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Abstract

Transverse instability of a bunched beam in a ring accelerator is
considered. An emphasis is given to an investigation of rigid modes at
space charge dominating beam coupling impedance and about linear
synchrotron oscillations. The theory is applied to the Fermilab Recy-
cler [1] which is treated as a proton accumulator in context of Proton
Plan II [2]. It is shown that the instability growth time can reach
about 0.3 ms, and chromaticity about −7 to −10 is required to sup-
press it. The suppression by means of 26 MHz damper is considered
also, and required parameters of the damper are provided. Arguments
are adduced that obtained stability conditions are not only necessary
but also sufficient, because other modes except the rigid ones are more
stable.

1 Introduction

It was proposed to use the Fermilab Recycler Ring as a high intensity proton
accumulator in a multistage complex known as the Proton Plan [2]. Accord-
ing this, it is planned to accumulate in the Recycler about 5.3×1013 protons
in second stage of the Plan, an intensity which exceeds achieved number of
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antiprotons more than by order of magnitude. Another essential modifica-
tion is 53 MHz sinusoidal accelerating field instead of existing barrier bucket
RF.

One of the problems arising is transverse instability of the high intensity
beam. At present, resistive wall instability of antiprotons is observed in the
Recycler, and the digital damper is used to suppress it [3] . However, new
conditions are so diverged that both characteristics of the instability and
requirements to the damper should be examined from the outset.

One circumstance will remain unchanged: transverse space charge beam
coupling impedance dominates in the Recycler, significantly exceeding resis-
tive wall and other contributions. Indeed, the Recycler vacuum chamber is
stainless steel elliptic pipe of semi-axes bx = 4.8 cm, by = 2.2 cm with the
wall thickness d = 1.5 mm and resistivity ρ = 74 µOhm-cm. At frequency
ω, its transverse impedance can be calculated by the formula:

Z(ω) =
(s − i ) Z0R0δωg
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where s = sgn (ω), δω is skin depth at frequency ω, Z0 = 4π/c = 376.7 Ohm,
R0 = 528.3 m is the accelerator average radius, Ω0 = 2π × 89.9 kHz is
revolution frequency, and Ω1 = 2π×83 kHz (the wall thickness coincides with
skin depth at this frequency). Factor g depends on by/bx ratio, and it is in
the Recycler: 0.826 for vertical oscillations and 0.415 for horizontal ones (see
Appendix for details). Correspondingly, characteristic impedances Z(rw) are
22 and 11 MOhm/m. At betatron tune Q0 = 24.415, the vertical impedance
is about 38 MOhm/m for the lowest unstable harmonic ω = 0.585 Ω0.

Space charge impedance is associated with betatron tune shift and does
not depend on frequency. In particular, for Gaussian beam it is:

Z(sc) =
iZ0Q0

4Bβγε
(2)

where B is bunch-factor, βγ ≃ 9.47 is normalized momentum, and ε is
normalized transverse rms beam emittance which is presumed here to be the
same both in x and y directions [4]. At present, ε ≃ 2 mm-mrad, and its
increase is not foreseen in the Proton Plan because it would cause a surplus
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particle loss. Taking a reasonable value B ≃ 0.5, one obtains Z(sc) ≃
240 i MOhm/m that is in order of magnitude more of the resistive wall part.

Theory of transverse instability at dominating space charge impedance
is not sufficiently advanced at present. The problem was considered first
in Ref. [5] where it was shown that the space charge suppresses instability
of all modes, except those not depending on synchrotron phase. However,
approximation of uncoupled synchrotron multipoles was used in that paper,
a method which is applicable if the synchrotron tune is much more than the
betatron space charge tune shift. The opposite situation is expected in the
Recycler at designed proton intensity. There is a statement in work [6] that
the space charge suppresses the fast head-tail instability at these conditions.
However, the conclusion was made by analysis of short-range wake fields,
an assumption which excluded both bunch-to-bunch and turn-by-turn inter-
actions. Meanwhile, long range interaction produced by the resistive wall
is the main instability factor in the Recycler, and collective mode bunched
beam instability is the most expected effect. Therefore, the problem requires
additional investigations to apply the results to the Recycler.

