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Abstract 
 
Instabilities driven by ions (or electrons) trapped within the space charge potential of a circulating 
beam are common in accelerators and storage rings.  In the recycler, the stored antiproton (p)  
beam could trap positive ions (H2

+, CO+, etc.). Conditions for trapping are discussed, and trapping 
potentials are calculated.  Ion trapping can be reduced by clearing electrodes, a beam-free gap (or 
gaps), and beam shaking. Tune shifts, coherent instabilities and other effects of trapped ions on 
stored p’s are discussed.  A “fast-ion” instability mode is also possible. Experiments to determine 
conditions and consequences of such instability in the recycler are discussed. 
 
Introduction 
 
Many accelerators and storage rings have observed trapped ions and electrons, and these can 
cause instabilities.[1,2,3]  Beam particles hitting a vacuum gas molecule often cause ionization, 
typically producing a positive ion and an electron.  Positive beam particles (protons, positrons) 
can trap electrons while negative beam particles (electrons, antiprotons) trap ions.  Interactions 
with the trapped particles can cause instability and beam loss as well as emittance growth.  
 
Both the CERN Antiproton Accumulator and the Fermilab Accumulator have measured trapped 
ions and their effects, and have used clearing mechanisms to control the problem. [4, 5] The 
Recycler Ring (RR) (or P-Amplifier) has also had evidence for trapped ions, with accompanying 
emittance growth.  In this note we discuss conditions for trapped ions in the RR, their potential 
effects, and possible clearing mechanisms.  Comparisons with observations and future 
experiments are discussed.  
 
Recycler ring [6] parameters are summarized in Table 1.  The RR is composed of permanent 
magnets, so that the central momentum Pp = 8.89 GeV/c is fixed. (Kinetic energy Tp = 8.0 GeV.)  
The RR has a relatively large circumference (LRR ≅ 3320 m) and the beam compaction factor is 
ηT = 1/γ2 – 1/γT

2 = 1/9.532 – 1/20.02 = 0.0085.  In beam storage/cooling mode the beam is 
confined in a single long bunch by barrier bucket rf waveforms, with a typical bunch length of LB 
= 2400m (8µs).   As a reference energy spread we use σE = 2.5MeV (“90%” full width of 10.0 
MeV), which, with the 8 µs bunch length, obtains a “90%” longitudinal emittance of  ~80 eV-s. 
The very long bunch, with relatively weak rf, provide unique characteristics to beam in the RR, 
with potentially different instability modes.  The RR lattice functions (βx, βy, η) are shown in 
figure 1 and βx

, βy oscillate between ~15 and 55m, while the dispersion η oscillates between 0.0 
and 0.5m. We use an rms normalized emittance of εN,rms = 1.6 πmm-mrad to set the reference 
beam sizes. (95% emittance is 10 πmm-mrad.)  The rms beam sizes, obtained from: 
 

ppβγβε=σ ⊥ /rms,N  , 

 



 2

vary from ~1.6 to 3.0 mm.  In operation, rms emittances from 3 to 6 πmm-mrad have been 
recently obtained in the RR, and that would reduce beam sizes to as small as 0.9 to 1.6 mm. 
 
Ion production and loss mechanisms 
 
After improvements, the recycler vacuum pressure is typically ~1—10×10-10 Torr, and consists of 
H2, CO, N2, H2O, Ar, …  For the present calculations we will use 10-10 Torr as a reference value, 
and calculate effects from that value.  The gas particle density nX is given by:  

TR
Pn
S

X =  

where RS = 1.0356×10-25 m3-K/Torr, P is the pressure in Torr, T the temperature in Kelvin.  For P 
= 10-10 Torr and T = 300° K, we obtain nX ≅ 3.2×1012 ions/m3.  We will also use H2

+ as a 
reference light ion and CO+ as a reference heavy ion; effects of ions of similar mass will be very 
similar. Trapped ion effects have been observed when Np = 20×1010 p’s are stored in the RR, and 
we use that as an intial reference value. In operation, the RR will store 200—600×1010 p’s , and 
some instability effects will become much worse at these intensities, as discussed below.  The 
ionization cross section for p – CO ionization is σCO ≅ 10-22 m2, while the cross section for p –H2 
ionization is σH2 ≅ 0.2×10-22 m2. [7]  The rate of ion production is given by Rx = Np σx nx Lacc ions 
per turn.  At 10-10 Torr and Np = 20×1010, this is ~2.1×105 CO+ and 4.2×104 H2

+ per turn. (1 turn 
= 11.13 µs.), and the beam could become fully neutralized after 10–50 s. 
 
