
Cylindric Electron Envelope for Relativistic Electron Cooling

A. Burov, V. Lebedev

March 18, 2005

Abstract

Electron cooling requires small angles between the electrons and the cooled particles. In other words,
the electron beam has to be of a cylindrical shape in the cooling section. How to satisfy this requirement
for a speci�c case of a relativistic electron beam transport for the Fermilab electron cooling project? In
fact, the requirement splits into two parts: for the beam centroid and its envelope. A straight centroid
motion means a good �eld quality and zero initial conditions; this issue is not a subject of this paper.
The cylindrical envelope requires proper initial conditions of the envelope at the entrance of the cooler,
it is a problem of matching. A speci�c complex of measurements and calculations aimed at solving this
problem is described here.

1 Introduction

Electron cooling of the pbars in the Recycler [1] is supposed to increase several times the luminosity of the
Tevatron complex. One of the key issues for electron cooling in general and for the Fermilab project in
particular is alignment: the angles between electrons and pbars in the cooler have to be limited by 2-3 r. m.
s. angles of pbars, or by 100-200 �rad, depending on the pbar emittance [2]. To minimize the angles, the
electron beam has to be cylindric in the cooler, which means that both its centroid and envelope oscillations
have to be small enough. Suppression of the centroid motion requires, �rst of all, a good �eld quality in the
cooler; this issue is discussed in Ref. [3]. Suppression of the envelope angles requires a speci�c complex of
measurements and analysis, which is a main subject of this paper.
A necessary condition for getting a cylindric beam in the cooler is matching of the magnetic �uxes at the

gun and in the cooler:

B2c r
4
c = B2gr

4
g + 4K(B�)

2r2c � �2 + 4K(B�)2r2c : (1)

Here Bc and rc are the magnetic �eld and the beam radius in the cooler, Bg and rg are the same values
at the gun, B� � p0c=e is the beam momentum, and

K =
2Ie

mc3
3�3

is the generalized perveance (see, e. g. [4]). Note that the considered electron beam is hydrodynamic, in
other words, its temperature, associated with the cathode temperature, can be neglected. The electron beam
radius in the cooler rc is determined by the pbar beam radius: for optimal conditions the electron radius is
2-3 times larger than the pbar one, which leads to a number ~3-5 mm. Magnetic �eld in the cooler has to be
strong enough to provide su¢ cient focusing; 100-200 G is supposed to be su¢ cient. The beam radius and
the �eld determine the magnetic �ux �; associated with emittance of the angular-momentum-dominated
beam [5], [6]:

" = �=(B�) ; B� � p0c=e : (2)

In general, this sort of beams is described by totally coupled optical functions [6]:

1

FERMILAB-TM-2303-AD



x(s) =M(0; s)Re
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"v(0) exp (�i )

�
= Re

�p
"v(s) exp (�i � i�(s))

�
; (3)

where x = (x; x0; y; y0)T is a vector describing a point in the beam surface,M(0; s) is a transfer matrix, �(s)
is a phase advance between a starting point s = 0 and the given point s;  is a phase, specifying a position
on the envelope,
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�x ; �

i(1� u) + �xp
�x

;
q
�ye
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�y

ei�

!
(4)

is a basis vector,

v(s) = exp (i�(s)) M(0; s) v(0) (5)

and �x;y , �x;y , u; � are 6 optic functions determined by the envelope initial conditions and the transfer
matrix. The emittance and the 6 optic functions determine all local envelope parameters. When these
parameters are known at a speci�c point s, their values at any other point s0 is given by the transfer matrix
M(s; s0).
Below, a procedure of measurement and re-setting to the design value of the beam envelope is proposed.

In brief, it consists of the following consequent parts:

� Measurements of the beam cross-section parameters at positions of several scrapers located in the
cooling solenoid;

� Calculation of all the six optic functions �x;y , �x;y , u; � and the emittance " at the entrance of the
cooler;

� Calculation of a response matrix of the optic functions to supply currents of 6 independent optical
elements;

� Calculation of new settings for the 6 supply currents, which provide design values for the optical
functions;

� Final cross-section measurements for the new settings. Ideally, the beam envelope has to be cylindric
after that.

All the mentioned calculations are based on the cross-section measurements and on an optical model of
the electron line. The optical model, in its turn, is supposed to be already veri�ed and corrected by means
of analysis of the beam centroid response.

