
The Fermilab Technical Publications Webpage

Andrew A. Rawlinson
Fermi National Accelerator Laboratory

Batavia, Illinois 60510-0500

September 1, 2004

FERMILAB-TM-2266-LSS

Abstract

We provide a brief description of the Fermilab Technical Publications Webpage,
http://lss.fnal.gov/cgi-bin/getnumber.pl, which issues preprint number requests
and allows users to upload papers and theses to Fermilab’s publications database.

1 Perl/CGI Script

It is important to note that there are two ‘versions’ of the perl/CGI script.

• One version is the ‘REAL WORLD’ source code :–

/afs/fnal.gov/files/expwww/lss/cgi-bin/getnumber.pl

and is the version that the following web site uses :–

http://lss.fnal.gov/cgi-bin/getnumber.pl.

This script reads and writes to various files in :–

/afs/fnal.gov/files/expwww/lss/LSSdata/.

• The other version is the ‘DEVELOPMENT’ source code, where the getnumber.pl file
has a number at the end, for example :-

/afs/fnal.gov/files/expwww/lss/cgi-bin/development/getnumber65.pl

and one uses the following web site for testing :–

http://lss.fnal.gov/cgi-bin/development/getnumber65.pl.

1

This script reads and writes to various files in :–

/afs/fnal.gov/files/expwww/lss/LSSdataDevelopment/.

Files uploaded with the getnumber65.pl script will be placed in the upload/ directory
in LSSdataDevelopment – so there is no conflict with the contents of the upload/

directory in LSSdata.

When a development version of the script is ready to be used in the real world, one can use
the perl script :–

/afs/fnal.gov/files/expwww/lss/cgi-bin/development/prepare.pl

to convert ‘getnumber65.pl’ to ‘getnumber.pl’ (and placed in the cgi-bin directory).
When prepare.pl is run on the UNIX machine, the user is prompted for the name of the
file to be converted to getnumber.pl - to which the user just types in getnumber65.pl.

All prepare.pl does is to change the variables which give the path of the data files
in the LSSdataDevelopment directory to the LSSdata directory, and also add Cyndi’s and
Kathryn’s email addresses to the appropriate lists of people to receive email for paper and
thesis uploads respectively.

The getnumber.pl perl/CGI script is a single file, and has 3 major parts :-

1. global variables, which are defined for the entire program;

2. the ‘main’ part, is a list of ‘if’ or ‘elsif’ statements, which display the appropriate page
(via subroutines) on the web browser, depending on the truth, or otherwise, of the ‘if’
statements;

3. subroutines, arranged alphabetically. Generally each subroutine contains the perl,
CGI, javascript and HTML code for a single page in the browser. So, when another
subroutine is called, it displays a different browser page. It should be noted that if
one wishes to place the subroutines in separate files, extra work would be needed to
ensure that the global variables can be passed into the subroutines (via, say, extra
arguments).

Each page on the browser has a combination of buttons, pop-up menus, checkbox lists,
textfields (e.g. the field where the user enters the ID number on the first page) and textareas
(e.g. the ‘Title of paper’ section on the preprint number request form). All these buttons
etc. have ‘names’, whose values can be accessed by using the param() function.

The test conditions in the ‘if’ or ‘elsif’ statements in the main part of the program are
essentially tests to see if a param() exists or if it has a particular value. Let’s illustrate this
by some examples :-

• if(! param()){

&enter_id_num();

};

2

means if no parameters exist (i.e. ALL parameters do not exist), then execute the
subroutine &enter id num(), which then displays the first page on the browser where
the user enters the ID number.

• If one had the following statement :-

if(param(’id_num’)){

&enter_id_num();

};

then the ‘if’ statement would only be executed if the parameter id num exists.

• If one had the following statement :-

if(param(’upload’) eq ’Upload’){

&do_upload();

};

then the ‘if’ statement would only be executed if the parameter ‘upload’ has the value
of ‘Upload’.