A number of effects can reduce ion accumulation.  Collisions with molecules and ions can 
neutralize or further ionize them. Beam-ion collisions can also further ionize the beam.  The 
cross-sections for these effects are similar to the initial ionization cross-section.  Ions can only 
accumulate until the trapped charge density is equal to the beam density.  Without clearing, 
however, the CERN AA and Fermilab Accumulator accumulate an ion density that approaches 
the beam density, and we would expect similar behavior in the RR.  In the next section we discuss 
the trapping and clearing mechanisms. 
 
  
Ion potential and clearing electrodes 
 
Ions are produced with an initial kinetic energy similar to the thermal energy (1.5kT), which is 
~0.04 eV at 300°K.  The negatively-charged p beam forms a potential well which can trap ions 
The long bunch structure in the RR spreads the beam over a long distance, developing a very 
weak potential well.  The well is still greater than the ion thermal energy and will still trap ions. 
 
The potential well depth can be calculated using Maxwell’s equations, for various particle 
distributions and beam-pipe geometries.  The simplest case is to assume a round beam of constant  
density within the radius rbeam within a round beam pipe of radius rc.  The linear density is λ = e 
Np/Lbunch. The potential U(r) is: 
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With Np = 20×1010, Lbunch = 2400m, rbeam 
 = 4.5mm and rc = (2.25+4.5)/2 cm, we find U(0) = 

−0.62 V. 
A slightly different potential is obtained with a Gaussian round beam.  The potential can be 
calculated using:  

obtaining:  

 
This provides a slightly different potential profile U(r) from the constant-density case. Figure 2 
compares the two examples (at σr = rbeam/√2, and rc = 10σr ).  At RR parameters the change in 
minimum potentials is < 5%. 
 
The RR beam pipe is elliptical with a full width (2b) of ~9cm and a full height (2a) of ~4.5cm. 
We were unable to find a simple solution for that more complicated geometry (elliptical Gaussian 
beam within elliptical beam pipe).  Grobner and Hubner approximated this for the ISR with a 
rectangular beam within a rectangular beam pipe.[8]  The expression for the potential V at the 
center of the pipe is: 

, 
 
where the coefficient Cs is given by the expression: 

 
In these expressions, s is a summation integer, a is the beam half-width, b is the beam half-height, 
2w is the pipe width and 2h is the pipe height.  
 
This expression has been evaluated around the RR, using the reference values (Np = 20×1010, 
Lbunch = 2400m, εN,rms = 1.6 mm-mrad, and a 4.5×9cm beam pipe).  The results are displayed in 
figure 3.  The variation is relatively small, because the beam size is relatively constant and the 
beam pipe has a constant cross-section.  The maximum trapping voltages occur near the vertical 
beam size minima, with more enhancement where horizontal beam sizes are also relatively small. 
Other accelerators (ISR, p accumulator) have larger variations due to beam pipe changes and 
larger beam size variations.   
 
To remove ions, clearing electrodes are installed in the RR beam position monitors (BPMs).  In 
the arcs, these are located in the straight sections adjacent to the combined function magnets that 
provide bending and focusing for the p’s. The combined-function magnets are placed in pairs 
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with no clearing within or between the magnets.  The magnet pair is ~11.5m long and the straight 
section is ~5m long.  Ions created within the magnet pair would have their motion significantly 
controlled by the magnetic fields, confining them in Larmor orbits around the field lines, and ions 
created within the intermagnet gap would be trapped between the magnets.    Clearing would be 
relatively ineffective in the magnet region.  Ion neutralization should be relatively high within 
and between magnets, and the magnets cover more than half the RR circumference. 
  