It is necessary to note in this connection that, in any case, there are the
modes of bunched beam oscillations which are not affected by space charge
at all, and therefore cannot be suppressed by this manner 1. These modes are
known popularly as “rigid”, because the bunches behave in some respects like
solid. Motion of their centers does not depend on inter-particle interactions, a
category which includes space charge forces as well 2. Analysis of these modes
is the main objective of this note. Its suppression is a necessary condition
of the beam stability, and it might be sufficient condition as well, because it
looks very probably that these modes are most unstable in practice.

1It does not mean that space charge is negligible at this consideration. Quite the
reverse, it separates the rigid modes by an influence on other ones. The problem is
discussed in Sec. 7.

2In fact, the case of points should be groups of particles with the some longitudinal
coordinate. Different parts of a bunch can move relative to each other, that is the bunch is
not quite “rigid”. We do not emphasize it here because it does not change the conclusion.
Related details will be discussed in Sec. 4.
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2 Basic equations

We are starting from equation of betatron oscillations:

d2x

dt2
+ Ω2Q2x =

eE
(

θ, x − Xc(t, θ)
)

mγ3
+

eG(t, θ)

mγ
(3)

where Ω and Q are the particle angular velocity and betatron tune, E is the
space charge electric field, and a small addition eG is Lorenz force per parti-
cle due to any other impedance (resistive wall, cavities, etc.). Nonlinearity of
external field is neglected here because it is very small in the Recycler. How-
ever, linearity of the beam field E is not presumed, that is the space charge
density in the beam cross section is not considered as a constant. It is clear
that this field depends on deviation of the particle from the bunch center.
There is a longitudinal deviation θ, and transverse one x − Xc(t, θ) where
Xc(t, θ) is the beam center position at azimuth θ, which can be non-zero be-
cause of coherent oscillations. It is presumed also that the force eG(t, θ) does
not depend on transverse coordinate of the particle, and is dictated by the
beam center displacement over all the ring.

Let us consider all the particles located in a small region of the longi-
tudinal phase space near the point (θ, u), where the variable u is propor-
tional to a deviation of the particle momentum from central value (coef-
ficient of the proportionality will be defined later). We will assume that
transverse distribution of these particles is described by the normalized func-
tion ρ⊥(x −X(t, θ, u)) where X(t, θ, u) is position of the group center, that
is

X(t, θ, u) =

∞
∫

−∞

ρ⊥

(

x − X(t, θ, u)
)

x dx =

∞
∫

−∞

ρ⊥(x)
[

x + X(t, θ, u)
]

dx . (4)

In accordance with Eq. (3), this function satisfies the equation:

[

d2

dt2
+ Ω2(u)Q2(u)

]

X(t, θ, u) = (5)

e

mγ3

∞
∫

−∞

E
(

θ, x + X(t, θ, u) − Xc(t, θ)
)

ρ⊥(x) dx +
eG(t, θ)

mγ

where an important thing is marked that the revolution frequency and the
tune can depend on the particle momentum. Note also that ρ⊥(x) and
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E(θ, x) are, respectively, even and odd functions of x. Therefore, assum-
ing that both X and Xc are small in comparison with the beam transverse
dimension, it is possible to rewrite Eq. (5) in the form:

[

d2

dt2
+ Ω2(u)Q2(u)

]

X(t, θ, u) ≃ (6)

2 Ω2
0Q0∆Q(θ)

[

X(t, θ, u) − Xc(t, θ)
]

+
eG(t, θ)

mγ

where Ω0 and Q0 are the central values of the variables, and

Ω2
0Q0∆Q(θ) =

e

2mγ3

∞
∫

−∞

∂E

∂x
(θ, x)ρ⊥(x) dx . (7)

As it is shown in Ref. [4], ∆Q(θ) is a positive value numerically coinciding
with betatron tune shift driven by space charge and averaged over transverse
coordinates. It coincides with usual tune shift if the beam has an ellipti-
cal cross section at constant space charge density. For Gaussian beam, the
average value is 2 times less than tune shift of small betatron oscillations.

Now we need to take into account that d/dt is actually total derivative
over time where the longitudinal motion should be taken into account. In
the bunch rest frame it can be written in the form:

d

dt
=

∂

∂t
+

dθ

dt

∂

∂θ
+

du

dt

∂

∂u
=

∂

∂t
+ Ωs(A)

∂

∂φ
(8)

where φ is the phase of the synchrotron oscillations, and Ωs(A) is syn-
chrotron frequency which can depend on amplitude of the oscillations A.
Assuming also that the explicit dependence of all the variables on time is
given by the factor exp (−iωt), one can rewrite Eq. (6) in the form:

[

(

− iω + Ωs
∂

∂φ

)2
+ Ω2(u)Q2(u)

]

X(θ, u) = (9)

2Ω2
0Q0∆Q(θ)

[

X(θ, u) − Xc(θ)
]

+
eG(θ)

mγ
.

