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Abstract

Parasitic energy loss of the particle beam in the Recycler Ring is discussed. The
long beam confined between two barrier waves has a spectrum that falls off rapidly
with frequency. Discrete summation over the revolution harmonics must be made to
obtain the correct energy loss per particle per turn, because only a few lower revolution
harmonics of real part of the longitudinal impedance contribute to the parasitic energy
loss. The longitudinal impedances of the broadband rf cavities, the broadband resistive-
wall monitors, and the resistive wall of the vacuum chamber are discussed. They are
the main sources of the parasitic energy loss.
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1 INTRODUCTION

For a coasting beam, the arrival time of a beam particle at a designated point of the

accelerator ring is random. The energy loss of the beam particle becomes incoherent so

that the loss per particle is independent of the beam intensity. [1] The image current of the

individual particle is short and is of the order ∼ b/γ where b is the radius of the vacuum

chamber and γ is the ratio of the particle’s energy to the particle’s rest energy. The parasitic

energy loss at the discontinuities of the vacuum chamber therefore samples the high frequency

part of the impedance of vacuum chamber. The beam inside the Recycler Ring is stored

between two barrier waves. It is long but is not coasting. The arrival time of a beam particle

is no longer random. The energy loss of the beam is dominated by its coherent effect, so

that the loss per particle is proportional to the intensity of the beam. For the long beam,

the spectrum falls off rapidly with frequency and, in general, only a few lower revolution

harmonics are significant. Thus only the very low-frequency part of the impedance of the

vacuum chamber contributes to the parasitic energy loss.

In this paper, we first derive the expression for coherent parasitic energy loss. Since

only very few lower revolution harmonics contribute and the real part of the longitudinal

impedance vanishes at zero frequency, the usual integral representation of the energy loss

overestimates the loss and we must stick to summation over harmonics instead.

We next discuss the various elements in the vacuum chamber of the Recycler Ring that

give the largest contribution to the real part of the longitudinal impedance at low frequencies.

We find that most of the contribution comes from the four broadband rf cavities. The

broadband resistive-wall monitor that has a 25-Ω resistor across the gap also contributes,

although not as much as the rf cavities. The contribution of the resistive wall of the vacuum

chamber is also included. The loss for each item and the total loss are computed as functions

of the distance between the two barrier waves that contain the beam.

2 PARASITIC ENERGY LOSS

2.1 NON-PERIODIC EXPRESSION

For a particle in a bunch with arrival time advance τ relative to the synchronous particle,
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the energy gain experienced in a revolution turn is

E(τ) = −e2N

∫ τ̂

τ

dτ ′λ(τ ′)W ′
0(τ ′ − τ) , (2.1)

where λ(τ) is the linear density of the bunch normalized to unity and W ′
0(τ

′ − τ) is the

longitudinal monopole wake experienced by the test particle coming from a beam particle

with arrival time advance τ ′. The upper limit of integration τ̂ is the arrival time advance

of the head of the bunch and it can be extended to infinity if the wake is shorter than the

gap between bunches. The lower limit can also be extended to −∞ because of the causal

behavior of the wake. The negative sign in front implies that the particle actually experiences

an energy loss. Expressed in terms of the longitudinal monopole impedance Z
‖
0 using

W ′
0(τ) =

1

2π

∫ ∞

−∞
dω Z

‖
0 (ω)e−iωτ , (2.2)

and the Fourier transform of the linear density

λ̃(ω) =
1√
2π

∫ ∞

−∞
dτ λ(τ)e−iωτ , (2.3)

the energy loss per turn becomes

E(τ) = − e2N√
2π

∫ ∞

−∞
dω λ̃(ω)Z

‖
0(ω)eiωτ . (2.4)

We see that particles at different arrival time advance lose energy differently. If we average

over all the particles in the bunch, the average energy gain per turn is

Ē =

∫ ∞

−∞
dτλ(τ)E(τ) = −e2N

∫ ∞

−∞
dω

∣∣∣λ̃(ω)
∣∣∣2 Z‖

0(ω) . (2.5)

Notice that ∣∣∣λ̃(ω)
∣∣∣2 =

1

2π

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′λ(τ)λ(τ ′)e−iω(τ−τ ′)