Ions must drift to the clearing electrode to be removed and the electrode spacing L is ~10m in the 
RR.  The time required for ions to be cleared is tclear  ~ L/(vrms) or ~0.02s, if L=10m and vvrms= (3 k 
T/ Mion)½ ≅ 500 m/s (for CO+).   The net neutralizaton, assuming freely drifting ions, would be the 
drift clearing time divided by the ion production time, or ~0.002 to 0.02 for CO+ ions at 10-10 to 
10-9 Torr, respectively.   
 
Ion trapping/detrapping 
 
For ions to remain trapped, they must remain within the space charge potential well of the beam. 
For small oscillations about the center of the potential well, the transverse motion of the ions 
within that potential well is: 
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Here Np/L1 is the p beam intensity, σx, σy the rms beam sizes and η is the neutralization.  
 
The barrier-bucket rf in the RR forms the p’s into a long bunch of length L1 ~ constant intensity, 
followed  a beam-free gap of length L2, with L1 + L2  equal to the RR circumference Lacc.  The 
ions are at a fixed position within the ring and see a long bunch, which focuses the beam, 
followed by a beam-free gap, without focusing (as shown in fig. 5).  The sequence of focusing 
and nonfocusing can be represented as a transport matrix, written as (with η = 0): 

where: 

  
Trapping requires stability of motion in this matrix representation, which requires: 
 

12/MTr ≤   . 
 
At RR parameters this is often not true.  The motion tends to become unstable when the ions are  
strongly overfocused within the beam and when the unfocusing gap (L2) is relatively large.  Thus 
low-A ions at larger p-intensities would tend to be detrapped by the gap.  The reference values 
(A=28, L1=2400m, Np=20×1010) tend to be near the threshold for trapping/detrapping, so we 
expect conditions for ion trapping to exist in much of the ring circumference, with relatively 
small changes in parameters increasing or decreasing the amount of trapping. At the reference 
values, the stability criterion is met in vertical motion for ~50% of the ring circumference, and 
simultaneously for vertical and horizontal for ~10%.  
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With η > 0, this expression should be written to reflect the alternation of focusing from p’s and 
defocusing from other ions, obtaining: 
 
      (1)
  
  
 
with: 

 
At RR parameters, the beam often becomes more stably trapped as the neutralization factor η 
increases (for η <~0.75), since the stability conditions are near threshold, and the ions reduce the 
overfocusing.   
 
The behavior is also critically dependent on Np.  At Np = 200×1010, the ions can be much more 
strongly overfocused, and ions are more easily cleared by the gap.   
 
Effects of beam in gap 
 
In the previous discussion we assumed the p–beam was confined to the bunch length L1, with no 
p’s in the interbunch gap.  It has been noted experimentally that reducing the rf voltage to a small 
value, and thereby letting beam into the interbunch gap, makes the beam more unstable.  This 
could be due to the fact that the partially filled gap maintains ion trapping. 
 
The ion trapping conditions can be extended to include the effect of a partially filled gap by 
including a non zero density of beam in the gap, which we can write as λgap = α λbunch = α Np/L1. 
Note that, with this notation convention, the total number of p’s in the bunch + gap is: 
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In this notation, the focusing factor k2 is written as: 
 

For η > α, the gap is defocusing and the same matrix used above in eq. (1) is used. If α > η, then 
the gap is focusing and the “single-turn” transport is the product of two focusing matrices: 
 

 
This double-focusing matrix is more likely to have stable trapping than the previous (gap-neutral 
and gap-defocusing) cases, particularly when the gap focusing is relatively large (η > ~0.1).  
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Ion effects  
 