Because the betatron frequency is much more than the synchrotron one in
practice, this equation can be reduced to a simpler first order form:
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[

ω + Ω(u)Q(u) + i Ωs
∂

∂φ

]

X(θ, u) ≃ (10)

Ω0∆Q(θ)
[

X(θ, u) − Xc(θ)
]

+
eG(θ)

2mγΩ0Q0
.

Note that the variables X and Xc are coupled by the relation:

∞
∫

−∞

F (θ, u) X(θ, u) du = Xc(θ) ρ(θ) (11)

where F (θ, u) is longitudinal distribution function (actually it depends on
amplitude A(θ, u)), and ρ(θ) is corresponding linear beam density:

ρ(θ) =

∞
∫

−∞

F (θ, u) du . (12)

3 Beam field

The field G(θ) can be represented in terms of corresponding transverse beam
coupling impedance Z(ω):

G(θ) =
iβΩ0

4π2

∑

k

Z(ω + kΩ0) exp (ikθ)

2π
∫

0

D(θ′) exp (−ikθ′) dθ′ (13)

where D(θ) is linear density of the beam dipole moment. It is more conve-
nient to split the last integral on sum over the bunches, using a definition of
n-th bunch:

D(θ) = D
(2πn

h
+ ϑ

)

= D(n)(ϑ) (14)

where h is RF harmonic number, that is 2π/h is space between the bunch
centers. In principle, the bunches can have different intensity N (n) and dis-
tribution F (n). However, we will use the same normalization:

π/h
∫

−π/h

∞
∫

−∞

F (n)(ϑ, u) dϑdu =

π/h
∫

−π/h

ρ(n)(ϑ) dϑ = 1 . (15)
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Then relation of the beam displacement and dipole moment is

D(n)(ϑ) =
eN (n)X(n)

c (ϑ)ρ(n)(ϑ)

R0
=

eN (n)

R0

∞
∫

−∞

F (n)(ϑ, u)X(n)(ϑ, u) du . (16)

Therefore, Eq. (13) can be written in the form:

G(θ) =
ieβΩ0

4π2R0

h
∑

n=1

N (n)
∑

k

Z(ω + kΩ0) exp
(

ik[θ − 2πn/h]
)

×
π/h
∫

π/h

∞
∫

−∞

F (n)(A(ϑ, u))X(n)(ϑ, u) exp (−ikϑ) dϑdu . (17)

Taking into account that in n-th bunch

∆Q(θ) =
∆Q

(n)
0 ρ(n)(ϑ)

ρ
(n)
0

(18)

it is possible to represent (10) as a set of equations:

[

ω + Ω(u)Q(u) + i Ωs
∂

∂φ

]

X(n)(ϑ, u) − (19)

Ω0∆Q
(n)
0

ρ
(n)
0

∞
∫

−∞

F (n)(ϑ, u′)
[

X(n)(ϑ, u) − X(n)(ϑ, u′)
]

du′ =

ir0Ω0

2πγQ0Z0

h
∑

n′=1

N (n′)
∑

k

Z(ω + kΩ0) exp
(

ik
[

ϑ − 2π
n − n′

h

])

×
π/h
∫

π/h

exp (−ikϑ′) dϑ′

∞
∫

−∞

F (n′)(ϑ′, u′)X(n′)(ϑ′, u′) du′

where r0 = e2/mc2 (1.535 × 10−16 cm for protons), and the values with
bottom index ’0’ are related to the bunch center.
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4 Rigid modes

The statement “space charge dominating impedance” means that the right-
hand part of Eq. (19) is small and can be neglected in first approximation.
It is easy to verify that such shortened equation has particular solutions:

X(n)(ϑ, u) = A(n) exp
(

i [ Q0 − ξ/η ] ϑ
)

(20)

where ξ = ∂Q/∂(ln p) and η =−∂(ln Ω)/∂(ln p) are the machine chromatic-
ity and slippage factor. Set of amplitudes A(n) forms a collective mode,
number of independent modes is coinciding with number of bunches. All
these modes are “rigid” in the sense that the coherent displacement does
not depend on the particle momentum, as it is seen from Eq. (20). Their
exclusive property is that all of them have the same frequency at Z = 0, a
statement which does not depend on space charge at all: ω =−Ω0Q0.

