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Abstract

It is speculated that the space charge effect cause beam emittance growth

through the resonant envelope oscillation. Based on this theory, we propose an

approach, called space charge stopband correction, to reduce such emittance

growth by compensation of the half-integer stopband width of the resonant

oscillation. It is illustrated with the Fermilab Booster model.

1 Introduction

It is well known that the space charge effect causes emittance growth in low en-
ergy synchrotrons, such as the Fermilab Booster. We have observed such growth
experimentally on the Booster [2]. Fig. 1 shows the normalized vertical emittance
of the Booster in the first 4000 turns for beam intensities corresponding to 2-turn
to 18-turn injection ( Every 1 turn injection roughly corresponds to 0.5E12 protons
into the Booster from the Linac.). In Fig. 1, two emittance growth patterns are
observed. For intensity above 13-turn injection, emittance blows up quickly in the
first few hundreds of turns until it reaches a very high level. For intensity below 12-
turn injection, the emittance growth is more moderate. It has been demonstrated
that the latter case can be described by a model which assumes the instantaneous
growth rate is composed of a linear term and a space charge term [2]. The space
charge term is proportional to the general space charge perveance parameter Ksc

defined as
Ksc = 2Nr0/(β2γ3),

where N is number of protons per unit length and r0 = 1.5347 × 10−18 m.
The emittance grows fast for low-energy and high-intensity beams, which is a

clear sign of space charge effect. This process can now be simulated with several
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Figure 1: (Color) The normalized vertical rms emittance from 70 turn to 4000 turn
for all data sets with 2-turn injection to 18-turn injection. Note the RED curve
is for 12-turn injection which marks the border of two kinds of emittance growth
behavior.

tracking codes which use the particle-in-cell (PIC) model. However it is still not
understood theoretically. Ref [1] suggests a possible mechanism of the space charge
induced emittance growth. It relates emittance growth to resonant excitations of the
envelope oscillation of mismatched beam. Based on this model, we speculate that
it would reduce the emittance growth if we adjust the lattice model to cancel the
resonant envelope stopband integral. This approach is called space charge stopband
correction.

In this note we describe a method to correct the resonant stopband integrals and
demonstrate it with the Fermilab Booster model. We first briefly summarize the
theory of resonant envelope oscillation and stopband integrals as in Ref [1].

2 Envelope oscillation and half-integer stopband

We use a KV beam to illustrate the envelope oscillation theory. The envelope
equation of a KV beam is given by

R
′′

b + k(s)Rb −
ε2

R3
b

−
Ksc

Rb
= 0, (1)

where k(s) is the focusing function, ε is beam emittance, Rb is the beam envelope

radius (Rb =
√

β(s)ε for matched beam), Ksc is the space charge perveance param-

eter and β(s) is the betatron amplitude function. Making Floquet transformation
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with

R =
Rb

√

β(s)ε
, φ =

1

ν

∫ s

0

ds

β(s)
, (2)

where ν is the betatron tune, we transform the envelope equation to

R̈ + ν2R −
ν2

R3
−

ν2β(s)Ksc

εR
= 0 (3)

with new time-coordinate φ.
Now we consider the space charge term as a small perturbation. We can expand

the actual envelope radius around its unperturbed counterpart to R = 1 + r + ∆
with a static (φ-independent) term ∆ and an oscillatory (φ-dependent) term r.
Expanding the space-charge factor

νβ(s)Ksc

2ε
= ξsc

(

1 +
∞
∑

n=1

qn cos(nφ + χn)

)

(4)

into Fourier series, with

ξsc =
1

2π

∮

νβKsc

2ε
dφ =

KscC

4πε
, (5)

ξscqn =
1

π

∮

νβKsc

2ε
cos(nφ + χn)dφ, (6)

where C is the circumference of the ring. Inserting the Fourier expanded factor into
the envelope equation, we get ∆ = ξsc/2ν and

r̈ + (4ν2
− 4νξsc)r ≈ 2νξsc

∞
∑

n=1

qn cos(nφ + χn). (7)

Eq. (7) shows that the envelope radius can be resonantly excited by the space charge
perturbation if the envelope tune νenv = 2ν − ξsc is close to an integer. In that case
we get

r ≈
2νξscqn

−n2 + (4ν2 − 4νξsc)
cos(nφ + χn) (8)

with integer n ≈ νenv.
When the envelope is resonantly excited, the betatron phase space mismatch

becomes severe. Some particles can be left out of the beam core which then lead
to emittance dilution. An efficient way to reduce the emittance growth is thus to
reduce the resonant stopband integral ξscqn.
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3 Stopband correction

Rewriting Eq. (6) into the form

qn =
1

π

Ksc

2εξsc

∮

cos(nφ + χn)ds

=
2

C

∮

cos(nφ + χn)ds, (9)

we see that the stopband arises only from the non-uniform spatial distribution of
betatron phase advance. Since the trim quadrupoles perturb the betatron ampli-
tude function as well as the betatron phase advance around the ring, the stopband
integrals can be corrected by properly adjusting the trim quadrupoles.

The perturbation to beta function due to trim quadrupoles is

∆β

β
= −

ν0

2

∑

p

jp

ν2
0 − (p/2)2

ejpφ, (10)

where jp is the p’th half-integer stopband integrals for quadrupoles defined as

jp =
1

2π

∮

k(s)β(s)e−jpφds =
1

2π

∑

i

[k∆l]iβie
−jpφi (11)

and the perturbation to phase advance is

∆φ =
1

ν0
∆

(

∫ L

0

ds

β

)

= −
1

ν0

∫ L

0

∆β

β

ds

β

= −

∫ φ

0

∆β

β
dφ′ =

ν0

2

∑

p

jp

ν2
0 − (p/2)2

∫ φ

0
ejpφ′

dφ′

=
ν0

2

∑

p

jp

ν2
0 − (p/2)2

1

jp
(ejpφ

− 1). (12)

Eq. (12) is verified by comparing ∆φ due to one trim quad with MAD calculation
and the equation. The comparison is shown in Fig 2.

