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ABSTRACT: One common way for measuring the emittance of an electron
beam is with the slits method. The usual approach for analyzing the data is to
calculate an emittance that is a subset of the parent emittance. This paper shows
an alternative way by using the method of correlations which ties the parameters
derived from the beamlets to the actual parameters of the parent emittance. For
parent distributions that are Gaussian, this method yields exact results. For non-
Gaussian beam distributions, this method yields an effective emittance that can

serve as a yardstick for emittance comparisons.



INTRODUCTION

The slit method is a common way for measuring the transverse emittance of an electron
beam in one selected plane. This method has been well documented and analyzed by
Zhang!. However, his analysis reveals only the “subset emittance” from the data and not
the beam’s full emittance. | So, to get a better handle on the actual or parent emittance, the
method based on correlations can be used to reveal the essential parameters for calculating
the rms emittance. The idea is that the parameters calculated from the beamlets which
sample the beam are correlated to the parameters of the actual emittance. And we will
show that for Gaussian distributions, the method of correlations gives exact results. This
method is well documented in Whittaker?, Chapter XII and we will use most of the ideas

in there for our calculation.

We start off by asking the following two questions: what is the probability that a
particle has a position which lies in the interval x to x + dx? And what is the probability
that this particle whose position is in x to x + dx also has a divergence which lies between

2 to 2’ + dx'?

We answer the two questions by first supposing that the phase space coordinate of a
randomly chosen particle is (a:l,a:;) Then the probability h that z; has a value between
x and x 4+ dz is h = f(x)dx where f(z) is the normalized frequency distribution of the

particles in . This answers the first question.

Next, if k is the probability that any particle between x and x + dx has a divergence
), which lies between 2’ and 2’ 4 da’ then k = g(z,2’) dz’ where g(x,2') is the normalized

distribution function in #’ which can also depend on z. Finally, from Fermat’s Principle

A quote from the Introduction of Zhang’s paper: “It has to be made clear that a measured
emittance is not beam’s real mathematical emittance because of the following two reasons:
Firstly, the measured emittance is based on a subset of particles instead of the whole
beam ... So normally a measured emittance is at most an estimation of the real beam
emittance.”



of Conjunctive Probability, the probability that a randomly selected particle has position

which lies in  to = 4+ dz and a divergence which lies in 2’ to 2’ + d’ is hk, i.e.

o(x,2)) dede’ = f(x)g(x,2’) do da’ (1)

where we have introduced the symbol ¢(z, 2") which is the normalized frequency distribu-
tion of the particles in phase space or what we usually call “the ellipse”. This answers the
second question. Clearly, if g(z,z’) is dependent on = we have a phase space distribution

that is tilted. If g(z, 2’) is independent of x, then the distribution must be axes symmetric.

The goal is to determine ¢(x,2’) from the beamlets data. Once ¢(z, ') is found, then

it is trivial for us to calculate the rms emittance € which is

e(z,2) = \/(a2) (@) — (a2)? (2)

where

= [ [ sty ([ [Conerma
22) ? ; % ¢(x, ') da da’ — [/OO/O:O ) d dxr e (3)
(zal) =

zx' ¢(x, 2 de da’

N s tnae| [ [ oty i)

If z and 2’ are uncorrelated, then ¢(z, ') is separable and thus (xz') = 0.




SETUP

The usual setup for measuring emittance with beam slits is shown in Figure 1. The
distance between the slits and the screen is L. The particles from each slit start diverging
when travelling between the slit and screen. The particles hit the screen and produce an
intensity distribution that is proportional to the number of particles at that point. If there
are no axis offsets between the slits and the screen and the distance L is chosen so that
the intensity on the screen does not overlap, then we can associate each distinct intensity
strip with its corresponding slit. The divergence x; from slit zg; and image position X in
that strip is

X —xg

o= == - (4)

In reality, the intensity on the screen is digitized and therefore automatically binned.
See Figure 2 (and Figure 12). From each bin, we can calculate the divergence using (4).
The range of divergences will be discrete from M bins and we label them as 5”/517 xgz, cee

a:’s A+ For P slits, we can fill these values and their slit positions with intensity values

nii,n12,---,npys into a table. See Table 1.

