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1 FERMILAB DESIGN 

A 1 ms pulse of the TESLA design contains 2820 bunches with 337 ns separation,t and 

is compressed to 20 ns separation on entering the dog-bone damping ring, which has a 

circumference of 17 km. The Fermilab design injects the 2820 TESLA bunches into 60 trains 

containing 4 7 bunches each. The bunch separation is Tsep = 6 ns and the train separation is 

340 ns for the first 59 trains and 340 - 6 = 334 ns for the last train. Thus the train gap is 

334 - 6 x 46 = 64 ns except for the last one which is 6 ns shorter. Some properties of the 

Fermilab damping ring are listed in Table I. 

2 IMPEDANCE OF VACUUM CHAMBER 

2.1 Space Charge 

The Fermilab damping ring is designed for the beam energy E = 5.066 GeV with a ring 

circumference C = 2nR = 6113.97 m. The designed normalized rms beam emittances are 

ExN = 4.66 x 10-5 nm and EyN = 2.00 x 10-s nm, with betatron tunes Vx = 59.28 and 

Vy = 45.10. The mean betatron functions are therefore ffx = 16.41 m and /Jy = 21.57 m. 

Therms vertical beam radius is 

rt:;;; 
ay = y 7 = 6.60 µm , (2.1) 

where E = 1mc2 is the electron energy, m its rest mass, and c the velocity of light. The 

horizontal rms dispersion function is T/rms = 0.213 m and the rms energy spread aE = 

0.001513. Since dispersion function of the lattice and energy offset of a particle in the beam 

are statistically independent, the rms horizontal beam radius is therefore 

ffxExN ( ) 2 _ -- + T/rmsaE - 334 µm , 
I 

(2.2) 

Notice that the horizontal emittance contributes only 87.9 µm to the beam size whereas 

the dispersion contributes 322.5 µm. Thus the average horizontal beam size is dominated 

by dispersion. The TESLA dog-bone ring, on the other hand, is quite different. The arcs 

tThis 337-ns bunch separation is modified to 340 ns for use with the Fermilab designed damping ring. 



Table I: Some properties of the Fermilab damping ring. 

Lattice 

Circumference C ( m) 

Energy E (Ge V) 

Betatron Tune vx/vy 

Chromaticity f,x/ f,y 

Momentum compaction O:p 

Rms dispersion Drms ( m) 

Maximum dispersion ( m) 

Maximum betatron fen (f3x)ma:x/(/3y)ma:x (m) 

Revolution frequency Jo (kHz) 

Revolution period T0 (µs) 

RF System 

RF frequency frf (MHz) 

RF harmonic h 

RF voltage (for 12 cells) Vrr (MV) 

Synchrotron tune 

Synchronous angle (degrees) 

Beam 

Extracted rms normalized emittance ExN / ExN (10-67r m) 

Rms energy spread 

Number of trains ntr 

Number of bunches per train nb/ntr 

Number per bunch Nb 

Bunch spacing Tsep ( ns) 

Train separation for 59 trains/last train (ns) 

RMS beam radius CJx/ CJy (µm) 
RMS bunch length CJ e (mm) 

Radiation Damping 

Energy loss per turn U0 (Me V) 

Damping times Tx/Ty/TE (ms) 

6113.967 

5.066 

. 59.283/45.102 

-74.629/-59.628 

0.001426 

0.2132 

0.6129 

41.56/42.10 

49.034 

20.394 

499.999998 

10197 

31.2 

0.037 

14.2 

4.66/0.020 

0.0015 

60 

47 

2 x 1010 

6.0 

340/334 

334/6.60 

5.67 

7.656 

27.0/27.0/13.5 

2 
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are of length 1.9 km, only about 11 % of the whole ring. As a result, the rms dispersion 

should be about 0.03 m, an order of magnitude smaller than that of the Fermilab design. In 

addition the rms horizontal beam radius coming from the emittance is 17 4.9 µm because the 

betatron function is twice as big as the Fermilab design. The horizontal beam size is therefore 

dominated by emittance. This difference has an important bearing on the incoherent space

charge tune shift to be discussed below. 

2.1.1 Incoherent Self-Field Tune Shift 

The incoherent space-charge tune shift at the center of the beam is, for the vertical, 

NbreR 
l::,.vy = -

3 
= -0.0380 (2.3) 

27r"( cry(crx + cry)vyB 

and l::,.vx = -0.00057 for the horizontal. In above, re = 2.8179 x 10-15 m is the classical 

electron radius and Nb= 2 x 1010 is the number of particles per bunch. The bunching factor, 

B = ~CTz = 2.33 X 10-6 , (2.4) 

has been used. Notice that Eq. (2.3) gives the maximum vertical space-charge tune shift for 

particles at the center of the bunch. The vertical space-charge tune shift averaged over all 

particles in the bunch will be much less. 