To calculate a contribution of the impedance Z, it is needed to substitute
(20) to the right-hand part of series (19), multiply it on exp (i [ξ/η − Q0 ] ϑ),
and integrate over ϑ. Following series of equations for amplitudes An is
obtained as a result:

(ω + Ω0Q0)A(n) =
ir0Ω0

2πγQ0Z0

∑

k

Pk,nZ(ω + kΩ0)

×
h

∑

n′=1

P∗

k,n′N (n′)A(n′) exp
(

2πik
n′ − n

h

)

(21)

where

Pk,n =

π/h
∫

π/h

ρ(n)(ϑ) exp
(

i [ k − Q0 + ξ/η ] ϑ
)

dϑ . (22)

5 Symmetric beam

An ultimate estimation of the instability growth rate can be obtained with
help of symmetric beam model, because a removal of several bunches makes
the beam more stable [7]. Parameters N (n) and Pk,n do not depend on n in
this case, and solution of series (21) is:

A(n) = exp
(2πinj

h

)

(23)
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where j = 0, 1, ..., h − 1 is index of collective mode (any interval of length
h can be used). Because of the symmetry, only harmonics k = j + hl with
arbitrary l give a contribution in series (21) resulting in:

ω + Ω0Q0 =
ir0Ω0N

2πγQ0Z0

∑

l

Z(Ω0h [ l + κj ]) S(l + κj + κξ) (24)

where N = h max{N (n)} is total intensity of the symmetrized beam, ν is a
deviation of Q0 from the nearest integer (|ν| < 0.5), κj = (j − ν)/h, κξ =
ξ/hη, and the parameter

S(λ) =

∣

∣

∣

∣

π/h
∫

−π/h

ρ(θ) exp (iλhϑ) dϑ

∣

∣

∣

∣

2

. (25)

should be interpreted as impedance suppression factor. Actually it depends
on the product λB where B is bunch-factor, that is a ratio of average
beam density to maximal one. With normalization condition (15) taken into
account, it is:

B =
h

2πρ0
. (26)

In particular, for uniform bunches of length ϑ0 = 2πB/h (boxcar beam)

S(λ) =
[ sin (πλB)

πλB

]2
, (27)

and for Gaussian bunches of dispersion σϑ =
√

2πB/h:

S(λ) = exp (−λ2σ2h2) = exp (−2πλ2B2) . (28)

Several examples are considered below.

5.1 Thick resistive wall instability

Resistive wall impedance is given by Eq. (1); however, only thick wall is
considered in this subsection, that is the assumption Ω1 ≪ Ω0 is used. Then
it follows from Eq. (24):

Im ω =
r0Ω0NZ(rw)

2πγQ0Z0

√

|j − ν|
f (rw)(κj , κξ) (29)
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Figure 1: Effect of bunching on instability growth rate at ξ = 0.

where

f (rw)(κj, κξ) =
√

|κj |
∑

l

√

|l + κj |
l + κj

S(l + κj + κξ) . (30)

First multiplier (fraction) in Eq. (29) coincides with a coasting beam in-
stability growth rate of j-th azimuthal harmonic without Landau damping.
Therefore, the function f (rw) is the factor describing effect of bunching and
chromaticity. Because the right-hand part of (29) is a periodical function
of the argument κj = (j − ν)/h with period 1, it is sufficient to consider
f (rw)(κj , κξ) at |κj| < 1/2 (though this function is not periodical itself).
It is plotted in Fig. 1 for boxcar and Gaussian beams at ξ = 0 and two
values of B : 0.005 and 0.5. All the curves presented diverge each from
other not more than ±3%, and other realistic distributions (e.g. parabolic)
fall in this interval as well. Therefore, the instability without chromaticity
does not depend in practice both on bunch-factor and on bunch shape, at
least at B < 0.5. The reason is that only several lower harmonics essentially
contribute to the series (31) at κξ = 0, and all corresponding S-factors are
about 1. The instability is possible only at κj > 0 i.e. at j > ν, that is
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the beam spectrum contains about h/2 unstable rigid modes. A special case
is single bunch when the only mode j = 0 exists. It can be unstable only
at ν < 0, that is if the tune Q0 is arranged between some half-integer and
next integer numbers. This result was obtained first in Ref. [8] at B = 0 3.
Note also that the only term l = 0 essentially contributes to the sum at
|κj| ≪ 1 resulting in f (rw)(κj , 0) ≃ sgn (κj).

