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Abstract 

 
The size of the International Linear Collider’s damping rings is dictated in 
part by the performance of the injection/extraction kicker. The challenges 
associated with a fast pulsed kicker were considered too difficult when the 
TESLA Technical Design Report was written, leading to TESLA damping 
rings 17 km in circumference. A number of ideas that might allow 
construction of smaller rings have arisen recently. Some combination of 
these may well eliminate damping ring bunch spacing as the primary 
constraint on the ring’s minimum circumference.  
 
We have been exploring one particular scheme for a small damping ring in 
which adequate space is provided for insertion of one of several possible 
kickers currently under investigation in the ILC community. In this 
document we report our progress on design studies for a 6.1 km circular 
ring and a kicker in which the Fourier decomposition of a periodic pulse is 
used for injection and extraction. Though our studies are ongoing, we are 
encouraged about the prospects for a smaller ring and summarize our 
efforts here. 
 

 

                                                 
1 Email: g-gollin@uiuc.edu 
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1. Introduction and overview 
 
The number of bunches in a beam pulse from the International Linear Collider would 
require an unacceptably large damping ring if the linac bunch spacing were also used 
inside the rings. A long linac bunch interval (340 ns in the TESLA linac design) is likely 
to be a feature of any L-band superconducting linear accelerator, including the ILC.  
 
The TESLA damping ring bunch spacing was specified as 20 ns, yielding a 17 km 
circumference for each of the rings. Fast kickers would be used to deflect individual 
bunches on injection or extraction, leaving the orbits of adjacent bunches undisturbed.  
 
The size of the rings was dictated by the anticipated performance of the kicker: a faster 
kicker would permit the construction of smaller rings, but the challenges associated with 
the design and stable operation of a faster pulsed kicker were thought to be daunting at 
the time the TESLA TDR was written. A number of the kicker designs required the 
creation of individual pulses of sufficiently short duration so that only one bunch would 
be influenced by a kicking impulse.  
 
A number of ideas that might allow construction of a faster kicker, and therefore smaller 
damping rings, have arisen recently. Some combination of these may well eliminate the 
damping ring bunch spacing as the primary constraint on the ring’s minimum 
circumference. As a result, it is appropriate to investigate in some detail an alternative 
damping ring design which uses a kicker that admits smaller bunch spacing.  
 
We have been exploring one particular scheme in which adequate space in the ring is 
provided for insertion of any one of several possible kickers currently under investigation 
in the ILC community. In addition, we are studying a kicker design in which the Fourier 
decomposition of a periodic pulse is used for injection and extraction. Though our studies 
are still in progress, we are encouraged about the prospects for a smaller ring and feel it is 
appropriate to summarize our progress at this time. 
 
In our model, the damping ring beam is grouped into 60 bunch trains. Each train consists 
of 47 bunches spaced by 6.07 ns; a gap separates the tail of each train from the head of 
the following train. During extraction, the last bunch from each train is ejected in the 
course of one orbit. As a result, the entire extraction cycle requires 47 orbits. Injection is 
a time-reversed version of extraction: undamped bunches are delivered to the kicker 
every 340 ns and are kicked on-orbit as the (new) first bunch in a train.  
 
The lengths of inter-train gaps are chosen to present a bunch that is to be ejected to the 
kicker every 340 ns. The gap after the last train is slightly longer than the other (identical) 
inter-train gaps so that the position in a train of the kicked bunch will change after each 
orbit. 
 
The total circumference of a damping ring capable of holding all 2820 bunches is 
6.12 km. Some of the parameters relating to the ring and contained beam are shown in 
Table 1.1. 
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Parameter Value 
Main linac RF frequency 1.300 GHz (442 × linac bunch frequency) 
Main linac bunch spacing 340 ns (1/442 of linac RF frequency) 
Number of main linac bunches 2820 
Number of damping ring bunch trains 60 
Bunches per train 47 
Inter-train gap following trains 1-59 10 damping ring bunch spacings (~60.7 ns) 
Inter-train gap following train 60 11 damping ring bunch spacings (~66.8 ns) 
Inter-bunch separation ~6.07 ns  (main linac bunch spacing  / 56) 
Train length (including gap), trains 1-59 340 ns = main linac bunch spacing 
Train length (including gap), train 60 ~346.1 ns = 57 × bunch spacing 
Damping ring orbit period ~20,406.1 ns (60 × 340 + 1 inter-bunch gap) 
Damping ring orbit circumference ~6.12 km = (60 × 340 + 1 inter-bunch gap)c 
Damping ring RF frequency ~494.1 MHz (168 × linac bunch frequency) 
Kicker center frequency ~1.647 GHz  (10 × 1/ DR bunch spacing) 
Kicker bandwidth ±10% of center frequency 
 

Table 1.1: Damping ring beam timing structure assumed in our studies 
 
 
 
2. Small damping ring lattice and characteristics 
 
The TESLA TDR’s damping ring design has a circumference of 17 km in order to 
accommodate a 1 ms long train of 2820 bunches per linac pulse. This circumference is 
the minimum allowed by a state-of-the art kicker with rise and fall times of ~15 ns. 
However, preliminary studies suggest that it might be possible to reduce the kicker’s rise 
time to ~5 ns, making it possible to compress a single 2820 bunch train into 60 short 
bunch trains comprising 47 bunches per train.  
 
We consider here bunch spacing within a train of 6.07 ns, exactly 1/56 of the 340 ns 
bunch spacing in the main linac. Inter-train gaps separate adjacent trains in the ring. This 
gap would allow the use of a pulsed kicker with a challengingly fast rise time, but 
currently achievable fall time, if the kicker only acted on the last bunch in each train. This 
sort of injection/extraction scheme is shown in Fig. 2.1. 
 

 
 

Figure 2.1: Possible injection/extraction scheme for a small damping ring using a pulsed kicker 
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An alternative scheme, compatible with the train structure described above would use a 
“Fourier kicker,” in which the kick is provided by a sum of RF harmonics whose 
superposition creates a periodic narrow pulse.     
 
We have assumed that the performance goals for a small damping ring are the same as 
those for TESLA’s 17 km damping ring. Our studies include a preliminary dynamic 
aperture survey that assumes linear wiggler magnets. We find that a small damping ring 
can meet the performance goals demanded of an ILC damping ring. 
 
 

Design Considerations 

Circumference 
 
We developed our damping ring lattice using the systematic approach described in a 
recent publication by Emma and Raubenheimer [2.1] The requirements and input 
parameters for the Fermilab damping ring lattice design are listed in Tables 1.1 and 2.1 
[2.2].  The number of bunches per train is ( ) 47107.6/7.60 =+−= tb TN , the total train 
number is , and the circumference60/, == btotalbt NNN 2 is 

. ( )6.07 6117.595 mt tC T N c= + =
 

Number of bunches  totalbN , 2820 

Train to train spacing  ns tT 340 

Kicker rise time rk ,τ  ns <6.0 

Kicker fall time fk ,τ  ns <60 

Cycle time  s cT 0.2 

Injected emittance ( )yxγε  m 0.01 

Horizontal extracted emittance xγε  m 6108 −×  
Vertical extracted emittance yγε  m 61002.0 −×  

Table 2.1: Input parameters and extracted emittance requirements for the Fermilab 
positron damping ring 

Ring Energy 
 
The desire to maintain high-spin polarization limits the choice of ring energy; to avoid 
resonances, the spin tune should be a half integer 21+= naγ  where . 31016.1 −×≈a

                                                 
2  The last train is 340 + 6 ns long instead of 340 ns in order to inject/extract the next 
bunch in the first train on successive orbits. 
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Taking into consideration damping time and stability, we choose E = 5.066 GeV, which 
makes n = 11. 
 

Damping Time and Horizontal Emittance 
 
Here, we assume the vertical damping time to be the same as for the TESLA design i.e., 

yτ  = 28 ms.  
 
The total beam storage time expressed in units of damping time is 7.2. Neglecting the 
contribution from the natural equilibrium emittance, the vertical emittance as a function 
of time is given by 
 2 /

0( ) t
e e τ

eε ε ε ε−= − +   (2.1) 
 
In Eq. 2.1, 0ε  is the emittance at injection and m is the equilibrium 
vertical emittance, whose value is determined by residual transverse coupling. The 
implications of this value on vertical alignment tolerances and coupling correction 
schemes has not been studied and will be carried out later. 

81044.1 −×=yeε

yτ  can be written [2.3] as 
shown in Eq. 2.2: 
 

 ( )waee
y IIcr

C
Icr

C

22
3

2
3

33
+

==
γγ

τ .  (2.2) 

 
Here, is the classical electron radius, c is the speed of light, er γ  is the beam energy in 
units of , and  2mc
 

 ∫∫∫ +==
wigglerarcBdipoles

dsdsdsI 2
_

222
111

ρρρ
  (2.2a) 

 
   
is the second synchrotron integral over dipoles. 
 
The equilibrium horizontal emittance can be written as Eq. 2.3, where 

 m, 131084.3 −×≈qC 11 24 ≈−= IIJ x  for separate function magnets, and 

∫=
dipoles

dsHI
35 ρ

. Since the dispersion η  function inside the wiggler section is very small, 

we can assume that there is no emittance contribution from wiggler. 25

2
ρ

π
B

H
I = , and 

B
H  is the average of the Courant-Snyder dispersion invariant over the arc bending 

magnets. We have 
 

 
2

5
3

IJ
IC

x

q
x

γ
γε = .  (2.3) 
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In Combination with Eqs. 2.1 and 2.2, the required damping time and equilibrium 
horizontal emittance allow us to determine  and . The arc cell is designed to meet the 

 requirement, and the wiggler section is designed to provide adequate damping. 
2I 5I

5I

Linear Optics 
 
We adopt a TME (Theoretical Minimum Emittance) [2.4] cell lattice for the small 
damping ring. The phase advance per arc cell is 150°/90° for the horizontal and vertical 
motion, respectively. Since achieving the target equilibrium horizontal emittance is not a 
particularly critical issue for a damping ring  which is large in comparison with the NLC 
damping ring and synchrotron light sources, the main considerations driving this choice 
are chromaticity correction,  49max ≤β m (we assume the magnet pole radius is 

mmmmr inj 4055 =+= σ ),  and a larger value of pα  to make the bunch long enough to 
avoid microwave type instabilities. The maximum beta function is driven by injection 
beam size and magnet aperture. 
 
