FERMILAB-TM-2257

BUNCH AREA WITH SLANTING
BARRIER VOLTAGES

K.Y. Ng
Fermi National Accelerator Laboratory,* P.O. Box 500, Batavia, IL 60510

(June, 2004)

Abstract

In order that the bunch area has rounded corners, instead of sharp-edge square
pulses, it is proposed that the inner parts of the barrier waves have linearly increasing
voltage. The longitudinal emittance or bunch area of a beam supported by these barrier

waves is derived.
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During momentum-mining of antiprotons in the Recycler Ring, [1] the cooled core of
the antiproton beam is extracted and placed inside individual rf buckets for transfer into the
Main Injector. These buckets are established by two square rf waveforms. In the longitudinal
phase space, the bunch inside each bucket consists of a central rectangular part flanked by
two parabolic edges on each side. The transition from the flat rectangular part to the
parabolic part has been considered too sharp, especially when the rectangular part becomes
small compared with the two parabolic edges. A remedy is to modify the square wave form
to one that has a slope. A choice is illustrated in Fig. 1, where “bkt”= 18.935 ns denotes
the length of one 52.8-MHz rf bucket. In this way the four sharp corners of the beam will be
smoothed. Keeping the slope constant, the peak rf voltage V;, which can have the maximum
of 2 kV, can be lowered when a beam of smaller energy spread is confined. Here, we want to
compute the maximum energy and bunch area of the beam stored between two such buckets

as a function of the peak rf voltage.
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Figure 1: Sketch of barrier wave form designed to produce a bunch that has rounded corners in
the longitudinal phase space. The measurements are in bkt, which equals 18.935 ns or the length of
a 52.8-MHZ rf bucket. The slope V' of the slanting voltage is always fixed at 2 kV per 3 bkt while
the flat-top voltage Vj is increased in order to accommodate beam with larger energy spread. Thus
the time 71 when the flat-top voltage is reached is given by 7 = V;/V’ and has the maximum of
3 bkt when the barrier voltage is at its maximum. All other parameters like the distance between
the two barrier edges, 12 bkt, and the total barrier depth 7y = 12 bkt are held fixed.

The equations of motion governing the motion of a beam particle in the longitudinal



phase space can be written as
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where we have chosen 7, the particle’s arrival time at a certain position in the ring, and
its energy offset AE as the canonical variables. Other parameters of the beam are £ =
8.938 GeV, the nominal energy, Sc = 0.9944¢, the nominal velocity (c is the velocity of
light), Ty = 11.13 us the nominal revolution period, and 7 = —8.511 x 10~ the nominal slip
factor. The reference arrival time 7 is chosen to be zero at the beginning of the voltage slope

so that the barrier rf waveform becomes
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where from Fig. 1, V' = 2/3 kV/bkt= 35.208 kV/us and 75 = 12 bkt= 0.22722 us. The
location 71 where the voltage changes from slanting to flat depends on the maximum voltage
Vo applied. Therefore 7 = V/V’ and is equal to 3 bkt= 0.056805 ps when V5 = 2 kV.

Combing the two equations of motion, we obtain the differential equation
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An integration gives the particle trajectory,
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where A FEj is the maximum energy offset allowed for a given barrier voltage 1}, and it occurs
at 7 = 0. The particle will be at 7 = 7y, the deepest penetration of the barrier when AFE = 0.

We therefore have

’)7T0 2 V/7—12
_Qﬁ—QEAEO —T+Vb(7’0—’7’1) . (5)
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Both of them carry the dimension of V-s. Now we can solve for
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To obtain the bunch area, we need to compute the integral of ¢ over 7. The integral

n € . 1% L 2¢p
/0 edr = Volsm ! (Tl 2—6(2)> + = v — 7. 9)

The integral from 7 = 71 to 79 is
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where we have included the rectangular portion of the bunch (of length 27, = 12 bkt) as the

from 7 =0 to 7y is

The bunch area can now be expressed as
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first term. Since Vy = V7, the bunch area can be rewritten in terms of V; as

Ay 2¢2F ) L8 &2 . 17 Vy 260 V_2+2\/70( _E)m
—77T0 07rect \/— \/2—‘//60 4\/2—‘/, V,Q 3 70 Y

where from Eq. (8),
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The bunch area A and the maximum energy offset AL, are plotted in Fig. 2 as functions of
peak barrier voltage V4. We see that the maximum bunch area that can be contained in the
Vo = 2 kV barriers as illustrated in Fig. 1 is close to A = 8 eV-s.

In the absence of the slanting portion of the barrier rf wave, the bunch area reduces to
(with V' — o0)
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where 7y is the depth of the square barrier and 27, is the distance between the inner edges

of the barriers.
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Figure 2: Plot of maximum bunch area and maximum energy offset as functions of the barrier rf

voltage in the barrier waveform illustrated in Fig. 1.
We may also wish to compute the bunch area given the bunch length. Thus, if we know

of the penetration 7y — 71, we can obtain the maximum energy offset or ¢, through Eq. (8).

Then the bunch area can be computed using either Eq. (11) or Eq. (12).
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