g4sop| and |ge4p| can assume
alternate forms depending whether they are derived from integration over x or z. Thus, numerically
they can be |gs2p| = 1.68 x 1073 or 7.48 x 1072 and |g24p| = 2.40 x 1073 or 6.94 x 1073, By the same
token, the effective space-charge force gives, for the 4th order sum resonance, |gaap| = 4.03 x 1072 or
3.38 x 1072. Because of this ambiguity, sum resonances are not investigated here with the effective
space-charge force.
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Since the horizontal and vertical emittances are equal, they can further be simplified to,
with neglect of momentum width,
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where r = 1/r' = 0,/0, = \/./Bs They are indeed dependent on the lattice functions
only as promised. For our model, numerical evaluation gives§ |gsop| = 6.15 x 1073,

lgosp| = 4.65 x 1073, |gaop| = 1.68 x 1073, |gasp| = 2.40 x 1073, which are to be
compared with the 4th order resonant strengths |gsop| = 7.02x 1072, |gosp| = 6.04x 1072,
lgop| = 4.03 x 1072 Due to statistical fluctuation, the horizontal and vertical
emittances will be slightly different, and these resonant strengths will be slightly different
accordingly. Because of the separation, we can adjust the magnitudes of the reduced
resonant strengths as necessary by assigning different values for the betatron functions
Bs,. at the space-charge kick locations. It is important to point out that the model
employed here is independent of the radius of the accelerator ring.

The investigation reported in this paper does not include momentum width. When
momentum width is included, however, the separation of lattice dependency from space
charge is not so exact. But the separation should remain good provided that the
momentum width is much smaller than the betatron emittance.

3.2. Tracking

Tracking has been performed with 2000 macro-particles for 1200 turns. Figure 2 shows
a sample tracking with 100-turn injection at bare tunes v,y = 4.30 and v, = 4.25.
Starting from turn 200, the tunes are ramped downwards linearly at the rate of 0.0004

§ Using the exact space-charge potential of Eq. (6), these strengths are |geop| = 1.81 x 1073,
lgo6p| = 1.71x1073, |gaop| = 1.27x1073 |gaap| = 1.81x 1073, |gaop| = 2.85x 1072, |goap| = 2.74x 1072,
|gaap| = 0.33 x 1072, The two-kicks per period approximation is assumed.
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Figure 2. (Color) Top-left: After 100-turn injection at 2.0 x 10 per turn at
bunching factor B = 0.25, bare tunes are ramped downwards from (v,0,v,9) =
(4.30,4.25) starting from turn 200 to (3.90,3.85) at turn 1200 (ramp rate
—0.0004 per turn). Systematic resonances 6v,0 = P and 6v,0 = P (P = 24 is
the lattice periodicity) are crossed at turns 950 and 825, respectively. Bottom-
left: Emittance growths are observed when the resonances are crossed. Right:
Horizontal and vertical phase-space distributions at turn 900, showing the 6th
order resonances.

per turn until they reach 3.90 and 3.85 at turn 1200. The top-left plot shows both
the bare tunes and space-charge depressed tunes as functions of turn number, while
the bottom-left plot shows the evolution of normalized rms emittances. The systematic
resonances 6,9 = P and 6, = P (P = 24, the lattice periodicity) are crossed at turns
950 and 825, respectively, at the moment when the corresponding emittances begin to
level off. In the plot Avg., and Av,. . represent the linear horizontal and vertical space-
charge tune shifts. After injection and before resonances set in, they assume the values
Avge, = 0.309 and Avs,., = 0.290. Both the horizontal and vertical emittances start to
grow about 150 turns before turns 950 and 825, and become level off after that. As the
emittances begin to grow, the beam size increases and the space-charge tune shifts are
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Table 1. Various 6th order resonance strengths arising from assigning different
betatron functions at magnets where the space-charge kicks are applied.