The ring is designed with six-fold symmetry and incorporates six long straight sections. 
Two of the straight sections contain wigglers while the others are filled with FODO cells. 
They can accommodate RF cavities, tune adjustment sections, and various 
injection/extraction devices.  
 
For simplicity, our wigglers are similar to those used in the NLC damping ring design. In 
order to reduce nonlinear perturbations, the average beta function in the wiggler insertion 
is about 6 m. The small damping ring design incorporates 40 wigglers with a total length 
of 77 m devoted to wigglers.  
 
The lattice functions for different sections of the ring are shown in Figures 2.2 through 
2.7. The main lattice parameters are listed in Table 2.2.  
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Energy E GeV 5.066 
Circumference C m 6113.946 
Number of bunches  totalbN , 2820 

Number of Trains tN  60 

Number of bunches per train bN  47 

Train to train spacing  ns tT 340 

Kicker rise time rk ,τ  ns <6 

Kicker fall time fk ,τ  ns <60 

Cycle time  s cT 0.2 

Injected emittance ( )yxγε  m 0.01 

Horizontal extracted emittance xγε  m 6108 −×  
Vertical extracted emittance yγε  m 61002.0 −×  

Betatron tune yx / υυ  56.584/41.618 

Natural chromaticity yx / ξξ  -74.6/-55.4 

Momentum compaction pα  0.00014 

Maximum beta function max,ymax,x / ββ  m 49/45 

Maximum dispersion max,xη  m 0.72 

Equilibrium horizontal emittance xγε  m 6105.5 −×  

Equilibrium bunch length zσ  mm 6 

Equilibrium momentum spread eσ  0.0015 

RF frequency  MHz RFf 494.118 
RF harmonic h 10077 
RF voltage  MV RFV 27.2 

Number of particles per bunch eN  10100.2 ×  
Current  mA I 443 
Energy loss per turn  MeV/turn 0U 7.73 

Total radiated power  MW WP 3.4 

Number of vertical damping time τN  7.46 

Damping time eyx // τττ  ms 26.8/26.8/13.4 

Table 2.2: Principal lattice parameters for the positron damping ring. 
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Figure 2.2: Lattice functions in an arc cell. 

 

 
Figure 2.3: Lattice functions for wiggler section 
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Figure 2.4: Lattice function in a normal sextant 

 

 

Figure 2.5: Lattice function in a wiggler sextant 
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Figure 2.6: Beta functions for the entire ring 

 

 
Figure 2.7: Dispersion function for the entire ring 
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Chromaticity Correction and Dynamic Aperture 
 
As mentioned above, the phase advance per arc cell was chosen to be 150° (90°) for the 
horizontal (vertical) motion. As a result, the 12 cells per arc cause a net horizontal 
(vertical) phase advance of 10π (6π) radians. This arrangement helps reduce second order 
geometric aberrations introduced by the sextupoles. Two sextupole families (SD and SF) 
are installed in the arc cell in order to eliminate the first-order chromaticity. The resulting 
variation of tune with momentum spread is ±1% and is shown in Figure 2.8. The working 
point in tune space is shown in Figure 2.9. The tracked horizontal and vertical phase 
spaces are shown in Figure 2.10. The dynamic aperture, including linear wiggler effects, 
is show in Figure 2.11. 
 

 Figure 2.8: Betatron tunes vs. momentum deviation 
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Figure 2.9: Working point in tune space. Resonance lines up to fourth order are shown. 

 

 

Figure 2.10: Phase space. (a) Horizontal, beta_x = 5.4 m; (b) Vertical, beta_y = 42 m 
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Dynamic Aperture for Fermilab Damping Ring 
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Figure 2.11: Dynamic aperture 

 

Further Work 
 
We will concentrate our future efforts on studies of beam stability issues and the impact 
of wiggler nonlinearities on particle dynamics. Magnet alignment effects on effective 
vertical emittance and refinement of beam optics for injection and extraction will also be 
investigated.  

 
3. Injection and extraction optics 
 
There are two significant aspects of damping ring injection and extraction that deserve 
mention. Incoming electrons (or positrons) are injected into empty RF buckets in the ring, 
rather than being added to the contents of bunches already orbiting the ring. In addition, 
the emittance of an incoming positron bunch is very large. As a result, the injection and 
extraction optics must be designed to accommodate these beam characteristics while still 
achieving high injection and extraction efficiencies. 
 
The separation ∆x between the orbiting beam and an extracted bunch effected by the 
kicker is shown in Eq. 3.1: 
 
 
 ( ) kickseptumkickx θϕββ ∆=∆ sin .  (3.1) 
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∆x must be large enough to allow installation of a septum and Lambertson magnet in 
order to further separate the extracted and circulating beams.  
 
The 28 ms damping time is much longer than the 1 ms required to inject the full ILC 
beam into the damping ring. As a result, the emittance of bunches does not change 
significantly during the injection cycle so that the injection emittance must be used when 
calculating the properties of the injection optics associated with separation of injected and 
circulating beam bunches. Our design specifies acceptances of injσ5  for the circulating 
beam and injσ3  for injected beam at the septum, and assumes an additional 4 mm to 
accommodate the septum itself. As a result, we require 
 
 8 4 mm 8 4 mminj septum injx σ β ε∆ ≥ + = + .  (3.2) 
  
The injection and extraction optics are designed to accommodate either of two different 
types of kickers that we are studying at Fermilab: a pulsed kicker system with 6 ns rise 
time (and longer fall time) and a Fourier kicker. Figure 3.1 shows the layout for the 
injection/extraction optics. Figure 3.2 illustrates profiles for both injected and circulating 
beam. Table 3.1 lists parameter of the injection/extraction optics..    

 

Figure 3.1: Injection and extraction optics ( mkixk 80=β , mseptum 42=β ) 
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Injection/Extraction Scheme
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Figure 3.2: Envelopes of injected beam ( injσ3 ) and circulated beam ( injσ5 ) in the injection region 

 
 

Name S [m] Length [m] Strength Beta [m] 
Kicker 0 20 (in total) 1mrad 80 
QF1 10.25 0.25 0.37[m^-2] 80 
QD1 13.47 0.25 0.39[m^-2] 40 
QD2 35.72 0.25 0.14[m^-2] 16.9 
Septum 44.97 2 0.5[T] 40 

Table 3.1: Injection/extraction elements 

 
 
4. RF and collective effects 

RF System 
 
The RF system of the small damping ring is essentially the same as that of the TESLA 
damping ring. [4.1] It consists of 12 superconducting Niobium 494 MHz cavities having 
a total shunt impedance R/Q = 45 Ω per cell and an unloaded quality factor Q0 ≈ 1010 at 
2°K. Dissipative material inserted at the inner surface of the beam pipes just outside the 
cryostat (at room temperature) provides damping for the higher-order modes. 
 
Experience at CESR and KEKB tells us that the quality factor of these higher-order 
modes can be reduced to a few hundred over the bandwidth 1–3 GHz. These modes will 
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contribute 0 2 mZ n = Ω  for the TESLA dog-bone damping ring together with a loss 
factor of k|| = 8.8 V/pC. The TESLA dog-bone damping ring has a circumference of 
17 km and bunch length 6 mm.σ =  For the small damping ring, they scale to 

0 5.7 mZ n = Ω  and k|| = 8.8 V/pC. The low frequency inductive impedances 0Z n  
should be much less because of the large quality factors.  
 

Optimum Coupling Coefficient  
For all 12 cavities, the total shunt impedance is 125.40 10 .sR = × Ω  The total average 
image current at the RF frequency is twice the average beam current, or 

2 0.886 A,im t b bi en n N c C= =  since there are nt = 60 trains each containing nb = 47 
bunches of intensity Nb = 2 × 1010 

particles. With the RF gap voltage VRF  = 27.2 MV, the 
power dissipated at the cavity walls is  
 

 
2

68.5 W.
2

RF
c

s

VP
R

= =  (4.1) 

 
The total power delivered to the beam is  
 

 1 sin 3.42 MW.
2b im RF sP i V φ= =  (4.2) 

 
The synchronous angle is φs = π − 0.284, determined by U0  = 7.273 MeV (the energy loss 
per turn), which includes synchrotron radiation, higher-order-mode excitations and 
parasitic losses. Thus the optimized coupling coefficient of the generator to the cavities is  
 

 1 50000.b
op

c

P
P

β = + =  (4.3) 

  

The loaded quality factor is therefore QL = Q0/(1 + βop) = 2.00 × 105 while the loaded 
shunt impedance is RL = Rs/(1 + βop) = 108 MΩ.  
 

Detuning  
For the generator current to be in phase with the RF gap voltage, the cavities must be 
detuned. The detuning angle ψ is determined by  
 

 costan ,im L s

RF

i R
V

φψ =  (4.4) 

 
yielding ψ = -1.28 radians or -73.5°. The detuning is  
 

 6tan 8.43 10 .
2

r RF

r LQ
ω ω ψ

ω
−−

= = − ×  (4.5) 
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It is possible to detune the cavity frequency downwards by fRF −fr = 4.22 kHz, which is 
less than one-tenth of the revolution frequency of 49.0 kHz. Because of the high QL , the 
fundamental mode will not drive any longitudinal coupled-bunch instabilities.  