The flow of the program is ‘controlled’ by the user clicking the various buttons, and of the
existence and values of some hidden parameters. It is important to appreciate that whenever
a button is clicked on any webpage, that the program essentially starts all over again - i.e.
control of the program goes right back to the beginning of the perl script.

Since the clicked button has a name (and generally a value), the program then goes
through the various ‘if’ statements and if there is a match for the name of the button
just clicked (and also of any hidden variables that may be defined), then the appropriate
subroutine is executed.

You will notice that the various parameters that are tested in the ‘if’ and ‘elsif’ statements
of the main part of the program may look a bit strange in some ways. There is a reason for
this.

One of the most useful elements on a form type webpage is a textfield, where the user
can enter a number or text or whatever. But it turns out that the textfield is also one of
the most frustrating form elements - if one places the cursor in a textfield, and then hits the
‘Enter’ of ‘Return’ key, the form is actually submitted (usually uncompleted), which can,
and does, easily happen.

Because the form is submitted, control of the program goes back to the beginning of all
the ‘if’ statements, and then proceeds to test all the conditions etc - with the result that it
isn’t always obvious which page is then going to be displayed in the browser.

After a while, I was able to construct a set of ‘if’ statements that made the control more
predictable. But the annoying feature of accidently submitting the form upon hitting the
‘Enter’ key inside a textfield was still there.

Later on, I was able to insert some javascript into the appropriate parts of the script
which ‘disables’ the action of the ‘Enter’ key when the cursor is in a textfield (what really

3

happens is that when the ‘Enter’ key is pressed, the cursor returns to the same place in the
textfield). If one had the benefit of hindsight, I perhaps would’ve chosen a different set of
parameters to use in the ‘if’ statements than what is currently used - however, the set in use
now works quite adequately for the task at hand, even though some parameter names might
be a little cryptic.

During the development and testing phases of the program, one can test the script by
doing at the UNIX prompt :–

perl -cwT getnumber65.pl

and one can see what error messages are issued, and correct them accordingly. If it returns
:–

getnumber65.pl syntax OK

this means that the program is free of syntax errors (hopefully). This doesn’t always mean
that the script will do what you intended to do though.

Note the options ‘-wT’ in first line of getnumber.pl :–

#!/usr/bin/perl -wT.

The ‘w’ options sends out possible warning messages when the script doesn’t run properly;
the ‘T’ (‘taint-check’) option is essential in order for the script to be run from the cgi-bin

directory in afs.

2 Flow of the Program

The first time the script runs it asks the user to enter their Fermilab ID number in the
textfield - if the number doesn’t exist in id list, a message is displayed saying so, and asks
the user to go back and re-enter the number.

If the ID number exists in id list, before the user can do anything, the script does some
checks on some files. If a new year arrives, the PUB and CONF (and TEST) counter in
numbers is reset to 0, and the previous years last number issued is stored in
numbers previous years. Also, the sessions file is cleaned up. More details are provided
in Sect. 3 below.

A browser page is then shown where the user is given various choices :-

1. Request a preprint number - where a form is presented so that the Publication Type,
Group or Division, Title and Year of paper are entered. Once all details are given, a
confirmation page comes up displaying the choices the user has made. Once confirmed,
a preprint number is issued - and the number is displayed on the browser (the user
can proceed directly to upload the paper if he/she chooses), an email is sent to the
requester, and also to Cyndi.

When a new preprint number is issued, an item appears in the radio button list on the
user’s main page, showing the preprint number requested, date and title of the paper.
This information is stored in the master file.

4

2. Upload a paper - can be done in 3 ways :-

• choose a preprint number from a radio button list (of preprint numbers requested,
but not yet uploaded);

• enter the preprint number by hand (where the number might have been obtained
by someone else, or from the old system);

• choose a preprint number from a popup list of papers already uploaded.