Table 1. Correlation Table
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We can calculate the following parameters from using the values in Table 1.

. M
Tsj= N Erl NijTsi 55/ = N’ D1 i

SZ(‘] N Zl—l Nij (2si — fsj)2 ng’] N’ Zl—l nﬂ( - CE;J)2 (5)
Osz = M Zy 19sxj Osa! = ? Zj:l Osa'j

These values will be used as input parameters for calculating emittance in the Theory

section.

diverging beamlets

slits screen

Intensity

Figure 1  This is the usual setup for measuring emittance with
slits. The distance between the slits and screen is L. The position
of the slits x41,x49,... are known. The X labels the position of the
beamlets on the screen. In this picture, we have only shown 5 slits.
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Figure 2  This shows the binning process. The particle intensity
from slit x51 on the screen is captured by a digital camera. Each
pixel on the camera integrates the intensity to give a number nq;.
The divergence 2/, j i calculated from the position data using (4).

THEORY

We start by examining the phase space distribution in xz’ space for N particles. When
this distribution is projected onto the  and z’ axis, we obtain the frequency distribution of
the particles in x and 2’. See Figure 3. Clearly, we have to make some assumptions about
the distributions because in general, there are no constraints on it. Thus, to make the
problem tractable, we will assume (and hope that the assumptions are indeed reasonable)
that the projections onto each axes are independent and the distributions are Gaussian.

We will examine later the cases when the projected distributions are not Gaussian.

Once the Gaussian assumption is made, we can write down the normalized frequency
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Figure 3 The z2’' phase space can be projected onto the x and z’
axes which gives us the frequency distribution.

distribution p; of  and p, of 2/

1 @
pa(x) = N e %
TOy
(a’ —b)2 (6)
1 o 20’2I
€ x

px’(x,) = \/%O'
‘r/

where a = sz\il x;/N is the mean position of the = distribution and b = sz\il /N is the

mean position of the x’ distribution, o, = \/ Zfil(x —a)2/N is the standard deviation

of the projected x distribution, o,/ = \/ Zij\il(m’ — b)2/N is the standard deviation of the

projected z’ distribution.
é(x, ') is thus (See Appendix I)

exp (_2(1£r2> |:(xa)2 _ 2rla—a)@=b) (fb)?b

/ 0920 T30t 0-2/
oz, x') = - 7
( ) 2T 0V 1 — 12 @)
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where r = Zfil(ml —a)(z}—b)/(Nozo),) is the coefficient of correlation. For a phase space

ellipse that is not tilted, » = 0.

For the slits experiment, we sample the beam and thus do not have access to (z,z’)
for every particle. Thus, we have to come up with a way to calculate a, b, o4, o,» and r

from this sampled subset.
Slits

Let us suppose there are P infinitesimally wide slits and that the position of the slits
is known exactly. This implies that the position of the beamlets is also known exactly. Let
us name the slit positions as z41, z42, ..., Tgp. Since the beamlet positions are known

exactly, the normalized distribution f(x) of  at slit x,; is simply

o) = [ e’ ol Lo 0
flxgi) = / dz’ ¢(x,x = e 8
57 oo o=z, \V2Toy

which is exactly what we would have expected from (6). Therefore, the normalized distri-

bution g(zg;,2’) can be found from (1)

1 / our(Tsi—a) 2
Sy, ) P <_W e >

9(@sj ) = f(xs5) N a;\/27r(1 —7r2)

Clearly, g(z;, 7') is Gaussian and the beamlet from slit Tg; has a mean divergence

—/ Og'T

(55 —a) (10)

Ox

and standard deviation
Ogpt = O/ 1 — 12 (11)

which is independent of slit position x;. It is interesting to note that if » = 0, i.e. g(z, )
is independent of x, both the mean and the standard deviation of the divergence of each

beamlet are equal to the mean and standard deviation of the divergence of the beam.
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If we plot a_cg j Versus g for j = 1,..., P, we can fit a straight line through these

points. If we let m, and ¢, be the slope and intercept of this line, then immediately

Op'T
mx -

and cx =b—mga (12)

Ogx
The standard deviation of the divergence from each beamlet should be identical and so an

average of them &4,/ can be taken to represent o, .