Simulation performed on the TESLA dog-bone damping ring reveals that a maximum 

space-charge tune shift of -0.1 is tolerable. [1] The maximum vertical space-charge tune 

shift of the TESLA dog-bone damping ring is l::,.vy = -0.31. (The TESLA Report gives 

l::,.vy = -0.23 because it has been incorrectly assumed that the average betatron functions 

are the same horizontally and vertically.) There are two reasons why this tune shift is an 

order of magnitude larger than that of the Fermilab design. First, since the vertical betatron 

tune of the TESLA ring is Vy = 44.18, almost the same as the Fermilab design, the space

charge tune shift is essentially proportional to the square of circumference of the ring and 

the TESLA dog-bone is 2.78 times larger. Second, the horizontal beam size of the Fermilab 

ring has been enlarged by a factor of 3 because of the dispersion, but this enlargement is 

almost negligible in the TESLA ring. In the analysis of Decking and Brinkmann, [1] the 

maximum vertical space-charge tune shift can be reduced to l::,.vy = -0.035 by initiating 

horizontal and vertical coupling at the long straight sections so that average vertical and 

horizontal emittances are equal to about one half the designed ExN· No such consideration 

will be necessary for the Fermilab damping ring. 
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2.1.2 Space-Charge Impedances 

Taking the vertical radius of the beam pipe as b = 2 cm, space-charge impedances experienced 

by the beam are 

z~ . Zo ( b ) . - = -1- le+ 2ln-- = -10.031 mn' 
n 212 -/2ay 

1- . Z0R ( 1 1 ) . Z1 = -1-2 ( ) - b2 = -11.66 MO/m , 
I ay ay +ax 

(2.5) 

where le = 0.57722 is Euler's constant.+ We see that the longitudinal space-charge impe

dance is small and will be within the microwave stability limit. The vertical space-charge 

impedance, on the other hand, is large and is larger in magnitude than the transverse wall

resistive impedance at the (1 - Q) line. However, it may help in increasing the threshold of 

transverse mode-mixing instability of the beam to be discussed below. [2) The space-charge 

impedances of the TESLA design are comparable. 

2.2 Button BPM 

We are using the BPM computation made in the NLC ZDR. The button BPM of the NLC 

damping ring is shown in the left plot of Fig. 1. For a set of four, the magnitude of the 

longitudinal impedance calculated using MAFIA is shown in the right plot. The first reso

nance is 14 n at 9.1 GHz with Q,......, 300, while the second resonance is 16 n at 12 GHz with 

Q ,......, 50. The revolution frequency of the Fermilab damping ring is Jo = 49.0 kHz. Thus 

these two resonances give Re Z~/n = 0.0754 mO and 0.0653 mO at the respective resonant 

frequencies. 

The impedance of a resonance at angular frequency Wr can be written as 

11( ) Rs 
Zo w = 1 + jQ~' (2.6) 

with 

(2.7) 

The reactive part is 

(2.8) 

tEuler's constant is defined as 'Ye = limm_,00 ( 1 + ~ + ~ + -! + · · · + ~ - ln m). 



which exhibits a maximum at 

or 

1 - Q2t:::,.2 

(I+ Q2!::::,.2)2 ' 

QI::::,.= =fl . 

The peak value of the reactive part is therefore 

( 11) Rs ImZ0 pk= ± 2 , 

and the peak frequency is at 

Ceramic 

2.3 

40 

8mm 20 

5 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

O'-----'-~.____._____._~.___.__._~"----'-----' o~~--~~:=.::.....ii.:....:........J......:=-i~~---1~_!.._--l:.....!I..l 
2.0 3.6 5.2 0 20 40 60 80 100 

4-96 s (cm) 8047A464 fie (1/m) 8047A465 

Figure 1: Left: Cross section of a NLC button BPM. Right: Magnitude of longitudinal impedance 

computed using MAFIA. 
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Thus for a high Q resonance, 

(2.13) 
W << Wr, 

where nr = wr/wo and 

(

Rs 
'Re z~ = nr 

n nR8 

n;Q2 

(2.14) 
W << Wr, 

At low frequencies, the reactive impedance for a set of 4 buttons is Im Z~/n = 0.00156 mO 

(0.00025 mO from the first resonance and 0.00131 mO from the second). On the other hand 

Im Z~/n = 0.0377 mO and 0.0327 mO near the first two resonances. 

If a set of BPM is installed at the end of each quadrupole, we need to count the 

total number of quadrupoles in the lattice of the Fermilab damping ring. In SEXTO, 

there are 11 ARC's each containing 4 quadrupoles, 2 SUPPRESSOR's each containing 8 

quadrupoles, 20 STRCELL's each containing 4 quadrupoles, or a total of 99 quadrupoles 

(one in SUPPRESSOR is considered shared). In SEXTl, there are 11 ARC's each contain

ing 4 quadrupoles, 2 SUPPRESSOR's each containing 8 quadrupoles, 15 STRCELL's each 

containing 2 quadrupoles, 2 STRWIG's each containing 4 quadrupoles, and 1 WIG contain

ing 2 quadrupoles or a total of 99 quadrupoles (one is considered shared). The ring is made 

up of 4 SEXTO's and 2 SEXTl 's. Thus there are 594 quadrupoles in total and there will be 

594 sets of BPM's. In total, 'Re Z~/n = 44.8 mO and 38.8 mO near the two resonances at 

9.1 and 12.0 GHz. Im Z~/n will be half of those near the resonances and 0.93 mO at low 

frequencies. 