Bor (m) Bor (m) Bip (m) Bp (m) |gsop| |gosp|
40.0 8.3 6.3 214  6.18x107% 4.63x1073
35.0 10.0 10.0 35.0  4.70x1073 4.67x1073
32.0 10.0 10.0 32.0  4.29x107% 4.27x1073
25.0 10.0 10.0 25.0  3.24x107% 3.22x107°
24.0 11.0 11.0 24.0 2.70x107% 2.69x1073
22.0 14.0 14.0 22.0 1.51x107% 1.50x 1073
22.0 15.0 15.0 22.0 1.27x107% 1.26x1073
21.0 15.0 15.0 21.0 1.11x10™% 1.11x1073
20.0 15.0 15.0 20.0 9.48x107* 9.42x10*
18.0 15.0 15.0 18.0  5.98x10~* 5.94x10~*
17.0 16.0 16.0 17.0 1.98x107* 1.97x1074

reduced. The reduced resonance strengths are |ggop| = 0.00618 and |gosp| = 0.00463,
where P = 24 is the lattice periodicity. The plots on the right show the particle
distribution in the transverse phase spaces at turn 900. Six islands are clearly seen in
the bottom-right plot for the vertical phase space just slightly ahead of turn 950 when
the 6th order resonance is crossed. The top-right plot shows the horizontal phase space
distribution just after crossing the horizontal 6th order resonance. We see that particles
are pushed outwards forming an outside ring encircling the inside core, while the 6-fold
symmetry is still visible. It is important to point out that it is the bare tunes and not
the depressed tunes that determine when systematic resonances are crossed. For all the
simulations, no particle loss has been recorded.

3.3. Scaling

The tune-ramp rate is increased gradually from —dv,g .o/dn = 0.0004 with start-ramp-
turn-number increasing from 200 in steps of 40 in each simulation until the tune-ramp
rate reaches 0.01 with start-ramp-turn-number 1160. For each tune-ramp rate, the
resonance strengths are also varied by assigning different values of betatron functions at
the space-charge kicks according to Table 1. The emittance growth factor (KGF'), which
is the ratio of the emittance after to that before crossing the resonance, is computed for
each simulation. The results for 100-turn injection with EGF versus tune-ramp rate are
depicted in Fig. 3, top plot for the horizontal and bottom plot for the vertical. These
are log-log plots. When the EGF is slightly larger than unity, they show linear relations,
implying that a scaling power law relationship between EGF and the tune-ramp rate,
i.e., EGF= (—dv/dn)~® where a is a constant depending on the resonance strength
and the space-charge tune shift. Concentrate on one of these linear relationships, for
example the one with |ggop| = 0.00324, the blue data in the top plot of Fig. 3. Extend
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Figure 3. (Color) Horizontal (top) and vertical (bottom) emittance growth
factors across the 6th order systematic resonances 6v,9 = P and 6r,g = P
(P = 24, the lattice periodicity) are plotted as functions of tune-ramp rate
for various reduced resonance strengths ggop and gosp. The bunch intensity
is Ng = 23.8 x 10'Y at bunching factor B = 0.25 after 100-turn injection at

2.0 x 10! per turn.
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the linear relationship in the log-log plot to intercept the ramp rate axis at EGF= 1 and
denote the intercept as the critical tune-ramp rate, which is (—dv,/dn). ~ 0.01. At this
critical tune-ramp rate, the curve gives EGF=1.18. We can therefore draw the criterion
that if we can tolerate an EGF< 1.2, the tune-ramp rate must be less than this critical
value of 0.01 when the resonance strength is |geop| = 0.003241. The critical tune-ramp
rate is computed in the same way for data belonging to each resonance strength. We
find that for space-charge tune shift Av,., = 0.314, the power in the power law assumes
the value a = 0.56 at |gsop| = 0.00324 and decreases to ~ 0.15 as the resonance strength
decreases to 0.00060. For crossing the resonance 6v,, = 24, the power law gives a = 0.53
to 0.23. The critical tune-ramp rate is now plotted against the resonance strength in
Fig. 4, the top for the horizontal and bottom for the vertical.

Similar computations are carried out for different beam intensities. The EGF's for
70-turn injection (Ng = 16.7 x 101°, Ay, , = 0.222, Av,., = 0.206) are plotted in Fig. 5
and that those for 50-turn injection (Ng = 11.9 x 10'%, Av,., = 0.160, Av,., = 0.148)
in Fig. 6.

