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Abstract

Transverse resistive wall instability is analysed for antiprotons in the Recycler Ring. Damper require-
ments are formulated.

1 Growth Rate and Landau Damping

1.1 Coasting Beam

Coherent instabilities are driven by the real part of impedance. For a coasting beam with insigni�cant
frequency spread, the impedance-driven coherent tune shift at the harmonic number n is given by (see e. g.
[1])

��Z � �!Z=!0 = �i
Nr0�

4�
T0
Z(!b + n!0); (1)

where N is the number of particles (pbars), r0 - classical radius, 
 = E0=mc2 - relativistic factor, T0 - the
revolution period, !0 = 2�=T0, � - the beta-function, and Z(
) - the transverse impedance.
The beam can be naturally stabilized by the Landau damping, which requires su¢ cient density of particles

resonant with the coherent beam motion. Density of the resonant particles is suppressed by the space charge
incoherent tune shift, separating coherent and individual betatron frequencies:

��sc � �!sc=!0 =
Nr0

4�
2"?B
; (2)

with "? as the r. m. s. normalized emittance and B = � b=T0 is the bunching factor.
Assuming the beam energy spread as a leading source of the single-particle tune spread, via the chro-

maticity � and the slippage factor � = 
�2t � 
�2; the r. m. s. spread of the e¤ective incoherent tunes is
given by

��b(n) � �!b(n)=!0 = j�n� �j�p=p ;

the Landau damping rate is calculated as

�L =

r
�

2
�!b(n)x

2
n exp(�x2n=2) =

r
�

2
�!scxn exp(�x2n=2) ; xn � �!sc=�!b(n): (3)

To be speci�c, the longitudinal distribution was assumed to be Gaussian here; if it is not, the correction
is obvious. Note that the dimensionless energy spread xn does not change, if the beam is adiabatically
bunched: it depends on the longitudinal phase space density. In other words, growth of the space charge
tune shift with the beam bunching is compensated by an equal growth of the momentum spread, so that the
dimensionless spread xn does not change. As a consequence, the Landau damping grows linearly with the
bunching factor.
When the space charge tune shift is high compared with the coherent tune shift, �!sc � j�!Z j; the

stability threshold, i. e. the solution for �L = Im�!Z is almost independent on the impedance. The
stability condition can be approximately presented as
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x � xth ; or j�n� �j�p=p � ��sc=xth ; (4)

where xth is a numerical factor, xth ' 3 � 5 depending (logarithmically) on the space charge over the
impedance tune shifts ratio, and re�ecting the particle distribution over the momentum. By the same
reason, the stability condition is not sensitive to the bunching factor, when the impedance is space-charge
dominated, �!sc � j�!Z j: The stability condition can also be presented in terms of a threshold frequency
fth � nth=T0 :

f � fth �
j�thj � j�j
j�jT0

; (5)

where the threshold chromaticity �th is written from (5) as

�th =
Nr0

4�xth
"?

mc2T0
"k

; (6)

with "k = c�pT0 as the longitudinal r. m. s. emittance, When the chromaticity module is higher than
the threshold, fth < 0;the beam is stable for any frequency (mode number). If the chromaticity cannot be
elevated as high, the beam is going to be unstable at harmonics below the threshold frequency.
Hadron machines with their long bunches are usually dominated by the resistive wall impedance. When

the skin depth is smaller than the wall thickness,

Z(!) = gZ0R0�(!)=b
3 (7)

where Z0 = 4�=c = 377 Ohm, R0 is the machine average radius, �(!) = c=
p
2��! is the skin depth, b is the

aperture radius, and g is a geometric factor. For round chambers, g = 1; for �at geometry g = �2=12 � 0:82
in the vertical direction, and g = �2=24 � 0:41 in the horizontal. For Recycler, the vertical resistive wall
impedance at revolution frequency is calculated as 21 M
=m.
When the synchrotron frequencies are small compared with the coherent tune shift (1), they can be

neglected in the stability analysis. For the Recycler, the synchrotron periods are at the range of 1 second,
while the instability growth time is typically at least about an order of magnitude shorter. In this case, the
tail of the bunch can act back on the head through the multi-turn wake W (s).