The accumulated ions affect the motion of the p’s in the RR. The ions would focus the p’s, 
canceling (or over-canceling) the space charge defocusing.  The lowest order effect is a space 
charge tune shift, which is amplitude-dependent.[9]  The zero-amplitude tune shift is: 

  
where Fz  is a factor of order unity that depends on the beam distribution, η is the neutralization 
factor (ratio of ion to beam density), βy is the betatron function, and the carats indicate averaging 
around the ring.  For round beams this becomes: 
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The direct p space charge force is in the 1/γ2 term, while the ion defocusing is the –η term.  The 
1/γ2  derives from the sum of the magnetic and electric fields from the p beam charge and current. 
The ions, which are motionless in the lab contribute only an electric field.  In the RR, γ ≅ 9.53.  If 
η is greater than ~0.01, the neutralization tune shift is greater than the direct space charge tune 
shift.    At Np = 20×1010, εN,rms =1.6×10-6 πm-rad this expression becomes: 

 
This tune shift can be greatly increased if εN,rms is cooled and Np is increased. The RR has 
operated at Np = 120×1010 and εN =0.5×10-6, which would increase this factor to: 
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which is ~-0.08 at η = 0.3, and could shift the tune fairly close to the half-integer resonance, as 
noted by Balbekov.[10]   
  
When the RR ring intensity is increased to 200 or 600 ×1010 the space charge is proportionately 
larger, and relatively small neutralizations can lead to large tune shifts. (∆ν = 0.07 at η=0.1, Np = 
600 ×1010, εN,rms =1.0×10-6  πm-rad.) 
 
Tune shifts have been measured in the CERN AA and Fermilab accumulator, as a signal that ion 
trapping is occurring and to measure the effectiveness of clearing in reducing ion trapping.  
Similar measurements should be obtained in the RR.[11] 
 
The large tune shifts can lead to increase of emittance (which would reduce ∆ν ∝ Np/εN,rms  to a 
dynamically tolerable level) and beam instability, particularly if the tune is near resonances.    
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Ion-beam oscillations 
 
Ions trapped within the beam perform stable oscillations.  In the small-amplitude, linearized limit 
the equation of motion is: 
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where qI is the “tune” of the ion oscillations, and ω0 = c/R is the angular p revolution frequency. 
qI can be written as: 
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At reference values (σx = σy = 2.24mm, L1=2400m, Np=20×1010), the ion oscillation frequency is  
170 kHz (qI = 1.89) for H2

+ ions and 45.6kHz (qI =0.51) for CO+.  These frequencies vary around 
the ring, depending on σx, σy and are also amplitude dependent, with the zero-amplitude 
frequency usually the highest. Fig. 3 shows these frequencies around the ring. 
 
The p’s circulating in the ring have focusing betatron oscillations as well as coupled oscillations 
with the trapped ions.  These coupled oscillations can cause instabilities. 
 
Keil and Zotter have developed a model for linearized coupled oscillations and derived conditions 
for instability.[12, 13]  We follow that model in the following discussion.  The equation of 
motion for ions trapped within the p beam is: 

 
where XI is the ion transverse coordinate (x or y), Xp  is the p transverse coordinate, and pI X,X  
indicate the centroids of the ion and p beams.  The equation for p motion is: 
 

 
where Q is the betatron tune and  Qp indicates the p oscillation within the ion beam field: 

where NI = η Np. Note that in this formula we have made the approximations of round beams and 
constant ion and beam density (no gap), as well as relativistic p motion. We have also used the 
expressions for oscillation within a uniform density with radius rbeam for both ions and p’s. Under 
these approximations, qI

2 = Qp
2 γ(1-η)/(ηA). 