At ξ 6= 0 , the instability growth rate relatively slightly depends on the
bunch shape, but considerably depends on the bunch factor. It is illustrated
by Fig. 2 and 3 where the function f (rw) is plotted against Bκξ = Bξ/hη
for boxcar and Gaussian beams at B = 0.1 and B = 0.5, κj = ±0.1 and
0.5. It is seen that positive values κξ are more effective for suppression
of the instability, and sufficiently large chromaticity of proper sign kills it
at all. The explanation follows from Eq. (28) and (30): such chromaticity
attenuates unstable harmonics l > 0 more than stable harmonics l < 0.
Harmonic l = 0 gives positive or negative contribution, in dependence on
sgn(κj). Mainly, its balance with harmonic l = −sgn(κj) determines value
of Bκξ providing the beam stability. This value is plotted in Fig. 4 against
κj at different distributions and bunch-factors. What is interesting, the plot
does not depend on the beam intensity.

5.2 Thin resistive wall instability addition

Considering thin wall, we will restrict ourself to the case hΩ0 ≫ Ω1, which
means that skin depth at radio-frequency is much less than the wall thickness.
Then inclusion of the last multiplier (coth) in Eq. (1) can change only term
l = 0 in Eq. (30), providing the addition to the instability growth rate (29):

∆Im ω =
r0Ω0NZ(rw)

√

|j−ν|
2πγQ0Z0(j − ν)

2S(κj+κξ) exp(−xj)
[

sin xj+cos xj−exp(−xj)
]

1 − 2 exp(−xj) cosxj + exp(−2xj)
(31)

where xj = 2
√

|j − ν|Ω0/Ω1. This addition does not depend on bunch factor
and can be essential only at xj <∼ 1. Therefore, at zero chromaticity, it

3Sometimes the sum over l in Eq. (24) is replaced by an integral over ω (see for example
Ref. [9]). It is unacceptable for resistive wall and many other impedances, because it
ignores the dependence on tune, a statement which could be valid at wide-band impedance
only.
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Figure 2: Effect of bunching and chromaticity on the instability growth rate
(Boxcar beam).
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Figure 3: Effect of bunching and chromaticity on the instability growth rate
(Gaussian beam).
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Figure 4: Normalized threshold chromaticity of j-th mode in dependence on
bunch-factor.
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Figure 5: Normalized threshold chromaticity against bunch-factor at (j −
nu)/h = 0.001 and different hΩ0/Ω1.
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simply increases growth rate of the lower unstable modes, both at coasting
and bunched beams. Another effect is a strengthening of higher unstable
modes due to more contribution of harmonic l = 0 at nonzero chromaticity.
As a result, more chromaticity is required to suppress the instability. It is
illustrated by Fig. 5 where threshold value of Bξ/hη is plotted against bunch
factor at different ratio hΩ0/Ω1 (this parameter is proportional to the wall
thickness being about 630 at the Recycler).

5.3 Instability damper

Let us consider the impedance

Z(ω) = −Z(dm)
{

1 at |ω| < hΩ0/2

0 at |ω| > hΩ0/2
(32)

which is a simplest model of an instability damper with high order low pass
filter. The only term l = 0 remains in Eq. (24) in this case, resulting in:

Im ω = −r0Ω0NZ(dm)

2πγQ0Z0
S

(j − ν + ξ/η

h

)

. (33)

Thus, the damper attenuates the instability growth rate of all rigid modes.
One can see that this value falls slower than resistive wall contribution, when
the mode index j is increasing. Therefore, suppression of the lowest unstable
resistive wall mode assures the suppression of all rigid modes, resulting in
the stability condition:

Z(dm) >
Z(rw)

√
j − ν

1 + 2 exp(−xj) sin(xj) − exp(−2xj)

1 − 2 exp(−xj) cos(xj) + exp(−2xj)
(34)

which should be satisfied at any j > ν (notation of Eq. (31) is used in the
last factor which describes the wall thickness effect). The condition does not
include chromaticity at all, because it equally suppresses both resistive wall
and damper effects.

