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1 Introduction

The edge focusing of dogleg magnets in Fermilab Booster has been causing
severe distortion to the horizontal linear optics. The doglegs are vertical
rectangular bends, therefore the vertical edge focusing is canceled by body
focusing and the overall e�ect is focusing in the horizontal plane. The max-
imum horizontal beta function is changed from 33.7m to 46.9m and maxi-
mum dispersion from 3.19m to 6.14m. Beam size increases accordingly. This
is believed to be one of the major reasons of beam loss. In this technote
we demonstrate that this e�ect can be e�ectively corrected with Booster's
quadrupole correctors in short straight sections (QS). There are 24 QS cor-
rectors which can alter horizontal linear optics with negligible perturbation
to the vertical plane.

The currents of correctors are determined by harmonic compensation,
i.e., cancellation of dogleg's harmonics that are responsible for the distortion
with that of QS correctors. By considering a few leading harmonics, the ideal
lattice can be partly restored. For the current dogleg layout, maximum �x
is reduced to 40.6m and maximum Dx is reduced to 4.19m.

This scheme can be useful after the dogleg in section #3 is repositioned.
In this case it can bring �x from 40.9m down to 37.7m, Dx from 4.57m to
4.01m.

2 Harmonic Compensation

The edge focusing e�ect is a quadrupole e�ect. The integrated quadrupole
strength is [1]

k�l =
tan Æ

�
=
Æ tan Æ

L
(2.1)

where Æ is the entrance or exit angle with respect to the normal direction of
the edge, L is the length of the magnet and � = L=Æ the bending radius.
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The p'th harmonic half-integer stopband integral is de�ned as [1]

Jp =
1

2�

I
�k(s)e�jp� ds =

1

2�

X
i

�i[k�l]ie
�jp�i (2.2)

where [k�l]i is the integrated quadrupole strength at location i. The
perturbation to beta function is [1]

��(s)

�(s)
= ��0

2

1X
p=�1

Jpe
jp�

�20 � (p=2)2
(2.3)

For o�-momentum particles, there is also a dipole e�ect because of dis-
persion. The equivalent dipole strength is

�B

B�
= �[k�l]D�p

p0
(2.4)

where �p
p0

is momentum deviation. The minus sign indicates a weaker

bending strength for positive momentum deviation. For a unit value of �p
p0
,

the integer stopband integral is [1]

fn =
1

2��

I p
�
�B

B�
e�jn�ds

= � 1

2��

X
i

p
�i[k�l]iDie

�jn�i (2.5)

The change to dispersion function is then [1]

�D =
�xco
�p=p0

=
p
�(s)

1X
n=�1

�2fn
�2 � n2

ejn� (2.6)

There are 4 magnets for each dogleg but each magnet has focusing e�ect
at only one edge. Table (1) lists related parameters of doglegs.

dogleg # Æ L (m) k�l (m�1)

03 old 0.062510 0.24722 0.015826

03 new 0.023440 0.24722 0.002223

13 0.059876 0.24722 0.014519

Table 1: dogleg parameters. '03 old' and '13' are current layout. '03 new' is dogleg 03

after repositioning.

According to equations (2.3) and (2.6), the contribution of a harmonic to
the changes of beta function or dispersion is weighted by a factor. Figure (1)
shows magnitude of the weighted harmonics Jp=(�

2�p2=4) and fn=(�2�n2)
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Figure 1: The weighted harmonics for current dogleg layout. Top, jJpj=(�
2 � p2=4).

Bottom jfnj=(�
2 � n2).
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Figure 2: Changes to beta amplitude �x and dispersion Dx due to current dogleg layout.

Blue curve is by subtracting MAD output with and without doglegs. Red one is obtained

using equations (2.3) and (2.6). Top, �x. Bottom, Dx.
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Figure 3: The weighted harmonics for repositioned dogleg layout. Top, jJpj=(�
2�p2=4).

Bottom jfnj=(�
2 � n2).
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Figure 4: Changes to beta amplitude �x and dispersion Dx due to repositioned dogleg

layout. Blue curve is by subtracting MAD output with and without doglegs. Red one is

obtained using equations (2.3) and (2.6).
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for the current dogleg layout. Figure (2) shows changes to �x and dispersion
Dx according to equations (2.2), (2.3), (2.5) and (2.6) with comparison to
the same quantities obtained from subtraction of MAD output. We can see
the 7th of fn and 14th of Jp dominate the two spectra, respectively. Figure
(3) and (4) are for the new dogleg layout.

For the i'th QS quadrupole, given a current of +1A, we can also get its
stopband harmonics spectrum J ip and f in. To cancel the p'th half-integer
harmonic Jp of doglegs, we want to pick up those quadrupoles whose Jp
term is large and points along the direction of Jp of doglegs in the complex
plane. The same is true for fn. De�ne eÆciency

Ai
p =

jJ ipj
jJpj cos(��

i
a) = Re

�
J ip
Jp

�
(2.7)

Bi
n =

jf inj
jfnj cos(��

i
b) = Re

�
f in
fn

�
(2.8)

where ��ia ang ��
i
b are angles between J

i
p and Jp, f

i
n and fn respectively.