A similar argument can be made for knowing x’sz exactly. Especially, since x'sz can be
thought of as the calculated divergence from each pixel on the screen. Then the relationship

between mean position xg; and the divergence :c;z is

zy; —b=—"(Ty —a) (13)

where ¢+ = 1,2,..., M and M is the number of pixels in the x direction. The standard

deviation of this distribution is similarly independent of xgl and is

Doing the same thing as before, we can plot x’sz versus Ty for i = 1,2,..., M and fit a
straight line through these points. Let the slope of the line be m,s and intercept be c,/,

then

O/

My = and Cpy =b—mya (15)

OxT

The average of all the standard deviations 7, of each beamlet must be equal to (14).

Summarizing, we have the following equations to solve for a, b, 0, 0,» and r

g1
My = —2— cy = b—mga
5%
My = 525 cpr =b—mgpa (16)

6-8.’L‘/:U.’L‘/\/]‘_T2 &sxzaxVI_r2
Since we have six equations and five unknowns, there are no exact solutions! In practice, if
the underlying distribution is Gaussian, s, can be very noisy because usually the number

slits P is small, and thus we really have five equations to solve. See Fxample 2.
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For non-Gaussian distributions, (10), (11), (13) and (14) will, in general, not be satis-
fied. Thus strong deviations from straight lines will indicate that our Gaussian assumption
is wrong. However, we can still calculate an effective rms emittance which characterizes

the emittance of the parent distribution. See section Non-Gaussian Distributions.

10



EXAMPLE 1

In this example, we have generated a non-tilted bi-gaussian ellipse (See Figure 4) that
contains 10° particles with o, = 1 units and o, = 1073. Five slits are at positions
rg; = {—1.5,-0.5,0.5,1.5,2.5} with width of 0.1 units. We assume that there are 20 bins
that integrate the intensity on the screen. Thus there are 20 bins which correspond to
{al 209, .., x’SQO}. The 2’ distribution for each slit is shown in Figure 5 which clearly

shows that the distributions are Gaussian.

Using the formulee from (5), we can calculate the 56; j for each slit and plot it for each
slit position z4;. For this non-tilted bi-Gaussian phase space distributions, the fit shows
that

my=9%x10"% and ¢y =-01x10"* (17)

which essentially says that » = 0, i.e. the phase space ellipse is not tilted. The practical
criterion for deciding whether phase space ellipse is tilted or not is to compare the excursion

of the mean a‘c’s j to the mean standard deviation &,
—/ . —/
max(msj) — mln(xsj)

Osy!

=0.03< 1 (18)

85 %1070+ 1.8 x 1077
B 0.1 x 10~2

This means that the mean and standard deviation of each beamlet is the same as the full
beam mean and standard deviation. The calculated a;j = {0.1,0.1,0.1,0.1,0.1} x 1072

which is exactly the standard deviation of the divergence of the full distribution.

We can perform the procedure for calculating o, by using the » = 0 criterion. Then
we see that gg, = 1 if we use the columns of the correlation table which are full, i.e. no
zeros. See Figure 6. Note that there are only five points per curve because we only have

five slits.

11



Non-—Tilted Phase Space Distribution
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Figure 4 The distribution of this non-tilted phase space is pro-
jected on both the z and 2’ axes shown in red. This phase space has
or =1and o, = 1073, The slits at —1.5, —0.5,0.5,1.5,2.5 (shown as
thick black bars) select out the particles with 2’ shown in Figure 5.
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Non-Tilted ' Distribution from Each Slit
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-0.004 -0.003 -0.002 -0.001 0.0 0.001 0.002 0.003 0.004

xl

Figure 5 The distribution from each slit is shown here. The curves,
which clearly look Gaussian, are formed after binning the 2’ data from
each slit into 20 bins.