It is interesting to compare this result with the case of ultimately wide-
band damper when Z = −Z(dm) independently on frequency. Then all har-
monics l contribute to sum (24) which is calculated analytically resulting
in:

Im ω = −r0Ω0NZ(dm)

2πγQ0Z0B

∫ ρ2(θ)

ρ(0)
dθ (35)
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where normalization condition (15) is used. The last integral only slightly
depends on the bunch shape being: (i) 1 for uniform bunch, (ii) 4/5 for
parabolic bunch, (iii) 1/

√
2 for Gaussian bunch. Factor B in the denomi-

nator means that the damping effect depends the linear density. Another
distinction is that effect of the wide-band damper is not attenuated by chro-
maticity.

6 Recycler application

Maximal intensity of the Recycler is expected to be as large as 5.3×1013 pro-
tons in second stage of the Proton Plan [2]. However, only 6/7 of the ring will
be filled, that is N = 6.2×1013 and h = 588 should be substituted in Eq. (30)
and (31) to get the ultimate (probably over) estimation of the instability. We
will use resistive wall impedance (1) at Z(rw) = 22 MOhm/m, a value which
relates to vertical oscillations. Other parameters needed: Ω0/2π = 89.9 kHz,
Ω1/2π = 83 kHz, γ = 9.53, η = −0.0085, Q0 = 24.415 4. Then Eq. (29)-(31)
give the instability growth rate of the lowest mode j = 1

Im ω = S
(0.585 + ξ/η

588

)

× 3.8 ms−1 . (36)

Corresponding instability growth time is about 0.3 ms at ξ = 0. Total life
time of proton beam in the Recycler is expected to be about 1.5 s including
0.25 s at maximal intensity. Therefore, the growth rate should be decreased
at least by factor 103 to ensure the beam stability.

There are two ways to reach this, both resulting in total suppression of the
rigid modes. First of them is a use of chromaticity which required value can
be obtained from Fig. 5 at (j − ν)/h ≃ 0.001 and hΩ0/Ω1 ≃ 760. Because
required chromaticity decreases when bunch factor increases, we take B =
0.4 − 0.5 as a reasonable estimation. Then required chromaticity is −7 to
−10 in dependence on bunch shape (smooth distribution like Gaussian is
better).

It is unclear now what chromaticity will be acceptable at new conditions
(nominal value ξ = −2 [1]). Therefore another possibility should be consid-
ered as well which is 26 MHz damper with impedance Z(dm) > 40 MOhm/m.

4It is a nominal tune. The result changes but little at other tune in use
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If the damper includes single pickup and kicker connected by correspond-
ing feedback circuit, the relation should be satisfied to provide the required
impedance:

α

JYc
> 4.7

µrad

A-mm
(37)

where J is the beam current, Yc is its vertical offset in the pickup, and α is
corresponding angular deviation produced by the kicker. Two times weaker
damper is required for horizontal direction.

7 Discussion: other modes

Series (21) does not include characteristics of synchrotron motion at all,
such as shape of potential well, frequency, etc. Moreover, its solutions do
not depend on space charge as well. One could think on these grounds that
the rigid mode instability is a universal effect inherent in all bunched beams.
However, this statement needs further consideration because the rigid modes
are actually approximate solutions of Eq. (19) at small Z, applicability of
which depends on above mentioned factors. In principle, a coupling with
other modes can change characteristics of the rigid modes or even destroy
them.

An example of similar behavior is a bunch in a square potential well.
As it was shown in Ref. [10], all its eigenmodes are governed by impedance
Z and do not depend on space charge. This conclusion can be obtained from
Eq. (10) as well, taking into account that ∆Q = const and θ ∝ |φ| in this
case. As a result, all eigenfrequencies of the bunch are identical at G = 0, the
rigid mode does not stand out and must not be considered separately from
others. Rather close result can be obtained for parabolic potential well when
the boxcar model is used, because ∆Q = const in this case also.

However, the last example demonstrates only that the boxcar beam should
not be taken as a realistic model at analysis of the problem. Following con-
sideration does not pretend to rigour and completeness, and is proposed only
to support applicability of the theory to the Recycler.