As for energy loss, MAFIA gives k11 = 0.0203 V /pC for each BPM set. But the NLC 

damping ring electron bunch length is 0"£ = 3.3 mm while the Fermilab damping ring electron 

bunch length is 0"£ = 5.67 mm. Assuming 0"-; 112 dependency the loss factor for all the BPM,s 

in the Fermilab ring will be 9.20 V /pC. 
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2.3 WALL IMPEDANCE 

The beam pipe is made of aluminum with resistivity Ps = 2.65 x 10-s D-m. The skin depth 

at revolution frequency is therefore 

s; - !¥i2Ps - f¥PsR - 0 370 uso - - - . mm. 
woµ Zo 

(2.15) 

Assuming a round beam pipe of radius b = 2 cm, the longitudinal and transverse impedances 

are 

z~ = (1 + j) ~s~ Vn = (1 + j)3.49n1l2 n ' 
so 

Z ll 
J_ - 2c o - ( .) I 1-112 I Z1 - b2 --:; - 1 + J 17.0 n - Zlx,y MD m . (2.16) 

The loss factor is the energy loss of the bunch if the total charge inside the bunch is one 

Coulomb. It can be written as 

k11 = - Z~(w)h(w)dw, 1 100 

27r -oo 
(2.17) 

. where h(w) is the power spectrum of the bunch and is equal to, for a Gaussian linear 

distribution, 

(2.18) 

where CJ7 is therms bunch length. For the resistive wall, we get 

- r(~) 11 I 
k11 - 1;2 3/2 Re Zo 

27rWo (JT n=O 
(2.19) 

or 14.9 V /pC. 

2.4 RF System 

The rf system of the Fermilab damping ring will be essentially the same as that of the TESLA 

damping ring, consisting of 12 superconducting Niobium 500-MHz cavities having total shunt 

impedance R/Q = 45 D per cell and unloaded quality factor Q0 ~ 1010 at 2°K. Robinson's 

stability provides damping effect to the bunches at the fundamental resonance. The higher

order parasitic modes will be damped using dissipative material applied to the inner surface 
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of both beam pipes just outside the cryostat at room temperature. Experience at CESR 

and KEKB tells us that the quality factor of these modes can be reduced to a few hundred 

over the bandwidth 1-3 GHz. These modes will contribute Z~/n = 2 mfl for the TESLA 

dog-bone damping ring together with a loss factor k11 = 8.8 V /pC. The TESLA dog-bone 

damping ring has a circumference of 17 km and bunch length ae = 6 cm. For the Fermilab 

damping ring, they are scaled to Z~/n = 5.7 mfl and k11 = 9.1 V/pC. The contribution to 

low frequency inductive Z~/n should be much less because of the large quality factors. 

2.5 Summary 

The TESLA Design Report assigns 17 mfl to non-inductive part of Z~/n for kickers and 

11 mfl to inductive part of Z~/n for bellows and another 5 mfl to inductive part of Z~/n 
for "other components." We scale§ them according to the size of the ring and obtain 48 mfl 

for kickers, 11 mO for bellows, and 5 mfl for others. In Table II we make a summary. 

Table II: Longitudinal impedance per harmonic and loss factor 

for the Fermilab damping ring from various contributions. 

Z0 /n k11 
(mfl) (V /pC) 

Non-inductive RF cavities 5.7 9.1 

Resistive wall ( n = 0) 3.5 14.9 

BP Ms 44.8 9.2 

Kickers "-' 48 rv40 

Total "-' 102 

Inductive Bellows rv 11 rv 1.3 

BP Ms 44.8 

Others rv 5 "-' 0.6 

Total "-' 60.8 

Total loss factor "-' 75.1 

§The number of bellows increases as the ring size and we assume the same for "other components". 
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3 SINGLE BUNCH INSTABILITIES 

3.1 Microwave Instability 

For a short bunch, the longitudinal instability is caused by the mixing of azimuthal modes 

1 and 2. The stability limit is given by 

z~ 
n 

where O'.p is the momentum compaction factor, Jpk is the peak current, and 

z~ 
n 

eff 

1: *h(w)dw 1: h(w)dw 

(3.20) 

(3.21) 

is the impedance weighted over the power spectrum h(w) of the bunch mode under consid

eration. 

For a damping ring, this instability must be avoided. If not, the bunch length will grow 

when the bunch becomes unstable. When saturated, the instability stops and the bunch 

length will be shortened by radiation damping to a value that the instability starts again. 