With any of these choices, a form now appears requesting the user for some contact
details and also details about the paper. Some details are ‘required’ fields, and are
marked with a red asterisk (*).

The user can only get to the next page - the confirmation page - if all the required
fields have been filled. The confirmation page displays the results of the form, and the
user can go back and change details if necessary. The confirmation page is also where
the user selects the file to be uploaded, the file format, and then presses the upload
button to commence the upload process. A warning is sent if upload button is pressed,
but no file or file format has been chosen.

After the file is uploaded, a browser page is displayed showing that the upload suc-
ceeded, and an email is sent to the user, and also to Cyndi (where she then enters the
appropriate information in the documents database, amongst other things).

The master file keeps a record of what papers have been uploaded, and also how many
times the paper has been uploaded.

In all cases, the name of the uploaded paper in upload/ in LSSdata will have the form
of, say for a PUB type paper, PUB-04-001.pdf. If the user uploads another version of
the paper, while the previous version is STILL in the upload directory, then the newer
version will be named PUB-04-001.v2.pdf etc.

3. Upload a thesis - this is similar to uploading a paper. A form appears asking the user
to provide contact details, and information regarding the thesis (author, title, advisor
etc.). Some fields are required fields (denoted by a red asterisk *) - and the user can
not get to the next page - the confirmation page - until all required fields are filled.

The confirmation page summarizes the results of the form, and the user can go back
to change details if need be. This page is also where the user chooses the name and
format of the file to be uploaded.

When upload is completed, a browser page appears saying upload process has succeeded
and an email is sent to the user, and also to Kathryn.

No information is kept about who uploaded a thesis, or of the details of the thesis (i.e.
there is no thesis ‘master’ file) - other than the details sent in the email to Kathryn.

The uploaded theses will appear in the upload/ directory of LSSdata, and have names
of the form Thesis-Surname.pdf.

5

3 File and Directory Structure

Each of the LSSdata and LSSdataDevelopment directories has the same file and directory
structure :–

LSSdata {current confs
or LSSdataDevelopment {current exps

{id list
{journals
{preprints/ {master

{numbers
{numbers previous years
{sessions
{uploads/

where

• current confs – is a file giving the list of conferences – and is generated automatically.
Heath has a cron-job which searches SPIRES for conferences that Fermilab authors
have already written papers. Typical entries in the file look like :–

10th International Conference on Information... [C04/07/21]

9th European Particle Accelerator Conference... [C04/07/05.1]

8th International Computational Accelerator ... [C04/06/29.1]

• current exps – is a file giving the list of experiments currently running and have
finished at Fermilab – and is generated by hand, and should be updated whenever a
new experiment arises. Typical entries in this file look like :–

Current Experiments

* CDF - Run II (E830)

* CDMS (E891)

* Charmonium (E760/E835)

* D0 - Run II (E823)

Please note the syntax, e.g.
∗FOCUS(E831), (1)

where the experiment number in placed in parentheses - so that the perl script can
search for the E-number. Multiple experiment numbers can be listed as

∗NuSea(E866/E906). (2)

The getnumber.pl script extracts the experiment number, and uses it as input for the
DOCS database (via Cyndi’s email). For (1) it returns a field (in the email Cyndi gets)

6

EXPERIMENT = FNAL-E-831;

while for (2) it returns

EXPERIMENT = FNAL-E-866;

EXPERIMENT = FNAL-E-906;.

• id list – is a file giving the list of people employed at Fermilab, their ID numbers and
contact details. Rob has a cron-job which generates this list. Format of each entry is

INFO = ID number|Surname, FirstName M.|email address|phone|mail stop;

An example :–

INFO = 13975N|Rawlinson, Andrew A.|arawlins@fnal.gov|5810|109;

• journals – is a file giving the list of journals that authors generally submit their
papers to – and is generated by hand. If you wish to add another journal to the list,
just simply add it by hand to the file. Typical entries are :–

Phys.Rev.D

Phys.Rev.Lett.