Non—Tilted x Distribution
600
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400

£300

200

100

-25 -20 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

Figure 6 The selected x distributions for :1:{S j where 7 = 9,10,11,12,13
for calculating 74y
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EXAMPLE 2

In this example, we have generated a tilted bi-Gaussian ellipse (See Figure 7) that
contains 10° particles with ¢, = 1.4 units and o,y = 0.1 x 1072 and (z2/) = 0.1 x 1072,

The rms emittance calculated using (2) is
e=0.1x10"2 (17)

Again, five slits are at positions z4; = {—1.5,-0.5,0.5,1.5,2.5} with width of 0.1 units
and there are 20 bins that integrate the intensity on the screen. Figure 8 shows the z’

distribution of the particles from each slit on the screen.

Using the formulee from (5), we can calculate the z/, j for each slit and plot it for each

slit position z4;. For this tilted bi-Gaussian phase space distributions, the fit shows that
mg = (0.50 £ 0.04) x 1073 and ez =(—9£7) x 1076 (19)

Notice the large error in ¢, because c; ~ 0. Fortunately, ¢, is only used for calculating a
and b and does not affect the solution for the emittance. For each slit o4,/ is expected to

be constant, and indeed we see that g, = (0.72 & 0.01) x 1073,

For amusement, let us check the tilt criterion from (18)

;j) — min(Z’ )

max(Z 5

0.1 x 1072 4+0.07 x 102
:‘ x 0 "+ 007X —24>1 (20)

0.07 x 102

Osg!

which tells us that we have a tilted ellipse.

If we plot a:'sz versus Tg; after selecting out columns in the correlation table that have

no zero entries (See Figure 9), we find that
my = (0114 £0.004) x 1072 and ¢y = (—6+5) x 107° (21)

Again, c,» has a large error because it is approximately zero. We will not calculate o4
because of the small number points for each :15'{SZ And so we have five equations and five

unknowns if we leave 7, out, i.e. (16) has a unique solution.

14



Substituting the values my, ¢y, 04,7, My and ¢, found above into (16), we find that

oy =1.3+0.1 o = (0.96 +0.01) x 1073

22
r = (0.66 + 0.02) = (z2/) =rogo, = (0.8+0.1) x 1073 (22)

The emittance € from these values is
e = (0.09 £ 0.01) x 102 (23)

We can compare these values found by the method of correlation (22) to the parameters
used to create the tilt phase space and we see that they agree quite well. a and b have
not been explicitly calculated but it is obvious that both are approximately zero in spite

of the large uncertainties in c; and c,.

Tilted Phase Space Distribution

0.004

0.003
0.002

0.001

—0.001
—0.002F.

-0.003

Figure 7 The distribution of this tilted phase space is projected
on both the z and 2’ axes shown in red. This phase space has
0y = 1.4 and 0y = 0.7 x 1073 and (zz’) = 0.1 x 1072, The slits
at —1.5,—0.5,0.5,1.5,2.5 (shown as thick black bars) select out the
particles with 2/ shown in Figure 8.
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Tilted x' Distribution from Each Slit
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Figure 8 The distribution from each slit is shown here. These
curves are formed after binning the 2’ data from each slit into 20 bins.
The curves shift with each slit because the phase space distribution
is tilted.

Tilted x Distribution
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Figure 9 The selected z distributions for x’s j where 7 =9,10,11,12,13
for calculating 7.
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Correlating Mean z'g; with xg;

— linear fit }
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Figure 10 We plot i'; j Versus Tg;. We expect to see a straight line
fit because of (10). The fit parameters are shown in (19).

Correlating z'g; with Mean xg;
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— linear fit
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0.8
0.6
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Mean xg;

Figure 11  We plot Jz{% versus Zg;. We expect to see a straight line
fit because of (13). The fit parameters are shown in (21).