This oscillation of bunch length, called saw-tooth instability, has been observed at the SLAC 

SLC damping ring and the Argonne APS. Since radiation loss changes with bunch length, so 

is the synchronous phase for rf compensation. As the bunch blew up, the higher-order losses 

decreased and the beam phase shifted by about ~ 
0 

at the 714-MHz rf cavity of the SLC 

damping ring. This translated into a 2° jump at the S-band in the linac. This magnitude 

of phase error caused a problem with the rf bunch-length compressor in the ring-to-linac 

beam line. When this instability took place, the bunch would be incorrectly launched into 

the linac and might eventually be lost on the downstream collimators, causing the linac to 

trip the machine protection circuits. 

For the Fermilab damping ring, this stability limit is Z~f nl = 163 mn. Therms bunch 
eff 

length is (]'7 = (J'ef c = 18.9 ps and total bunch length is assumed to be TL rv 4(]'7 = 75.7 ps. 

The power spectra of azimuthal modes 1 and 2 peak at Ji rv 2/(2TL) = 13.2 GHz and 

f2 rv 3/(2TL) = 19.8 GHz having half width ,...._, 6.6 GHz. They are much above the beam 

pipe cutoff frequency fc ,...._, 5.7 GHz (assuming beam pipe radius b = 2 cm), where the 
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coupling impedance starts rolling off. Apparently, we do not have that amount of impedance 

to drive this instability. 

For the TESLA damping ring, the stability criterion of Eq. (3.20) gives a comparable 

stability limit. Since the momentum compaction and the fractional energy spread are slightly 

smaller, (ap = 1.20 x 10-4 versus 1.43 x 10-4
, a-El E = 1.30 x 10-3 versus 1.51 x 10-3), the 

TESLA stability limit becomes Z~lnleff = 100 mD. 

As for the NLC damping ring, based on ZDR data: ap = 0.000465, a-El E = 0.00090, 

a-e = 3.9 mm, E = 1.98 GeV, N = 1.57 x 1010 per bunch, the stability limit is Z~ln/eff = 
61 mn. 

3.2 Transverse Mode-Coupling Instability 

Tuansverse mode-coupling instability, sometimes known as strong head-tail is one of the 

cleanest instabilities to observe in all electron storage rings. The rigid dipole mode or 

azimuthal m = 0 mode shifts downwards with beam intensity, a general behavior for short 

bunches. On the other hand, the azimuthal m = -1 mode is not much affected. When the 

beam intensity is high enough, mode m = 0 meets mode m = -1 and an instability occurs. 

The threshold is roughly given by the shifting of mode m = 0 by the synchrotron frequency 

and can be represented roughly by 

(3.22) 

or 

(3.23) 

where 100 

zt(w)h(w)dw 

zt leff = -ooloo 
-oo h(w)dw 

(3.24) 

is the transverse impedance weighted over the longitudinal power spectrum h(w) of the 

bunch mode under consideration. With total bunch length TL = 4a-ef c, we obtain the 

stability limit of Zf leff = 2.58 MD Im. Since the mixing is between modes m = 0 and 

m = -1, the frequency of the driving force should be of lower frequency than that driving the 

longitudinal mode-mixing instability, and is from 6.6 to 13.2 GHz. Unfortunately, estimation 
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of broadband transverse impedance has not been made for the rmg. If we employ the 

Panofsky-Wenzel-like relation 

(3.25) 

we obtain the longitudinal-equivalent limit of Z~/nleff = 530 mD. From the estimate made 

in Table II, it does not appear to have this sort of impedance to drive the instability. We may 

say that the beam in the Fermilab damping ring will be safe against transverse mode-mixing 

instability. 

For the Fermilab damping ring, it is very possible that the transverse impedance is 

dominated by space charge. In addition, the incoherent space-charge tune shift is large and 

is of the same order of magnitude as the synchrotron tune. Under these circumstances, 

the threshold criterion of Eq. (3.22) may not be valid. This is because nonspace-charge 

transverse impedance shifts the m = 0 mode downward without much effect on the other 

modes. Instability occurs when the m = 0 mode meets the m = -1 mode. On the other 

hand, the transverse space-charge impedance shifts all modes downward except the m = 0 

mode. Thus if the transverse space charge impedance is large enough, it will be much harder 

for the m = 0 and m = -1 modes to meet. In other words, the threshold of transverse mode

coupling instability will be pushed to a much higher current in the presence of strong space 

charge. An illustration from a square-well air-bag model [3] is shown in Fig. 2. The strong 

transverse space-charge impedance comes from the large circumference of the damping ring 

and the small transverse emittances of the beam. In short, we may say the beam in the 

Fermilab damping ring will be very safe against transverse mode-mixing instability. 