Phys.Rev.ST Accel.Beams

Phys.Lett.B

Nucl.Instrum.Meth.A

Nucl.Phys.Proc.Suppl.

• preprints/ – is a directory which stores the master, numbers, sessions and
numbers previous years files. It also has a single directory, upload/.

• master – is the file containing some preprint number request and upload details, and
is updated by the script. After the user enters their ID number, the script searches
the master file for all entries that match the ID number, and then finds what entries
are preprint number requests, and what entries are for papers already uploaded – and
displays the results in the appropriate sections of the user’s main page in the browser.

If the user requests a new preprint number, the script adds a new line to the master

file.

Each record, or line, in the master file has the following format :–

Date|ID number|Surname|(req,upl[1],up[2],...)|Preprint number|Title

where

7

– Date is written as 20040818 for 18 August 2004;

– ID number is the Fermilab ID of the person requesting a preprint number or
uploading the paper;

– Surname of the person with the ID number;

– req = preprint number request, upl[1] = first time paper is uploaded, upl[2] =
second time paper is uploaded etc;

– Preprint number is stored without the FERMILAB prefix;

– Title is the title of the paper – please note that if pipes or vertical lines (i.e. |)
appear in the title, they are stripped before the title is written into the master
file - because the pipe is the character that separates the various fields, and the
perl script uses the pipe as the separator.

An example of an entry in the master file is :–

20040816|01826N|Quigg|req|CONF-04-163-T|Nature’s Greatest Puzzles

where we see that on 16 August 2004, Quigg requested (the ‘req’ in 4th field) a preprint
number for a conference report for the theory group, and the title of the paper is
‘Nature’s Greatest Puzzles’.

At some later date (say 20 August 2004), Quigg may upload the paper, and after
uploading, the entry becomes :–

20040820|01826N|Quigg|upl[1]|CONF-04-163-T|Nature’s Greatest Puzzles.

The master file is managed entirely by the perl script. However, one can edit this file
with a text editor to, say, remove a complete line from the file, or perhaps change some
details in some fields.

The information stored in this file is the only information that is kept on record. Details
that users enter on the preprint request or upload forms essentially only gets sent to
the user (not all details) and to Cyndi (for papers) or Kathryn (for theses) – and are
not stored in the master file.

Please note that a single person doesn’t ‘own’ the entry of a master file – suppose Joe
Bloggs requests a preprint number, then in his browser an item will appear in the radio
button list of preprint numbers requested. The master file will contain the item as :–

20040603|00000N|Bloggs|req|CONF-00-001-T|The Theory of Nothing.

Meanwhile, someone else, say Alice Cloggs, can upload the paper associated with this
preprint number by entering the preprint number by hand in her browser (even though
she has no record of it on her browser main page), in which case the entry in the
master file will now be modified to :–

8

20040820|99999N|Cloggs|upl[1]|CONF-00-001-T|The Theory of Nothing.

and Joe Bloggs will then see no record on his main browser of that paper. The script
was designed to allow people to upload other peoples’ papers.

• numbers – is the file that contains the last preprint numbers that HAVE been issued
for each of the CONF, PUB, FN, and TM categories. Note that the CONF and PUB
type publications use the ‘same’ number. Contents of the file at a particular instance
look like :–

CONFandPUB|198

FN|758

TM|2265

TEST|9

This file is handled automatically by the script.

When a new year arrives, the perl script resets the CONF/PUB and TEST coun-
ters to 0, and writes the last CONF/PUB number issued in the previous year to
numbers previous years.

• number previous years – is the file that contains the last numbers that were issued
(for CONF/PUB only) during the previous years, and is handled automatically by the
script - this file looks like :–

1999|392

2000|379

2001|481

2002|422

2003|485

• sessions – is a file that stores ‘session’ numbers, which are just random numbers in
the range [0,1). Without this facility, when a user requests a new preprint number,
and when the number is displayed on the browser, one will find that if the user hits
the ‘refresh’ button in the browser a new preprint number will be issued - which is
something that we do not want to happen!