1.2 Why Bunching Can Be Neglected

Landau damping is a steep exponential function. Beam bunching changes its pre-exponent factor as well
as the impedance-related growth rate. However, for space-charge dominated impedances, the exponent is
high, and the stability is mostly determined by that, with relatively minor modi�cation by the pre-exponent
parameters. Note, that the exponent does not change with the beam bunching, being determined by the
phase space density. That is why the beam bunching can be neglected for stability analysis for space charge
dominated impedances.

1.3 Two-Particle Model

Although the detailed dependence of the instability growth rate �!Z on the bunching factor is not so
signi�cant, it could be presented here for reader�s curiosity, in case of a simple two-particle model. When
the bunch is presented as 2 macro-particles:

�!two-partZ =
Nr0�

4
T0

�
G(0) +

p
G(s)G(�s)

�
(8)

G(s) =
1X
k=0

W (kC0 � s) exp(2�ik�b) ;

where �b = !b=!0 is the betatron tune, and C0 is the circumference. The plot at Fig. (1) shows slow increase
of the growth rate with the bunch squeezing for Recycler�s tune �b = 0:42.
These results are supported by more careful numerical analysis, where the beam was represented by much

higher number of macro-particles [2], and more recent analytical results [3].
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Figure 1: Growth rate of the transverse resistive wall instability for two-particle model: exact result (red)
and a �t s�1=4 (blue).

1.4 Example: Stability Threshold for Recycler

When the beam parameters are given, the growth rate and Landau damping can be calculated. Their
intersection at the lowest frequency corresponds to the instability threshold. For a given chromaticity, this
threshold can be conveniently expressed in terms of e¤ective phase space density

D � (N=1010)

4"jj [eV � s] � 6"? [mm �mrad]
: (9)

Fig. (2) shows instability growth rate and Landau damping rate for a coasting beam with N = 1:8 � 1012;
4"jj = 50 eV�s, 6"? = 7 mm�mrad, � = �6: As it is seen from the plot, the parameters taken correspond
to the instability onset for the most unstable lowest order mode. The e¤ective phase space density here
is D = 0:5; corresponding to xth = 2:7: In practice, the instability onset was observed within an interval
0:5 � D � 0:8 [4]. Increase of the threshold density over its Gaussian limit D = 0:5 indicates that the
distribution tails are higher than the Gaussian ones.

2 Digital Damper

A damper is assumed here to consist of a pickup, pre-ampli�er, delay line, analog-digital converter (ADC),
notch �lter, analog low-pass �lter (LPF) and kicker. The pre-ampli�er band is assumed here to be broad
enough to consider it in�nite, so it is simply characterized by the introduced low-frequency damping rate
�0. All other elements are considered below.

2.1 Analog-Digital Converter

The output signal of ADC goes with a sample frequency fs � !s=(2�) � ��1s ; at the time of writing
this statement fs = 53 MHz, being exactly 588 harmonic of the revolution frequency (to �lter out all the
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Figure 2: Impedance-driven growth rate (red) and Landau damping (blue), both in inverse seconds, near
the threshold. The e¤ective density D = 0:5 ; xth = 2:7 .

revolution harmonics). Presently, the input signal is detected at Na = 4 times higher frequency, and then
an average of these Na numbers goes as the output. An example of the AD conversion is shown in Fig (3).
The ADC transforms any input frequency into a sequence of all the composite frequencies, shifted from

the input one by multiples of the sample frequency. This equidistant sequence of frequencies includes a
single one inside an interval 0 < ! < !s, which can be taken as a parameter of the entire set of the
cross-talking frequencies. This continuous parameter ! is referred below as a marking frequency. Incoming
frequencies !p � ! + p!s ; p = 0; � 1; � 2; :::are transformed by the ADC into outgoing frequencies
!q � ! + q!s ; q = 0; � 1; � 2; ::: . Let bT be the linear operator of the ADC; then, it is straightforward
to show that

bT exp (�i!pt) = 1X
q=�1

Tp;q exp (�i!qt) ;

Tp;q =
2

Na
exp

�
i!p� s

�
1� 1

2Na

��
sin2 (!p� s=2)