For the TESLA dog-bone damping ring, the synchrotron tune V 8 scales with R112 while 

the betatron tune is vy = 44.2, very close to the 45.1 of the Fermilab ring. Equation. (3.23) 

suggests that the stability limit for the TESLA dog-bone damping ring scales with R-112 

or 1.80 Mw/m. With the Panofsky-Wenzel-like relation, this translates to Z~/n = 133 mD, 

which is large compared with the estimate of IZ~/nl ;:::::; 29 mn of inductive and 25 mn 

non-inductive impedance for the vacuum chamber of the TESLA dog-bone ring. Again, the 

large incoherent space-charge tune shift, even after the reduction because of the initiation 

of horizontal-vertical coupling, should help in pushing the threshold current to a higher 

value. The transverse mode-coupling instability limit for the NLC damping ring is Z[ leff "' 
0.50 MD/m. 
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m=1 

Imaginary 
Imaginary i 

~ 0 

I g 

Real -1 
Real 

m=-1 m=-1 

-2 
m=-2 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 
Current Parameter l' Current Parameter l' 

Figure 2: Illustration of space-charge effect on TMCI. Left: non-space-charge impedance drives 

the m = 0 mode downwards to meet with the m = -1 mode, while leaving all the other modes 

nearly unaffected at least at low intensity. Right: Space-charge force does not affect the m = O 

mode, but drives all other modes downwards. Thus the threshold at which the m = 0 and m = -1 

modes meet will be pushed towards a high beam intensity. The current parameter T is the response 

of the tail particle in half a synchrotron period. 

4 MULTI-BUNCH INSTABILITIES 
\ 

4.1 Longitudinal Coupled-Bunch Instabilities 

Each rf cavity has shunt impedance R/ Q = 45 D. Assume the same for all the higher

order modes, which will be damped by dissipative material to Q rv 100. Thus for all the 12 

cavities, the largest possible shunt impedance for the higher-order modes will be Rs = 54 kD. 

Assuming that this shunt impedance falls on a synchrotron sideband at about wr/(2n") = 

1/(2TJ ~ c/(4J6o-z)3 = 5.4 GHz, the frequency at which the bunch spectrum rolls off, the 

fastest longitudinal coupled-bunch growth rate given by 

1 eapnbhRswr 
-

T 4n Ev8 

( 4.26) 

is only 49.1 s-1, where lb is the average bunch current, nb = 2820 is the total number of 

bunches, and we have make use of the fact that the synchronous tune obtained from the 

bunch length and energy spread is 

( 4.27) 



13 

Thus the shortest growth time is 36.6 ms. The above discussion assumes a ring filled with 

equally spaced bunches of point bunches of equal intensity. The finite length of the bunch 

will introduce a damping factor roughly equal to exp -(w;a-;). The concentration of the 

bunches at 60 locations will further lower the growth rate. In short, the shortest growth time 

will be longer than the radiation damping time of 27 ms. Thus, no longitudinal coupled

bunch instability will materialize, and a broadband multibunch feedback system may not be 

necessary. 

For the TESLA dog-bone ring, the shortest growth time is very much longer. The 

average bunch current Ib scales with R-1 while the synchrotron tunes v8 scales with R 112 , 

so that the shortest growth time scales with R312 or 4.6 times longer. In addition, the 

momentum compaction ap = 1.2 x 10-4 is smaller than the Fermilab design and the rms 

bunch length o-e = 6 mm is slightly longer. All these factors bring the shortest growth time 

for point bunches to 134 ms, about 4. 7 damping times. 

5 Transverse Coupled-Bunch Instabilities 

The transverse resistive wall impedance will drive transverse coupled-bunch instabilities, and 

the fastest growing mode is driven by the vertical (1 - Q) betatron line. The growth rate is 

(5.28) 

where F',....., 0.8 is a form factor depending on the longitudinal linear distribution. Although 

the betatron tune is Vy = 45.1, let us assume a residual tune of 0.5. The transverse 'wall impe

dance at the (1 - Q) line is Re Z[ = 24.0 MD/m and the growth rate is 1109.30 s-1 (growth 

time 0.90 ms or 44 turns). We want to compare this growth rate with the TESLA dog-bone 

damping ring. The longitudinal resistive-wall impedance Z~ scales with R 112 because the 

skin depth at revolution harmonic scales with R 112
. Thus the transverse resistive-wall im

pedance Z[ scales with R 312 because it is proportional to Z~/n. The average bunch current 

will be smaller and scales with R-1
. Thus h Re Z[ and therefore the growth rate scales with 

R 1l 2
, since the vertical betatron tune of the TESLA ring is 44.18, very close to that of the 

Fermilab design. Thus the transverse coupled-bunch instability growth rate of the TESLA 

dog-bone ring will be T- 1 = 1910 s-1 . 

Due to the short bunch length, a shift towards positive chromaticity does not help at all. 
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This is because it requires a chromaticity f,y:::::::: ap/(2j0TL) = 192 to shift the mode spectrum 

of the bunch by ,6.w = 1f /TL. The growth rate, however, can further be decreased by coating 

the beam pipe with a thin layer of copper. Tune spread supplied by octupoles can provide 

some amount of Landau damping. The remaining instability can be alleviated easily with a 

low-bandwidth feedback mode damper. The damper power required should be rather weak, 

because we only need to damp in 44 turns and the rigidity of the beam at 5.066 GeV is 

quite low, when compared with the former Fermilab Main Ring which stored the beam up 

to 150 GeV. 

