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Abstract

The transverse space-charge force exerted on a particle inside a beam with trans-
verse bi-Gaussian distribution is formulated for all situations, for a flat beam, for an
almost round beam, for the particle near the beam center, and far away from the beam

center. A subroutine to compute the space-charge force is given.
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1 INTRODUCTION

In tracking, the transverse space-charge force can be represented by changes in the horizontal
and vertical divergences, Az’ and Ay’ at many locations around the accelerator ring. In this
note, we are going to list some formulas for Az’ and Ay’ arising from space-charge kicks
when the beam is tri-Gaussian distributed. We will discuss separately a flat beam and an

almost round beam.

We are not interested in the situation when the emittance growth arising from space
charge becomes too large and the shape of the beam becomes weird. For this reason, we can
assume the bunch still retains its tri-Gaussian distribution, with its rms sizes o,, 0,, and
0. increasing by certain factors. Thus after each turn, o, 0,, and o, can be re-calculated.
The electric potential for a particle of charge e at location x,y, z is therefore given by the

formula, [1]
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where N, is the number of particles in the bunch. The force acting on the particle is just
—eﬁUsc. Written in this way, the potential vanishes at the center of the bunch. To include
the magnetic part of the force, we just need to add 42 in the denominator, where v is the

relativistic factor. There is no closed form for this integral.

2 Linear Approximation

When incorporating this into a code, it will be nice if there is an option of including only the
linear part of the space-charge force. Take the z-component of the force. After performing
the derivative with respect to x, the linear part can be obtained by setting x = y = 0 in the

integrand. Thus
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We can be sure that the algebraic sign on the right side is correct, because the space-charge

force is repulsive and therefore positive in the positive z-direction. So far as we know, this



integral cannot be performed in the closed form. However, since o, and o, are both very
much smaller than ¢, in a particle accelerator ring, an approximation can be made. Notice
that the integration variable ¢ varies mostly between 0 and 202. We can therefore make the
replacement

202 +t — 202, (2.2)

The above reduces to
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This integral can now be performed in the closed form to give the familiar result
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In the same way, the linear part of the vertical space-charge force on the particle is
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The equations of motion in the transverse planes are
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where K,z and K,y are restoring forces from the magnetic elements, while F, , are the
horizontal and vertical forces arising from space-charge effects. In above, m is the particle
mass and v = fc is the nominal velocity of the beam particles. Integrating over a length L
of the orbit where the beam radii do not change much, we obtain the changes in 2’ and v’
coming from space-charge effects only,
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Thus, the linearized space-charge force leads to
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where ry = €?/(4megmc?) represents the classical radius of the beam particle. They can also

be rewritten as
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local linear beam density.

3 Application to Electron Bunches

An electron bunch usually has its length very much larger than the transverse radii. Thus
the replacement in Eq. (2.2) can be made, and the space-charge potential becomes (including

electric and magnetic contributions)
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This integral can be performed in the closed form in terms of the complex error function. [2]
As will be shown below, however, the analytic expression is useful only for electron bunches,

where the horizontal beam radius is very much larger than the vertical (o, > 0,).

Introduce the following new variables:
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It is then easy to obtain
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We therefore have
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We understand that the signs before the right sides of these two equations are correct,

because for positive  and/or y, the horizontal and/or vertical divergence should increase.

The changes in the horizontal and vertical divergences can be combined as a complex

variable .
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is now introduced, which simplifies the above to
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These expressions appear to diverge when o, = o, because of the factors outside the squared-

brackets. In fact, this is not true, because the expressions inside the square brackets will



provide zeros at o, = o, to cancel the poles outside. This is obvious, because the original

expression for the space-charge potential in Eq. (1.1) is well-behaved at o, = o,,.

In case 0, < 0, the above can be easily transformed to
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4 ALMOST ROUND BEAM

It is obvious that the expressions in terms of the complex error function in Eq. (3.10) cannot
be applied when the beam is almost round because of the singularities at o, = o0, outside
and within the square brackets. Instead, let us start our discussion from Eq. (3.4), which

can be rewritten as
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with r = 0,,/0,. We may perform power expansion in z? and y? to obtain
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It is evident that f,(z? y?) can be obtained from f,(2%,y*) by suitable replacements of r
by 1/r. Unfortunately, these formulas may not be very useful, because they lead to the
incorrect consequence that the space-charge force increases without limit when the particle

is far away from the beam center. Instead we should expand Eq. (4.2) around a round beam.

In other words, we should perform Taylor’s expansion in the variable €, where

(4.4)

Let u =1 — s, then the z-component of Eq. (4.2) becomes
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We further introduce ¢ = u/e, so that
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Now e appears only in the integrand and a power series can be easily obtained. One may
argue that e also appears in o, implicitly. But we would like to leave o, as is; otherwise,
the expansion will become more messy. It is easy to see that the above can be expressed in

terms of the integrals
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In fact,
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The expression on the right side of Eq. (4.7) has an apparent singularity at w = 0, or
when the particle resides at the center of the beam. This apparent singularity can be easily

removed by the following expansion whenever w is small:
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Note that the above expressions are valid independent of whether € is positive or negative.