Power law relationships are also evident at these bunch intensities when the EGFs
are far from unity. The critical tune-ramp rates are computed and plotted also in Fig. 4.
The error bars arise mostly from the uncertainty of straight lines fitting the power laws
and the uncertainty of their intercepts on the dv/dn axis. The dashed lines in the plots
are linear fits to the data. From the plots, the critical tune-ramp rate can be read off once
the bunch intensity and 6th order resonance strengths are given. These plots provide a
guideline for the design of FFAGs in order to avoid excessive emittance growths while
crossing systematic 6th order resonances. For comparison with the systematic 4th order
resonance, we reproduce in Fig. 7 the relationships between critical tune-ramping rate
and resonance strength in Refs. [4] and [5]. We see that the relationships are not linear.
However, these results may not be in contradiction with ours. The 6th order resonances
are intrinsically weaker than the 4th, and the maximum ggop and gogp studied in this
paper have strengths less than one-sixth of the maximum g4p and gosp presented in
Fig. 7. The maximum critical tune-ramp rate is also about five times smaller. For the
smaller ranges of critical tune-ramp rate and g40p, the data in Fig. 7 can also be fitted
with linear straight lines.

3.4. Influence of Sum Resonances

The space-charge force will couple the two transverse spaces leading to sum resonances.
For the simulation depicted in Fig. 2, the two 6th order sum resonances 4v,q+ 2v, = P
and 2v,9 + 4,0 = P are crossed at turns 866.7 and 908.3. We see, however, only
slight increase in the horizontal emittance near turn 908.3 in the emittance plot, but
nothing at all near turn 866.7. This may indicate that the resonance strengths for these
two resonances are small from our effective space-charge force.|| As was referenced
earlier, there is no accurate way to compute the strengths for these two sum resonances

|| This does not necessary imply that the correct driving forces for these two sum resonances are small.
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Figure 4. (Color) Top: Critical tune-ramp rates across the systematic 6th order
resonance 6v,90 = P (P = 24) are plotted as functions of reduced resonance
strength |ggop| for various linear space-charge tune shifts or bunch intensities.
Bottom: Same for the resonance 6v,y = P (P = 24, the lattice periodicity).
Dashed lines are linear fits to the data.
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Figure 5. (Color) Horizontal (top) and vertical (bottom) emittance growth
factors across the 6th order systematic resonances 6v,9 = P and 6v,g = P
(P = 24, the lattice periodicity) are plotted as functions of tune ramp rate
for various reduced resonance strengths ggop and gogp. The bunch intensity
is Ng = 16.7 x 10! at bunching factor B = 0.25 after 70-turn injection of
2.0 x 10" per turn with linear space-charge tune shifts Av,., = 0.222 and

Avg,. . = 0.206.
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Figure 6. (Color) Horizontal (top) and vertical (bottom) emittance growth

factors across the 6th order systematic resonances 6v,9 = P and 6v,g = P

(P = 24, the lattice periodicity) are plotted as functions of tune ramp rate

for various reduced resonance strengths ggop and gogp. The bunch intensity
is Ng = 11.9 x 10! at bunching factor B = 0.25 after 50-turn injection of

2.0 x 10" per turn with linear space-charge tune shifts Avse o, = 0.160 and

Avg . = 0.148.



Emittance growth scaling laws in resonance crossing 15

0‘05_| T | T T T T | T T T T | T T T 1

. O Avg,=0.38 -

041 o Avg,=0.22 )
(ﬁ B p— 7
g i X Avg,=0.097 )
:.J - -
‘2 003 —
A . ]
Z, : i
o B i
N - —
3 B )
~— - -

0.01 L ]

|g0’4’¢|

Figure 7. (color) Curves of critical tune-ramp rate versus strength gosp of 4th
order resonance 4v,y = 24, reprinted from Refs. [4] and [5]. Note the nonlinear
behaviors of the curves. (Courtesy Lee, et al.)

because the effective space-charge force we use is not derivable from a potential. Since
the effective space-charge force does not follow from the Hamilton equations, Liouville
theorem breaks down when the two transverse phase spaces are coupled. Luckily the
effect of the two sum resonances is small in the simulation, and therefore should not
interfere much with the emittance growths across 6v,0 = P and 6v,9 = P.