 
The transverse motion for the ions is fixed in space and oscillates in time; the p motion changes 
around the ring as well as oscillating in time.  We are interested in resonant harmonics of coupled 
motion: 
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ti
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where aI,, ap  indicate particle amplitudes, and θ = ω0t. With this ansatz, we can solve the coupled 
equations of motion for ω, obtaining a quartic equation: 
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where W =ω/ω0. Since Qp << Q, we can ignore it (or slightly shift the value of Q) in the sum 
Q2+Qp

2.  Unstable values (complex W) can occur where W ≅ n-Q, and where qI
 ≅ n-Q. With these 

conditions and W=n-Q+δ the above equation becomes quadratic in δ: 
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At the reference RR operating values, qI ≅ 0.5, and it varies around the ring with values between 
~0.4 and ~0.6.  (see fig. 3) Instability can occur if some portion of the ring has δQ less than the 
expression on the right and greater than the Landau damping tune spread.  A typical tune spread 
could be ~0.02. The  tune Q is 24.415, so the smallest value of n-Q is 0.585, which is within the 
ion oscillation frequency spread.  If we use δQ = 0.02, it is relatively easy for the instability 
criterion to be met; η½ > ~0.125 (η > ~0.02).   Relatively weak neutralization can generate 
instability. Instability at weak neutralization does require that n-Q-qI be quite small, which means 
that qI  must be close to 0.585, or 1.585 or 2.585.  This may imply that there will be bands of 
intensity (corresponding to the different resonances) where instability with small neutralization 
could occur. 
 
 The oscillations can be damped if the product of the p beam tune spread ∆p and the ion 
oscillation tune spread ∆I is greater than the square of δQ: 

 
If the p tune spread be dominated by chromaticity: 
 

 
and with ∆I ≅ qI, then, at δQ =0.02 and qI ≅ 0.6, Qξ δp/p > ~0.001 is required.  At δp/p = 3×10-4, 
Qξ > ~3 is required.  This is similar to the chromaticities needed to stabilize the observed 
instability. 
 

γ
η

>∆∆
Q

Aq3
I

Ip

p
pQ δ

ξ≅∆p



 9

The analysis of the present section shows that, if significant neutralization occurs (η> ~0.02), 
resonant unstable amplitude growth can occur.  The instability can be somewhat controlled by 
chromaticity.  
 
“Fast-Ion” Instability 
 
Raubenheimer and Zimmermann have noted an ion-beam instability mode that occurs even if 
ions are not trapped for multiple turns within a circulating beam.[14, 15] This “fast-ion” 
instability has been observed in long trains of bunches in high-intensity electron storage rings. 
[16, 17] 
 
In the “fast-ion” instability, the long bunch ionizes the background gas, with the ion density 
increasing as the head to the tail of the bunch pass through the gas and more ions are produced 
and trapped. (see figure 7)  Coupled oscillations between ions and beam appear which increase 
toward the end of the bunch.  After the bunch end passes, the ions are no longer trapped, and clear 
from the beam pipe.  This pattern of ion buildup occurs throughout the multiturn transport, and 
instability effects such as emittance growth can occur.  The instability process could occur in the 
RR, where the use of a very long bunch enables significant single-pass oscillation growth, which 
can then accumulate statistically over many turns, causing emittance growth. 
 
In the present discussion we follow the presentation of A. Chao.[18]  The instability is expected 
to be greatest when the p beam is at highest intensity and the vacuum is relatively weak.  We will 
therefore use reference values of Np = 200×1010

 and Pvac = 10-9 Torr.  The ion density λion 
produced by a single passage of the beam bunch is: 
 

m/ions104.6Nn 3
pCOCOion ×≅σ=λ   

 
Here we have used CO as the representative background gas component. (One can sum over 
existing gas species.)  This ion density increases linearly as the bunch passes through the gas. 
 
As in the above treatment with a relatively constant ion density, one obtains coupled oscillations 
between the circulating p bunch and the transitory ions.  The ions oscillate within the focusing 
force of the p-beam: 
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Here yI is the ion centroid coordinate and yp is the beam centroid, ωI

2 = (2Nprpc2)/(ALbuncha2) 
determines the oscillation frequency of ions in the p-bunch with length Lbunch, and transverse 
radius a.  The ions are located at longitudinal position s and evaluated at time t, where p’s at 
position z = ct − s  along the bunch are passing by.  The parameter z1 indicates the ion creation 
time, where their rms position matches that of the p-beam passing through them. 
 