 

Beam Loading  
The instantaneous beam loading voltage left inside the cavities after the passage of a 
bunch is  
 

 0 5.44 kV,b RF L
b

L

eN RV
Q
ω

= =  (4.6) 

 
and is in the direction of iim. When a steady state is reached, the kth bunch in a train sees a 
beam loading voltage of  
 
 ( ) ( )- 1 - 11

0 0 2+ ... ,L Lk
bk bV V e V e e− ∆ − ∆−∆ Lk⎡ ⎤= + + +⎣ ⎦

 (4.7) 

 
where ∆L = δL 

(1 + i tan ψ) is the decay decrement in a bunch spacing, Tb = 6 ns, and 
δ = πTb/(QLTRF), with cTRF the RF wavelength. In the above, 1

0 2+ bV V 0  is the beam 

loading voltage seen by the first bunch in the train due to the excitation by earlier 
passages of the beam. Since 1,t Lh ∆  where 2

356th =
 

is the length of a train including 

the train gap in bunch spacing,  
 
 

0 cos ,i
im LV i R e ψψ −=  (4.8) 

 
which has the magnitude V0 = 27.2 MV. Here, we have made the approximation that each 
of the 60 train gaps is of the same length.  
 
The near equality of V0 and VRF is not accidental, but is the consequence of the huge 
optimum coupling coefficient βop, which is a characteristic of superconducting cavities. 
This near equality shifts the generator voltage in phase with the beam current, thus 
forfeiting all possible Robinson's phase stability. As a result, the alleviation of any jitter 
or offset of bunches from the synchronous phase has to rely solely on radiation damping. 
If a shorter damping time (<13.5 ms) is desired, a fast RF feedback and phase loop must 
be installed. 
 
 
The difference in beam loading voltage experienced by the last and first bunches in the 
train can now be computed as  
 

 ( )( )
0

1
427 kV,b t b

b b
t

n h n
V V

h
− −

∆ = =  (4.9) 
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which becomes independent of the complex decay decrement ∆L, where the assumption 

1t Lh ∆  has been made. Notice that this difference phasor is in the direction of iim and 
will perturb the RF gap voltage experienced by the last bunch. The synchronous angle (in 
radians) experienced by the last bunch is also shifted by  
 

 cos 0.0015.b s
s

RF

V
V

φφ ∆
∆ = =  (4.10) 

 
This variation in synchronous angle ∆(π − φs) = -0.086º in the last bunch. This variation 
is small and, if not corrected, will lead to an increase in half bunch length by only 
|∆φs|/ωRF = 0.47 ps.  
 

Impedance of the Vacuum Chamber  

Space Charge  
The designed normalized rms beam emittance is εxN (εyN ) = 8.00 × 10-6 (2.00 × 10-8) πm 
with betatron tune νx (νy) = 56.584 (41.618). The mean betatron function is therefore 

( ) ( ) 17.20 23.38  m.x yβ β =  The rms vertical beam radius is 6.87 m,y y yNσ β ε γ µ= =  

where E = γmc2 is the electron energy, m its rest mass, and c the velocity of light. The 
horizontal rms dispersion function is η  =0.311 m and the rms energy spread 
σ  = 0.00150.  

rms

E
 
Since the dispersion function of the lattice and energy offset of a particle in the beam are 
statistically independent, the rms horizontal beam radius is therefore  
 
 ( )2 482 m.x x xN rms Eσ β ε γ η σ µ= + =  (4.10a) 

 
Notice that the horizontal emittance contributes only 118 µm to the beam size whereas 
the dispersion contributes 467 µm. Thus the average horizontal beam size is dominated 
by dispersion. The TESLA dog-bone ring, on the other hand, is quite different. The arcs 
are of length 1.9 km, only about 11% of the whole ring. As a result, the rms dispersion 
should be about 0.03 m, an order of magnitude smaller than that of the small damping 
ring design. In addition the rms horizontal beam radius coming from the emittance is 
174.9 µm because the betatron function is twice as big as the small ring design. The 
horizontal beam size is therefore dominated by emittance. This difference has an 
important bearing on the incoherent space-charge tune shift to be discussed below.  
 

Incoherent Self-Field Tune Shift  
The incoherent space-charge tune shift at the center of the beam is, for the vertical,  
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and ∆νx = −0.00027 for the horizontal, where re  = 2.8179 × 10-15 m is the classical 
electron radius and Nb = 2 × 1010 is the number of particles per bunch. The bunching 
factor 62 2.46 1zB Cπσ −= = × 0 ,  has been used. Notice that Eq. (4.11) gives the 
maximum vertical space-charge tune shift for particles at the center of the bunch. The 
vertical space-charge tune shift averaged over all particles in the bunch will be much less.  
 
Simulations of the TESLA dog-bone damping ring reveal that a maximum space-charge 
tune shift of −0.1 is tolerable. [4.2] The maximum vertical space-charge tune shift of the 
TESLA dog-bone damping ring is ∆νy = −0.31. (The TESLA Report gives ∆νy = −0.23 
because it has been incorrectly assumed that the average betatron functions are the same 
horizontally and vertically.)  
 
There are two reasons why this tune shift is an order of magnitude larger than that of the 
small ring design. First, since the vertical betatron tune of the TESLA ring is νy  = 44.18, 
almost the same as the small ring design, the space-charge tune shift is essentially 
proportional to the square of circumference of the ring and the TESLA dog-bone is 2.78 
times larger. Second, the horizontal beam size of the small ring has been enlarged by a 
factor of 3 because of the dispersion, but this enlargement is almost negligible in the 
TESLA ring. In the analysis of Decking and Brinkmann, [4.2] the maximum vertical 
space-charge tune shift can be reduced to ∆νy = −0.035 by initiating horizontal and 
vertical coupling at the long straight sections so that average vertical and horizontal 
emittances are equal to about one half the designed εxN. No such coupling will be 
necessary for the small damping ring.  
 

Space-Charge Impedances  
Taking the vertical radius of the beam pipe as b = 1 cm, space-charge impedances 
experienced by the beam are  
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 (4.12) 

where γe = 0.57722 is Euler’s constant. We see that the longitudinal space-charge 
impedance is small and will be within the microwave stability limit. The vertical space-
charge impedance, on the other hand, is large and is larger in magnitude than the 
transverse wall-resistive impedance at the (1 − Q) line. However, it may help to increase 
the threshold of transverse mode-mixing instability of the beam as discussed below. [4.3] 
The space-charge impedances of the TESLA design are comparable.  
 

FERMILAB-TM-2272-AD-TD 



 21 

Wall impedance  

The beam pipe is made of aluminum with resistivity ρs = 2.65 × 10
−8 
Ω-m. The skin depth 

at the revolution frequency is therefore s0 02 0.370 mm.sδ ρ ω µ= =  Assuming a round 
beam pipe of radius b = 1 cm, the longitudinal and transverse impedances are  
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 (4.13) 

 
  
The loss factor k|| is the energy loss of the bunch if the total charge inside the bunch is 
one Coulomb. It can be written as  
 

 ( ) ( )0
1 ,

2
k Z h dω ω ω
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where ( ) 2 2

h e τω σω −= (with στ the rms bunch length) is the power spectrum of the bunch. 
For the resistive wall, we get 
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Button BPM  
We follow the BPM computation presented in the NLC ZDR. [4.4] For a set of four 
buttons, the magnitude of the longitudinal impedance as calculated using MAFIA, 
consists of a first resonance of 14 Ω at 9.1 GHz with Q ~300, and a second resonance of 
16 Ω at 12 GHz with Q ~50.  
 
The revolution frequency of the small damping ring is f0 =49.0 kHz. Thus these two 
resonances give 0Re 0.0754 mZ n = Ω and 0.0653 mΩ at the respective resonant 
frequencies.  
 
For a high Q resonance,  
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where nr = ωr/ω0, ωr is the resonant frequency, and Rs is the shunt impedance. At low 
frequencies, the reactive impedance for a set of 4 buttons is 0Im 0.00156 mZ n = Ω  
(0.00025 mΩ from the first resonance and 0.00131 mΩ from the second). On the other 
hand, 0Im 0.0377 mZ n = Ω  and 0.0327 mΩ near the first two resonances.
 
There are 594 quadrupoles in this ring. If a set of BPMs is installed at the end of 

each quadrupole, these 594 BPMs contribute 0Re 44.8 mZ n = Ω  (38.8 mΩ) near the 
resonance at 9.1 GHz (12.0 GHz). 0Im Z n  will be half of those near the resonances and 
0.93 mΩ at low frequencies. 
  
The MAFIA calculation for energy loss gives k|| = 0.0203 V/pC for each BPM set. But 
the NLC damping ring electron bunch length is 3.3 mmσ =  while the small damping 
ring electron bunch length is 5.67 mm.σ =  Assuming a 1 2σ − dependence the loss factor 
for all the BPMs in the small ring will be 9.20 V/pC. 
 

Impedance summary 
The TESLA Design Report assigns 17 mΩ to the non-inductive part of 0Z n  for kickers 
and 11 mΩ to the inductive part of 0Z n  for bellows and another 5 mΩ to the inductive 
part of 0Z n  for “other components.” We scale3 them according to the size of the ring 
and obtain 48 mΩ for kickers, 11 mΩ for bellows, and 5 mΩ for others. Table 4.1 
presents a summary of these quantities. 
 
 

 
0Z n  (mΩ) k  (V/pC) 

Noninductive 
RF cavities  5.7  8.8  
Resistive wall (n = 0)  7.0  27.4  
BPMs  44.8  9.2  
Kickers  ~48  ~40  
Total  ~105   

Inductive 
Bellows  ~11  ~1.3  
BPMs  44.8   
Others  ~5  ~0.6  
Total  ~60.8   
Total loss factor   ~87.63 

 
Table 4.1: Longitudinal impedance per harmonic and loss factor for the small damping 
ring from various contributions. 

 

                                                 
3 The number of bellows increases as the ring size and we assume the same for “other components”. 
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Single Bunch Instabilities  

Microwave Instability  
 
For a short bunch, the mixing of azimuthal modes 1 and 2 causes longitudinal instability. 
The stability limit is given by  
 

 
2

0 2 p E

pkeff

EZ
n eI E

πα σ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4.17) 

 

where αp is the momentum compaction factor, Ipk is the peak current, and 0 eff
Z n  is the 

impedance weighted by the power spectrum h(ω) of the bunch mode under consideration. 
For a damping ring, this instability must be avoided. If not, the bunch length will grow 
when the bunch becomes unstable. When saturated, the instability stops and the bunch 
length will be shortened by radiation damping to a value that the instability starts again. 
When this “saw-tooth” oscillation of bunch length took place in the SLAC SLC damping 
rings, the bunch would be incorrectly launched into the linac and might eventually be lost 
on the downstream collimators, causing the linac to trip the machine protection circuits.  
 