To investigate further about the influence of the sum resonances, we perform a
similar simulation with the sum resonances occurring farther away from the two single-
space resonances. Everything is the same as the simulation in Fig. 2 except that the bare
vertical tune is raised to v,o = 4.45 at injection. Both tunes are ramped downward in
the same way at turn 200 at the rate of 0.0004 per turn. The beam intensity remains at
100-turn injection at 2.0 x 10! per turn. The tune and emittance evolutions are shown
in the left plots of Fig. 8. The resonance 6,5 = P is first crossed at turn 825, then the
sum resonance 4v,y + 2v.,o = P at turn 991.7, then the sum resonance 2v,¢ + 4v., = P
at turn 1158.3, and finally the resonance 61,y = 24 at turn 1325. Just as in Fig. 2, the
crossing of the sum resonance 4v, + 2v,0 = P (No. 3 in the emittance plot) just causes
very small increases in the horizontal emittance, while the crossing of the other sum
resonance 2v,, + 4v,0 = P (No. 4) causes slightly larger increases in the emittances.
However, the final vertical emittance is smaller than final horizontal emittance. There
can be two reasons why the EGF for crossing the resonance 61,9 = P is smaller than that
for crossing the resonance 6v,q = P. First the reduced resonance strength for the former
is smaller than the latter (|gogp| = 0.00465 versus |ggop| = 0.00615). Second, resonance
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Figure 8. (Color) Top-left: After 100-turn injection at 2.0 x 10! per
turn at bunching factor B = (.25, bare tunes are ramped downwards from
(V20, V20) = (4.25,4.45) from turn 200 at the rate of 0.0004 per turn. Bottom-
left: Evolution of normalized rms emittances. Systematic 6th order resonances
are crossed at turn 825 for 6v,9 = P, turn 1325 for 6v,9 = P, turn 991.7 for
vy + 2v,0 = P, and turn 1158.3 for 2v,0 + 4,0 = P (P = 24 is the lattice
periodicity). Right plots are the same simulation, but starting with bare tunes
(Vz0, V20) = (4.50, 4.30). The resonances are crossed at turn 1450 for 6v40 = P,
turn 950 for 6v,9 = P, turn 1283.3 for 4v,9 + 2v.,9 = P, and turn 1116.7 for
2uz0 + 4v,g = P.
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6vy0 = P is crossed first. With the growth of the horizontal emittance, the horizontal
beam size increases and the vertical space-charge force driving the coming resonance
6v.9 = P becomes smaller. However, this argument does not work for the simulation in
Fig. 2, where the EGF is larger than across the resonance resonance 6v,y = P, although
this is also the last resonance to cross (final emittance enyms = 42.5 X 107% 7m here
versus 50.3 x 107% 7m in Fig. 2).

The results of another simulation are shown in the right plots of Fig. 8. The beam
intensity and tune-ramp rate are the same as before. The only difference is the choice
of initial bare tunes r,q = 4.50 and v, = 4.30. Here in the emittance plot we see
resonance 6v,5 = P is first crossed at turn 950, followed by resonance 2v,q + 4v.0 = P
at turn 1116.7, resonance 4v,q + 2v,o = P at turn 1283.3, and finally 61,9 = P at turn
1450. As in the previous simulation (left plots) the crossing of the second sum resonance
initiates larger emittance growth than the first sum resonance. However, the order of
crossing the two sum resonances is now reversed. As for the resonance 6v,y = P, the
emittance growth is larger than in the previous simulation (left plots) because it is the
first resonance crossed. We also find the final horizontal emittance to be the same in the
two emittance plots and do not understand why it is not smaller because the resonance
6,9 = P is the last crossed and the space-charge force driving the resonance should
have been reduced after encountering vertical emittance growth for three resonances.

Next we try another scenario by ramping downwards only one bare tune but holding
the other constant. Although this scenario is not realistic in an FFAG, however, we
may see from it how the each of the two single-phase-space resonances behaves when
the other is not present. The left plots of Fig. 9 are for the simulation with horizontal
bare tune held fixed at v,y = 4.25 while the vertical bare tune is ramped downwards
at 0.0004 per turn. The emittance growths across the first resonance 6v.5 = P and the
first sum resonance 2v,y + 4r.o = P are very similar to what we have demonstrated in
previous simulations. The real difference comes from crossing the second sum resonance
AUpo + 2v,0 = P. Here the emittance growth has been very much larger. For the
simulation shown in the right plots of Fig. 9, v,y is ramped downwards and v,y is
kept constant. We also see a rather large increase in emittance when the second sum
resonance is crossed. It appears that when the crossings of the two single-phase-space
resonances 6,9 = P and 6r,p = P are separated farther apart in turn number, the
growth in emittance across the second sum resonance will be larger. Whether this
phenomenon is real or just fictitious as a result of the non-conservative effective space-
charge force is unclear.