=
1

2π

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′λ(τ)λ(τ ′) cos[ω(τ − τ ′)] , (2.6)

because the expression is real. Thus |λ̃(ω)|2 is symmetric in ω. Therefore only ReZ
‖
0 con-

tributes in Eq. (2.5).
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2.2 PERIODIC EXPRESSION

The Fourier transform of the linear density has not been performed correctly. When

synchrotron motion is neglected, the linear density λ as a function of arrival time advance

τ is periodic in τ with period T0 = 2π/ω0. The Fourier transform is therefore discrete. The

expansion is

λ(τ) =

√
2π

T0

∞∑
n=−∞

λ̃ne
inω0τ . (2.7)

Instead of Eq. (2.3), the transform is

λ̃n =
1√
2π

∫ T0/2

−T0/2

dτ λ(τ)e−inω0τ . (2.8)

E(τ) = −e2Nω0√
2π

∞∑
n=−∞

λnZ
‖
0(nω0)einω0τ . (2.9)

Ē = −e2Nω0

∞∑
n=−∞

∣∣∣λ̃(ω)
∣∣∣2 Re Z

‖
0(ω) . (2.10)

An unconventional constant has been placed in front of the summation in the harmonic

expansion of Eq. (2.7) so that the discrete Fourier transform λ̃n of Eq. (2.8) has similar

definition as the non-periodic transform λ̃(ω) of Eq. (2.3). This also results in the average

energy loss expression very similar to the corresponding non-periodic one. In fact, one can

translate the non-periodic expressions to the periodic ones by just substituting
λ̃(ω) −→ λ̃n∫ ∞

−∞
dω −→ ω0

∞∑
n=−∞

(2.11)

When the bunch is short, there is not much difference between Eqs. (2.5) and (2.10),

because the spectrum of the bunch extends to very high frequencies and therefore many

harmonics. However, for very long bunches, especially those in the Recycler, where a bunch

may occupy over 80% of the ring, the difference becomes very large, because there are only

very few low harmonics that contribute. For a bunch of length τ0 with sharp edges with

distribution

λ(τ) =


1

τ0
|τ | < τ0

2

0 otherwise ,
(2.12)
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the power spectrum is ∣∣∣λ̃n

∣∣∣2 =
1

2π

(
sinnω0τ0/2

nω0τ0/2

)2

, (2.13)

for all n from −∞ to +∞. Let us look at the lower harmonics. The zero harmonic does not

contribute because ReZ
‖
0 (0) = 0. At the other low harmonics, the argument of sine,

nω0τ0

2
= nπ

τ0

T0
(2.14)

is close to nπ if the bunch length is nearly as long as the circumference of the ring. Thus,

the energy loss per turn will be very small. For example, if τ0/T0 = 0.82, |λ̃n|2 = 0.00689,

0.00491, 0.00262, 0.00089, · · · , respectively, for n = ±1, ±2, ±3, ±4, · · · , indicating that

only a few low harmonics are important. On the other hand, if the non-periodic expression

of Eq. (2.5) is used instead, the large sinx/x peak will have been partially included, even

with a Re Z
‖
0 that goes to zero at zero frequency.

Let us employ the longitudinal impedance of one of the rf cavities in the Recycler

Ring. The real part has been measured by Wildman [2] and is depicted in Fig. 4 as black

dots. The average energy loss of a particle per revolution turn subject to one rf cavity is

computed at different full bunch length τ0, and is depicted as solid in Fig. 1. The bunch

is assumed to have sharp edges. The approximated solution using integration rather than

summation is also shown in the same figure as dashes. We see that the energy loss decreases

to zero as soon as the bunch fills the whole circumference of the Recycler Ring (τ0 = T0 =

11.13 µs), while the approximation using integration gives nonzero energy loss. This clearly

indicates that discrete summation is important because only a few low harmonics of the

power spectrum contribute. The difference between the two computations decreases as the

bunch length becomes shorter, because many harmonics have to be used to describe the

bunch and therefore the integration is a good approximation of the discrete summation.