For the small damping ring, this stability limit is 0 =150 m . 

eff
Z n Ω The rms bunch 

length is cτσ σ= = 20.0 ps and total bunch length is assumed to be τL = 4στ  = 80.0ps. 
The power spectra of the azimuthal modes 1 and 2 peak at f1 ~2/(2τL) = 12.5 GHz and 
f2 ~3/(2τL) = 18.8 GHz, with half-widths ~6.3 GHz. They are well above the beam pipe 
cutoff frequency fc ~11.4 GHz (assuming beam pipe radius b = 1 cm), where the coupling 
impedance starts rolling off. Apparently, we do not have enough impedance to drive this 
instability.  
 
For the TESLA damping ring, the stability criterion of Eq. 4.17 gives a comparable 
stability limit. Since the momentum compaction and fractional energy spread are slightly 
smaller, (αp = 1.20×10-4 versus 1.41×10-4,  σE /E  = 1.30×10-3 

versus 1.50×10-3), the 
TESLA stability limit becomes 0 =100 m . 

eff
Z n Ω  As for the NLC damping ring, based 

on ZDR data (αp = 0.000465; σE /E = 0.00090; σ  = 3.9 mm;  E = 1.98 GeV; 

N = 1.57×1010 
per bunch) the stability limit is 0 =61 m . 

eff
Z n Ω  

 

Transverse Mode-Coupling Instability  
Transverse mode-coupling instability (TMCI), sometimes known as the strong head-tail 
instability, is one of the cleanest instabilities observed in an electron storage ring. The 
rigid dipole mode, also known as the azimuthal m = 0 mode, shifts downwards with beam 
intensity, a behavior generally associated with short bunches. In contrast, the azimuthal 
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m = -1 mode is not much affected. When the beam intensity is high enough, the m = 0 
mode meets the m = -1 mode and an instability occurs. The threshold is roughly given by 
shifting the m = 0 mode by the synchrotron frequency, and can be represented this way:  
 

 
2
0

1

2
,y s L

eff
b

E
Z

eI c
ν ν ω τ⊥ ≈  (4.18) 

 
where 1 eff

Z ⊥  is the transverse impedance weighted over the longitudinal power spectrum 

h(ω) of the bunch mode under consideration. With total bunch length 4L cτ σ= , we 

obtain the stability limit of 1 2.34 M /m.
eff

Z ⊥ = Ω   

 
Since the mixing is between the modes m = 0 and m = -1, the frequency of the driving 
force should be of lower frequency than that driving the longitudinal mode-mixing 
instability, in the range from 6.3 to 12.5 GHz. Unfortunately, an estimation of the 
broadband transverse impedance has not been made for the ring. If we employ the 
Panofsky-Wenzel-like relation  
 

 0
1 2

2 ,ZcZ
b ω

⊥ =  (4.19) 

 
we obtain the longitudinal-equivalent limit of 0 =120 m . 

eff
Z n Ω  From the estimate 

made in Table 4.1, this threshold may be of concern in this analysis.  
 
For the small damping ring, the space-charge contribution to the transverse impedance is 
of the order of the TMCI threshold. In addition, the incoherent space charge tune shift is 
large and is of the same order of magnitude as the synchrotron tune. Under these 
circumstances, the threshold criterion of Eq. 4.18 may not be valid. This is because non-
space charge transverse impedance shifts the m = 0 mode downward without much effect 
on the other modes. Instability occurs when the m = 0 mode meets the m = -1 mode. On 
the other hand, the transverse space-charge impedance shifts all modes downward except 
the m = 0 mode. Thus if the transverse space charge impedance is large enough, it will be 
much more difficult for the m = 0 and m = -1 modes to meet. In other words, the 
threshold of the transverse mode-coupling instability will be pushed to a much higher 
current in the presence of strong space charge. Thus it requires further detailed study with 
space charge included to determine whether the present design will be subjected to TMCI 
or not.  
 
For the TESLA dog-bone damping ring, the synchrotron tune νs scales like R1/2 while the 
betatron tune is νy = 44.2, very close to the 45.1 of the small ring, where R is the mean 
radius of the ring. Equation 4.18 suggests that the stability limit for the TESLA dog-bone 
damping ring scales with R-1/2  or 1.80 MΩ/m. With the Panofsky-Wenzel-like relation, 
this translates to 0 =133 m ,  Z n Ω  large compared to the estimate of the inductive and 
non-inductive impedances of |Z0/n| ≈ 29 mΩ and 25 mΩ respectively for the vacuum 
chamber of the TESLA dog-bone ring. Again, the large incoherent space-charge tune 
shift should help raise the threshold current to a higher value, even after the reduction 
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associated with horizontal-vertical coupling,. The transverse mode-coupling instability 
limit for the NLC damping ring is 1 eff

~0.50 MΩ/m. Z ⊥    

Multi-Bunch Instabilities  

Longitudinal Coupled-Bunch Instabilities  
Each RF cavity has a shunt impedance of R/Q = 45 Ω. We assume the same value for 
higher-order modes, which will be damped by dissipative material to Q ~100. Thus for all 
12 cavities the largest possible shunt impedance for the higher-order modes will be 
Rs = 54 kΩ.  
 
The frequency at which the bunch spectrum rolls off is ωr/(2π) = 1/(2τL )  ≈ ( )4 6 zc σ , 

approximately 5.1GHz. Assuming that the shunt impedance falls on a synchrotron 
sideband at roughly this frequency, the fastest longitudinal coupled-bunch growth rate is 
given by  
 

 1 .
4

p t b b s r

s

e n n I R
E

α ω
τ π ν

=  (4.20) 

 
In Eq. 4.20 Ib is the average bunch current and ntnb = 2820 is the total number of bunches. 
Since the value of 1/τ is only 49.5 s-1, the shortest growth time is 20.1 ms.  
 
The above discussion assumes a ring filled with equally spaced pointlike bunches of 
equal intensity. The finite length of the bunch will introduce a damping factor roughly 
equal to ( 2 2exp r )τω σ− , which is 0.66 for the situation above. The concentration of 
bunches at 60 locations will further lower the growth rate. In short, the shortest growth 
time may be longer than the radiation damping time of 13.5 ms. Thus, no longitudinal 
coupled-bunch instability will materialize, and a broadband multibunch feedback system 
may not be necessary.  
 
For the TESLA dog-bone ring, the shortest growth time is much longer. The average 
bunch current Ib scales with R-1 while the synchrotron tune νs scales with R-1/2, so the 
shortest growth time scales with R-3/2, or 4.6 times longer. In addition, the momentum 
compaction αp = 1.2×10-4 is smaller than in the small ring design and the rms bunch 
length 6 mmσ =  is slightly longer. All these factors bring the shortest growth time for 
pointlike bunches to 134 ms, about 4.7 damping times.  
 

Transverse Coupled-Bunch Instabilities  
The transverse resistive wall impedance will drive transverse coupled-bunch instabilities. 
The fastest growing mode is driven by the vertical (n −Q) betatron line. The growth rate 
is  
 

 1
1 Re ,

4
b b

y

en I c Z F
Eτ πν

⊥ ′=  (4.21) 
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where F′ ~ 0.8 is a form factor which depends on the longitudinal linear distribution. 
Although the betatron tune is νy = 41.6, let us assume a residual tune of (42 – Q) = 0.5 
since n = 42. The transverse wall impedance at the (42 − Q) line is  
and the growth rate is 9620 s

1Re 192 M /mZ ⊥ = Ω
-1 (growth time 0.10 ms or 5 turns).  

 
We can compare this growth rate with the TESLA dog-bone damping ring. The 
longitudinal resistive-wall impedance 0Z  scales with R1/2 

because the skin depth at 
revolution harmonic scales with R1/2. Thus the transverse resistive-wall impedance 1Z ⊥  
scales with R3/2 because it is proportional to 0Z n . The average bunch current will be 
smaller and scales with R-1. Thus 1RebI Z ⊥  (and therefore the growth rate) scales with R1/2 
since the vertical betatron tune of the TESLA ring is 44.18, very close to that of the small 
ring design. Thus the transverse coupled-bunch instability growth rate of the TESLA 
dog-bone ring will be τ--1 = 1910 s-1.  
 
Due to the short bunch length, a shift towards positive chromaticity does not help at all. 
This is because it requires a chromaticity ξy ≈ αp/(2f0τL ) = 144 to shift the mode spectrum 
of the bunch by ∆ω = π/τL . Coating the beam pipe with a thin layer of copper, however, 
will further lower the growth rate. A tune spread supplied by octupoles can also provide 
some Landau damping.  
 
The remaining instability must be alleviated with a low-bandwidth feedback mode 
damper. Although the damping has to be accomplished in 5 turns, the damper power 
required should be rather weak, because the rigidity of the beam at 5.066 GeV is quite 
low (compared to the Fermilab Main Injector 150 GeV beam). On the other hand, a 
damping ring (whose main purpose is to produce bunches with very low transverse 
emittances) is quite different from a proton storage ring. We should not be satisfied with 
just the control of transverse instabilities. We must make sure that the transverse jitter of 
bunches remains small enough so that the required emittances can be achieved at 
extraction. For this reason, the sensitivity of the pickups and the specification of the 
damping kickers must be studied carefully, and further investigation is necessary.  
 

Electron Clouds and Trapped Ions  

Electron-Cloud Effect  
Electrons will be generated in the vacuum chamber of the damping ring due to residual 
gas ionization and secondary emission of residual gas ions or molecules hitting the walls 
of the vacuum chamber. In the positron ring, the electron cloud will interact with the 
positron beam leading to a growth in transverse emittance. This interaction is short-range 
and the driving force can be represented by a short-range transverse wake W1 left one 
bunch spacing ahead. [4.5] This wake, computed for PEP-II, gives  in 
cgs units (890 × 10

5 -
1 1 10  m~W < × 2

12 V/Coul/m in mks units). The amplitude of transverse oscillation has 
a growth rate of  
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or 301 s-1, corresponding to a growth time of 3.33 ms.  
 