NON-GAUSSIAN DISTRIBUTIONS

As we have stated earlier in the section Theory, for a non-Gaussian distribution, we do
not expect the relationship between the mean divergence JE’S j and slit position z; to lie on a
straight line (c.f. (10)). Similarly, we do not expect the relationship between the divergence
a!; and the mean position Zg; to lie on a straight line (c.f. (13)) either. And so, deviations
from straight lines will help us identify non-Gaussian distributions. The goodness of fit
parameter x2 which tells us how good a linear fit is can serve as the indicator of how good

or bad the Gaussian assumption is. We will use actual data to illustrate the analysis of

non-Gaussian distributions.

EXAMPLE 3

In this examples, we will use the slit image measured by C. Bhat at location X3 in
the A0 photoinjector at Fermilab. See Figure 12. The distance between slits is 1 mm, the
width of each slit is 50 ym and the distance between the slits and the screen is 780 mm. To
be consistent with the Theory, we will assume that the width of each slit is infinitesimally
small. The intensity from each slit is projected onto the vertical axis to form an intensity
plot. Note that in this example, the slits are oriented for measuring the vertical emittance

and so we will change our labels x — y, 2’ — 7/ etc.

We will partition the intensity plot into slices. Each slice is 1 mm in width and centred
at y=1,2,3,...,13 mm. By doing this, we can calculate 3/’ from each slit. This is shown
in Figure 13. Clearly all the curves are not Gaussian: yg5 which has 2 humps, while others
like y¢3 have tails which do not fall off fast enough.i Looking at Figure 14, we can clearly

see that the parent distribution is not Gaussian. But the points lie close enough to a

One way to check the Gaussianness of each curve is to calculate the kurtosis. For Gaussians,
the kurtusis is identically equal to 3.

18
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Figure 12 The intensity from each slit on the screen is projected
onto the vertical axis to form an intensity plot. The charge in each
bunch which produced this image is 2.1 nC.

straight line to give the following fit:
me = (—1.240.3) x 107° rad/mm ¢, = (1+2) x 107° rad (24)

Notice that the error is huge for c;. But ¢, is only used for calculating a and b which does

not affect the emittance calculation.

Next we plot out the og,/; to see how the points scatter. See Figure 15. The average
68y’ is

Ggy = (30 £1) x 107" rad (25)

The plot of y;i versus %s; is shown in Figure 16. Again, this confirms the non-
Gaussianness of the parent distribution. Since, clearly, we cannot use a linear fit for
this set of data, we have to see if o, ; can be used to calculate ogy. See Figure 17. The
osy calculated from this is

Osy = (3.74+0.05) (mm) (26)
19



Substituting (24), (25) and (26) into (16), we can calculate oy, o, and r (foregoing
the calculation of a and b)

oy = (3.79+0.05) mm
oy = (0.31£0.01) mrad (27)
r=(-0.15+0.04) = (yy') = royo,y = (—0.18 + 0.04) mm-mrad

And thus the effective rms emittance of this non-Gaussian distribution is

e=(1.2+0.1) mm-mrad (28)

Finally, we can plot the ellipses using the values calculated above and compare them
with the sampled phase space from slits. The ellipses are calculated by extracting out the

argument in the exponent of (7)

! (v~ a)” _ - Ay ~b) + v _2 b’ = constant = k (29)

(1 - T2) 05 Ty gy/

Essentially, this expression allows us to draw out ellipses in terms of “o”, i.e. when k = 1,
this is equivalent to drawing out an ellipse at 1o, and when k& = 4, the ellipse is at 20 etc.

(Pedantic: For e=%"/20” if z = & then this is equivalent to k = 1).

Using this expression, the ellipses for 1o and 20 are compared with the sampled phase
space in Figure 18. We have centred the ellipses at (4,0) because the highest density
of particles is at slit 4 from Figure 13. From here, the “effective” emittance which we
have calculated covers the expected number of particles from the sampled phase space

distribution.
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' Distribution from Each Slit

Figure 13 The 3/ distribution from each slit of Figure 12 is shown
here.