The energy loss expressions derived above are for coherent energy loss, implying that

only the loss due to the coherent spectrum has been taken into account. This can be

understood by realizing that we have been referring to the power spectrum of a bunch but

not the spectrum of the individual particles. For this reason, the total energy loss by the

bunch is proportional to N2 and the per particle energy loss is proportional to N . If we

start off with the spectra of the image currents of individual beam particles, we will find

that each of them carries a phase corresponding to the time of arrival at some designating

point of the ring. For a very short bunch, these current spectra add coherently giving the

same energy loss as our computation above. When the bunch fills up the whole ring, the
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Figure 1: Energy loss of a particle in a sharp-edge bunch per turn subject to a Recycler rf cavity is
shown as a function of total bunch length τ0. The exact calculation using discrete summation over
harmonics is shown in solid, while the integration-approximated calculation is shown in dashes.

beam becomes coasting and the phase of the image current spectrum becomes random. The

incoherent signals of the beam lead to an energy loss per particle per turn of

E = −e2

π

∫ ∞

0

ReZ
‖
0 (ω)

I0(x)2
, (2.15)

where I0(x) is the modified Bessel function of order zero and x = ωb/(γβc), in which b is beam

pipe radius, c the velocity of light and γ and β the relativity parameters of the beam. It will

be more accurate if we replace the integration by summation over the revolution harmonics.

However, this replacement is not necessary because 1/I0(x)2, the power spectrum of the

image current of a beam particle, extends to very high frequencies. (It rolls to one half at

11 GHz for a b = 5 cm beam pipe.)
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2.2.1 Beam in a Barrier Bucket

For a beam confined between two barrier waves with barrier voltage ±V0, the Hamiltonian

describing the motion of a beam particle is

H =
|η|∆E2

2β2E
+

eV0

T0

(
τ − τ0

2

)
Θ with Θ =

{
0 |τ | < 1

2
τ0

1 |τ | > 1
2
τ0

(2.16)

where the arrival time advance τ and energy offset ∆E have been chosen as the canonical

variables and time is the independent variable. The barriers are placed at |τ | > 1
2
τ0 and η

is the slip parameter. For a maximum energy offset ∆̂E, the penetration into the barrier is

easily found to be

∆τ =
|η|T0∆̂E

2

2β2EeV0

. (2.17)

For convenience let us define

στ =
|η|T0σ

2
E

2β2EeV0

. (2.18)

as the penetration of a particle with energy offset σ
E

.

For long-time storage, the energy distribution should become Gaussian, or the longitu-

dinal phase-space distribution is

ψ(τ, ∆E) ∝ exp

(
− β2E

|η|σ2
E

H

)
, (2.19)

where σ
E

is the rms energy spread. After integrating over the energy offset, we obtain the

linear particle density

λ(τ) = λ(0) exp

[
−

(
τ − 1

2
τ0

)
2στ

Θ

]
. (2.20)

To normalize λ(τ) to unity, we find

1

λ(0)
= τ0 + 4στ

(
1 − e−∆̂E

2
/σ2

E

)
(2.21)

Since ∆̂E ≈ 3σ
E

in general, the exponential can be neglected. The Fourier transform can

be readily performed to give

λ̃(ω) =
2λ(0)√

2π

[
sin 1

2
ωτ0

ω
+ 2στ

cos 1
2
ωτ0 − 2ωστ sin 1

2
ωτ0

1 + 4ω2σ2
τ

]
(2.22)
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Energy loss of a particle per turn in a beam inside a barrier bucket subject to a Recycler rf

cavity is shown as a function of barrier separation τ0. The total bunch length is the sum of

τ0 and the penetrations into the barriers on both sides. Now energy loss depends on energy

offset also, because of barrier penetration. The exact calculation using discrete summation

over harmonics is shown in Fig. 2 for rms energy offset σ
E

= 0, 3, 6, and 9 MeV. We see
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Figure 2: Coherent energy loss of a particle per turn in beam confined by two barrier waves is
shown as functions of barrier separation τ0 for rms energy spread σ

E
= 0, 3, 6, and 9 MeV. The

impedance is contributed by a broadband rf cavity of the Recycler Ring. Discrete summation over
harmonics has been employed. .

that when the bunch is short, the dependence on energy offset is more evident, because

penetrations into the barriers have become a more important part of the total bunch length.