The electron cloud can be greatly reduced by wrapping the beam pipe with solenoids. For 
example, simulation of the HER of KEKB shows that the transverse wake coming from 
the electron cloud is  [4.6] which brings the growth rate to 1.11 s-2

1 300 m ,~W < -1. This is 
unimportant since the whole beam storage time is only about 0.2 s. For the TESLA dog-
bone ring, this growth rate will be of comparable size because IbR does not depend on the 
size of the ring and also because the vertical betatron tune is comparable to that of the 
small ring design.  
 

Trapped Ions  
Ions are generated in the vacuum chamber from residual gas; the electron beam traps 
positively charged ions. In the potential well of the electron beam, the trapped ions 
perform transverse oscillations with the ion-bounce angular frequencies  
 

 ( ),
,

3
,b p

ix y
x y x y b

N r c
AT

ω
σ σ σ

=
+

 (4.23) 

 
where rp = 1.5347×10-18 m is the classical proton radius, A is the molecular weight of the 
ion, and Tb is the bunch separation. Eq. 4.23 is obtained by averaging the individual kicks 
transferred to the ion from the pointlike electron bunches over the whole train. The ions 
will be cleared at the bunch gaps if ωix,yTb > 2, otherwise they will remain trapped.  
 
For CO+ with A = 28, the ion-bounce angular frequencies are ωix =21.6 MHz and 
ωiy = 181 MHz. The conditions for trapped CO+ and H2

+ at a pressure of 10-10 Torr are 
listed in Table 4.2, both for the small ring and the TESLA dog bone. The results show 
that H2

+ will not be trapped vertically in the small ring design and only CO+ will be 
trapped horizontally in the dog-bone design.  
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 Small ring Dog bone 
Bunch spacing Tb (ns)  6  20  

H2
+

Test for trapping:  ωixTb  0.49  2.37  
 ωiyTb  4.06  9.40  

CO+

Test for trapping:  ωixTb  0.13  0.64  
 ωiyTb  1.08  2.51  
Linear Theory for CO+   
Fast-ion growth time:  τx (ms)  1020  1330  
 τy (ms) 1.28  2  

 
Table 4.2: Possible fast-ion instabilities for trapped ions in the small damping ring and 
TESLA dog-bone ring at the vacuum pressure for 10-10 Torr.  

 
 
While ions oscillate inside the electron beam, electrons also oscillate inside the ion 
“beam.” In the absence of external transverse focusing, the small-amplitude electron-in-
ion bounce angular frequency is  
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 (4.24) 

 
where λi is the ion linear density. Compared with the ion-bounce frequency in Eq. (4.23), 
there is an extra factor of γ in the denominator because the electrons are orbiting the ring. 
The extra factor of 2 in the numerator appears because ions are at rest when generated by 
the electrons, implying that the transverse radii of the ion “beam” are a factor of 2  
smaller.  
 
The growth time in the linear theory can be expressed as  
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ex y ix y tr

ω
τ

ω ω τ
=  (4.25) 

 
where τtr is the length of the bunch train. Plugging in numbers gives 
τx (τy) = 1020 (1.28) ms. Thus there is no problem in the horizontal direction, but some 
feedback device is necessary for the vertical. However, it is unclear why the growth times 
for the TESLA dog-bone are so much shorter than those for the small damping ring even 
though the trapping test shows that CO+ will not be (vertically) trapped in the former. It is 
also unclear why the horizontal growth times are so much larger than the vertical ones, in 
spite of the fact that the trapping test shows that trapping will be less severe in the 
horizontal. In fact, the expression of the growth time in Eq. 4.25 assumes a uniform 
electron beam of the length of the whole train, without gaps, so that ions are trapped 
inside.  
 

FERMILAB-TM-2272-AD-TD 



 29 

In order to study the problem more realistically, a number of simulations have been 
performed. To save time on computation, only the first 1000 turns were simulated (note 
that total storage requires ~10,000 turns). The vacuum pressure was increased to 10-8 to 
enhance the growth. All bunches were considered as pointlike with a transverse offset 
selected randomly up to 1/100 of 6.6×10-6 m, roughly the vertical rms beam radius.  
 
The vertical oscillation amplitudes for the first 1000 turns are shown in Figs. 4.1a and 
4.1b for bunches 20 and 47 in a train (as picked up by a BPM). We see in the figures that 
the growths in amplitude are very rapid, reaching ±8×10-8 m for bunch 20 and 
±2.5×10-4 m for bunch 47 in 1000 turns, and appear to continue, although the initial beam 
displacement was random between ±6.6×10-8 m.  
 
A feedback with a gain of 0.2 was then applied and the simulation repeated. We see that 
with feedback the amplitudes have been controlled to within ±150×10-6 for bunch 20 and 
±25×10-6 m for bunch 47. However, the oscillation amplitude for bunch 20 is still very 
much larger than the rms bunch radius. It is unclear why the growth of the last bunch of 
the train has been much less rapid than the 20th. The theory of fast beam-ion instability 
and some simulations [4.7] suggest that the instability growth rate increases with the 
square of the bunch position. On the other hand, we find in this train of 47 bunches that 
bunches in the center of the train have much larger growths than the head and the tail 
bunches.  
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Figure 4.1a: (color) Vertical amplitudes of the 20th bunch in the train for the first 1000 
turns at vacuum pressure 10-8 Torr without and with feedback of gain 0.2. The growths 
had been very fast, but were controlled by the feedback.  
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Figure 4.1b: (color) Vertical amplitudes of the 47th bunch in the train for the first 1000 
turns at vacuum pressure 10-8 Torr without and with feedback of gain 0.2. The growths 
had been very fast, but were controlled by the feedback.  

 
 
We repeat the simulations with vacuum pressure at 1×10-10 Torr. The results for bunches 
20 and 47 are shown in Figs. 4.2a and 4.2b. Now the growth is much less in the first 1000 
turns and goes up to ±15×10-6 m for bunch 20 and ±2.3×10-6 m for bunch 47. Feedback at 
a gain of 0.20 stabilizes the growth to within ±1.5×10-6 m for bunch 20 and ±0.4×10-6 m 
for bunch 47, which are within one sigma of the vertical half size of the beam.  
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Figure 4.2a: (color) Vertical amplitudes of the 20th bunch in the train for the first 1000 
turns at vacuum pressure 10

−10 
Torr without and with feedback of gain 0.2. The growths 

have been much slower than when the pressure was 10
−8 

Torr. Feedback with a gain of 
0.2 controls the oscillation of the bunch centers to within the rms bunch size.  
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Figure 4.2b: (color) Vertical amplitudes of the 47th bunch in the train for the first 1000 
turns at vacuum pressure 10

−10 
Torr without and with feedback of gain 0.2. The growths 

have been much slower than when the pressure was 10
−8 

Torr. Feedback with a gain of 
0.2 controls the oscillation of the bunch centers to within the rms size of the bunches.  
 

 
So far we have been looking at only two bunches in a particle train. In order to have 
better statistics, we average over all 60 trains. For this we define the offset emittance 
εoffset = y2

beamcenter /βy, and normalize it with respect to the vertical emittance of the beam. 
The averages of this normalized offset emittance over 60 trains are shown in Figs. 4.3a 
and 4.3b. The first figure is for bunches 7, 14, 21, 28, 35, 42, and 46 at vacuum pressure 
of 0.1 nTorr while Fig. 4.3b shows the same but with feedback of gain 0.20 turned on.  
 
We find that the growth without feedback increases with bunch position, but it does not 
scale with the square of bunch position as postulated in Ref. [4.6]. With feedback turned 
on, the offset emittance is damped to within 20% of the beam vertical emittance. The 
vertical offset is within 10% of the vertical beam size.  
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Figure 4.3a: (color) Normalized offset emittance of bunches 7, 14, 21, 28, 35, 42, and 46, 
averaged over 60 trains without feedback at vacuum pressure of 0.1 nTorr. It is evident 
that the growth without feedback increases with bunch position. With feedback of gain 
0.20, the offset emittance is controlled to within 20% of the vertical emittance of the 
beam.  
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Figure 4.3b: (color) Normalized offset emittance of bunches 7, 14, 21, 28, 35, 42, and 46, 
averaged over the 60 trains with feedback at vacuum pressure of 0.1 nTorr. It is evident 
that the growth without feedback increases with bunch position. With feedback of gain 
0.20, the offset emittance is controlled to within 20% of the vertical emittance of the 
beam.  

 
 
Note that radiation damping has not been included in these simulations. The radiation 
damping time is approximately 1400 turns. Thus when radiation damping is considered, 
the offset emittance will be much less. The amplitudes of oscillation of bunches are 
simulated to be recorded at a beam-position motion but at different time.  
 
Now let us look at the motion of all 2820 bunches in a snapshot. To convert to bunch 
amplitudes in a snapshot, the BPM values for the jth bunch in the kth train must be 
multiplied by the betatron phase ( ) ( ){ }exp 2 57 1 1 y spi k j Nπ − + −⎡ ⎤⎣ ⎦ν . For simplicity, 

the simulation assumes 60 trains of 47 bunches, with each train followed by 10 empty 
bunch spacings. As a result, the total number of bunch spacings around the ring is 
Nsp = 60 × 57 = 3420.  
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We next calculate the Fourier transform for each turn by multiplying the snapshot 
amplitude by4 exp[−i2πm/Nsp] and summing over the bunch spacing m from 0 to Nsp − 1. 
The results in the vertical at the 50th, 250th, 500th, 750th and 1000th turns are shown in Fig. 
4.4a (Fig. 4.4b) without (with) feedback of gain 0.20.  
 
According to the analysis of Chao [4.8], the resonant modes occur at y iQ yν= −  where 
ωiy = Qiyω0 is the ion bounce angular frequency. Because the imaginary part of the 
amplitude is not monitored at the BPM, the Fourier transform results in another mirror 
resonance at  These two resonances do appear for each snapshot in 
Fig. 4.4, and their mode numbers add up to ~3510, which is exactly N

( ) .y iy spQ Nν= − +

sp +2νy as expected 
(νy =45.1).  
 
