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Abstract
Passive ferrite inserts were used to compensate the space charge impedance in high intensity
space charge dominated accelerators. We study the narrowband longitudinal impedance of these
ferrite inserts. We find that the shunt impedance and the quality factor for ferrite inserts are
inversely proportional to the imaginary part of the permeability of ferrite materials. We also
provide a recipe for attaining a truly passive space charge impedance compensation and avoiding

narrowband microwave instabilities.
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I. INTRODUCTION

High intensity high power hadron accelerators serve important functions for neutron
sources and muon and neutrino factories. They also have industrial applications in power
amplification and atomic transmutation. Particle beams in high intensity accelerators en-
counter large longitudinal and transverse space charge forces. The transverse space charge
force can be alleviated by careful design of the accelerator lattice and a proper choice of
betatron tune [1]. On the other hand, the longitudinal space charge force of the beam tends
to spread out the bunch distribution to minimize the peak current. If longitudinal space
charge is not properly controlled, the beam bunch can fill the beam gap, and this in turn
leads to electron cloud instability for high intensity beams. At the Proton Storage Ring at
Los Alamos National Laboratory, the rf cavity voltage must be increased in order to keep
the beam bunched; this gives the electron cloud time to dissipate, and thus the instability
is alleviated.

Since it is expensive to maintain a high rf cavity voltage, inductive inserts have been
suggested to compensate the space charge impedance [2]. At the PSR, experiments with
such inductive inserts have been performed [3]. With the inserts installed, the resulting

longitudinal impedance becomes
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where Zj is the vacuum impedance, gq is the geometry factor of the space charge impedance,
and L is the effective inductance of the inductive inserts. In a coaxial transmission line
approximation, the effective inductance is given by

L= 5—; In 2, (2)
where a and b are the inner and outer radii of the inductive inserts, y is the permeability of
the ferrite material at low frequency, and £ is the total length of inductive inserts. In order
to cancel the longitudinal space charge impedance, the length of the ferrite insert is

/= 9C
28°y*ur In(b/a)’

where C' is the circumference of the accelerator, and p, = p/po is the relative permeability

(3)

of the ferrite at low frequency. Three ferrite inserts of a total length of 2.286 m were



added in order to cancel the space charge impedance. However, the installed inductive
inserts themselves acted as another source of longitudinal instability peaked at the revolution
harmonic 26 (72.67 MHz), and spontaneous self-bunching of the beam occurred [3, 4].

This spontaneous self-bunching has been carefully analyzed and found to have resulted
from a narrowband impedance induced by these cavity-like ferrite inserts [5]. A solution to
mitigate the narrow-band longitudinal microwave instability was proposed and successfully
tested; by heating the ferrite, the permeability of the ferrite material is changed, and the
narrowband impedance is detuned and broadened [6]. J.E. Griffin has carried out a TMg1g
standing wave model for the ferrite-lined cavity in order to provide analytic understanding of
the narrowband impedance of these ferrite inserts [7]. Unfortunately, Griffin did not provide
systematic study, and there was a deficiency in his formula that we will provide correction.

Although heating can change the properties of ferrite and provide a solution to mitigate
the narrowband impedance, it is not the most desirable solution. It would be preferable to
provide a truly passive device to counteract the space charge impedance. For this purpose,
an analytic understanding of the narrowband impedance of these ferrite cavities would be
helpful.

This paper offers a more systematic impedance calculation that can provide an under-
standing of the cavity impedance, which sometimes cannot easily be obtained by numerical
programs in electromagnetism such as MAFIA. This paper is organized as follows: In Sec-
tion II, we discuss the geometry of the ferrite insert and a model to calculate the impedance.
We will compare our results with those obtained by MAFIA. The properties of impedance
for the ferrite inserts are analyzed in Sec. III. Various applications of our model calculation

are discussed in Section IV. The conclusion is addressed in Section V.

II. FERRITE INSERTS

For this analytical model and its resulting calculations, we follow the design of the ferrite
modules installed in the PSR. A module consists of 30 ferrite rings with inner diameter 12.7
cm, outer diameter 20.3 cm, and thickness 2.54 cm. The ferrite cores line up end to end, so
that one module looks like a hollow cylinder of ferrite without end faces. For this reason,
the modules can be treated as rf cavities. In 1999 three modules were installed in the PSR,

and the longitudinal microwave instability was observed to peak at 72.67 MHz or the n = 26



harmonic. Later it was found that heating the ferrite to a temperature of 125°C effectively
alleviates this instability [5]. Two heated ferrite modules are routinely used in high intensity
operation. We will carry out analytic calculation of the TMg1g mode impedance for these

ferrite cavities in this section.

