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Abstract
Model independent analysis (MIA) can be used to obtain all the eigen modes included in
the turn-by-turn BPM data. Not only the synchrotron tune and betatron tune can be
obtained from the fast Fourier transforms (FFT) of the temporal eigen vector of the
corresponding mode, but also the error mode, which could be caused by the different gain
of a BPM, can be observed in both the temporal and spatial eigen vectors of the error
mode. It can be applied as a diagnostic tool for Booster.
Introduction

The turn-by-turn data from all the BPM can be used to form a BPM matrix (Baxy). The
single-turn data from all the BPM form a row in the matrix. And the column number is
equivalent to the BPM number. Once the BPM matrix is formed, MIA can be used to
obtain all the eigen modes, which form a complete basis of the BPM matrix.[1] Since the
number of orbits (M) is greater than the number of BPM (»), the maximum number of
eigen modes is determined by the BPM number. Only several eigen modes are
considered to be significant to the orbit, and other modes are neglected as noises.
Generally, two betatron modes and one synchrotron mode due to non-zero dispersions at
BPM locations are observed.[1] If more modes are observed, they are generally caused
by the incorrect gain of a BPM, or some other errors. So finding the cause of an

unexpected mode can be used for the diagnostic purpose.

Method
Single value decomposition (SVD), as shown in eq.1, is used to calculate all the eigen

modes and eigen vectors of the BPM matrix (B).[2]

BM><N = UMxMSMxN (VNXN)T' (1)



Each element S;; of the S matrix represents the eigen value of the i™ eigen mode, and the
eigen value decreases with the increase of the number i. The i column of the U matrix is
the temporal eigen vector of the i eigen mode, and /™ row of the ” matrix is the spatial
eigen vector of the /™ eigen mode. MATLAB is used for the SVD decomposition of the
BPM matrix.

Simulation and Results

The »™ BPM reading at the m™ turn (x,(m)) can be written as the summation of three
different terms, as shown in eq.2.[3]
iﬂ ;m)— Xeo X (1) +x5(m) "
Eq. 2 was used to generate the B matrix with the input of the lattice file from MAD.[4]
Xco 18 set to be zero due to the consideration of the difference orbit. Also, the operational
parameters were used in the calculation. They are the synchrotron tune Q,=0.05,
horizontal betatron tune Q0,=6.7, chromaticity =6, the number of BPM N=48, and the
number of tracking turns M=128. The beam was excited both transversely and
longitudinally at the 0™ turn with a 1-mrad angle kick at the 1 BPM and a momentum
offset 5=0.005. The 1* turn and 128" turn orbits are shown in Fig. 1(a) as the red and
black curves separately. Eigen values of all the modes are shown in Fig. 1(b). There are
three significant modes, and they are caused by the synchrotron motion and betatron
motion of the beam. Their temporal eigen vectors are shown in Figs. 1(c), 1(e), and 1(g)
for modes 1, 2, and 3 separately, and their corresponding spatial eigen vectors are shown
in Figs. 1(d), 1(f), and 1(h). Their unnormalized power spectrums are shown in Figs.
1(1)-(k). Also, chromatic sidebands appear in the unnormalized power spectrum of both
betatron modes, as shown in Fig. 1(j) and Fig. 1(k).[3]

The above simulation was repeated at different gains of the 1* BPM. When the gain of
the 1 BPM is set to be 1.5, eigen values of all the modes are shown in Fig. 2(a). There
are four significant modes, and they are the error BPM mode, synchrotron mode and two
betatron modes. FEigen values of the synchrotron mode and two betatron modes in Fig.
2(a) are the same with those in Fig. 1(b), and they are much smaller than the eigen value

of the BPM error mode, as shown in Fig. 2(a). The temporal eigen vector of mode 1 is



shown in Fig. 2(b), its unnormalized power spectrum and spatial eigen vector are shown
in Figs. 2(c) and (d) separately. Also, the eigen value of the BPM error mode changes
with the gain of the 1 BPM, as shown in Fig. 2(e), however, eigen values of the
synchrotron mode and two betatron modes stay the same.

Instead the 1 BPM has a different gain since the 1* turn, it had a different gain from the
60™ turn. Eigen values of all the modes are shown in Fig. 3(a). The temporal eigen
vector of the BPM error mode (mode 1) is shown in Fig. 3(b), its unnormalized power
spectrum and spatial eigen vector are shown in Figs. 3(c) and (d). The eigen value of the

BPM error mode changes with the gain of the 1 BPM, as shown in Fig. 3(e).