6 ELECTRON CLOUDS AND TRAPPED IONS 

6.1 Electron-Cloud Effect 

I 

Electrons will be generated in the vacuum chamber of the damping ring due to residual 

gas ionization and secondary emission of residual gas ions or molecules hitting the wall of 

the vacuum chamber. In the positron ring, electron cloud will interact with the positron 

beam leading to a growth in transverse emittances. This interaction is short-range and the 

driving force can be represented by a short-range transverse wake W 1 left one bunch spacing 

ahead. [4] This wake computed for PEP-II gives W1 ~ 1 x 105 m-2 in cgs units. Translating 

into MKS units, this becomes W1 ~ 890 x 1012 V /Coul/m. The amplitude of transverse 

oscillation has a growth rate of 

-:=:::::--- (6.29) 

or 301 s- 1 or a growth time of 3.33 ms. However, the amount of electron clouds can be greatly 

reduced by wrapping the beam pipe with solenoid. For example, simulation of the HER of 

KEKB shows that the transverse wake coming from electron cloud is W1 ~ 300 m-2 , [5] which 

brings the growth rate to 1.11 s-1 or a growth time of 901 ms, which is much longer than 

the radiation damping time of 27 ms. In fact, the whole beam will be stored and damped in 

the damping ring for about 0.2 sonly. For the TESLA dog-bone ring, this growth rate will 

be relatively the same because hR does not depend on the size of the ring and the vertical 

betatron tune is comparable to that of the Fermilab design. 
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6.2 Trapped Ions 

Ions are generated in the vacuum chamber from the residual gas and the electron beam traps 

positively-charged ions. In the potential well of the electron beam, the trapped ions perform 

transverse oscillations with the ion-bounce angular frequencies 

(6.30) 

where rp = 1.5347 x 10-13 m is the classical proton radius, A is the molecular weight of 

the ion, and Tsep is the bunch separation. This expression is obtained by averaging over the 

whole train the individual kicks transferred to the ion from the point electron bunches. The 

ions will be cleared at the bunch gaps of length Tsep if wix,yTsep > 2, otherwise they will be 

trapped. For co+ with A= 28, the ion-bounce angular frequencies are Wix = 31.0 MHz and 

Wiy = 220 MHz. We obtain Wix,yTsep = 0.186 and 1.32. Thus co+ will be trapped. For light 

ions such as Ht with A= 2, Wix,yTsep = 0.696 and 4.96. Thus Ht will be trapped horizontally 

but not vertically. On the other hand, bunch spacing is Tsep = 20 ns in the TESLA dog-bone 

ring, very much longer. As a result, Wix,yTsep = 0.635 and 2.51 for co+ and 2.37 and 9.40 

for Ht. Thus only co+ wHl be trapped horizontally. 

While the ions oscillate inside the electron beam, the electrons also oscillate inside the 

ion 'beam'. In the absence of external transverse focusing, small-amplitude electron-in-ion 

bounce angular frequency is 

Wex,y = 
''Wx,y(Clx +Cly) ' 

(6.31) 

where Ai is ion linear density. Compared with the ion-bounce frequency in Eq. (6.30), there 

is the extra / in the denominator because the electrons travel around the ring, and there is 

an extra factor of 2 in the numerator because the ions are at rest when generated by the 

electron, implying that the transverse radii of the ion 'beam' are a factor J2 smaller. The 

growth time in the linear theory can be expressed as 

(6.32) 

where Ttr is the length of the bunch train. Plugging in numbers gives Tx,y = 360 and 0. 76 ms. 

Thus there is no worry in the horizontal direction, but some feedback device is necessary 

for the vertical. The results, together those for the TESLA dog-bone ring are listed in 

Table III. However, it is unclear why the growth times for the TESLA dog-bone are so 



Table III: Possible fast-ion instabilities for trapped ions in the Fermi
lab damping ring and TESLA dog-bone ring at the vacuum pressure 
for 10-10 Torr. 

Fermi Dog-bone 

Bunch spacing Tsep ( ns) 6 20 

For Ht 
Test for trapping Wix Tsep 0.70 2.37 

WiyTsep 4.96 9.40 

For co+ 
Test for trapping WixTsep 0.19 0.64 

WiyTsep 1.32 2.51 
Linear Theory for co+ 
Fast-ion growth time Tx (ms) 360 0.133 

Ty (ms) 0.76 0.002 
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much shorter than those for the Fermilab damping ring, although the trapping test shows 

that co+ will not be trapped in the former at least vertically. It is also unclear why the 

horizontal growth times are so much larger than the vertical ones, although the trapping 

test shows that trapping will be less severe in the horizontal. In fact, the expression of the 

growth time in Eq. (6.32) assumes a uniform electron beam of the length of the whole train 

without gaps so that ions are trapped inside. 