2 Beam Cross-Sections

Envelope parameters in the cooling section can be measured by means of scrapers. In the Fermilab prototype
line, these measurements were done for 5 scrapers installed inside of 20 m long solenoid; every scraper was
a metallic plate with a round aperture of radius Rs = 7:5 mm. The beam, which has sharp boundaries,
can be moved transversely in a vicinity of any scraper until it starts touching it. The beam can be moved
in various directions, and every direction k gives a pair of numbers (xk; yk) for the beam centroid at the
scraper, associated with touching at this direction. So, a number of known values is equal to the number of
directions Nd where the beam was moved. In general, the beam cross-section is an ellipse with an arbitrary
tilt; this ellipse is described by 3 parameters. The scraper center �!r s = (xs; ys) is characterized by 2 more
unknowns; thus, there are 5 unknowns in total. So, the number of directions has to be more than 5, Nd � 5;
to get axis and tilt of the beam ellipse at position of the given scraper.
The ellipse point �!r ( ) = (x( ); y( )) can be parametrized as follows:
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x( ) = ax cos + xc ; y( ) = ay cos( � �) + yc ; (6)

where (xc; yc) speci�es the measured position of the beam centroid, when the beam surface touches the
scraper, and  is a running parameter. Compared with Eqs. (3, 4), it is found that

ax;y =
q
"�x;y (7)

and � is the same x�y phase shift as stays in the basis vector (4). The 5 unknowns now are fax; ay; �; xs; ysg;
while the data is represented by a 2 � Nd matrix of the beam centroid positions (xc; yc):When the beam
is moved in the direction k and touches the aperture of radius Rs at the tangent azimuth  k; it can be
expressed as

(�!r ( k)��!r s)
2
= R2s ;

d

d k
(�!r ( k)��!r s)

2
= 0 : (8)

Thus, there are 2Nd equations with 5 unknowns fax; ay; e�; xs; ysg and Nd unknown tangent azimuths  k;
from here, again, it is seen that at least 5 directions have to be explored. To estimate errors of this analysis,
more than 5 directions have to be used. At the Fermilab prototype line, 8 directions were explored; normally
they more or less equidistantly cover the entire 2�. For every scraper position, 2Nd equations (8) are
equivalent to minimizing a goal function

G =

NdX
k=1

"�
(�!r ( k)��!r s)

2 �R2s
�2
+

�
d

d k
(�!r ( k)��!r s)

2
�2#

: (9)

From here, the beam cross-section parameters fax; ay; e�g are found at every explored scraper. The errors
are found according a conventional formula

�ai�aj =
2G

Neq �Npar
D�1
i;j ; with Dp;q �

@2G

@ap@aq
; (10)

where Neq = 2Nd is the total number of equations and Npar = 5 +Nd is the total number of the unknown
parameters.

3 Optic Functions

When the beam cross-section parameters fax; ay; e�g are known at su¢ cient number of positions along the
solenoid, the optic functions �x;y , �x;y , u; � can be calculated in any place there. According to the design,
the beam envelope has to be cylindric in the cooling solenoid, which means

�x;y = �0 � B�=Bc ; �x;y = 0 ; u = 0:5 ; � = ��=2 (11)

in any point inside the cooling solenoid; the sign of � coincides with a sign of the magnetic �eld Bc: In the
reality, the optic functions di¤er from their design values, and this is to be corrected. To calculate the optic
functions from the cross-section parameters, the solenoid transfer matrix has to be used:

M(s; s0) =

0BBB@
cos2(�=2) �0 sin� � sin�

2 �2�0 sin2(�=2)
� sin�

4�0
cos2(�=2) sin2(�=2)

2�0
� sin�

2
sin�
2 2�0 sin

2(�=2) cos2(�=2) �0 sin�

� sin2(�=2)
2�0

sin�
2 � sin�

4�0
cos2(�=2)

1CCCA ; (12)

where � = (s0 � s)=�0 . The solenoid matrix can be presented as a product of a rotation matrix by angle
�=2 and a rotation-invariant focusing:

3



M(s; s0) =

0BBBBBB@
cos
�
�
2

�
0 � sin

�
�
2

�
0

0 cos
�
�
2

�
0 � sin

�
�
2

�
sin
�
�
2

�
0 cos

�
�
2

�
0

0 sin
�
�
2

�
0 cos

�
�
2

�

1CCCCCCA�
0BBBBBB@
cos
�
�
2

�
2�0 sin

�
�
2

�
0 0

� sin(�2 )
2�0

cos
�
�
2

�
0 0

0 0 cos
�
�
2

�
2�0 sin

�
�
2

�
0 0 � sin(�2 )

2�0
cos
�
�
2

�

1CCCCCCA
Let the optic functions at the �rst scraper be chosen for unknowns to be found. Together with the

emittance, this gives 7 unknown values. The optic functions at any positions are expressed through the
initial optic functions, see Eq. (5). From another side, the total number of equations is 3Ns : three ellipse
parameters are known at every scraper position, and these parameters relate to the optic functions according
to Eqs. (7). Number of explored scrapers has to be su¢ cient for the number of equations to exceed the
number of unknowns, 3Ns > 7 or Ns � 3:

4 Optics Correction

After measuring the cross-sections and calculating the optic functions, they are seen as di¤erent from their
design values. The entire problem grows from the fact that the model of the beam optics is not good enough.
At best, it is only approximately correct, and the errors are expected to be higher than the tolerances. Let
it be assumed, �rst, that there is no reliable optic model at all. Could the designed cylindric envelope be
yet established in this case?
Let F = (�x=�0; �x; �y=�0; �y; u=0:5; 2�=�)

T be a 6D vector of the found optic functions at the �rst
scraper, F0 = (1; 0; 1; 0; 1; 1)T be its design value, and dF � F � F0. Let it be assumed now that there are
6 "linear independent" optic elements upstream the solenoid; the �eld magnitude in every one of them is
proportional to its supply current, so that the 6D vector I describes all of them. A term "linear independent"
means here that an optic functions response matrix

bR � @F=@I (13)

is not degenerate, jbRj 6= 0:The response matrix bR can be found in the same way, as the optic functions were:
it just requires to repeat the entire sequence of the envelope measurements and calculations 6 more times.
Let it be assumed now that this matrix is measured. If deviations of the optic functions from their design
values are small enough, a change of the currents

dI = �bR�1 � dF (14)

establishes the design values of the optic functions. In practice, however, the deviations of the optic functions
might be not so small. If so, the linear correction (14) should be expected to bring us just closer to the design
values, not necessarily right on them. If so, then the functions have to be measured one more time, and
one more correction (14) applied. After some number of iterations, the design values should be established.
Note that during these iterations the response matrix bR is not required to be measured as many times as
the functions F; normally, it should be su¢ cient to measure it once or twice.
The described procedure should work, but it has a signi�cant practical drawback. Namely, the entire

set of cross-section measurements has to be multiply repeated here, which would take signi�cant time. The
problem is exacerbated by the fact that these electron measurements are not compatible with the pbars: any
pbars circulating in the storage ring (Recycler) would die on the narrow aperture of the scrapers. Remember
now that this procedure does not use any model of the beam line optics: all that is needed is taken from the
measurements right away. Actually, this is not necessary and can be improved.
Indeed, envelope simulations require two things: �rst, the "initial conditions" of the basis vector (4),

or its value somewhere upstream of all the six tuning optical elements, and rather good knowledge of the
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transfer matrices from these optical elements to the �rst scraper. If these objects are known, the response
matrix bR can be found from the model, without any dedicated measurements. The important point here
is that the described iteration procedure does not require extremely good knowledge of this matrix: the
procedure converges to exact design values for any matrix, provided that it is not too bad; in the last case,
the procedure does not converge at all. An advantage of this way is that modeling of the transfer matrices
requires beam centroid measurements, which are compatible with the pbars and have to be done anyway.
Practically, the procedure can be organized in the following way, where the scraper measurement data are

used as an input for a complex of a speci�c calculation code (Mathematica
R

, Java or C++) and the

optical model, implemented in OptiM [7].

� From the scraper measurements, the optic functions at the �rst scraper are calculated, as described.

� These optic functions are back-propagated by the OptiM code at its starting point, giving initial
conditions for the optic functions.

� For these initial conditions, the response matrix bR is calculated by the OptiM model.

� The described sequence of iterations is generated with the OptiM, converging to new optical settings
for the currents I.

� The currents in the 6 tuning elements are set in the real beam line now according to the numbers
obtained.

� Final scraper measurements are done.

� If the achieved reduction of the envelope deviations is not su¢ cient, the entire sequence is repeated
one more time.

Convergence of this iteration procedure can be improved if to divide it into two stages. At �rst stage,
only the monopole (axially symmetric) envelope perturbation is corrected. For that, only 2 tuning elements
are needed, and the two solenoidal lenses right upstream the cooler are the best to use. When the monopole
mode is corrected, the entire 6D correction scheme can be run.
This procedure is supposed to be used as a method to get good envelope quality of electron beam for

electron cooling of pbars in the Recycler. A simpli�ed monopole-only correction scheme, close to the one
described, has been successfully applied for the prototype line right before dismantling it [8]. The entire
6D procedure was tested for these scraper measurements in the prototype line, and good convergence in

Mathematica
R

& OptiM simulations to the design parameters was seen. Fig. (1) shows cross section

projections ax;y calculated with their error bars from the scraper measurements, seen reasonably close to the
best �t of the beam envelope in the cooling section.
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