A. Model

The ferrite ring is cylindrically symmetric, we thus use the cylindrical coordinate system.
Since only the longitudinal particle motion concerns us, we consider only the fundamental
TMyp1p mode, where the electric field is independent of the longitudinal coordinate s. In a
uniform isotropic medium, the electromagnetic wave with e/“* obeys Maxwell’s equation:

0*E, 10E, 10°E, O0°E,

2
- = - _ E,
or? +r or +r2 0¢? + 0s? W pe

in both free space and the ferrite region. Here, i1 and € are permeability and permittivity of
the uniform and isotropic medium.

We divide the ferrite cavity transversally into two regions. The first region, between r = 0
and r = a, consists of free space. (If we look at the module head on, ¢ is the inner radius
of the ferrite, and b is the outer radius of the ferrite, measured from the center of the core.)
The second region is comprised of ferrite, and it occupies the space between r = ¢ and r = b.
A cylindrical conducting beam pipe at » = b encases the ferrite rings and is assumed to be
a perfect conductor.

In vacuum, the wavenumber is k = w,/lo€g = %, and the electromagnetic fields are
ES = E()J()(kT)
Eo
Hy = j—Ji(kr).
6= 00 1(kr)
The longitudinal electric and azimuthal magnetic fields depend only on radial distance for

the 010 mode.

In the ferrite region,the wavenumber £ becomes

ke = w\/,ﬁ = k\/ 67"(:“" - j/j/”)a (4)

where ¢, is the relative permittivity and z and g are the real and imaginary parts of the

complex relative permeability, respectively. The intrinsic characteristic impedance of the
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ferrite medium is

ZC:\/E:ZO /M’ (5)
€ €

where Zy = 377€2 is the impedance of free space. The fields in the ferrite are then

E, = AH" (k.r) + BHS® (k.r)
H, = 7[AH1(1)(kcr) + BH (kcr)],

where H(" and H'? are Hankel functions with asymptotic waves e’*" and e=7%<" respectively.

Specific boundary conditions must now be satisfied. Namely, at r = b the longitudinal
electric field must be zero due to the presence of the assumed perfectly conducting cavity
wall. In addition, the longitudinal electric fields and azimuthal magnetic fields must be

matched from one medium to the other. Thus

AHV (kb) + BH (k.b) = 0 (6)
Ey(a”) = Es(a™), (7)
Hy(a™) = Hy(a™). (8)

There are now three equations, and there are three unknowns: A, B, and k.. Solving Eq. (6)

for B in terms of A and entering the result into Eq. (7) gives

Jo(ka)Hm b)

A ) B () — B (1) B (ko) ©)
If instead one inserts B (in terms of A) into Eq. (8), one finds
A— éEo Jl(ka)HéQ)(kcb) (10)
Zo H{" (ka) H” (kb) — Hy" (keb) H{? (kea)
The resonance condition can be obtained by equating Egs. (9) and (10).
To calculate the longitudinal impedance, the general formula is AV = —IZ; = —E/(,

where F; is the longitudinal electric field and /¢ is the total length. Using Ampere’s law,
I = ¢ Hdl = 2maH,, we obtain

Z _ B _ poco(ka)
14 2maHy 27TajJ1(ka)
- Z, H (kea)H® (kb) — HY (k) HS (Kea)

2ma BV (k,a) HS (keb) — Hé ) (keb) HE (kea)



Here the relation between Jy(ka) and J;(ka) is obtained by the continuity conditions. This
formula gives the impedance per unit length on the axis of the cavity as a function of
frequency, which is embedded in the k..

In general, the permeability of all ferrite materials is a complicated function of frequency.
Figure 1 shows the “derived” relative permeability as a function of frequency for Ni-Zn
ferrite cores MAC21A [5]. C. Beltran has obtained these values of the complex permeability
by fitting the measured S;; parameter of the two-port network driven by source frequencies
spanning 0 to 120 MHz [5]. The effective impedance at a given frequency is obtained
by Eq. (11) with the permeability of that frequency. Since the complex permeability is
measured and analyzed at a discrete number of frequencies, we approximate the intermediate

frequencies by linear interpolation as shown in Fig. 1.

B. Results and Comparisons

First we consider the ferrite core dimensions and length for three modules, and calculate
the impedance at each frequency for which the value of p is known and ¢, = 15 from the
manufacturer’s data sheet. Figure 2 compares the impedance per unit length and per unit
harmonic of our model and those obtained by the MAFIA code [5]. The real and imaginary
curves from the model and from C. Beltran agree quite well in shape and peak location but

differ slightly in magnitude. Overall there is good agreement.