To disable that feature, I have written some code such that when the user wishes to
get a new preprint number, a session number is created, and stored in this file - and
also the session number is stored as a hidden variable in the HTML code of the page.

So, when the user hits the above mentioned ‘refresh’ button, the script checks to see
if a session number exists in the file, and if it matches the session value in the hidden
variable, then a new preprint number is NOT issued.

A typical entry in this file is :-

9

20040816|13975N|0.724151611328125

where the first field is the date the session number is created, the second field is the ID
number of the user, and the third is the session number itself - just a random number
in the range [0,1).

When the global variable $session age, in getnumber.pl, is set to 2 days (say) :-

$session_age=2

the perl script only keeps session numbers in the sessions file that are less than 2
days old - entries older than this are deleted.

• upload/ – is the directory where the users’ uploaded files are stored – for both papers
and theses. Cyndi moves the papers out of this directory into other directories in due
course.

4 Some information about the ‘old’ system

Sometimes ‘leak’ papers are detected (i.e. papers that have been published but do not have
a FERMILAB preprint number), and a preprint number for the appropriate year is issued
(normally Cyndi does this). The new system can keep track of numbers (for CONF and PUB)
issued for the years 1999 and onwards. The last CONF/PUB number issued over the last few
years are :–

Year Last number CONF/PUB issued
1999 392
2000 379
2001 481
2002 422
2003 476

Last numbers issued with the old system (switch over to new system was made on 28 July
2004), were CONF/PUB-04-136, FN-0757 and TM-2261. First numbers issued for FN and TM

on or after 1 January 2004 are FN-0743 and FN-2229 respectively (publication records since
1 January 2004 and prior to new system were extracted from Cyndi’s Filemaker records and
inserted into the new master file).

10

5 Flow chart of perl script – Part A

Enter ID

? ? ? ? ?
Obtain preprint

number

Radio group
preprint list

Enter number
by hand

List of papers
uploaded

Upload a thesis

? ? ?

?

Upload form

?

Confirm details

6
Change details

6
Incomplete form

?

Upload paper

?
Browser page
confirming
upload and

email sent to
user and Cyndi

?
Choose pub

type, group and
title

?

Confirm details

6
Change details

?
Get preprint

number

?
Display number
on browser and
email sent to

user and Cyndi

?

Thesis form

6

Incomplete form

?

Confirm details

6

Change
details

?

Upload thesis

?
Browser page
confirming
upload and

email sent to
user and
Kathryn

11

6 Flow chart of perl script – Part B
‘if’ condition statement Subroutine executed Comment

!param() ||

param(’not me’)
enter id num

When no parameters are
defined it displays the web
page where the user enters
their Fermilab ID number;
or when the person clicks
the ‘Click here if I am

not Joe Bloggs’ button
in the show name page.

param(’id num’) &&

!param(’got num and upload’)
reset counter CONFandPUB

show name

If the user’s ID number has
the correct format and
exists in the Fermilab ID
database, the program
checks to see if a new year
has started, and if so resets
the CONF and PUB
counter to 0 and saves
previous year’s value to
numbers previous years.
The show name webpage is
then displayed, giving the
user a range of choices -
e.g. request a preprint
number, upload a paper or
thesis etc.

param(’ptg params’) eq 0 ||

param(’ptg ch’) ||

param(’ptg’)

pub type and group

Here, ptg is an
abbreviation for ‘pub type
and group’. When the user
requests a preprint number,
the pub type and group

webpage comes up, where
the user chooses the
publication type, group or
division, title and year of
paper. All these fields are
required. When all fields
are entered, the value of
param(’ptg params’) is 1,
otherwise it is 0 (in which
case it keeps displaying this
page). Also, when the user
wishes to change the title,
group, etc, (by clicking the
appropriate buttons), this
causes param(’ptg ch’) to
exist, and thus display this
page.