Thus the perturbation to the stopband integral qn is

∆qn = −
2n

C

∮

sin(nφ + χn)∆φds

=
nν

2C

∑

p

jp

ν2 − (p/2)2

1

p

∮

(ej(nφ+χn)
− e−j(nφ+χn))(ejpφ

− 1)ds

= −
ν

2(ν2 − (n/2)2)
(jne−jχn + j−nejχn), (13)

where in the last step we keep only terms with p = ±n. For each trim quadrupole,
j±n = 1

2π
[k∆l]βe∓jnφ, hence the correction of the resonant stopband integral due to

the i’th trim quadrupole is

∆qi
n = −

ν

ν2 − (n/2)2

[k∆l]iβi

2π
cos(nφi + χn). (14)
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Figure 2: (Color) Comparison of ∆φx due to an increase of QS-9 by 0.5 A with
MAD calculation and Eq. (12) (using 20 harmonics). Eq. (12) is verified.

Eq. (14) is also verified with the Booster lattice. For example, with the operation
setting when data in Fig. 1 were taken the model gives qx,13 = 0.1494 and ∆qS1

x,13 =
0.0866 for a change of 1.0 A of trim quadrupole S1. Reducing the current of trim
quadrupole S1 by 0.2 A and re-evaluating the stopband integral we get qx,13 =
0.1338. The change of qx,13 is -0.0156, compared to 0.0866× (−0.2) = −0.0173. For
the same setting, qz,14 = 0.1208 and ∆qL2

z,14 = 0.0619. Reducing trim quadrupole L2
by 0.2 A brings qz,14 down to 0.1079, which also verifies the equation.

In practice, we want to correct stopband integrals for both the horizontal and
vertical planes. And it is desirable to compensate the two harmonics nearest to νenv.
For example, for the Booster, we want to compensate qx,13, qx,14, qz,13 and qz,14. A
working correction scheme needs to consider all these harmonics. It can be done by
defining a merit function which include all 4 harmonics

f = q2
x,13 + q2

x,14 + q2
z,13 + q2

z,14 (15)

with

qy,n = qy,n0 +
∑

i

∆qi
n∆Ii, (16)

where y stands for x or z and ∆Ii is the change of the i’th trim quadrupole. Using the
gradient of function f , it is very easy to reduce it, along with all related harmonics.
The stopband correction for the Booster is described in the next section.

5



0 5 10 15 20
0

0.05

0.1

0.15

0.2

harmonic

q n

envelope stopband

Hori
Vert

n=14
n=13

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

harmonic

q n

envelope stopband

Hori
Vert

n=13
n=14

Figure 3: Left: the envelope stopband integrals for the Booster with recorded oper-
ation settings. Right: the corrected envelope stopband integrals.

4 Stopband correction for the Booster

For the Booster, the nominal betatron tunes are νx = 6.7 and νz = 6.8, which make
the 13rd and 14th harmonics most dangerous. Unfortunately, these harmonics are
unusually large, as shown in Fig. 3 (left), which shows the stopband integrals with
the recorded setting for data in Fig. 1. It is seen that qx,13 and qz,14 are much higher
than other harmonics.

Using the stopband correction method described in the last sub-section, we have
successfully reduced these stopband integrals to a very low level. The corrected
result is shown in Fig. 3 (right) which shows that qx,13 and qz,14 are down to 0.01.
The harmonics before and after correction are also shown in Table 1. If the envelope
oscillation is indeed the cause of emittance growth, such correction of envelope
stopband would dramatically improve the beam performance. The correction setting
only changes half of the trim quadrupoles by up to 0.4 A.

Table 1: The concerned harmonics before and after correction
qx,13 qx,14 qz,13 qz,14

initial 0.1494 0.0954 0.0207 0.1208
corrected 0.0095 0.0316 0.0058 0.0129

A big concern in practice is of course the sensitivity of the calculated correction
setting. The maximum sensitivity is estimated by
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∆qi
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∣

ν

ν2 − (n/2)2

[k∆l]iβi

2π

∣

∣

∣

∣

∣

(17)

according to Eq. (14). Using νx = 6.7, k∆l = 0.0068 m−1 for 1 A at 400 MeV,
βx = 34.0 m in average at short sections, we get a maximum change of qx,13 of
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0.094 by 1 A change of current of a short section trim quadrupole. Using νz = 6.8,
βz = 21.0 m at long sections in average, the maximum sensitivity is 0.056 by 1 A
change of a long section trim quadrupole. Such sensitivity levels are within the
controllable range in experiments. However, one has to have an accurate lattice
model to find a meaningful correction setting. We expect that the model should
be accurate enough to assure the error of the calculated lattice functions (beta
function and phase advance) are within the error level due to 1 A change of one
trim quadrupole. This is beyond the model accuracy we currently have.

We have tried this approach on the Booster but did not obtain positive results.
The experiment was conducted as follows. First we took the settings of all trim
quadrupoles and built a lattice model (MAD) with them. The stopband integrals
and the desired correction setting (of trim quads) were calculated using the model.
We then dialed in the correction setting and observed the emittance growth in the
beginning of the cycle. We also used the knob to change the currents of a few
trim quads around the calculated setting. The negative result can be explained
by the fact that the precision of the lattice model is not adequate. To succeed in
the future, we may need a better search strategy to locate the working correction
setting without a precise lattice model, or we can improve our model precision by
calibration with beam-based measurements.
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