With the above formulas, the space-charge force has been coded in the Fortran subrou-
tine spchforce(x,y,sx,sy,Fx,Fy,icode) and is listed in the Appendix, where one inputs
(x,y) as the transverse position of the particle in a bi-Gaussian distribution with rms spreads
(sx,sy)=(0,, 0,). The outputs Fx and Fy give the horizontal and vertical kicks on the par-
ticle:
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where K. is the local space-charge perveance of the beam while o, is its longitudinal rms
spread. The output variable icode serves as a record of how the space-charge force is
computed. While icode= 1 or 2 denotes the use of the complex-error-function expressions
of Eq. (3.10) or (3.13), icode= 3 or 4 denotes the use of the small-¢ expansion of Egs. (4.9)
and (4.10) through the exact integration result of Eq. (4.7) or through the small-w expression
of Eq. (4.11).



APPENDIX

In below, we list the subroutine spchforce(x,y,sx,sy,Fx,Fy,icode).

cernlib is required for the complex error function. Note that in the subroutine the vertical

coordinate is denoted by z instead of y.

subroutine spchforce(x,z,sx,sz,fx,fz,icode)
Space charge force in a bi-Gaussian beam
Input: x,z are horizontal and vertical particle positions
sX,sz are horizontal and vertical rms spread of
transverse distribution, assumed to be bi-Gaussian

Output: Fx,Fz are horizontal and vertical components of sp-ch

force. When multiplied by Ksc*L, the beam local sp-ch

perveance give Delta x’ and Delta z’ for a length L.
Ksc=2*N*r0/(gamma~3*\beta"2), N=local beam linear

density, rO=classical particle radius.

index tracks how the force is computed. When complex error

fcn is used, index=1 or 2 implies sx>sz or sx<sz.
When expansion in ep is used, index=3 or 4 implies
exact integration or expansion around beam center.
implicit real*8(a-b,d-h,0-z)
implicit complex*16(c)
complex*16 wwerf
spi=1.772453851d0 I'sqrt (pi)
r=sz/sx
ep=1.d0-r
if (abs(ep) .gt.0.05d0)go to 1
Use expansion when ep is small
p=x*x/ (sx* (sx+s2))
q=z*z/ (sx* (sx+sz))
w=p+q
if(w.gt.0.01d0) then
expw=exp (-w)
W2=wkw

W3=W*w2

In compilation,



waA=w2*w2
wh=wh*w
w6=wb*w
f0=(1.d0-expw) /w
f1=(1.d0-expw* (w+1.d0)) /w2
£2=(2.d0-expw* (w2+2.d0*w+2.d0) ) /w3
£3=(6.d0-expw* (w3+3.d0*w2+6 .d0*w+6.d0) ) /wi
f4=(24.d0-expw* (w4+4 .d0*w3+12.d0*w2+24 .d0*w+24.d0) ) /w5
£5=(120.d0-expw* (w5+5.d0*w4+20.d0*w3

* +60.d0*w2+120.d0*w+120.d0) ) /w6
£6=(720.d0-expw* (w6+6 . d0*w5+30.d0*w4

* +120.d0*w3+360.d0*w2+720.d0*w+720.d0) ) / (w6*w)
icode=3

else
£0=1.d0 -w/2.d0+w2/6.d0 -w3/24.d0+w4/120.d0
£1=0.5d0 -w/3.d0+w2/8.d0 -w3/30.d0+w4/144.40
£2=1.d0/3.d0-w/4.d0-w2/10.d0-w3/36.d0+w4/168.d0
£3=1.40/4.d0-w/5.d0+w2/12.d0-w3/42.d0+w4/192.d0
f4=1.d0/5.d0-w/6.d0+w2/14.d0-w3/48.d0+w4/216.d0
£5=1.40/6.d0-w/7.d0+w2/16.d0-w3/54.d0+w4/240.d0
£6=1.40/7.d0-w/8.d0+w2/18.d0-w3/60.d0+w4/264.d0

icode=4
endif
fx=fO+ep*f2x (p-3.d0x*q) /2.d0
* +epxep* (£4* (p-3.d0*q) **2/8.d0-2.d0*£3*q)
* +ep*xepxep* (£6* (p—3.d0*q) **3/48.d0+£5* (3.d0*q*q-2.d0*p*q) /2.d0
* -2.5d0*f4*q)
fz=f0+ep* (2.d0*f1+(p-3.d0*q) *£2/2.d0)
* +epxep* (3.d0*f2+(p-5.d0*q) *£3+(p-3.d0*q) **x2x£4/8.d0)
* +epxep*ep* (4.d0*£3+(1.5d0*p-11.d0*q) *f4
* +(0.25d0*p*p+3.75d0*q*q-2.5d0*p*q) *£5
* +(p-3.d0*q) **3*x£6/48.d0)

fx=fx*x/(sx*x(sx+sz))
fz=fzxz/(sx*x(sx+s2))

return
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c Use complex error function
1 continue

if(ep.gt.0.d0)then
diff=sqrt(2.d0* (sx*sx-sz*sz))
wl=x/diff
w2=z/diff

else
diff=sqrt(2.d0* (sz*sz-sx*sx))
w2=x/diff
wl=z/diff
r=1.d0/r

endif

ca=cmplx(wl,w2)

cb=cmplx (wl*r,w2/r)

ckick=wwerf (ca)-wwerf (cb) *exp (-x*x/(2.d0*sx*sx)-z*z/(2.d0*sz*sz) )

if(ep.gt.0.d0) then
fx=imag(ckick)*spi/diff
fz=real(ckick)*spi/diff
icode=1
return

else
fz=imag(ckick)*spi/diff
fx=real (ckick)*spi/diff
icode=2
return

endif

end
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