Conclusion
From the power spectrum of the synchrotron mode and two betatron modes, the
synchrotron tune and the betatron tune can be obtained. Also, whenever the gain of the
BPM is set at a wrong value, an extra BPM error mode will be observed. The temporal
eigen vector of the BPM error mode can be used to extract the time when the gain of the
BPM starts to be wrong, as shown in Fig. 2(b) and Fig. 3(b), and the spatial eigen vector
can be used to obtain the position where the BPM error is, as shown in Fig. 2(d) and Fig.
3(d).
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Power Spectral of Temporal Vector Mode #2

Power Spectral of Temporal Vector Mode #2
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Fig.

1(a) the 1" turn and 128™ turn orbits calculated at the following conditions: the

synchrotron tune Q,=0.05, horizontal betatron tune Q0,=6.7, chromaticity =6, after the

beam was excited both transversely and longitudinally at the 0™ turn with a 1-mrad angle

kick at the 1 BPM and momentum offset 5=0.005.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1(b) eigen values of all the modes.

1(c) the temporal eigen vector of mode 1.

1(d) the spatial eigen vector of mode 1.

1(e) the temporal eigen vector of mode 2.

1(f) the spatial eigen vector of mode 2.

1(g) the temporal eigen vector of mode 3.

1(h) the spatial eigen vector of mode 3.

1(i) the unnormalized power spectrum of the temporal vector of mode 1.
1(j) the unnormalized power spectrum of the temporal vector of mode 2.

1(k) the unnormalized power spectrum of the temporal vector of mode 3.
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Fig. 2(e)
Fig. 2(a) set a different gain at 1.5 for the 1 BPM while keeping other conditions the

same with Fig.1, eigen values of all the modes.

Fig. 2(b) the temporal eigen vector of mode 1.

Fig. 2(c) the unnormalized power spectrum of the temporal vector of mode 1.

Fig. 2(d) the spatial eigen vector of mode 1.

Fig. 2(e) the eigen value of the BPM error mode vs. the gain of the 1* BPM.

10



50

I I I
I I I 0
| | | o}
I I I 35
R e e e e
I I I
I I I =
0
I I I It
T S R A oo
| | | J,Y,4
I I I o)
Q)
! =
o]
I S A B O S &
T I a T e
I I I =
I I | o)
| | | U
[ e o
[t - - 2o o
I I I Q 5 s
| | | J Q ~ a —
| | I N £ < 3 Re)
| | | ~ o 3 N—’ 5 ~
T T Y R WA\QN on z on
I I I o] 8 . c .
| | | o) 3 an 5 1))
I I I o] = H 2 E
o I I
F-———r-————————9---—-1t------0-98 , ,
| | | ~ | |
I I I
I I
! | |
T ) . N
I I | , , ,
I I I
I I I
I I I , , ,
N s SR o I I |
T I i - , , ,
I I I L N .
! ! ! | | | | | I N
! ! [ R © S © | | | | | |
N I I I I I I
! by | | | | | |
! o ! | | | | | |
0 | | [ L 1 1 L L L o
, , , - © - ° - & @ s w o -~
< ° ° D ° S 2 2 2 ° ° <
o o o o
- - - -

L# SPOIAl JO 10}08 A UabI] [eiodwa ]
anjep uablg

Fractal Tune

L# PO\ J0J09 A [elodwia] JO wnijoadg Jemod

Fig. 3(c)

11



0.4

02 -—--d-—--

Spatial Eigen Vector of Mode #1

| | | |
| | | |
| | | |
B I e e
| | | |
| | | |

08F+-r-----"-"-"—"-"—"—"-"F" —"—"—F—"—"———"———FT —— - - ——— = —— - - — = —

T
|
|
I
I
|
|
|
|
I
I
|
|
o T e A L |
|
|
|
I
|
|
I
I
|
|
I

1
|
|
1
0 5 10 15 20 25 30 35 40 45 50

Fig. 3(d)

|
|

o) |
B i
= | |
5 ‘ !
£ | |
i}
R et o R
o
e ‘ Gain 61‘11.5 from 1st Turn !
o 40 | 1 |
o T
=3 ,
©
>
c
Q
=
fin]

h Turn
I
|
1

Gain of BPM #1
Fig. 3(e)

Fig. 3(a) change the gain since the 60" turn from 1 to 1.5 for the 1° BPM while keeping

other conditions the same with Fig.1, eigen values of all the modes.

Fig. 3(b) the temporal eigen vector of mode 1.

Fig. 3(c) the unnormalized power spectrum of the temporal vector of mode 1.

Fig. 3(d) the spatial eigen vector of mode 1.

Fig. 3(e) the eigen value of the BPM error mode vs. the gain of the 1¥ BPM. The blue

curve represents the different gain of the 1 BPM starts at the 60™ turn, and the red curve

starts at the 1% turn.
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