In any case, we can draw a conclusion from these simulations that independent of
the separation of turns for crossing 6,0 = P and 6v.q = P, the emittance growth factors
can differ by at most £10%. This can be used as the magnitude of the errors in the
EGFs when we seek the critical tune-ramp rate by introducing the linear relationship
and intercept in the log-log plots of Figs. 3, 5, and 6.
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Figure 9. (Color) Left plots: Horizontal bare tune is kept constant at
vzo0 = 4.25, while the vertical bare tune is ramped downwards from v,q = 4.25
at the rate of 0.0004 per turn starting from turn 200 after 100-turn injection
at 2.0 x 10! per turn and bunching factor B = 0.25. Systematic 6th order
resonances are crossed at turn 950 for 6,y = P, turn 1262.5 for 2v,0+4v.g = P,
and turn 2200 for 4v,o 4 2v,0 = P (P = 24 is the lattice periodicity). Note the
large increase in emittance when the second sum resonance is crossed. Right
plots are the same simulation, but with the vertical bare tune held constant at
v,9 = 4.30 while the horizontal bare tune is ramped downwards from v, = 4.25
at the rate of 0.0004 per turn starting from turn 200. Systematic 6th order
resonances are crossed at turn 825 for 6v,9 = P, turn 1200 for 4v,o+ 2v.g = P,
and turn 1325 for 2v,0 + 4v,0 = P. Again large emittance increase is observed
when the second sum resonance is crossed.
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4. Fourth Order Parametric Resonance

Octupoles are very often necessary to provide betatron tune spreads for the Landau
damping of unwanted transverse instabilities. These octupoles are specially placed in
the accelerator ring to maximize tune spreads and minimize nonlinear effects. As a
result, the periodicity of the ring will be broken. Another source of octupole field comes
from random nonlinear errors in the quadrupoles. They break the periodicity of the
ring also. To mimic octupole effects, we simply add a single octupole in our model
accelerator ring at the D-magnet of the last period.

4.1. Resonance Strengths

The potential of the octupole fields is

1 B///
Vi(z, 2) = _EB—p(x4 — 62°27), (13)
where Bp is the beam rigidity. After Floquet transformation, the terms responsible for

the 4th order resonances can be expressed in terms of action-angle variables in the form

1
‘/AL(Jxa Jzu /l/)ma ¢Z7 9) ~ o E Z |(;40€|JI2 COS(4¢I — 00+ X40€)
¢
1
-5 Z |Goae| JZ cos(49), — €0 + xour)
¢

S (Gl con(20h & 2 — 0+ Xaa0), (14)
0+
where ¢ denotes any integer. In above |G| and Xyune are the amplitude and phase of
the resonance strength and they are computed by integrations around the accelerator
ring over all the octupole fields:

1 B////BQ '

Y Ay — v, + 00)|ds.

Gaor o6n By exp [j(4¢ v,0 + £0)]ds
1 B////32

= — z (40, — 41,0 + £0)]ds,

Gou 96n By exp [j(4¢ v.0 + £0)]ds,

"

Gasor =~ = xp (7126, £ 6. — (2w £ 20)0 + 0]}ds. (15)

These resonance strengths can be made dimensionless by introducing the reduced

resonance strengths

Imne = Gmnéerms (16)

where €., 18 the unnormalized rms emittance of the beam. Across a thin octupole of
length ¢, the change in horizontal and vertical divergences are given by

Az’ = $S5,(z* — 3u2?),
Az = $5,(2° — 32%z), (17)
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where the octupole strength is defined as S, = B ¢/Bp. For our test beam that has
a kinetic energy of 1 GeV, Sy = 50 m~ corresponds to a pole tip field of 0.035 T if
the octupole physical aperture is of radius 5 ¢cm and the octupole is of length 1 m.
With the octupole placed at a D-magnet with G, = 6.3 m, 5, = 21.4 m, the resonance
strengths at €., = 4.61 x 107% 7m (normalized 95% emittance ey = 50 X 107° rm) are
|ga0e] = 3.03 x 1072, |goae| = 3.50 x 1074, |gosar| = 1.03 x 1072, Since |gao¢| and |gorof|
are very much smaller, only the resonance 4v,y = ¢ will be studied here.