On the other hand, the dependence on energy offset is much less when the bunch is long.

At τ0 = 9.3 µs, the average loss of energy per particle per turn is 0.151, 0.138, 0.098 eV for

σ
E

= 0, 3, and 6 MeV. Here the measured impedance of one rf cavity, as depicted in Fig. 4

has been used. By the way two 1-µS barriers of width 1 µs and barrier voltages ±2 kV can

hold a Recycler beam with maximum energy offset ∆̂E = 18.4 MeV or σ ≈ 6.1 MeV.
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3 IMPEDANCE OF RECYCLER RING

3.1 RF CAVITIES

A schematic drawing of a cavity is shown in Fig. 3. The are four 50 Ω broadband

1 meter

MN60 CMD10 Gap

Figure 3: Schematic drawing of a Recycler wideband rf cavity, showing the 24 MN60 ferrite cores,
the 3 CMD10 ferrite cores, and the gap at the right side.

ferrite-loaded rf stations [2]. The amplifiers are of 3.5 kW from 10 kHz to 100 MHz, capable

of supplying a total of ±2 kV. The rf waveform generated is determined by the amplitude

and phase of each of the 588 revolution harmonics.

A station consists of a 12.5′′ diameter water-cooled outer aluminum shell, a 5′′ diameter

aluminum inner conductor, and a 4′′ diameter stainless steel beam pipe with a 1′′ ceramic

gap which is electrically connected to the cavity with beryllium-copper finger stock. The

cavity is filled with 25 11.5′′ OD by 6′′ ID by 1′′ thick Mn-Zn ferrite cores (MN60) and three

10′′ OD by 6′′ ID by 1′′ thick Ni-Zn ferrite cores (CMD10). The ferrite cores are air-cooled,

spaced by 0.5′′, and supported by Kapton spacer blocks. A 60 Ω resistor is connected directly

across the cavity gap and to the inner conductor at the gap by 1′′ wide by 4′′ long copper

straps.

The outer and inner aluminum shells form a ferrite loaded coaxial transmission line.

The impedance seen by a particle beam consists of the 60 Ω resistor and the copper strap

in parallel with the input impedance of the coaxial transmission line. According to the

specification, the ferrite cores have magnetic permeabilities µ′
r = 6500 (MN60) and 550

(CMD10) at low frequencies, while their dissipative components µ′′
r peak at ∼ 10 MHz. The
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simplest representation of the magnetic property of a ferrite core is a resistor R and an

inductor L in parallel, giving

µ′
r − jµ′′

r = [µ′
r]ω=0

1 − jω/ωr

1 + ω2/ω2
r

, (3.1)

where ωr = L/R and [µ′
r]ω=0 is µ′

r at zero frequency. For our ferrite cores, we set ωr/(2π) =

10 MHz. The inductance L is inferred via the inductance of the ferrite cores at low frequen-

cies. The capacitance of the coaxial line can be computed easily by assuming that the relative

electric permittivity of the ferrite cores is εr = 10. Notice that there is a lot of empty space

inside the coax and this must be taken into account in the computation of the capacitance.

On the other hand, the air space can be neglected in the computation of inductance because

of the very large permeability of the ferrite cores. The result of the computation is shown in

Fig. 4.
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Figure 4: ReZ
‖
0 and ImZ

‖
0 of a rf cavity in the Recycler Ring computed as the resistor across the

gap in parallel with the input impedance of a coaxial transmission line. Measurement by Wildman
is also shown as circular dots.

