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Abstract 

Turn-by-turn data from a single BPM includes information on the chromaticity in 

sidebands displaced above and below the betatron frequency by an amount of the 

synchrotron frequency.  It may be necessary to induce small amplitude synchrotron 

oscillation by giving the beam a small kick.  Power spectrum of the BPM data gives clear 

chromatic sidebands, and they can be applied to the chromaticity measurement in the 

Fermilab Booster. 

 

Introduction 

The method that has been applied to chromaticity measurement in the Booster relies on 

knowledge of the ideal lattice, such as dispersion at the BPM location, for the 

momentum-offset calculation from the orbit data.  One can only expect an approximate 

result from such a measurement, because the maximum discrepancy between the 

calculated dispersion under operational conditions using MAD and the dispersion from 

the ideal lattice is more than 20%.  A different approach for measuring the chromaticity 

has been simulated under operational conditions.  The sidebands due to the chromatic 

modulation of the betatron tune through the synchrotron motion are observed, and the 

chromaticity can be extracted from the characteristic of those sidebands.  Also, 

requirements for such a measurement are described, and they can be applied for the 

future experiment. 
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Method 

A BPM reading (xn) of a single bunch at the nth turn after the beam has been excited both 

transversely and longitudinally can be written as the summation of three different 

terms:[1] 

).()( nxnxxx Dcon β++=                                                                                                     (1) 

xco represents the close orbit and xD represents the displacement due to the dispersion 

(Dx): 

).2cos()( 0φπδ +××= nQDnx sxD                                                                                       (2) 

Qs is the synchrotron tune, and φ0 is the phase of the synchrotron motion at the BPM right 

after the excitation, which can be set to zero since the phase advance of the synchrotron 

motion is small within one Booster turn.  δ is  

.p
p∆=δ                                                                                                                           (3) 

And xβ is the displacement due to the betatron motion:   
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Qs
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x                                                     (4) 

x̂  is the amplitude of the betatron motion at the BPM, Qx is the betatron tune, and ξx is 

the chromaticity.   is the phase of the betatron motion at the BPM on the 00
'φ th turn; it 

depends upon the phase advance between the place where the betatron motion is excited 

and the place where the BPM is.  Here, we set it to zero. 

The momentum offset doesn’t stay as a constant, and it is changing as δ × cos(2πQsn) 

after the synchrotron motion is excited.  The betatron tune is modulated through the 

chromatic effect, and the betatron tune at time t after the longitudinal excitation can be 

written as  

))2cos((2)( tQQt sxx πδξπωβ ××+= .                                                                               (5) 

The betatron phase φβ(T) at time T is  
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Finally, we obtain the transverse displacement due to the betatron motion (eq. 4) by 

substituting T with the turn number n in the betatron phase, as shown by eq. 6.  Here, all 

the equations are valid in both the horizontal (x) and vertical (y) directions. 

Simulation 

The operational parameters were used in the MATLAB calculation.  They are the 

synchrotron tune Qs=0.08, horizontal betatron tune Qx=6.7, horizontal dispersion in the 

long straight section Dx=1.6 m, closed orbit xco=1 mm, amplitude of the betatron motion 

=1 mm, and the number of tracking turns n=256.  The simulation was performed at two 

different momentum offsets δ=0.0025 and δ=0.005.  In each calculation, the chromaticity 

was changed from –6 to 6.  For the momentum offset δ=0.0025, the simulated BPM data 

are shown in Fig. 1(a), and their unnormalized power spectrums are shown in Fig. 1(b).  

It is hard to see the differences among the different chromaticity settings from the BPM 

data directly.  However, there are clear differences in their power spectrums, as shown in 

Fig. 1(b).  The first peak at 0.08 is caused by the second term of eq.1.  The peak value is 

determined by the product of the dispersion and momentum offset, but independent of the 

chromaticity.  It provides a possibility to measure the dispersion at the BPM position.  

The peak value of the betatron-tune line is determined only by the amplitude of the 

betatron motion.  Peaks with a separation of synchrotron tune to the betatron-tune line 

have their peak values, which are determined by the product of the chromaticity and the 

momentum offset.  For the momentum offset δ=0.005, the simulated BPM data are 

shown in Fig. 2(a), and their unnormalized power spectrums are shown in Fig. 2(b).  

When the chromaticity is set to 0.2 for the momentum offset δ=0.005, the chromaticity 

sidebands are still observable, as shown in Fig. 3.  Finally, the chromaticity can be 

x̂
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extracted from the optimal curve fit for the power spectrum of the experimental data by 

varying chromaticity settings. 

Discussion 

This measurement requires both longitudinal and transverse excitations of the beam, and 

it can be done since both the transverse and longitudinal kickers work well.  One more 

requirement is to turn the radial feedback off during the measurement since the radial 

feedback tries to suppress the synchrotron motion by correcting the momentum offset of 

the beam. 
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Fig. 1(a) 
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Fig. 1(b) 

Fig. 1(a) the momentum offset at δ=0.0025.  The BPM turn-by-turn readings were 

calculated at three different chromaticity values, -6, 0, 6, and they correspond to the red, 

black and blue curves. 

Fig. 1(b) the unnormalized power spectrum of the calculated BPM data in Fig. 1(a). 
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Fig. 2(a) 
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Fig. 2(b) 

Fig. 2(a) the momentum offset at δ=0.005.  The BPM turn-by-turn readings were 

calculated at three different chromaticity values, -6, 0, 6, and they correspond to the red, 

black and blue curves. 

Fig. 2(b) the unnormalized power spectrum of the calculated BPM data in Fig. 2(a).  The 

green curve is the same with the black curve in Fig. 1(b).  Here, the label of Delta in the 

graph is equivalent to δ.  
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Fig. 3 

 

Fig. 3 the unnormalized power spectrum of the calculated BPM data when the 

momentum offset at δ=0.005 and the chromaticity at 0.2. 
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