The equation of motion for the p’s, which includes betatron oscillation and coupled ion-p 
oscillation is: 
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where K = 4 λionc2rp/γa2  gives the oscillation of p’s within the ion density at the end of the bunch, 
and the z/Lbunch factor tracks the increase in ion density along the bunch length.    
 
As in the previous analysis one assumes perturbed oscillatory motion for the p’s,: 
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with resonance motion at kc ≅ωI.  After some algebra and approximations, we obtain a simplified 
equation for the amplitude y0: 
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This equation has a relatively simple solution in terms of a single dimensionless variable: 
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For large ηs (large s), this becomes: 
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The factor in the exponent can be rewritten as: 
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In this expression, z is position along the bunch (0 < z < Lbunch), and s is distance of travel. (Time 
of travel is ≅ s/c.) The instability amplitude is largest toward the end of the bunch, and the rate of 
increase is not exponential in time, but follows exp[(t½)] . 
 
A characteristic growth distance sC can be defined as the distance over which the amplitude has 
grown by a factor of e,: 

                                    
bunchI
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ω
= β  . 

 
As reference values, we set a = 0.002m, Lbunch =1500m, Np = 200×1010

 , Pvac = 10-9 Torr, Σion = 
1.0×10-22 m2, A=28.  For these parameters, sC ≅ 9.98×106 m.  The characteristic growth time tC is 
sC/c = 3.3×10-2 s.  The expression for tC can be rewritten as: 
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where the first bracketed term indicates the ring properties, the second term reflects the ion 
properties, and last term groups the p-beam parameters. 
 
Fast-Ion frequency spread, and damping 
  
The instability is moderated by the frequency spread in the beam and also interacts with a 
damping system.   
 
Stupakov[19] and Bosch [20] have considered the effect of ion frequency spread, and found that 
the frequency spread changes the character of the instability to be more clearly exponential: 
 









τ∝ bunch2 L

z
c
s

e)z,s(y   
 
where  

π

σ
≅τ ω 8

c
L

t ibunch
C2 . 

 
In this expression σωi indicates the ion frequency spread, which one expects to be some 
significant fraction of ωI.  For a broad frequency distribution (σωi/ωI  ≅ (π/8)1/2), we find τ2 ≅ 
(2ωβ)/K, which is the inverse of the incoherent betatron frequency shift due to the ions (at z = 
Lbeam) .  At typical RR parameters this growth time is a few times larger than the single-frequency 
growth time (tC). 
 
Heifets has considered saturation effects, which are expected to occur if the oscillation amplitude 
becomes larger than the rms beam sizes σx, σy.[21]  At large amplitudes the oscillations grow 
linear in time, with a characteristic time:  

c
Lt bunchI

CH
ω

≈τ  

 
This would reduce the growth rate by ~ a factor of 10 from the small amplitude exponential 
growth rate. 
 
In electron storage rings, the fast-ion instability is damped by radiation damping.  Radiation 
damping for p’s is too small, but we do have transverse stochastic cooling systems and could add 
a fast transverse damper.  If the damping time were comparable to or smaller than the beam-ion 
growth time, the instability could be effectively controlled.  
 
Stupakov and Chao have considered the effect of damping and the fast-ion instability.[22] The 
damper introduces a coherent damping term for the transverse oscillations, with damping time τD, 
as well as a heating term from noise in the damping system.  
 
In a simplest model, the damping multiplies the oscillation by exp(-s/cτD) where τD is the 
damping time.  Since the growth is not fully exponential the damping time does not have to be 
smaller than the characteristic time tC to be effective, although it should not be much larger. 
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In a more complicated model which includes amplifier noise heating as well as damping, the 
critical parameter is ηSC = z/Lbunch × (τD/tC)1/2.  For ηSC >> 1, the amplitude growth follows an 
exponential: 
 

SC
2/1

Cbunch

2/3
D2

2
SCe

)ct(L8
)c(F)z,s(y

η
τ

≅
η

,  

 
where F is proportional to the initial noise amplitude. 
 