The impedance experienced by the beam can be understood as follows. At very low

frequencies, the image current flows through the inner aluminum shell to the end of the
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coaxial line and return through the outer aluminum shell. Thus the impedance is almost

zero. As the frequency increases, the image current will find it harder and harder to flow

through the aluminum shells because of the inductance of the ferrite cores. As the input

impedance of the coaxial line increases, the image current will find it easier to flow through

the 60 Ω resistor across the gap instead. In order that the impedance seen by the beam

increases to 60 Ω at 100 kHz, a lot of ferrite cores are therefore required. In general, we

are satisfied with the comparison of the computed Z
‖
0 with the measurement by Wildman,

except for ImZ
‖
0 below ∼ 300 MHz. It is not easy to understand why the measured data

become so much inductive. The trend of the computed Z
‖
0 at high frequencies follows that

of measurement. However, both measured ReZ
‖
0 and Z

‖
0 start to roll off at much lower

frequencies than the computed results. This may be due to the very crude ferrite model that

we used in Eq. (3.1). Some more remarks about the computation are listed below:

1. We find that the strap, that is in series of the 60 Ω resistor across the gap, plays an

important role in the rising of both ReZ
‖
0 and Z

‖
0 at high frequencies. In the calculation

the strap is considered as a 32-nH inductor.†

2. The termination of the coaxial line is important to the impedance experienced by the

beam at low frequencies This is because this termination resistor in parallel with the

60 Ω resistor across the gap is what the beam sees at low frequencies. In the calculation,

the termination resistor has been considered to be zero (or the line shorted). A small

inductance at the termination will not affect the result at all.

3. The relative electric permittivity (or dielectric constant) of the ferrite cores is important

to the input impedance of the coaxial transmission line, but is unimportant to the

impedance seen by the beam. This is because, at low frequencies, capacitance effect of

the ferrite cores is of no importance, and at high frequencies, the image current mostly

flows through the resistor of the gap instead of the coaxial line containing the ferrite.

4. We have also included the wall resistivity of the aluminum shells and found that its

contribution is too small to affect anything.

5. The gap is connected by a metallic strap(∼ 32 nH) to the inner conductor of a cable

leading to the amplifier which has a load of 50 Ω. Therefore what the particle sees is

†The strap forms a transmission line with the surrounding with characteristic impedance Zc =
√

L/C

and velocity v = 1/sqrtLC, where L and C are, respectively, the inductance and capacitance per unit length.
Thus the inductance of the strap of length � = 3.75′′ is L� = Zc�/v ∼ 32 nH, assuming Zc ∼ 100 Ω and v ∼
velocity of light. Acknowledgment is given to J. Crisp for the estimation.
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what we calculated before in parallel with this 50 Ω plus 32 nH. There are 4 such rf

cavities in total. The energy loss per turn of the beam to these cavities is computed

when the beam has rms energy spread of 3 MeV and intensity 100 × 1010. The result

is plotted in Fig. 5.
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Figure 5: For a particle beam of rms energy spread 3 MeV and intensity 100 × 1010, the energy
loss per particle per turn is shown individually for the rf cavities, the resistive-wall monitors, and
the resistive wall.

3.2 RESISTIVE WALL MONITOR

The resistive wall monitor is very similar to the rf cavity in structure. The cavity gap

is replaced here with a 140-mil narrow annular piece of ceramic. The image current flows

across the gap through about 100 resistors at the outer circumference of the ceramic. The

voltages across these resistors are then sampled at 4 locations, combined, and directed to

the analyzer. The combined resistance of these 100 resistors is about 1 Ω, which the particle

beam is experiencing. In order that the image current will flow through these resistors even
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at frequencies as low as 3 kHz instead of flowing through the outer metallic can, a number

of ferrite cores are placed inside the metallic can. There must be enough ferrite cores so that

they have an impedance of ∼ 30 Ω at 3 kHz. This will ensure that the error in the voltage

across the resistors at the gap is less than 3.3% when the frequency is low. Thus similar to

the rf cavity, the resistive wall monitor will contribute ReZ
‖
0 ∼ 1 Ω from 3 kHz to 6 GHz

with ImZ
‖
0 very much smaller.

There is a special resistive wall monitor which has a combined gap resistance of 25 Ω

in roughly the same frequency range. Because of the much larger gap resistance, more

image current will flow through the shielding can instead. Thus this monitor will be much

less accurate than the one with only 1-Ω gap resistance. This monitor is used mostly as a

longitudinal kicker, for example, in stochastic cooling.