We identify the left resonance at νy + Qiy and the right at (νy − Qiy )+ Nsp. Since they 
correspond to 815 and 2895 at the 50th turn, we obtain Qiy = 775, which agrees well with 
Qiy = 716 obtained from Eq. 4.23. Without feedback, as time goes on, the resonances shift 
to lower frequencies while their amplitudes become larger. This just reflects the evolution 
of the resonant beam-ion coupled oscillation with the beam size becoming larger and 
larger. With feedback turned on, we see that Qiy does not increase any more after 250 
turns and so are the resonant amplitudes. This reflects the fact that equilibrium has been 
reached in the presence of feedback, so that both the beam size and the oscillation 
amplitude do not increase anymore.  
 

                                                 
4 If we multiply by exp[+i2πm/Nsp] instead, the two resonant modes in the mode spectrum 
will be at iy yQ ν= − and Nsp− (νy+ Qiy). Note that the two resonances in the Fourier 
transform correspond to the same mode.  
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Figure 4.4a: (color) Snapshot mode spectra are shown for the 50th, 250th, 500th, 750th 
and 1000th turns at vacuum pressure 10-10 Torr without feedback. The resonant modes 
correspond to νy + Qiy and (νy − Qiy)+ Nsp. Without feedback the resonant amplitudes 
increase in time and the ion-bounce frequency decreases indicating that that the beam 
size increases.  
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Figure 4.4b: (color) Snapshot mode spectra are shown for the 50th, 250th, 500th, 750th 
and 1000th turns at vacuum pressure 10-10 Torr with feedback gain 0.2. The resonant 
modes correspond to νy + Qiy and (νy − Qiy)+ Nsp. With feedback, both the resonant 
amplitudes and ion-bounce frequency reach saturation.  

 
 
 
 
5. Controls and instrumentation  
 

Tolerances and Correction Procedures 
 
In this section we follow similar discussions in the TESLA design reports,[5.1, 5.2] 
modified to follow the different parameters of the present report.                              
 
The vertical equilibrium emittance obtained in the damping ring is determined by the 
quadrupole, sextupole and BPM alignment tolerances, and by the orbit correction 
procedures that are used.  The ILC damping rings require a normalized vertical emittance 
εN, L,rms of less than ~0.02µm.  At 5 GeV this implies a geometric emittance of εL,Geom < 
2pm.   
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The sensitivity of the vertical beam parameters to errors in the quad and sextupole 
alignments are given by: [5.3] 
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Here Jix, Jy, Jz are the damping partition numbers, (kq, Lq) and  (ks, Ls) are the ring quad 
and sextupole strengths, (βx, βy, ηx, νx, νy) are the usual betatron functions, dispersion 
and tunes.  〈∆Θq

2〉 is the rms angle error in the quads, 〈∆Ys
2〉, 〈∆Yq

2〉 are the rms 
alignment error in the sextupoles and quadrupoles, respectively, 〈σy

2〉 is the rms vertical 
beam size squared and σδ

2 is the rms δp/p squared.  〈y2〉 is the resulting closed orbit error 
and ∆εy is the resulting increase in rms emittance.  The expressions in the previous 
equations determine the quadrupole jitter sensitivity, the quadrupole rotation sensitivity, 
and the sextupole alignment sensitivity. [5.4] 
 
As evaluated by Wolski [5.5], the present damping ring design has a quadrupole jitter 
sensitivity that is ~2.5× less than the baseline Tesla Damping Ring, the quadrupole 
rotation sensitivity is ~1.5× smaller and the sextupole alignment sensitivity is ~3.6× 
smaller, mostly because of the smaller circumference.   
 
These sensitivities are not directly interpreted as survey alignment tolerances, since 
achieving the desired vertical emittance will require correction of the dispersion and the 
betatron coupling, and detailed simulation studies of the correction procedure. 
 
For the TESLA design report, the errors and correction were simulated using the 
PETROS code, which has been benchmarked by observations in the HERA electron 
ring.[5.1]  A set of initial alignment tolerances were obtained, and these tolerances are 
displayed in Table 5.1.  Note that tolerances for wiggler/BPM positions are at the µ scale 
and will require local beam-based averaging adjustment.  By extrapolation, these 
tolerances should also be acceptable in the present ring, and probably can be relaxed by a 
factor of ~2.  A more detailed study with new simulations should be developed for a 
more precise evaluation. 
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Element Error Type Tolerance (rms) 
Quadrupoles (arcs) 
                      (straight sections)

Transverse position 
Transverse position 
Roll angle 

0.1 mm 
0.2 mm 
0.2 mrad 

Sextupoles Transverse position 
Roll angle 

0.1 mm 
0.5 mrad 

Dipoles 
BPM’s vs. quads 
BPM resolution 
BPM resolution  
(wiggler, averaging mode) 

Roll angle 
Transverse position 
Transverse position 
 
Transverse position 

0.2 mrad 
0.1 mm 
0.01mm 
 
0.001mm 

   
Table 5.1: Damping ring tolerances (based on TDR analysis, not relaxed for lesser DR 
sensitivity).  

 
 
An important question concerns long-term orbit stability and emittance increase. From 
the experience at HERA, [5.5] a diffusion-like orbit drift caused by uncorrelated slow 
ground motion must be considered.  Steering the orbit back to the reference orbit ~every 
20 minutes should be sufficient to control this effect.   
 

Beam-Gas and Intrabeam Scattering 
 
Incoherent scattering processes set upper limits on the beam lifetime and lower limits on 
the beam emittances in the damping ring.  The largest contribution to vertical emittance 
growth is due to elastic Coulomb scattering with gas nuclei.  The rms emittance growth 
from this effect is given by: [5.6] 

scgasy
y

2
e

BG,y lN
cr

β
γ

τπ
=ε∆γ , 

where Ngas is the number density of gas molecules and lsc  is the Coulomb scattering 
logarithm (lsc≅5).  With Pgas  < 10-8 mbar, the resulting increase in emittance, ∆εy,BG. is < 
~10% of the design value.  This rms emittance formula exaggerates the effect on the core 
of the beam, since the growth comes from relatively few particles scattered to larger 
angles, and the distribution is very non-Gaussian.  The luminosity loss would be much 
less than indicated by the rms values, and should be practically negligible.[5.7] 
 
Intrabeam scattering (IBS) affects both the transverse and longitudinal emittances, and 
adds an emittance growth rate which opposes the radiation cooling term.  The IBS-
growth times can be estimated using the formulae in ref. [5.8]. At the damping ring 
parameters, we find: τz,IBS ≅ 3s, τx,IBS ≅ 0.25s, and τz,IBS ≅ 20s.  Even the smallest of these 
growth times (τx) is much greater than the radiation damping time, and only a small 
correction occurs. 
 
The most important limitation on the beam lifetime in electron/positron storage rings at 
high particle densities is due to the Touschek effect.  This lifetime is several hours in the 
damping ring, so it will not be a limitation for operational use of the damping ring.  The 
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effect should not even be a strong limitation for diagnostic and commissioning operation 
of the damping ring in long-term storage mode.  
 
 
6. Fourier kicker system 
 

Introduction 
 
It is interesting to consider a design in which a pulsed kicker is replaced by a broadband 
RF system whose amplitudes, frequencies, and phases correspond to the Fourier 
components of a periodic, narrow pulse.  Instead of energizing the system only when a 
bunch was about to be injected or extracted, the device would run continuously. This 
might allow the frequencies, phases, and relative amplitudes of the various Fourier 
components to be determined (and maintained) with great precision. With a properly 
chosen set of parameters, the system would kick every  Mth bunch in the damping ring, 
leaving undisturbed the intervening (M - 1) bunches. Injection (or extraction) of an entire 
bunch train would be completed by the end of the Mth orbit through the system. 
 
Other types of kicker are also under consideration; the damping ring lattice has sufficient 
length in one of the straight sections to accommodate any one of several varieties of 
kicker. We will focus on one kicker scheme, currently under study at Fermilab. In our 
discussions we will assume the timing structure for the beam shown in Table 6.1. 
 

Parameter Value 
Main linac RF frequency 1.300 GHz (442 × linac bunch frequency) 
Main linac bunch spacing 340 ns (1/442 of linac RF frequency) 
Number of main linac bunches 2820 
Number of damping ring bunch trains 60 
Bunches per train 47 
Inter-train gap following trains 1-59 10 damping ring bunch spacings (~60.7 ns) 
Inter-train gap following train 60 11 damping ring bunch spacings (~66.8 ns) 
Inter-bunch separation ~6.07 ns  (main linac bunch spacing  / 56) 
Train length (including gap), trains 1-59 340 ns = main linac bunch spacing 
Train length (including gap), train 60 ~346.1 ns = 57 × bunch spacing 
Damping ring orbit period ~20,406.1 ns (60 × 340 + 1 inter-bunch gap) 
Damping ring orbit circumference ~6.12 km 
Damping ring RF frequency ~494.1 MHz (168 × linac bunch frequency) 
Kicker center frequency ~1.647 GHz  (10 × 1/ DR bunch spacing) 
Kicker bandwidth ±10% of center frequency 
 

Table 6.1: damping ring parameters assumed in kicker studies 
 
 

General Discussion of a Fourier-Series Kicker System 
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A Fourier-series kicker system could be installed in a bypass section of the damping ring, 
as shown schematically in Figure 6.1. During injection, a deflector system would route 
the beam through the bypass. Once injection was completed, each deflector could be 
turned off during the passage of a gap between the last and first bunches in the orbiting 
train. The train would then orbit in the damping ring, bypassing the kicker. At extraction, 
the deflectors would be energized again, routing the beam through the kicker for 
extraction. 
 