For small ηSC, it follows a cubic relationship: 

2
c

24
bunch

3
D

33
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tcL48
czF)z,s(y τ

≅  

The two asymptotic dependences are shown in figure 8.  The instability remains small if τD < tC, 
but grows exponentially toward the tail of the beam if tC < τD. 
 
The “head-tail” model of the fast-ion instability can be disrupted by longitudinal beam motion. 
This means that, for fast-ion instability to occur, the growth time must be substantially less than 
the synchrotron period.  The RR has a barrier-bucket bunching system, with an rf-free center 
(within Lgap ≅ Lbunch) and a restoring voltage VBB outside the gap. The synchrotron period is 
dependent upon the beam particle energy offset δE within the gap, and is given by: 
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
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 δ
+

δη
=

BB

E
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gapacc
synch Ve

4
L
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c

L
T  , 

where ηtr = 1/γ2 – 1/γT
2 ≅ 0.00886, and  we have used the relativistic approximation β ≅1. 

 
At typical RR parameters, Tsynch ≅ 3 to 10s, and this is somewhat larger that the “typical” fast 
beam ion instability time of ~0.03s.  It is not decisively larger, so relatively smaller synchrotron 
periods (smaller Lgap, larger δE) coupled with larger instability times t0 (smaller Ptorr,, Np , larger 
σx, σy) could control the instability. 
 
The Fast Beam Ion Instability is likely to occur in the RR and a future note will study this mode 
further to determine more accurately the conditions for the instability and to establish the bases 
for experimental observations and discuss possible remedies.  
 
Observations/etc. 
 
Instabilities have been observed in the RR under various conditions, and some observations are 
consistent with the hypothesis that the instabilities may be ion-p driven (multiturn and/or possibly 
“fast-ion”). [23] 
 
One instability mode occurs at relatively low intensity.  In this mode the beam intensity can be 
relatively small (~2030 ×1010 p’s), the bunch is long (>9 µs), and the rf is turned off to allow 
p’s to leak into the interbunch gap.  The transverse emittance increases with growth times of 
several minutes.  Low frequency sidebands were seen in one experiment.  Figure 9 shows the 
growth of x and y emittances in a RR experiment. 
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This instability seems most consistent with the multiturn ion-beam instability.  It appears to 
require small momentum spread and small chromaticity, and it appears to be Landau-damped 
with larger momentum spread and chromaticity.   
 
A separate (perhaps related) instability mode is seen at relatively high intensity (~120×1010 p’s), 
appearing spontaneously on April 27 and triggered on May 5. The symptom is a fast transverse 
blow-up and beam loss event.  The time scale for the event is less than a few seconds.  It appears 
to require cooling of the beam to small transverse emittances and energy spread (εN,rms < ~0.5 
mm-mrad and δErms < 3 MeV).  Unlike the previous slow instability mode it does not require 
debunched beam (rf off).   It has been observed with the beam at a bunch length of 5.2µs.  In an 
earlier example (March 8) the instability was seen with moderate intensity (~30×1010 p’s), and 
long bunch (9.3µs) as well as small emittances and energy spread  (εN,rms < ~0.5 mm-mrad and 
δErms < 1.5 MeV) (see Fig. 10). In the cases where it has been observed, ~5% of the beam is lost 
and the rms emittance is doubled.  Since the ring acceptance is much larger than that emittance, 
the perturbed distribution must be highly nonlinear with much of the beam unperturbed and some 
of it scattered to very large amplitudes.  
 
This instability could be a “fast-ion” instability, although the speed and amplitude of the observed 
instability appear relatively large for the process.  The alternative possibility of an impedance-
driven instability is not excluded. 
 
If it were a fast-ion instability, beam would be lost from the tail of the bunch.  A fast-ion mode 
could explain the distribution observations, in that the head of the bunch would be unperturbed 
while the tail could be driven to large amplitudes. 
 
The spectrum of the instability is not yet fully determined.  Sidebands of the lower harmonics 
were seen, but they were not very large, and higher frequencies have not yet been explored.  If the 
instability were driven by CO oscillations, the frequency of oscillations would be ~250 kHz in the 
April 27 instability, and would drop off at higher frequencies (> ~500kHz).     
 