A simple circuit model for the impedance seen by the beam is a resistor in parallel with

an inductor. Mathematically, this impedance can be expressed as

Z
‖
0

∣∣∣
wall−gap

= Rgap
j + ω/ωr

1 − ω2/ω2
r

, (3.2)

where ωr/(2π) = 3 kHz and Rgap = 1 or 25 Ω for the two different monitors. The energy loss

per turn per particle from these two monitors is computed. The result is shown in Fig. 5

when the beam has a rms energy spread of 3 MeV and intensity 100 × 1010.

3.3 RESISTIVE-WALL IMPEDANCE

The Recycler Ring has an elliptical beam pipe of major and minor diameters 3.806′′ and

1.75′′. If we take the average and let b = 3.528 cm be the radius of the effective cylindrical

approximate, the real part of the wall impedance of the beam pipe is

ReZ
‖
0

∣∣∣
BPM

=
1

b

√
Z0ρRβ

2
= 7.580 Ω (3.3)

where stainless steel resistivity ρ = 7.4 × 10−7 Ωm has been used. When this is substituted

into Eq. (2.10) with the discrete spectrum of the beam given in Eq. (2.22), the energy loss

per turn per particle can be computed. The result is shown in Fig. 5 when the beam has a

rms energy spread of 3 MeV and intensity 100 × 1010.

Other elements in the vacuum chamber like the pump ports, bellows, beam-position

monitors (BPMs), etc have their real parts of the impedance increasing slowly as ω2 and
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reaching peaks or resonances at hundreds of MeV. They therefore contribute negligibly to

the energy loss of the long Recycler beam. As an example, approximating the split-can

BPMs as cylindrical strip lines of length $ = 12′′ with covering angle φ ≈ π, the real part of

the impedance is

ReZ
‖
0

∣∣∣
BPM

= 2MZc

(
φ

2π

)2

sin2 ω$

c
, (3.4)

where Zc = 50 Ω is the termination impedance. We see that Re Z
‖
0

∣∣
BPM

increases as ω2 and

reaches its first maximum at 182.5 MHz. For M = 410 BPMs, we get Re Z
‖
0

∣∣
BPM

= 0.0034 Ω

at the revolution frequency. Thus the BMPs contribute negligibly as compared with the rf

cavities.

4 CONCLUSIONS

We have analyzed the coherent parasitic energy loss of the Recycler beam. The contri-

bution comes from the low-frequency part of the impedance of the Recycler vacuum chamber.

The elements that give the most contribution are the rf cavities and resistive-wall monitors,

because they are broadband starting from very low frequencies, 100 kHz for the rf cavities

and 3 kHz for the resistive-wall monitors. A small contribution comes from the wall resistiv-

ity of the vacuum chamber with the impedance increasing as
√

ω at low frequencies. Other

elements, like the BPMs, pump ports, etc, contribute negligibly, because the real part of

their impedances increases slowly as ω2 at low frequencies and reaches peaks or resonances

at hundreds of MeV.

The coherent parasitic energy loss per particle per turn for each element is computed

as a function of separation of the two barrier waves that confine the Recycler beam. The

total energy loss per particle of a beam of intensity 100×1010 is depicted in Fig. 6 at several

rms energy spreads. In the computation, we cannot just integrate over frequency. Instead,

one must sum over revolution harmonics. This is because the impedance vanishes at zero

frequency and only a few low harmonics contribute. The coherent per particle energy loss

computed must be compensated by shifting the potential baseline between the barriers by

the same amount, otherwise a slant will appear in the linear density of the beam [3]. In

Ref. [3], the compensation was computed via the multiplication of the local beam current by

a constant ReZ
‖
0 , and the result appeared to be systematically larger than what was needed

experimentally. Hopefully, a discrete summation over the revolution harmonics will produce

the more accurate compensation voltage.
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Figure 6: Total coherent energy loss of a particle per turn of a beam in a barrier bucket is shown as
functions of barrier separation τ0 for rms energy spreads σ

E
= 0, 3, 6, and 9 MeV. The impedance

includes contributions from 4 rf cavities, 2 resistive-wall monitors, and the resistive wall of the
beam pipes. Discrete summation over harmonics has been employed.