4.2. Tracking

Tracking is performed with 4000 macro-particles for 1200 turns. A larger number of
macro-particles are used here because we noticed spurious emittance growths at a small
number of macro-particles. Figure 10 shows a sample tracking with 70-turn injection
of 4 x 10" protons each at bare tunes v,y = 6.95 and v, = 6.80. Starting from turn
200, both tunes were ramped downward linearly at the rate of 0.0005 per turn. The
top-left plot shows both the bare tunes (dashes) and the space-charge depressed tunes
(thick dots) as functions of turn number, while the bottom-left plot show the evolution
of normalized rms emittances. The octupole strength is Sy = 20 m~3. We first see
a split in horizontal and vertical emittances during injection, which signals Montague
resonance, although the injection has been tailored to be at equal emittances. There is
a vertical emittance growth near the 4v., = 27 resonance at turn 300. This is verified
by the vertical phase space plot (of turn 270) at the top-right with the four-arm-like
structure. The next one encountered is the 2v,y + 2v, = 27 sum resonance at turn
450. Then the vertical hits the half-integer resonance 2r,o = 13 at turn 800, which
is verified by the vertical phase space plot (of turn 780) at the bottom right, where
we see particles streaming out in two directions. Then, there is another 4th order
sum resonance 2v,g + 2v,9 = 26 at turn 950 followed by another half-integer resonance
2v,0 = 13 at turn 1100. The 4th order resonance in the horizontal plane 4v,, = 27
should occur near turn 600, but it has almost been invisible, probably a result of the
small horizontal betatron function at the octupole (8, p = 6.3 m). It is important to
point out that the resonances crossed and the emittance growths always occur some
revolution turns before the turn numbers suggested by the bare tunes. For example,
4v,y = 27 predicts a resonance at turn 300, but the actual emittance growth peaks some
20 turns before that. The shifting of the resonance position comes from the depression
of the tunes in the presence of the space-charge force. These resonances are coherent
resonances of the beam envelope. Their references here by the bare tunes are just for
the sake of convenience.

Unlike the systematic resonances studied in the previous sections, there has been
severe beam loss of 6.2% during the 1200-turn tracking. The loss can be associated
with the crossing of each of the resonances with the exception of, maybe, the first one.
In the simulation, when the action exceeds a certain pre-determined value, the particle
is defined as lost and is removed from the simulation. The computation of emittances
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Figure 10. (Color) Top-left: After 70-turn injection at 4 x 10 per turn

and bunching factor B =

0.25, bare tunes are ramped downwards from

(V205 V20) = (6.95,6.80) starting at turn 200 at the rate of —dv,g .0/dn = 0.0005.
Octupole driven parametric resonances 4v,y = 27 and 2v,9 + 2v.,g = 27 are

crossed at turns 300 and 450, respectively. Half-integer resonance is crossed in

the vertical plane at turn 600. The bare tunes are shown in dashes while the

tunes depressed by linear space charge in thick dots. Bottom-left: Emittance

growths are observed when the resonances are crossed. Heavy beam loss is
observed. Right: vertical phase-space distributions at turn 270 (top) and 780
(bottom), demonstrating the crossing of 4v,9 = 27 and 2v,5 = 13, respectively.
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might become inaccurate in the presence of particle loss. This is because particles
outside a core are sometimes pushed outward by the nonlinear force and become lost
leaving behind a core that might have emittances that are rather small. This explains
why emittances appear to decrease in the emittance plot in Fig. 10. In our study of
emittance growth across the resonance 4v,, = 27, we will include only those simulations
where no particle loss is recorded across the resonance. This also explains why we are
not able to have octupole strength stronger than Sy ~ 50 m—2.