How many Fourier components would be required to synthesize a kicker pulse? The 
required kicker field integral is [6.1] 100 Gauss-meters with an accuracy of 0.07 Gauss-
meters.  The kicker’s residual field integral when “off” should be less than 0.07 Gauss-
meters. An idealized kicker pulse train of pulses with width δ and period T is shown in 
Figure 6.2. Since the train is an even function of time, its Fourier expansion is 
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k
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T
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Naturally, the values of the coefficients Ak depend on the pulse shape, but components 
with periods that are long compared to the pulse width δ will appear with coefficients that 
are approximately equal. The magnitude of coefficients Ak for high frequency  
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damping 

injection/extraction Kicker 
rf cavities 

 

injection/extraction 
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injection/extraction
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Figure 6.1. Schematic diagram of a damping ring using an RF cavity kicker system located in a bypass 
section. Injection/extraction deflectors are off during damping, allowing the beam to pass through a section 
of the ring which does not include the kicker. Deflectors are energized during the passage of a gap between 
the last and first bunch trains for injection and extraction, routing the beam through the kicker. 
 
components will decrease with increasing k.  For a train of Gaussian pulses, where δ is 
the rms pulse width, the Fourier expansion is [6.2] 
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A single pulse ( )2 2te δ−  will drop below .07% for 3.81t δ≥ . For example, to 
accommodate damping ring and linac bunch spacing of 6 ns and 340 ns respectively, the 
pulses would need rms widths below δ = 1.57 ns.  
 

 

t 

ki
ck

er
 fi

el
d 

in
te

gr
al

 

δ T
 

 
Figure 6.2. Idealized kicker pulse train. Each pulse has width δ. The pulse repeat period is T. 

 
The magnitude of the Fourier coefficients ( )2

0 2k
kA e ω δ−=  drops below .01% when  

k = 148, so a kicker system of this sort would require the construction of a large number 
of cavities. It is likely that controlling the relative amplitudes in the cavities (so that the 
proper Fourier sum is obtained) would pose a difficult technical challenge! 
 
This naïve approach—that the kicker fields should be close to zero at all times except 
when a bunch is about to be kicked—places demands on the kicker system that are 
unnecessary. Since the arrival time of bunches at the kicker is precisely known, we can 
consider an alternative approach in which the sum of Fourier components generates a 
field integral that is zero as a bunch passes through the kicker, but can be non-zero at 
other times. TESLA bunch lengths are 6mm in the damping ring, both at injection and 
extraction. [6.1] As long as the change in the field integral is small during the 20 ps time 
interval between the arrival of the head and tail of a bunch at a cavity center, the effects 
of ripple when the cavities are empty should be unimportant. 
 
Let us analyze the properties of a kicker made from N cavities tuned to oscillate with 
identical amplitudes, and at frequencies which are integer multiples of 2.94 MHz 
(1/340 ns). To simplify calculation, we will assume that a constant impulse, with half the 
strength of the individual cavity amplitudes, is applied to bunches just before they enter 
the kicker cavities. The summed field integral is 
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This can be evaluated [6.3] analytically: 
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Two notable features about this expression are that its zeroes are evenly spaced, and that 
it has a peak of height  N + ½  (instead of a zero) whenever its denominator is zero. The 
even spacing of its zeroes makes this an interesting candidate for a kicker system.  
 
A graph of the field integral for A = 6.5 Gauss-meters  and  N = 16 is shown in 
Figure 6.3. 
 
 

 
 
Figure 6.3. Field integral (Gauss-meters) vs. time (ns) in a 16-element system.  Bunches 1 and 34 are 
kicked, while damping ring bunches 2 through 33 pass through the kicker during the zeroes of the field 
integral. 
 
There are 2N zeroes between the peaks at 0 ns and 340 ns. If a bunch passed through the 
kicker during each of its zeroes, as well as during its kicking pulse this would correspond 
to a reduction in damping ring bunch spacing relative to linac bunch spacing by a factor 
of 2N + 1. For N = 16, this would decrease the required damping ring circumference by a 
factor of two relative to the size specified in the TESLA Technical Design Report. [6.1] 
 
The time derivative of the summed field integral is shown in Figure 6.4. The derivative’s 
value at a zero crossing of the field integral is  
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as can be seen in the figure, the derivative switches sign at successive zeroes in the field 
integral and is largest for the zero crossing closest to the pulse which kicks a bunch. 
 
The 6 mm rms bunch width in the damping ring corresponds to a flight time of 20 ps. A 
slope at a zero crossing in the field integral of 2 Gauss-meters/ns would produce a kick 
error of 0.04 Gauss-meters, somewhat smaller than the tolerance of 0.07 Gauss-meters. 
However, the number of passes a bunch makes through the kicker system ranges from 1 
(for a bunch which is kicked immediately) to 2N + 1 (for a bunch which is kicked during 
the train’s last orbit through the kicker system). As a result, an analysis of the effects 
associated with finite bunch length will need to take into account the cumulative effects 
of multiple passes through the kicker and the synchrotron oscillations of an electron (or 
positron) in the direction of motion of the bunch as the train travels through the damping 
ring.  
 

 
 
Figure 6.4. Time derivative of field integral (Gauss-meters per ns) vs. time (ns) in a 16-
element system.   

 
 
The problem of head-tail effects on bunches due to the non-zero slope at the zeroes in the 
previously described impulse function can be eliminated by employing an impulse 
function whose magnitude and slope are zero when unkicked bunches pass through the 
kicker. An example would be 
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whose Fourier components ak decrease linearly, becoming identically zero when k > N. A 
bunch spacing of 6.07 ns requires N = 56, so the frequency range of this device is quite 
broad, spanning the interval 2.94 MHz to 164.7 MHz. 
 
Modulating the kicking impulse by a high frequency signal so that its center frequency is 
raised considerably can reduce the fractional bandwidth of the device. We have been 
studying the possibility of designing a kicker whose field integral is  
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The impulse as a function of time is shown in Figure 6.5.  This device would have a 
center frequency of 1.647 GHz and contain frequencies in an interval ±164.7 MHz 
around 1.647 GHz. Interestingly, the amplitudes of the Fourier components decrease 
linearly from a maximum at the center frequency, becoming (and remaining) identically 
zero ±164.7 MHz away from 1.647 GHz. 
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Figure 6.5. Impulse as a function of time for a high-frequency modulated kicker. The 
inset shows a ± 10 ns full scale time interval while the larger figure represents a full 
340 ns linac inter-bunch interval. In the inset, arrows indicate the arrival times of the 
kicked bunch and adjacent unkicked bunches. 
   

Other impulse functions could be chosen as long as they possess the general feature of 
periodic zeroes with zero slopes. 
 
 

Mode of Operation During Extraction and Injection 
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We have been assuming that the damping ring’s 2820 bunches will be grouped into 60 
distinct trains separated by inter-train gaps. Each train contains 47 bunches separated by 
~6.07 ns. The gaps following all but the last train are ~60.7 ns long; this last gap is 
reduced to ~54.6 ns. With this timing arrangement, the last bunch in one train arrives at 
the kicker 340 ns after the last bunch in the previous train during an orbit of the damping 
ring. 
 
The kicker ejects the last bunch in each train; because of the shortened gap after the last 
train, the beam’s next orbit presents what had been the next-to-last bunch to the kicker in 
time for it to receive an extraction impulse. 
 
The orbital period for the beam is the sum of the lengths for all the trains, including their 
trailing inter-train gaps. This is  ~20,394 ns. Extraction of the entire beam requires 47 
orbits. 
 
When it is time to begin extracting beam from the damping ring, the deflectors are 
energized as the inter-train gap following the last train passes through a deflector; the 
deflectors remains on for the duration of the extraction cycle.  
 
The process for injection is a time-reversed version of extraction: bunches are kicked on 
orbit to join the partially formed trains as the (newly arrived) last bunch in the train. 
 
   

Effect of Bunch Arrival Time Error at the Kicker  
 
The consequences of an error in arrival time of a bunch at the kicker are more important 
for a bunch that is being injected (or extracted) by the kicker than on bunches passing 
through when the net impulse is zero. 
  
The field integral pulse that ejects a bunch is parabolic near its peak. In the example 
discussed above, its shape is dominated by the modulating cosine: 
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The value of the coefficient of the quadratic term is approximately 1/(137 ps)2. As a 
result, a timing error of 10 ps (comparable to half the length of a bunch) yields a 0.5% 
reduction in the strength of the impulse. Some sort of compensation along the extraction 
line downstream of the kicker will be necessary to correct for this. 
 
The effect is considerably less pronounced for bunches which are not meant to be 
deflected by the kicker. The impact of an arrival time error is greatest for bunches 
immediately before and after the bunch which is kicked. In this case, the sin2(Nω0t/2) 
numerator dominates the shape of the impulse and the effect is considerably less 
important than it is for the kicked bunch. A timing error of 10 ps yields a few parts per 
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million reduction in the impulse, while an error of 200 ps causes an error of 
approximately 0.07%. 
 
 

Effects Associated With Multiple Passes Through the Kicker  
 
Most bunches pass through the kicker several times after injection, or before extraction. 
There are a variety of effects which enter into a calculation of the kicker’s influence on a 
bunch which orbits the damping ring several times during the injection/extraction cycle. 
In the extraction scheme described earlier, a bunch arrives at the kicker one “click” 
earlier each time it begins its next orbit of the damping ring until finally being ejected. As 
a result, it passes through the kicker during zeroes which are progressively closer to the 
kicking peak (located at  t = 0  in Figure 6.3).  
 
Oscillations of the beam about a closed orbit, as well as the effects of synchrotron 
oscillations of particles inside the bunch relative to the bunch center will play a role in 
determining the effects of multiple passes through the kicker. We are currently 
investigating this. 
 

Summing the Fourier Components 
 
The original conception of the Fourier series kicker employed a separate high-Q RF 
cavity for each of the individual frequency components. The effect of the cavities would 
be summed directly by the particle beam directly as it passed through the string of 
cavities. We also consider a design in which the Fourier components are summed directly 
inside individual cavities, so that a bunch experiences no deflection at any point as it 
travels through the kicker unless the bunch is to be extracted. 
 