� s!q sin
�
!p�s
2Na

� : (10)

Below, it is assumed that the phase factor in the ADC is compensated by a preceding delay line, providing
all the matrix elements real:

Tp;q =
2

Na

sin2 (!p� s=2)

� s!q sin
�
!p�s
2Na

� : (11)

With the ADC, the frequency ! (representing actually the wave length of the beam perturbation) is no
longer a good parameter for the beam modes, each consisting of all the composite harmonics. High enough
harmonics are strongly damped by Landau damping; thus, they can be neglected and the in�nite set of the
composite amplitudes being cut.
Let Ap be an amplitude of the harmonic !p = ! + p!s. Were the digital damper the only way for the

beam to interact with itself, the time evolution of this harmonic would be described as

dAp
dt

= ��0
1X

q=�1
Tp;qAq (12)
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Figure 3: ADC input (red dots) and output (blue steps) for 13 MHz input signal.

with �0 as a low-frequency rate, determined by the pre-ampli�er. A solution of this set of linear equations is
expressed in terms of eigenvectors, whose eigenvalues are the damping rates of the beam modes. Impedance
and Landau damping just add their terms to the matrix diagonal elements:

dAp
dt

= ��0
1X

q=�1
Tp;qAq � (�L)pAp � i (�!Z)pAp (13)

Note that the matrix bT (11) is strongly degenerated: for any �nite dimension it is reduced, all its
eigenvalues but one are exact zeroes. With impedance, half of these zeroes are getting unstable; they could
be stabilized by the Landau damping.

2.2 Low-Pass Filter

A �lter bF transforms the signal as
bF exp(�i!t) = F (!) exp(�i!t) :

With a �lter following the ADC, the ADC matrix elements are modi�ed as Tp;q ! Tp;qF (!q): A simplest,
�rst-order, low-pass �lter (LPF) is given by an R-C circuit:

F (!) =
1

1� i!=!F
: (14)

Presently, a high-order LPF provides the �lter function as it is shown in Fig. (4), provided by J. Crisp [5]

2.3 ADC+LPF+Impedance+Landau Damping

To solve the stability problem with all the four factors taken into account, the impedance and Landau
damping rates should be added to the diagonal elements of the ADC+LPF matrix. The instability threshold
is calculated as twice higher e¤ective phase space density, D = 1:1, practically the same in a wide range of
the damper�s low-frequency damping time ��10 , between 15 and 1500 revolutions. In reality, the beam was
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Figure 4: Amplitude and phase characteristics of the LPF of the present damper.

observed as stable up to D = 1:5 [4], a factor of ~ 2 more than without the damper. Lower thresholds in
this model, compared with the observations (by ~ 40%) most likely result from the Gaussian assumption.
The real distribution of the cooled beam is not Gaussian, the real tails are higher and the real thresholds
should be higher as well. Some results for a speci�c threshold case with N = 2:8 � 1012; 4"jj = 35 eV�s,
6"? = 7 mm�mrad,are presented in Figs. (5), (6).
Fig. (5) shows that for this choice of parameters, Landau damping prevails at f & 35 MHz, not far from

the Nyquist frequency fs=2 = 26:5 MHz.

Fig. 6, left, shows the damping rate for the less stable mode as a function of the marking frequency;clearly,
it is the instability threshold. On the right, the average frequency of this less stable mode is calculated,
where all the composite frequencies are weighted with amplitudes of their perturbations squared. The curve
minimum is close to the Nyquist frequency 26.5 MHz.
One more curious observation is that LPF appears to be useless here. The threshold densities with and

without it are calculated as identical within a few percent. So, the current LPF does neither good nor bad.
The reason is that if the �lter is wider than the Landau damping boundary, it makes nothing. Otherwise, it
makes the damper ine¢ cient in a frequency range between the �lter cut-o¤ and the Landau damping start.