There are three parameters in the study of emittance growth crossing the octupole
driven resonance 4v,, = 27: the beam intensity, the octupole strength, and the tune-
ramp rate. For the beam intensity, we study simulations of 70-turn injection with
1 x 101, 2 x 10, 3 x 10, and 4 x 10 protons per turns. They correspond to bunch
intensity 8.33x 109, 16.7x 10, 25.0x 10'°, and 33.3x 10'°. The bunching factor and the
beam kinetic energy have always been chosen to be B = 0.25 and 1 GeV, respectively.
At the normalized 95% emittances of 50 x 1079 7m, the corresponding linear space-
charge tune shifts are (Avg.,, Avs..) = (0.112, 0.104), (0.224,0.207), (0.335,0.311),
and (0.447,0.414), respectively. The octupole strength is varied from Sy = 10 m™ to
50 m—3. The tune-ramp rate is varied from —dv/dn = 0.00005 to 0.006.

4.3. Scaling

The simulation results for the four beam intensities are depicted in Fig. 11 and 12 as
log-log plots. When the EGF is slightly larger than unity, the log-log plots show linear
relations, implying that a scaling law relationship between the EGF and the tune-ramp
rate, i.e., EGF= (—dv/dn)~*, where a is a constant depending on the resonance strength
and the space-charge tune shift. Here, a varies from —0.35 to —0.65, not by so much
as for the 6th order systematic resonance. We extend this linear relationship to cut
the —dv,/dn-axis to obtain the critical tune-ramp rate. In general at these critical
tune-ramp rates, EFG is < 1.3.

For each bunch intensity, the critical tune-ramp rate is plottedq in Fig 13 as a
function of the resonance strength |gosr|. The error bars reflect the uncertainty of the
linear relationships of the plots in Figs. 11 and 12 and their intercepts on the —dv, /dn-
axis. It is evident that the data in Fig. 13 can be fitted linearly within the error bars.
However, this may not be in contradiction to Fig. 7, because the resonance strengths
|goae| here are very small compared with the |gosp| in Fig. 7. Figure 13 provides some
guidelines for the design of FFAGs. For a given linear space-charge tune shift of the
beam and a given octupole strength, it tells us the minimum rate of crossing the 4th
order resonance in order that the emittance will not grow by an intolerable amount.
€ In a presentation of this paper to the 18th International Cyclotron Conference, the reduced resonance

strength gos¢ has been incorrectly normalized to the normalized 95% emittance. As a result, the
horizontal scale of Fig. 7 in Ref. [6] has been incorrect by the factor 6vy3 = 10.85.
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Figure 11. (Color) Emittance growth factors across the 4th order resonances
4v,o = 27 driven by an octupole as functions of tune-ramp rate for various
octupole strengths. The bunch intensity is 8.33 x 10'° (top) and 16.7 x 101°
(bottom) at the bunching factor of B = 0.25 after 70-turn injection. Data
encircled involve particle loss and are discarded in the critical tune-ramp-rate
analysis.
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Figure 12. (Color) Emittance growth factors across the 4th order resonances
4v,9 = 27 driven by an octupole as functions of tune ramp rate for various
octupole strengths. The bunch intensity is 25.0 x 10'° (top) and 33.3 x 101°
(bottom) at the bunching factor of B = 0.25 after 70-turn injection. Data
encircled involve particle loss and are discarded in the critical tune-ramp-rate
analysis.



Emittance growth scaling laws in resonance crossing 25

T T T | T T T T [ T T T T ] T T_T1
20 — o AVSC,Z:O'104 ,,’ —
< | ©Av,,=0.207 B
S | oAv_ =0.311 R S |
\>-</ | SC,Z 4 d N
c 15| ©A4v,,=0.414 d ]
© Pid yd
\N — ’ 7 ]
> — // < —
=] /, /07 %
I — b 71 -~ N
Q_ | // ~ // —
E 10— L7 -7 - ]
© | L7 P /§ |
ad 4 //O ///
(] B P Pre J_// —
[ — -, —
'2 | /,/ g/// ///§ ///é -
- 5| — ,,///4 /// ///6’/ ]
8 — ST g é/’/ 1
- — 7z 7 -~ ——
= — /// // /// —]
5 | B e :
- il | | ]
0 L1 I I I
0

1 2 3 -
Reduced Resonance Strength |g,,| (x10 4)

Figure 13. (Color) Critical tune-ramp rates across the octupole driven 4th
order resonances 4v,y = 27 are plotted as functions of reduced resonance
strength go4¢ for various bunch intensities. Dashed lines are linear fits to the
data.