The technique we are currently studying would use a set of identical low-Q cavities able 
to support the ±10% bandwidth required to synthesize the kicking pulse from its Fourier 
representation. The simplest version of this system, in which an amplifier would fill the 
cavities in a few nanoseconds, would place unacceptable demands on the peak power 
capacity of the amplifier. Joe Rogers had begun studying a pulse compression scheme for 
this kind of kicker that would solve the peak-power problem, and we are continuing to 
develop his ideas.5  
 
The idea is similar to that used in some radar systems: waveguides are dispersive, so the 
relative phases of the various Fourier components in a broadband signal will change as 
the signal travels down the waveguide. By injecting the proper waveform into the 
upstream end of the waveguide, it is possible to compress the waveform into a narrow 
kicking pulse by altering the phases, but not the magnitudes, of the frequency 
components. As a result, the peak power supplied by the amplifier is not terribly different 
from the average power. A schematic diagram of the system is shown in Figure 6.6. 

                                                 
5 Joe Rogers, a Professor of Physics at Cornell University, died of cancer in 2004. A 
gifted scientist and profoundly decent person, we note, and mourn, his untimely passing. 
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We are currently investigating some of the engineering issues for the kicker in order to 
better understand its feasibility and its vulnerability to degradation in performance 
associated with errors in its operating parameters. We have not yet reached the point 
where it is appropriate to search for an optimum set of operating parameters. As a result, 
the final device (if it proves possible to build) may differ considerably from the version 
described below, whose parameters are summarized in Table 6.2. 
 

 
 

Figure 6.6. Schematic diagram for a pulse compression Fourier series kicker. We are 
currently studying a system using a 50 m waveguide with 1.3 GHz cutoff frequency. 

   
 
 

Parameter Value 
Wave guide length 50 m 
Wave guide cutoff frequency 1.300 GHz 
RF cavity Q 25 
Kicker center frequency ~1.647 GHz  (10 × 1/ DR bunch spacing) 
Kicker bandwidth ±10% of center frequency 
Kicker signal fundamental period 340 ns (linac bunch frequency) 
Kicker impulse 100 Gauss-m (more may be necessary for injection) 
Kicker precision during extraction ±0.07 Gauss-m (±0.07%) 
Kicker off-field error ±0.07 Gauss-m 

 
Table 6.2: kicker parameters 

 
 
It is instructive to trace the evolution of the signal in Figure 6.6 backwards, beginning at 
the RF cavity and ending at the function generator. The final signal, supported by the 
cavity, is shown in Figure 6.7. 
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Figure 6.7. Kicker field inside RF cavity. Amplitude, in arbitrary units, has peak value of 
1.000. Full scale time range is 20 ns in the inset and approximately 340 ns in the larger 
figure. Red arrows in the inset indicate arrival times of the kicked bunch (at t = 0) and the 
bunches immediately before and after the kicked bunch. 

   
 
The functional form of the impulse, as described earlier, is 
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The frequency spectrum of the impulse is shown in Figure 6.8. The peak amplitude is 560 
times the linac bunch frequency; the amplitudes decrease linearly away from the peak, 
becoming identically zero ±10% on either side of the peak frequency. The Fourier 
components are all cosines, and are all in phase so that each has a maximum at t = 0. 
 
 

FERMILAB-TM-2272-AD-TD 



 51 

100 200 300 400 500 600

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

kicker field fourier amplitudes

 
 

Figure 6.8. Frequency spectrum inside the RF cavity. Frequencies are expressed as 
multiples of the main linac frequency. 

 
Since the RF cavity’s Q is 25, the cavity will accumulate energy sent down the 
waveguide, supporting a considerably larger instantaneous field than is present at the 
downstream end of the waveguide. This is shown in Figure 6.9. 
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Figure 6.9. Cavity response vs. frequency for full bandwidth of the driving signal. Note 
the suppressed zero; the plot shows the ratio of the amplitudes for the driving signal at the 
downstream end of the waveguide and the cavity’s kicking field as a function of 
frequency. The ratio varies from approximately 5 to 12.5. 
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The phase lag (in degrees) between cavity response and driving signal is shown in Figure 
6.10. Not surprisingly, it crosses through 90° at the cavity’s center frequency. 
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Figure 6.10. Cavity phase lag vs. frequency for full bandwidth of the driving signal. 
Phase lag is 90° at the cavity’s center frequency. The phase lag varies from 
approximately 20° to 160°. 

 
 
The signal required to drive the cavity as it appears at the downstream end of the 
waveguide is shown in Figure 6.11. Note the effects of the phase shift between driving 
signal and cavity response in removing the signal’s symmetry about t = 0. In addition, the 
ability of the cavity to store energy is clearly seen in the large difference in signal 
amplitudes in the wave guide and the cavity. Most of the energy transported by the 
waveguide arrives at the cavity during a short time interval.  
 
Because the wave guide is dispersive, with a low frequency cutoff of 1.3 GHz, the 
propagation time of the driving signal’s different Fourier components varies appreciably, 
as shown in Figure 6.12. As a result, the phase relationship among the various amplitudes 
changes along the length of the waveguide, even though there relative amplitudes do not. 
The field in the wave guide five meters upstream of the cavity is shown in Figure 6.13. 
Note its increased breadth and decreased maximum amplitude relative to the signal at the 
downstream end of the wave guide. The field at the midpoint and upstream end of the 
wave guide are shown in Figures 6.14 and 6.15.  
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Figure 6.11. Field at downstream end of wave guide. Amplitude, indicated relative to the 
maximum amplitude inside the RF cavity, has peak value of approximately 0.11. Full 
scale time range is 20 ns in the inset and approximately 340 ns in the larger figure. Red 
arrows in the inset indicate arrival times of the kicked bunch in the cavity (at t = 0) and 
the bunches immediately before and after the kicked bunch. 

   
 

 
 

Figure 6.12. Group velocity vs. frequency in the wave guide. 
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Figure 6.13. Field five meters before the downstream end of wave guide. Amplitude, 
indicated relative to the maximum amplitude inside the RF cavity, has peak value of 
approximately 0.6. Full scale time range is 50 ns in the inset and approximately 340 ns in 
the larger figure.  
 
 
 

 
 
Figure 6.14. Field at the midpoint of the wave guide. Amplitude, indicated relative to the 
maximum amplitude inside the RF cavity, has peak value of approximately 0.03. Full 
scale time range is approximately 340 ns.  
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Figure 6.15. Field at the upstream end of the wave guide. Amplitude, indicated relative to 
the maximum amplitude inside the RF cavity, has peak value of approximately 0.018. 
Full scale time range is approximately 340 ns.  

 

Cavity Design and RF Power Requirements 
 
We are currently discussing details of possible cavity designs and amplifier schemes with 
the Fermilab RF group. Rough estimates for power consumption suggest that a 60 kW RF 
amplifier is necessary; the combination of required bandwidth and power would indicate 
that a traveling wave tube, rather than a klystron, is necessary. 
 

Stability Considerations 
 
Studies of the various vulnerabilities of the kicker to drifts and errors are in progress. The 
use of a programmable function generator as a signal source should permit adjustment of 
the system as components age, though detailed consideration of feedback issues has yet 
to be done.  
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The effect of a 0.1% error in cavity Q is shown in Figure 6.16 as a function of bunch 
number. (The first bunch is kicked, the rest are not.). The vertical scale shows deviation 
from the ideal impulse, with the strength of a perfect (100 Gauss-m) kicking pulse 
indicated as 1.000. The maximum allowable error of 0.07 Gauss-m corresponds to 0.0007 
on this scale. Note that an error in Q changes the cavity response vs. frequency, 
effectively inducing an error in the relative amplitudes and phases of the various Fourier 
components. As can be seen, the maximum permissible Q error is approximately 0.1%.  
 
The effect of a 0.1% (1.647 MHz) mistuning of RF cavity center frequency is shown in 
Figure 6.17. As before, the vertical scale shows deviation from the ideal impulse with the 
maximum allowable error corresponding to 0.0007 on this scale. The maximum 
permissible tuning error is somewhat smaller than this, approximately 1.4 MHz.  
 
Figure 6.18 illustrates the consequences of a 1 mm error in the length of the (50 m long) 
wave guide. To a great extent, the effect of an error in wave guide length is to induce a 
timing error in the generation of the kicking pulse at the cavity relative to the passage of 
the kicked bunch. As a result, the kick error increases quadratically with wave guide 
length error since the kicking pulse is approximately parabolic in shape.  
 
Figure 6.19 shows the results of a 10 kHz error in wave guide cutoff frequency. Since 
cutoff frequency depends directly on the waveguide geometry, controlling (or reducing 
sensitivity to this) parameter may require a certain amount of innovation. 
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Figure 6.16. Kick error induced by a 0.1% error in RF cavity Q as a function of bunch 
number. The first bunch is injected/extracted, while others pass through the kicker 
undeflected. (Maximum allowable kicking error is 0.007 in these units.)  
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Figure 6.17. Kick error induced by a 0.1% error in RF cavity center frequency as a 
function of bunch number. The first bunch is injected/extracted, while others pass 
through the kicker undeflected. (Maximum allowable kicking error is 0.007 in these 
units.)  
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Figure 6.18. Kick error induced by a 1 mm error in wave guide length as a function of 
bunch number. The first bunch is injected/extracted, while others pass through the kicker 
undeflected. (Maximum allowable kicking error is 0.007 in these units.)  
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Figure 6.19. Kick error induced by a 10.0 kHz error in wave guide cutoff frequency as a 
function of bunch number. The first bunch is injected/extracted, while others pass 
through the kicker undeflected. (Maximum allowable kicking error is 0.007 in these 
units.)  
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Studies are in progress.  
 
 
 
7. Conclusions 
 
Our investigations of the feasibility of a small ILC damping ring are encouraging, but 
there is a considerable amount of work that remains to be done. In particular, thorough 
studies of dynamic aperture and kicking techniques will continue. But our results indicate 
that it is sensible to pursue, for the time being, studies of both the dog bone and small 
damping rings. It is likely that a kicker that works in a small ring will also work nicely in 
the dog bone design. Questions of early commissioning of the damping ring are more 
simply resolved for the small rings with their independent tunnels. 
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The geometric series can be summed in the usual way; reexpression of the result in terms 
of sines and cosines yields the desired answer. 
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