Summary 
 
We have explored the conditions for instability through ion-beam oscillations in the Fermilab 
recycler ring.  Multiturn and single-pass fast-ion modes have been discussed.  The instability 
appears possible and may have been observed.   Future observation will more clearly determine if 
the instability mode is actually occurring, and develop remedial action.  The instability may be 
controlled by better vacuum, Landau damping, and an active transverse damper. 
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Table 1 –Recycler Ring reference parameters. 
 
Parameter Symbol Value Units 
Circumference LRR = CRR=2πR 3320 m 
Reference Momentum Pp 8.89 GeV/c 
Transition slip factor γT 20.0  
Betatron Tunes νx, νy or Qx, Qy 25.4, 24.4  
Betatron Function values βmax,βmin, βave 55, 15, 30 m 
Reference emittance εN,rms 1.6 mm-mrad 
Reference beam sizes σmax, σmin, σave 3.06,1.6, 2.24 mm 
Reference bunch length LB 2400 m 
Beam pipe height, width 2a, 2b 4.5, 9 cm 
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Figures 
Figure 1.  Recycler betatron functions: βx, βy, η. 
 
 
 
 
 
 
 
 
Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Space charge potential under assumption of round beam with constant density (red) or 
a Gaussian distribution (blue).  Distributions are normalized to have the same charge and same 
rms radius.  The horizontal axis is distance is in units of σr,  with the beam pipe located at r = 10 
σr.  The vertical axis is the voltage, normalized to λ/2πε0 = 1.  
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Figure 3: CO+ ion oscillation frequencies (horizontal and vertical) in MHz around the ring (small 
oscillation frequencies at Np = 20×1010, Lbunch = 2400m, εN,rms = 1.6 πmm-mrad ).  In this 
calculation the beampipe aperture was assumed constant around the ring.  
 



 17

Figure 4. Trapping voltage around the RR, with Np = 20×1010, Lbunch = 2400m, εN,rms = 1.6 mm-
mrad, and a 4.5×9cm beam pipe. Maximum trapping voltage is, typically, where beam is small 
vertically.  The horizontal scale is 0 to 3320m (RR circumference), and vertical scale is 0.6 to 0.9 
V. 

 
 
Figure 5: Overview of multiturn ion trapping scenario. The beam passes through the background 
gas, ionizing some atoms that are trapped within the beam field.  A beam-free gap follows, in 
which ions no longer have a trapping potential, followed by another pass of beam which attracts 
the ions.  If the total effect of bunching and beam-free drift is stably attractive, ions remain 
trapped over multiple turns and can accumulate to high density. If it is unstable, ions are lost in a 
few turns, and cannot accumulate to high density. 
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Figure 6.  Half-trace (TrM/2) of x and y trapped-ion transport for N= 20×1010, Lbeam  = 2000m, 
εx,rms = εy,rms = 1.67 mm-mrad. Ions are trapped if the half trace is <1 for both x and y motion.  
This is true for a relatively small fraction of the ring at these parameters (~10%).  
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Figure 7:   Situation for “fast-ion instability”; beam; ions build up within the beampipe as the 
beam passes from head to tail; instability develops toward the end of the bunch. Ions clear after 
beam passes by. 
    

 
 
 
Figure 8: Growth of amplitude in fast beam ion instability as a function of the parameter ηSC. 
(from ref. [22])  Significant oscillation growth requires ηSC > ~3.  
 

 
 
 
 
 



 20

Figure 9: – Slow transverse emittance growth instability.  Data taken with Np =19.7 1010and 
δErms = 1MeV, and cooling and clearing systems off.  At t=0s, the rf is turned off, and the beam 
transverse emittances more than double in ~300s.  Clearing voltages switched from 0 to 300 V at 
t ≅ 180s.  

 
 
Figure 10: Fast-instability event, in which the beam rms emittance increases by a factor of ~2 in 
a fraction of a second, while some beam is lost (~5%)in a fraction of a second. 
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