In order to study the more realistic problem, some simulations have been performed. To 

save time on computation, only the first 1000 turns were simulated (total storage requires 

about 10000 turns). The vacuum pressure was increased to 10-s to enhance the growth. All 

the bunches were considered as points and with a transverse offset randomly up to 1/100 of 

therms radius. The vertical oscillation amplitudes for bunch 20 (left) and bunch 47 (right) 

in a train as picked up by a BPM is shown in Fig. 3 for the first 1000 turns. Since the 

vertical rms beam radius is CJy = 6.6 x 10-5 m, the initial beam displacement was randomly 

between ±6.6 x 10-s m. We see in the same figure that the growths in amplitude are very 

rapid reaching ±8 x 10-4 m already in 1000 turns for bunch 20 and ±2.5 x 10-4 m for 

bunch 47 and appear to continue. A feedback with a gain of 0.2 was then applied and the 

simulation repeated. We see that with feedback the amplitudes have been controlled to 

within ±150 x 10-5 m for bunch 20 and ±25 x 10-5 m for bunch 47. However, the oscillation 

amplitude for bunch 20 is still very much larger than the rms bunch radius. It is unclear why 
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Figure 3: (color) Vertical amplitudes of the 20th bunch (left) and the 4 7th bunch (right) in the 

train for the first 1000 turns at vacuum pressure 10-s Torr without and with feedback of gain 0.2. 

The growths have been very fast, but it was controlled by the feedback. 

the growth of the last bunch of the train has been much less rapid than the 20th. The theory 

of fast beam-ion instability and some simulations [6] suggest that the instability growth rate 

increases with the square of the bunch position. On the other hand, we find in this train of 

4 7 bunches that the bunches in the center of the train have much larger growths than the 

head and the tail bunches. 

We repeat the simulations with vacuum pressure at 1 x-10 Torr. The results for bunches 

20 and 4 7 are shown in the left and right plots of Fig. 4 Now the growth has been very much 

less in the first 1000 turns and went up to ±15 x 10-5 m for bunch 20 and ±2.3 x 10-6 m 

for bunch 47. Feedback of gain 0.20 stabilizes the growth to within ±1.5 x 10-5 m for bunch 

20 and ±0.4 x 10-5 m for bunch 47, which are within the one sigma vertical half size of the 
beam. 

In the horizontal direction, only the contribution from emittance has been used, which 

gives the horizontal radius of 87.8 µm. Thus the initial horizontal offset of the centers of the 

bunches have been offset randomly up to ±0.88 µm. The amplitudes of oscillation of the 

bunches are followed for the first 1000 turns. The results for bunch 20 are shown for vacuum 

pressure 1 x 10-s Torr in the left plot of Fig. 5 and for vacuum pressure 1 x 10-10 Torr in the 

right plot. Here we see the amplitude grows to only ±50 x 10-5 min the first 1000 turns at 

the vacuum pressure of 1 x 10-s Torr. With feedback of gain 0.2, the amplitude is damped 

to almost zero in 100 turns. At the vacuum pressure of 1 x 10-10 Torr, there is no growth 
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Figure 4: (color) Vertical amplitudes of the 20th bunch (left) and the 47th bunch (right) in the 

train for the first 1000 turns at vacuum pressure 10-10 Torr without and with feedback of gain 0.2. 

The growths have been much slower than when the pressure was 10-3 Torr. Feedback with a gain 

of 0.2 controls the oscillation of the bunch centers to within the rms size of the bunches. 
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Figure 5: (color) Horizontal amplitudes of the 20th bunch in the train for the first 1000 turns at 

vacuum pressure 10-8 Torr (left) vacuum pressure 10-10 Torr (right). We see the amplitude grows 

when the pressure is 10-3 Torr and is damped to almost zero with feedback of gain 0.2. At vacuum 

pressure of 10-10 Torr, the bunch oscillation is stabilized without feedback. 
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Figure 6: (color) Normalized offset emittance of bunches 7, 14, 21, 28, 35, 42, and 46. averaged 

over the 60 trains without/with feedback (left/right) at vacuum pressure of 0.1 nTorr. It is evident 

that the growth without feedback increases with bunch position. With feedback of gain 0.20, the 

offset emittance is controlled to within 20% of the vertical emittance of the beam. 

at all, the beam just oscillates with the same amplitude of 0.88 µm. 

So far we have been looking at only two bunches in a particle train. In order to have 

better statistics, we make averages over all the 60 trains. For this we define the offset 

emittance 
2 

c _ Ybeamcenter 
offset - /3y ' (6.33) 

and normalized it with respect to the vertical emittance of the beam. The averages of this 

normalized offset emittance over the 60 trains are shown in Fig. 6. The left plot is for 

bunches 7, 14, 21, 28, 35, 42, and 46 .at vacuum pressure of 0.1 nTorr, and the right plot 

shows the same but with feedback of gain 0.20 turned on. We do find that the growth 

without feedback increases with bunch position, but it does not scale with the square of 

. bunch position as postulated in Ref. [5]. With feedback turned on, the offset emittance is 

damped to within 203 of the beam vertical emittance. Or the vertical offset is within 103 

of the vertical beam size. Notice that in these simulations, radiation damping has not been 

included. The radiation damping time is approximately 1400 turns. Thus when radiation 

damping is considered, the offset emittance will be much less. The amplitudes of oscillation 

of the bunches are simulated to be recorded at a beam-position motion but at different time. 