12

param(’details ok’)

get preprint num

(contains
session number check

and
session number write)

Where all the pub, group,
title and year details are
entered and confirmed for a
preprint number request, a
check is made to make sure
a preprint number for this
session hasn’t been issued
before, and if not, a new
number is issued. A new
page is then displayed on
the browser showing the
number, and an email sent
to the user/requester and
also to Cyndi.

param(’sub’) eq ’Continue’

|| param(’resub’) eq

’Continue’ ||

param(’details ch’) ||

param(’journal list’) ||

param(’conf list’) ||

param(’exp list’) ||

param(’got num now upload’)

upload form

The user may choose a
paper to upload from list of
preprint numbers requested
(param(’sub’)), or
re-submit a paper already
uploaded by choosing from
popup list
(param(’resub’)), or the
user may wish to
immediately proceed to
uploading a paper via the
upload button on the
webpage that displays the
preprint number (param(
’got num now upload’)) -
in all cases an upload form
is presented where the user
enters details about the
paper. If user wishes to
change the details
(param(’details ch’)), or
if any of the parameters
’journal list’,

’conf list’ and
’exp list’ have not been
filled out, then this page is
still displayed.

13

param(’sub special’) eq

’Continue’

number check

(contains upload form

or show message)

If the user wishes to upload
a paper by entering the
preprint number by hand,
number check checks that
the number entered has the
correct format, and if so,
the upload form webpage
is displayed. If format of
number entered is wrong, a
warning message is
displayed.

param(’confirm upload form’)

eq ’Continue’

confirm upload form

or
upload form

If the user has entered ALL
the required details, then
the confirm upload form

will be displayed,
confirming all the details,
and also allow the user to
choose the file to upload. If
the required details are not
completed, the upload form
is displayed again.

param(’upload’) eq ’Upload’

&&

param(’the file submit’)

do upload

(and upload message

or
show message).

After the user has chosen
both the file to upload and
file format, do upload

commences the upload
process. Once the upload is
completed, a message on
the browser is displayed
saying the upload
completed (via
upload message), and an
email is sent to the user
and also to Cyndi
confirming the uploading.
If the user doesn’t enter
the file name or format, a
warning message is
displayed (via
show message).

14

param(’thesis’) eq ’Upload

thesis’
thesis form

If the user wishes to upload
a thesis, a browser form is
displayed asking the user to
enter details about the
thesis - some fields are
required information - and
one can not continue until
all the information has
been given.

param(’confirm thesis form’)

eq ’Continue’

confirm thesis form

or
thesis form

If the user has entered all
the required details, then a
confirmation page is
displayed
(confirm thesis form),
and the user can then
choose the file name and
format of file to upload. If
the form is incomplete, the
upload form (thesis form)
is returned.

param(’thesis upload’) eq

’Upload’

&&

param(’thesis file’)

thesis upload

(and upload message

or show message)

If the user confirms the
thesis form and has chosen
the filename and format,
the upload process starts.
When completed, a
confirmation message is
displayed on the browser
(via upload message), and
an email is sent to the user
and Kathryn confirming
that the thesis has been
uploaded. If the user
hasn’t chosen the file name
or format, a warning is
issued via the browser (via
show message).

15

7 Subroutines used

We list, alphabetically, the subroutines used in the script. A brief description of each sub-
routine is given in the subroutine itself in getnumber.pl.

arXiv_information() (not used)

confirm_thesis_form()

confirm_upload_form()

do_upload()

email_message()

email_preprint_number()

enter_id_num()

get_preprint_num()

hidden_details()

number_check()

pub_type_and_group()

reset_counter_CONFandPUB()

session_number_check()

session_number_write()

show_message()

show_name()

thesis_form()

thesis_upload()

upload_form()

upload_message()

version_number().

16