III. PROPERTIES OF THE IMPEDANCE FOR THE FERRITE INSERT

Since our model calculation agrees well with the numerical calculation of MAFIA, we can
study general properties of the ferrite inserts. With the definition of the Hankel function,
the impedance in Eq. (10) can be expressed as

ﬂ _ Ze Jo(keb)Yo(kea) — Jo(kea)Yo(keb)
¢~ T 9ma Jo (kb)Y (kea) — Ty (kea)Yo(ked)’

(12)

where J,(z) and Y,,(z) are Bessel and Neumann functions. The relative permittivity of the

ferrite is fixed at €, = 15, and the permeability is shown in Fig. 1.



A. Low frequency limit

At low frequency, k.a and k.b are both small numbers, so we use the small argument
expansion for Bessel and Neumann functions to obtain

Zy . fwn né Jo(kea)Jo(keb) + 1.5k2(b* — a®)/(81nb/a)
o ( 1 ) ( 1= 3(keb)* + 5(kea)” In(b/a) ) '

2T a (13)

The first factor in Eq. (13) corresponds to the inductive impedance of coaxial line as shown
in Eq. (2), while the second factor is the geometric factor. Figure 3 compares the impedances
obtained from numerical calculations and the coaxial approximation with x4’ =38 at w — 0
at 25°C (see Fig. 1). These calculations were carried out with a fixed inner radius of a = 6.0

cm and varying outer radii from b = 8.0 cm to 17.0 ¢cm in step of 0.5 cm.

B. Resonance

The impedance in Eq. (12) has a maximum at a resonance condition given by the zeros
of the denominator:

JO(kc,rb)}/l(kc,ra) - Jl(kc,ra')yz)(kc,rb) =0, (14)

where k. = (w/c)\/e- (1" — ju"). Figure 4 shows the impedances for the outer radii b = 10
cm, 11 cm, 12 cm, and 12.5 cm respectively. We note that as the outer radius increases, the
resonance frequency is shifted lower, and the peak of impedance becomes much larger.

To understand the resonance of the impedance, we examine the behavior of the denomi-
nator, Eq. (14) as a function of frequency. Figure 5 shows the real (circle) and the imaginary
(crosses) parts of the impedance for b = 10 cm (bottom plot) and b = 12 ¢cm (top plot) cases.
The real (solid) and the imaginary (dash-dots) parts of Eq. (14), and the real (dashes) and
imaginary (dots) parts of the numerator of Eq. (12) are also shown in Fig. 5. Note that
the peak in the impedance corresponds to the zero of the real part of the denominator.
Although one can calculate the values of the denominator as a function of frequency, there
is no analytic formula to describe the zero of Eq. (14). However, the resonance location can
be well described by |k.|(b— a) =~ 2.0 in the region where p” is small, as shown in the lower
plot of Fig. 6.

Near the resonance frequency, the magnitude of the numerator is nearly constant, while

the real part of the denominator vanishes at the resonance. The resulting impedance can be



fitted by an RLC-circuit model:
VA Wy Rsh
z A . 15
nl  wl+4+jiQw/w, —w,/w) (15)

The upper plot of Fig. 6 shows the fitted parameters Rg, (in kQ2/m), Q, and f,. (in MHz) as

a function of the outer radii b from 8.0 cm to 16.0 cm. In particular, we find the geometric
factor Rg,/Q is nearly constant.

Both the shunt impedance Ry, and the quality factor ( depend on the imaginary part
of the permeability. Figure 7 plots the Ry, and Q vs the u”. Both Ry, and Q are inversely

proportional to the imaginary part of the permeability.

IV. APPLICATIONS

The passive inductive insert concept is a very useful method to combat the large space
charge impedance for high intensity low energy accelerators. Since the actual experiment
indicates that the narrowband impedance can induce microwave instability and cause beam

loss, it becomes important to find a possible solution to de-Q these inductive inserts.

A. Heating Ferrite

Currently the ferrite inserts in the Proton Storage Ring must be heated to mitigate the
narrowband impedance that leads to spontaneous self-bunching. Based on Fig. 1, we observe
that the heating of ferrite produces two major effects: (1) u' increases from 38 to 60 at low
frequency, and (2) p” increases from 14.5 to 34 at the resonance frequency of f = 75 MHz.
The first effect provides space charge compensation with a much shorter length of ferrite
cavities. Thus two heated ferrite inserts can provide more inductive compensation than
three ferrite inserts operating at the room temperature. The second effect shows that both
the shunt impedance Ry, and the quality factor Q are reduced by a factor of 0.40. Thus two
ferrite cavities with the same geometry can mitigate the microwave instability, and provide
space charge compensation.