First of all it is necessary to note that space charge tune shift really
spreads from 0 to Ω0∆Q0, if the bunch is in parabolic potential well. The
frequency averaged on period of synchrotron oscillations has the spread ∼
Ω0∆Q0/2, and one can expect that the same is true for frequencies of all the
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eigenmodes except the rigid ones. If so, a slot between the rigid and other
frequencies can be expected in the spectrum. Its width should be a noticeable
part of space charge tune shift, and additional impedance comparable with
the space charge contribution would be required to overcome it. However,
as it was shown in the Sec. 1, space charge impedance dominates in the
Recycler, that is this way to disturb the rigid mode looks unlikely.

Incorporation of synchrotron frequency increases spread of the eigenfre-
quencies and could decrease the mentioned slot. There is an opinion that fast
head-tail instability appears when the synchrotron tune becomes comparable
to the betatron tune shift [6]. Still more frequency creates the slot again,
but by another mechanism [5]. However, expected synchrotron frequency
does not exceed 1 kHz in the Recycler, that is an order of magnitude less
than the space charge tune shift. Thus, there are no reasons to think that
the coupling can seriously affect the rigid modes in the Recycler, including
instability growth rate and conditions of its suppression.

From this point of view, either chromaticity −ξ ≃ 7 − 10 or 26 MHz
damper is necessary condition of the Recycler beam stability. However, it
is unclear yet whether this condition is sufficient, because other than rigid
modes could be unstable as well. The following reasonings let us to think
that they are more stable, at least.

There is a spread of incoherent betatron frequency in the beam due to
modulation of the space charge density along the bunch. In our case, the
spread exceeds the instability growth rate about on order of magnitude. It
is known that similar spread produces Landau damping of a coherent os-
cillations, if their frequency falls into the incoherent spectrum area. That
the statement is valid for the space charge produces spread, it was shown in
principle in papers [5]-[6]. The rigid modes are, probably, the only case when
the coherent frequency is out of this area, and the beam is not subjected to
this kind of the Landau damping. Therefore, one can believe that all other
modes are not so dangerous, and proposed here stability conditions are not
only necessary but also sufficient.
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8 Conclusion

It is shown in the paper that, at space charge dominating impedance, there
are the modes of bunch oscillations whose shape and frequency do not de-
pend on the intensity at all (“rigid mode”). For a multi-bunch beam, the
rigid oscillations of the bunches combine a set of collective modes which differ
by phase advance of neighboring bunches. Some of them become unstable
under the action of different from the space charge collective forces produced
by resistive wall, for example. The instability can be suppressed either by
chromaticity or with help of the instability damper. The damper bandwidth
should be at least a half of the accelerating frequency to ensure the suppres-
sion of all unstable collective modes.

The mentioned collective forces are responsible also for coupling of the
rigid and other modes. However, the coupling is actually important only if the
space charge tune shift is insufficiently spread, because the beam spectrum
is more or less degenerated in this case. The rigid modes are not standing
out and must not be considered separately from others at such conditions.
A beam in a rectangular potential well or boxcar model applied at any well
are typical examples of this.

However, actually the rigid modes differ greatly from others in a parabolic
potential well, a statement which refers both to the modes configuration and
frequency. The coupling is less important and its neglect should not lead to
essential errors in this case. Furthermore, there are reasons to think that
the collective rigid modes are most unstable at such conditions, and their
suppression ensures a comprehensive transverse beam stability.

For the Fermilab Recycler, the theory predicts resistive wall instability
growth rate not more than 1/(0.3 ms) at the beam intensity 5.3 × 1013 in
∼ 500 bunches (2nd stage of the Proton Plan). The instability can be
suppressed by chromaticity from −7 to −10 in dependence on the bunch
shape and length. Another possibility considered is the instability damper
with 26 MHz bandwidth.
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9 Appendix

It can be shown that, for a beam in a smooth pipe, the coefficient g of Eq. (1)
is:

g =
b3
y

16π

∮

(∂Φ

∂n

)2
ds

where the integration of the normal derivative is performed over the pipe
boundary in plane xy. Being zero on this boundary, potential Φ should
satisfy the equation:

∂2Φ

∂x2
+

∂2Φ

∂x2
= −4π

∂f

∂ξ

where f(x, y) is normalized beam density, and ξ = x or y in dependence on
direction of oscillations considered. The coefficients gx,y is plotted below for
a thin beam located in the center of an elliptic pipe of semi-axes bx, by. The
extreme values are: gx = gy = 1 in a round pipe, and gx = π2/24, gy =
π2/12 for two parallel plates.
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