2.4 O¤set of the Sampling Frequency

Up to this point, the sampling frequency was supposed to be an exact multiple of the revolution frequency,
which is needed to suppress all the revolution harmonics by the Notch �lter. As a result, all the composite
harmonics generated by the ADC are located at the betatron sidebands, and e¤ectively interact with the
beam. That is why the cross-talk between the harmonics was taken into account in the above analysis.
However, some o¤set of the sampling frequency from the exact multiple of the revolution one is possible; its
limit is determined by the beam centering and other parameters external for this analysis. If this detune
exceeds several times the impedance-driven growth rate, then the composite harmonics do not interact with
the beam, the damper matrix is diagonal, and the beam should be more stable. Indeed, the cross-talk of the
harmonics requires Landau damping to prevail at about Nyquist frequency. Without the cross-talk, Landau
damping is needed to prevail at the sampling frequency, which damper just does not see. According to the
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Figure 5: Instability growth (red) and Landau damping (blue) rates versus frequency. Without damper,
perturbations above 35 MHz are stable.

stability condition (4), this leads to increase of the threshold phase space density as jn� � �j; or ' 20% .
Calculations in a manner of the previous subsections give for the threshold e¤ective density D = 1:3 in this
case, perfectly con�rming this conclusion.

2.5 Pickup and Kicker

Taking pickup and kicker voltages as

Vp =
Nelp

Bc2Cpbp
yp ; Vk = K(!)Vp ; (15)

where Cp ; lp and bp are the pickup capacity, length and half-gap, K(!) is the ampli�cation, and yp is the
beam o¤set at the pickup, the complex frequency shift introduced by the damper to the mode with average
gradient n follows as

�!K = �i
Nr0
2
BT0

lp
Cpbp

lk
bk

q
�p�kK(!b + n!) (16)

with lk and bk as the kicker length and half-gap, �p;k as the beta-functions at pickup (kicker) locations, and
assuming �=2 + �m for the pickup-kicker phase advance. The beam stability requires

Im(�!K +�!Z) < 0

for all the modes up to the threshold n = nth; see Eqs. (5, 6).
Note that the de�nition of the ampli�cation K(!) (15) combines both the ampli�er�s gain Ka(!) and

the kicker response Kk(!) , or

K(!) = Ka(!) Kk(!):

Assuming that the kicker is a strip-line of length lk = c�k; properly delayed, loaded (matched) with 50

 at the up-stream end and acting by the oncoming travelling wave, its response function is written:
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Figure 6: On the left: lowest damping rate for the system with ADT+LPF+Impedance+Landau damping.
For the marking frequency 24 MHz the rate is almost zero; thus, it is the threshold. On the right: average
frequency of the perturbation as a function of the marking frequency for the less stable mode.

8



Kk(!) =
sin(!�k)

!�k
: (17)

Current kicker is lk = 1:4 m long; thus its response Kk changes sign at fk = 1=(2�k) = 107 MHz.

3 Noise of the Damper

Noise at the ampli�er entrance at incoherent betatron frequencies leads to the beam emittance growth
(normalized r. m. s.):

d"?
dt

=

Z
d!if(!i)

1X
n=�1

dJi;n
dt

1

j�n;ij2
: (18)

Here the integral is taken over the individual betatron frequencies !i ; with f(!i) as the distribution function
normalized by

R
d!if(!i) = 1; and dJi;n=dt is a (bare) growth of an action of particle number i due to the

noise at frequency �= !b + n!0 were this particle being alone (no beam response), while �n;i is the dielectric
function, which takes into account the collective response (feedback through the beam) at frequency !i+n!0.
Taking U2! as the spectrum power for the noise voltage at the entrance of the ampli�er, normalized as
U2 =

R1
0
U2!d!=� ; the bare action growth follows:

dJi;n
dt

=

�k
2T 20

l2k
b2k

e2U2!jK(!)j2
E20

: (19)

The dielectric function can be presented as

�n;i = 1 + (�!sc +�!Z +�!K)

Z
f(!j)d!j
!j � !i � i0

: (20)

When the collective frequency stays outside the incoherent distribution, the contribution in the integral
consists of two well-separated parts, from average and resonant particles:

d"?
dt

=
d"?
dt

����
ave
+
d"?
dt

����
res

; (21)

d"?
dt

����
ave
=

�
1

j�j2

� 1X
n=�1

dJi;n
dt

�=
�
�!