Correlating Mean y'g; with yg;

50 e — Linear Fit
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Figure 14 We plot Qg j Versus ys;. The parent distribution is not
Gaussian but is close enough so that a straight line can be drawn

through the points.
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osqyj from Each Slit
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0.24 = =
0 2

6 8
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Figure 15 If the parent distribution is Gaussian, og/; is constant.
It is obvious that o4y ; is not constant. The blue line drawn here is
the average o,

Correlating y's; with Mean yg;
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0.4 o

0.2 o o
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o
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4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Mean yg; (mm)

Figure 16 The plot ygl versus ¥g; clearly shows that the points do
not lie on a straight line. Therefore, the parent distribution is not
Gaussian.
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osyj from Each Divergence Point
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Figure 17 From this plot, we can calculate 75, shown as the blue

line.
Comparing Sampled Phase Space to Emittance Ellipse
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Figure 18 The 10 and 20 contour lines are plotted with the sam-
pled phase space from the slits. The squares are the mean of 3’ and
the error bars are the +oy/ from each slit. The projected intensity is
also plotted for reference.
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CONCLUSION

We have shown by examples how the method of correlations can be used to calcu-
late the emittance of the parent distribution. If the parent distribution is Gaussian, this
method yields very good results. Even when the parent distribution is non-Gaussian, this
method gives an effective emittance that serves as a useful parametrization. Furthermore,
statistical errors can be obtained easily from the linear fits, which gives a handle on how

good the quoted emittance value is.
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APPENDIX I

We will prove that the probability function ¢(x, 2’) of the bivariate normal distribution

, N _ r oz 20y o 30
Az ) 2T 0V 1 — 12 (30)

Suppose X and X’ are normally distributed and independent variates with mean 0 and

is

standard deviation 1 respectively. So, if the joint probability density function is 1 (z, z’)

then the probability of finding a point which lies between x + dx and 2’ + dx’ is

1 /
Y(z,2') doeds’ = 2—6_%(5”2“5 *) dx da’ (31)
T

Any other normally distributed variate Y and Y/ can be created from X and X’ by an

affine transformation, i.e. any point (z,2’) of the (X, X’) distribution is related to (y, ')

(#) =2 (7)) @

where T is a linear transformation in R?, and (Z) € R? is a shift of the origin. For

of the (Y, Y”) distribution by

example, the transformation T' which relates Fxample 1 to Example 2 is a scale change
followed by a rotation. Therefore, by making a change of variable (x,2') — (y,4’) we can

derive the probability density function ¢(y,y’) from (31).

The first step is to solve for (z,2’) in terms of (y,%’). We can do this if T is invertible,
or in other words, detT" # 0, then (;3/) from (32) is

(2)=m(57) &

If we write T in full matrix form

_ [t ti2

T = 34

<t21 tzz) (34)
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then
1 ( 129 —t12> (35)

T ! =
t11toe — tart12 \ —l21  t11
and so
x 1 log  —t12 y—a
= 36
(x') tintoe —tortiz \ ~f21 111 y —b (36)
From (31), we need to calculate 22 4+ 22 in terms of y and 3. By using (36), we have
2 2
224 [t11(y' —b) —to1(y — a)]” + [toaly — a) — t12(y' — )] (37)
(ti1taz — t1ato1)?
We define the following’
_ 42 2 )
oy =111 T 12
2 2
oy =19 + 19 (38)
NG Vil 13
TyTy’ Y,
and substituting them into (37), we find that
1 —a)? 2r(y—a)y —b ' —b)?
2 2[@ o _ry-ay'=h) @' -b) (39)
1—r oy YOy oy
To transform dx dz’ — dy dy’, we need the Jacobian
z,x' gz Qo
Y,y Dy Oy
And with more tedious algebra, we will find that
/ z, o /
dx dx :J[ /} dy dy
Yy
Yoy V1 — r2

And thus, by substituting (39) and (41) into (31), we get ¢(y,v').

T with hindsight.
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