Now let us look at the motion of all the 2820 bunches altogether at a snapshot. To convert 

to bunch amplitudes at a snap-shot, the BPM values for the jth bunch in the kth train 



70 

~ 60 
E 
:i 
-; 50 
"C 
::I 

~ 40 

E 
<( 
Q) 30 

"C 
0 

::2: 20 

10 

10-10 Torr No Feedback 

- Turn1000 
············· Turn 750 

Turn 500 

500 1000 1500 2000 2500 3000 
Mode Number 

E 
~ 
Q) 
"C .. e 
c.. 
E 
<( 
Q) 
"C 
0 

::2: 

20 

18 

16 
10-

10 
Torr Feedback gain 0.20 

- Turn 1000 
Turn 750 

14 Turn 500 
- Turn250 

12 - Turn50 

10 

B 

6 

4 

2 

500 1000 1500 2000 2500 3000 
Mode Number 

Figure 7: (color) Snapshot mode spectra are shown for the 50th, 250th, 500th, 750th and lOOOth 

turns at vacuum pressure 10-10 Torr without and with (left and right) feedback of gain 0.2. The 

resonant modes correspond to £ = Vy+ Qiy and (vy - Qiy) + Nsp· Without feedback the reso

nant amplitudes increase in time and the ion-bounce frequency decreases indicating that that the 

beam size increases. With feedback, both the resonant amplitudes and ion-bounce frequency reach 

saturation. 

must be multiplied by the betatron phase exp{i2?T[57(k-1) + (j - l)lvy/Nsp}, where in the 

simulation we have assumed for simplicity 60 trains each containing 4 7 bunches followed by 

10 empty bunch spacing and Nsp = 60 x 57 = 3420 is the total number of bunch spacings 

around the ring. 

Fourier transform is made for each turn by multiplying the snapshot amplitude by 'If 

exp[-i2?T£m/ Nsp] and sum over the bunch spacing m from 0 to Nsp - 1. The results in the 

vertical at the 50th, 250th, 500th, 750th and lOOth turns are shown in Fig. 7 without and 

with (left and right) feedback of gain 0.20. According to the analysis of Chao [7], the resonant 

modes occur at .e =Vy -Qiy where Wiy = Qiywo is the angular ion bounce frequency. Because 

the imaginary part of the amplitude is not monitored at the BPM, the Fourier transform 

results in another mirror resonance at .e = (vy - Qiy) + Nsp· These two resonances do appear 

for each snapshot in Fig. 7, and their mode number add up to ~ 3510, which is exactly 

Nsp + 2vy as expected (vy = 45.1). We identify the left resonant at Vy+ Qiy and the right 

at (vy - Qiy) + Nw Since they correspond to 815 and 2895 at the 50th turn, we obtain 

,If we multiply by exp[+i27r£m/Nsp] instead, the two resonant modes in the mode spectrum will be at 
£ = Qiy - Vy and Nsp - (vy + Qiy)· Note that the two resonances in the Fourier transform correspond to the 
same mode. 
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Qiy = 775, which agrees very well with Qiy = 716 using Eq. (6.30). Without feedback, as 

time goes on, the resonances shift to lower frequencies while their amplitudes become larger. 

This just reflects the evolution of the resonant beam-ion coupled oscillation with the beam 

size becoming larger and larger. With feedback turned on, we see that the Qiy does not 

increase any more after 250 turns and so are the resonant amplitudes. This reflects that an 

equilibrium has been reached in the presence of feedback, so that both the beam size and 

the oscillation amplitude do not increase anymore. 

7 CONCLUSION 

1. The reduced size of the Fermilab damping ring increases the rms dispersion of the 

ring by one order of magnitude compared to the TESLA dog-bone ring, so that the 

horizontal beam size becomes dispersion dominated. The reduction in ring size and 

the increase in horizontal beam size leads to a low tolerable coherent space-charge 

impedance. There is no need to resort to the method of vertical and horizontal coupling 

required in the TESLA damping ring 

2. Longitudinal and transverse saw-tooth instabilities will be safe because the ring is be

low single bunch microwave instability limit and the transverse mode-coupling insta

bility limit. Although the TESLA damping is also safe against these two instabilities, 

however, the threshold limits are lower. 

3. Longitudinal coupled-bunch instability growth times driven by parasitic rf cavities 

higher order modes will be of the order of or longer than the radiation damping time. 

Those for the TESLA damping ring are longer. No damper will be necessary for both 

rings. 

Transverse coupled-bunch instability growth times driven by the resistive-wall impe

dance will be longer than 0.9 ms and a transverse narrowband mode damper will be 

necessary. Those for the TESLA damping ring are about twice longer and a transverse 

narrowband mode damper is also required. 

4. Electron-cloud effect may be important. Like the KEKB HER ring, the effects can be 

avoided by wrapping the vacuum chamber with solenoids. 

5. Fast beam-ion instability will occur. Simulation of the first 1000 turns show that the 

growth in amplitude can be alleviated with a feedback damping of gain 0.20. 
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