�!sc

�2 Z
d!if(!i)

1X
n=�1

dJi;n
dt

;

d"?
dt

����
res
=

1X
n=�1

dJi;n
dt

�L
�n

:

Here �! is the betatron frequency width of the beam distribution, �L �= ��!2scf(�!sc) is the Landau
damping rate of the mode n;and �n = �L � Im(�!Z + �!K) is its total damping rate. For space charge
dominated impedances, the beam frequency spread �! is determined by the space charge itself due to the
space charge transverse non-linearity. For Gaussian beams, this part of the spread is 0.25 of the average
tune shift, which leads to suppression factor of the average contribution�

�!

�!sc

�2
�= 0:06 :

If the beam is not too close to the instability, the contribution of the resonant particles can be neglected
compared with the average term, which leads to

d"?
dt

' 0:06
1X

n=�1

dJi;n
dt

= 0:06

�k
2T0

l2k
b2k

e2

E20

Z 1

0

d!

�
U2!jK(!)j2 (22)
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4 High Frequency Damper

4.1 Analog Damper

To accumulate 6 � 1012 antiprotons in 30 eVs and 5 mm mrad of 95% emittances corresponds to the e¤ective
density D = 4, which is about 4 times higher than the threshold with the existing damper. Thus, this goal
requires signi�cant extension of the damper bandwidth. A possible solution could be an analog damper
based on on a �rst-order �lter (14). Fig. (4.1) shows the impedance-driven growth, Landau damping and
Landau damping plus the high frequency analog damper for the mentioned goal beam parameters and the
�rst-order damper with the roll-o¤ frequency !F =(2�) = 26 MHz and low-frequency damping time of 150
revolutions. According to the plot, the beam is close to the threshold. Several important features have to
be underlined here.

� Landau damping prevails starting from 250 MHz. Below this frequency, damper is the only remedy.

� Thus, the damper is and must be e¤ective up to an order of magnitude of the roll-o¤ frequency.

� The pickup and the kicker have to be good up to 250 MHz.

� Filter of the �rst order is the best one (assuming that �lters of the order less than 1 do not exist).

Impedance-related growth (red), Landau damping (blue) and Landau damping plus high frequency analog
damper (magenta) rates

More optimal way for damping optimization requires use of both existing low-frequency digital damper
and high-frequency analog one. In this case, the resulting damping rate could better �t the impedance
growth rate. A possible solution with the analog damper roll-o¤ at 100 MHz and low-frequency damping
time of 3000 turns is shown in Figs. (7), (8), showing that at these parameters the beam is at the instability
threshold.
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Figure 7: Impedance-related growth (red) and Landau damping plus 2nd stage high frequency analog damper
(magenta) rates

4.2 Increase of the Sampling Rate

When this paper was prepared, the sampling rate of the digital damper was increased twice, from 53 to 106
MHz. Application of the described analysis requires the kicker frequency response being taken into account.
This doubling of the sample rate further increases the threshold, calculated for the same other conditions as
D = 1:4 with the LPF, and slightly more, D = 1:5; without the LPF. Both results are not sensitive to the
averaging parameter Na:
Within a few days from a day when this is written, one more doubling of the sample rate will be e¤ective.

With the current kicker, however, increase of the sample rate above 106 MHz is seen as useless at best. With
an ideal kicker and the sampling rate of 212 MHz, the threshold goes up to D = 2:5; and the analog damper
will not, probably, be needed with this scheme.

5 Summary

Instability in the Recycler is driven by the resistive wall impedance, while the Landau decrement rate is
suppressed by the space charge. The quantitative stability analysis is presented where the mentioned factors
and the damper are taken into account. The stability thresholds are calculated for various damper options.
Requirements for the high-frequency damper are speci�ed. Quadrupling of the sample frequency and 3-4
times increase of the kicker�s band makes the analog high frequency damper hardly necessary.
The momentum distribution was assumed to be Gaussian in this paper, which is not quite true for e-

cooled beams, which have normally somewhat higher tails. From this point of view, the stability requirements
found here could probably be slightly relaxed.

The author is thankful to V. Lebedev and S. Nagaitsev for many enlightening ideas, to M. Hu for his
description of the instability observations, and to J. Crisp for the data and the explanation about technical
features of the digital damper.
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