As a last remark, we would like to point out that the low-frequency part of the longitudi-

nal impedance of the vacuum chamber contributes only to the parasitic energy loss. We will

show in below that the longitudinal impedance in this frequency region will not drive any

coherent instabilities. The instability growth rate is usually proportional to the summation

of the power spectrum of the beam multiplied by Re Z
‖
0/ω, or

Growth rate ∝
∞∑

n=−∞
hm(nω0 + mωs)

Re Z
‖
0(nω0 + mωs)

nω0 + mωs
, (4.5)

where hm(ω) represents the power spectrum of the mth azimuthal mode of longitudinal oscil-

lation. Notice that hm(ω) and ReZ
‖
0 (ω) are both symmetric function of ω. The summation

therefore vanishes in the absence of the synchrotron frequency ωs/(2π). Thus, the beam can

be unstable only in the presence of synchrotron oscillation. This is the Robinson type of

instability derived from the difference in ReZ
‖
0 at the upper and lower synchrotron sidebands

of a revolution harmonic. Since the Recycler beam is confined between two barrier waves,
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synchrotron oscillation is extremely slow. If we neglect the time a beam particle spends

inside the barrier waves, the synchrotron tune can be estimated easily. For each turn, a

particle with rms energy spread σ
E

has the arrival time slip ∆T = |η|σ
E
T0/(β2E). For time

separation τ0 between the barriers, the number of revolution turns for the particle to slip

through the rf-voltage-free length is 2τ0/∆T . Thus the rms synchrotron tune is

νs

∣∣∣
rms

≤ ∆T

2τ0
=

|η|σ
E
T0

2β2Eτ0
, (4.6)

where the equality sign holds when the barrier voltages are ±∞. For a beam with barrier

separation τ0 = 1 µs and rms energy spread σ
E

= 3 MeV, νs

∣∣
rms

≤ 1.6 × 10−5. Thus, we

should not anticipate any sizable growth rate for the Robinson type of instability.

There can still be instabilities when the azimuthal mode number m can no longer classify

the modes. This happens when the coherent shifts of the modes are large enough that two

modes meet with each other. Since these azimuthal modes are separated by the synchrotron

frequency in the absence of the driving impedance, one may think it would be easy for two

modes to meet because the synchrotron tune is tiny. An estimate of the threshold can be

obtained when the shift is of the order of the synchrotron frequency (νs ∼ √
6νs

∣∣
rms

). This

leads to the stability condition [4]

ImZ
‖
0

n

∣∣∣∣∣
eff

� 3β2Eν2
sω

3
0τ

3
0

4π2|η|eIav
= 9π

|η|E
eIlocalβ2

(σ
E

E

)2

, (4.7)

where Ilocal ∼ IavT0/τ0 is the local beam current, Iav = eNf0 is the average beam current,

and Eq. (4.6) has been used. For the 100×1010 beam with separation τ0 = 1 µs between the

barriers at rms energy spread σ
E

= 3 MeV, we obtain ImZ
‖
0/n

∣∣
eff

� 1530 Ω. On the other

hand, the effective impedance is defined as

ImZ
‖
0

n

∣∣∣∣∣
eff

=

∞∑
n=−∞

ImZ
‖
0

n
hm(nω0 + mωs)

∞∑
n=−∞

hm(nω0 + mωs)

. (4.8)

If we used the representation of impedance in Eq. (3.2), with Rgap = 26 Ω and ωr/(2π) =

3 kHz for the resistive wall monitors, and Rgap = 209 Ω and ωr/(2π) = 50 kHz for the four rf

cavities, it is obvious that the Recycler Ring is very much below this stability limit. In fact,

no longitudinal coupled-mode instabilities have ever been reported in any hadron machine.
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Since the synchrotron frequency is so low, the barrier-confined beam resembles a coasting

beam. Another possible instability is the classical microwave instability. The stability limit

can be estimated using a Keil-Schnell-like criterion derived by Wang, [5]∣∣∣Z‖
0

∣∣∣
n

� 2π|η|E
eIlocalβ2

(σ
E

E

)2

. (4.9)

For the above beam, this gives
∣∣∣Z‖

0

∣∣∣ /n � 400 Ω. The estimated longitudinal impedance is

very much less than this limit.
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