5. Conclusions

For a ramping cycle in a non-scaling FFAG, betatron-tune crossing of many units
is unavoidable. The beam motion may cross many resonances in the transverse
phase spaces. We have performed simulations to study emittance growths on crossing
systematic 6th order resonances driven by the space-charge force as well as the
parametric 4th order resonances driven by an octupole-like magnetic field.

Just as in the investigation in Refs. [4] and [5], for the 6th order resonances 6v,o = P
and 6r,p = P, we discover linear scaling relationships in the EGFs and tune-ramp
rates when the two are displayed in a log-log plot. Critical tune-ramp rates are then
determined as functions of space-charge tune shifts and reduced resonance strengths
which are lattice dependent. These functions can serve as a guide for the design of non-
scaling FFAGs so that emittance growths across these resonances can be kept within
toleration.

For a lattice similar to that of the Fermilab Booster, the critical tune-ramp rates
for linear space-charge tune shifts of ~ 0.31 have been found to be of the order 0.011
per turn. This means that, when the particle kinetic energy is 1 GeV and the betatron
tune is v,9 = 4, the energy gain per revolution should be of the order of 10 MeV, which
is very large for the low frequency rf systems. For this reason, phase advance per cell
should not hit 7 for the 4th order systematic resonance and not cross 3 for the 6th order
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systematic resonance during the FFAG ramp cycle.

For the parametric 4th order resonance 4v,q = £, we also find linear scaling relations
in the log-log plot of the EGF versus tune-ramp rate. So far we have been able to work
with a small reduced resonance strength (|gose| < 3.5 x 107%), because severe particle
loss will occur when the resonance strength becomes larger. The corresponding critical
tune-ramp rate is ~ 2 x 1072 per turn for linear space-charge tune shift Avge, = 0.41.

If the protons in the FFAG are replaced by muons, such design restrictions do not
apply. This is because the space-charge tune shift or space-charge force at the same
particle energy will be reduced by mf, / mi = 78.9 times and the EGF's across resonances
will be greatly reduced accordingly.

Our results show that the critical tune-ramp rate versus reduced resonance strength
can be fitted by straight lines, both for the systematic 6th order resonances and the
parametric 4th order resonance. On the other hand, the result of Refs. [4] and [5] gives
obviously nonlinear relationship for the systematic 4th order resonance. However, the
6th order resonances are intrinsically much weaker than the 4th. In fact, the maximum
Jeor and gogp in the space charge potential have strengths less than one-sixth of the
maximum ggp and gogp presented in Refs. [4] and [5]. The maximum critical tune-
ramp rate is also about one-fifth smaller. The reduced resonance strengths gos, for the
parametric 4th order resonance driven by octupole are even much smaller. It is easy to
see that for the smaller ranges of critical tune-ramp rate and g4op and gosp in Refs. [4]
and [5], the data can also be fitted with linear straight lines. It will be interesting
to perform further study with larger resonance strength for the systematic 6th order
resonance to see whether the linear relationships between critical tune-ramp rate and
reduced resonance strength continue to hold or break down.

An effective space-charge force has been employed in all the simulations. This force
has the merit that it is simple and analytic so that the simulations can be sped up.
However, this space charge force has the disadvantage that it is not derivable from a
potential, implying that Liouville’s theorem is only approximately valid provided that
the nonlinear space-charge sum and difference resonances are not crossed. This explains
why emittance growths across those resonances have not been investigated in this paper.

Although the space-charge force is two-dimensional and is dependent on the beam
radii in both transverse directions, we find that the emittance is conserved when no
resonance is crossed. Thus our model is a reasonable approximation for the study of 1D
resonance crossing due to the space-charge force. The next most important task will be
to solve the singularity issue of the exact space-charge force, which is expressed in terms
of the complex error function, so that it can be applied to the simulations. Otherwise,
we need to devise another effective space-charge force that is derivable from a potential.
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