However, it is a nuisance to heat the ferrite in an accelerator environment. It is more
desirable to design a completely passive system whenever possible. To this end, the model
presented here may be used to find a better cavity geometry whose unheated impedance is

similar to that of the present (heated) inserts.
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B. Mitigation of microwave instability with geometric variation

We note that the ferrite cavities installed in the PSR have an impedance of about Ry, ~
6.5 kQ2 and @ ~ 3.5. To de-Q these cavities, we can install cavities with different geometry.
We note that the cavities with outer radii b larger than 11 cm have QQ values much too large
for compensation. Furthermore, the resonance frequency for b larger than 11 cm does not
vary as much and thus does not de-(Q as easily. The most beneficial solution is to install
cavities with 10 cm, 9.5 cm and 9.0 cm outer radii.

To avoid microwave instability induced by a narrowband resonance, the stability threshold

of the UV diagram is a useful indicator, where one defines
Z)

Iy(Z
oz __p2, (16)
B2ESw |l n
Using the parameters of PSR: beam energy F = 1.736 GeV (8 = 0.84), the peak current

Iy = 74 A for 9.0 uC circulating charge with 290 ns bunch length, Vi = 14 kV, the phase

U +jV' =

slip factor of |n| = 0.185, the FWHM beam momentum spread for a Gaussian beam of
Spwam = V8In20s with o5 = 2.66 x 1073, we obtain I' = 8.35 x 1073. Assuming the
geometry factor gy = 3, the space charge impedance is Z;,, = —j196 Q. Figure 8 plots V'
vs. U’ parameters for (1) the impedance of the ferrite cores installed in the PSR (circles
and crosses symbols), (2) a 2m long (3:2:1) combination of 9.0 cm, 9.5 cm, and 10.0 cm OD
ferrite inserts (the blue solid line), (3) a 2m long (5:1) combination of 9.0 ¢cm and 10.0 cm
OD ferrite inserts (the dotted line), (4) stability threshold (solid line), and (5) unstable line
(red dashed line) with a growth rate of 0.4 ms. Points that fall inside the stability curve
will be stable, while points that fall outside the curve will be unstable. We note that the
impedance of the heated ferrite inserts is below the microwave instability threshold, while
the impedance of the room temperature ferrite inserts is far above the threshold. We also
note that the combination of ferrite inserts is able to detune the cavity Q-value so that the

final impedance is within the stability threshold.

V. CONCLUSION AND DISCUSSIONS

We found that the analytic TMg;y model of the cylindrical symmetric ferrite insert pro-
vides a good description of the narrowband impedance and agrees well with work previously

done using MAFIA. With this analytic model, we have conducted a systematic study of the
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properties of ferrite inserts with different geometries. We find that the shunt impedance
and the quality factor of the TMg;p mode are inversely proportional to the imaginary part
of the permeability. We also find that the resonance condition is approximately given by
|k|(b — a) ~ 2, where k. = (w/c)\/e (i — jp"). In fact, these properties can be used to
determine the permeability of ferrite materials by carrying out impedance measurements of
ferrite cores.

With the results presented here, we find that passive space charge compensation is pos-
sible by properly chosen ferrite inserts with various geometries without inducing microwave
instability. Careful calculation before implementing the space charge compensation would
be important in minimizing agonizing side effects of passive compensation encountered in
the PSR. It is indeed possible to produce fixed ferrite inserts, and install them in a high

intensity low energy ring for passive space charge compensation.
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FIG. 1: Real and imaginary parts of the complex permeability at different frequencies (From Chris
Beltran [5].)
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FIG. 2: Comparison of real and imaginary impedances from the model and Chris Beltran’s MAFIA
calculations shown as circles and X’es. In this calculation, the ferrite ring parameters are a = 6.35

cm, b = 10.15 cm, at room temperature of 25°C.
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The geometric factor becomes larger than 1 if the ratio of b/a > 1.5.
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TM010 mode.
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FIG. 7: The shunt impedance Ry, and the quality factor QQ derived from fitting the impedance
with RLC-circuit model are plotted as a function of u”. Note that both Ry, and Q are inversely

proportional to the imaginary part of the permeability p”.
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FIG. 8: Stability comparison of different core thickness for a Gaussian beam. The U’ and V'
parameters for the 3 room-temperature ferrite inserts (2.286 m) are plotted as circle symbol. The
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length of 2.0 m. The red dashed line corresponds to an instability growth rate of 0.4 ms. Beam

parameters of this calculation are listed in the text.
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