Now our goal is to minimize the total harmonics of doglegs and quadrupoles
for both Jp and fn. In choosing a set of quadrupole current to achieve this,
we study the eÆciency table to determine which quadrupoles are to be used
and calculate the needed current values. Then we update the total weighted
harmonics spectrum and repeat. Quadrupoles having large eÆciency for the
leading harmonic of one spectrum (Jp or fn) and eÆciency of the same sign
for the leading harmonic of the other spectrum are of our interest. This
process involves a lot of "eyeball inspection" and thus is not very eÆcient.
To automate the process, we found that a bit-by-bit approach is needed.
The procedure is

Step 1 sort the magnitude of the weighted overall harmonics of Jp and fn to
descending order and locate the most important harmonics, the 7th of fn
and the 14th of Jp, for example.

Step 2 sort the 24 Ai
14

to descending order

Step 3 for each of the �rst 6 sorted Ai
14
, if it has the same sign as Bi

7
, change the

current of the i'th QS by adding 0.1/Ai
14
. (i.e. cancel 10% of J14 with this

quadrupole)

Step 4 sort the 24 Bi
7 to descending order

Step 5 for each of the �rst 6 sorted Bi
7, if it has the same sign as Ai

14, change the
current of the i'th QS by adding 0.1/Bi

7
. (i.e. cancel 10% of f7 with this

quadrupole)

Step 6 go to step 1

It is important for us to make only a small change to the leading harmonic
and recalculate the total harmonics in each iteration. Otherwise the solution
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would be incorrect because of the interference among quadrupoles. When
the leading harmonics get closer to the next biggest one, we may consider
more than 6 QS's and require the eÆciencies have the same sign with that
of the next biggest one, too. The process stops when no quadrupoles can be
found to reduce the leading harmonic without increase another hamonic to
same level.

It can quickly bring the weighted harmonics down to a lower level. Also
maximum beta function and dispersion become smaller. Figure (5) and (6)
shows the total weighted harmonics after compesation for the current layout
and the new layout.
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Figure 5: The weighted harmonics after compsensation, jJpj=(�
2� p2=4) and jfnj=(�

2�

n2) for current layout

The solution obtained by harmonic compensation might not be the best
one possible. A local maximum search in the 24-dimension space is then
necessary. The search starts from the solution obtained by harmonic com-
pensation, then change each quadrupole until it won't bring the objective
function down. The obejective is the maximum horizontal radius of the
beam de�ned as

Rx =

r
�x�x
�

+Dx

�p

p0
(2.9)

where �x is the 95% horizontal emittance. Typical values �x = 15�m �mrad
and �p

p0
= �0:3% are used. This can often improve the solution slightly.

3 Result

For both the current lattice and the one with respositioned dogleg 03, we
can improve the linear optics properties with the scheme described in the
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last section. We show the results by making comparsions between 5 cases.

case 1 Ideal lattice, no doglegs

case 2 Current lattice, with two doglegs, no compensation

case 3 New lattice, dogleg 03 repositioned, no compensation

case 4 Current lattice, with two doglegs, with compensation

case 5 New lattice, dogleg 03 repositioned, with compensation

For each case, we compare the maxima of �x, �y, Dx and Rx as de�ned in
equation (2.9). The quatities are listed in Table (2).

case max(�x) max(�y) max(Dx) Rx (mm)

1 33.68 20.46 3.19 32.04

2 46.95 24.16 6.14 43.86

3 40.88 23.00 4.58 38.02

4 40.61 23.16 4.19 34.53

5 37.66 22.60 4.01 34.23

Table 2: compare maxima of �x, �y, Dx (in meters) and Rx.

The original and compensated horizontal beta function and dispersion
are shown in Figure (7) and (8) for the two lattice layouts. For both cases,
we can see that the regularity of the ideal lattice function is partly restored
by compensation.
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Figure 6: The weighted harmonics after compsensation, jJpj=(�
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The quadrupole current values for case 4 and case 5 are well below the
limit 2A. The tune shifts are small. Qy = 6:78111 and Qx = 6:71748 for
case 4. Qy = 6:77953 and Qx = 6:74996 for case 5. Tunes can be nearly
independently adjusted by modifying quadrupole corrector AC current itunel
and itunes.
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Figure 7: Comparison of horizontal beta function and dispersion for the current dogleg

layout. Red curve is original and black one is compensated. Top, �x. Bottom, Dx.
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Figure 8: Comparison of horizontal beta function and dispersion for the new dogleg

layout with repositioned dogleg 03. Red curve is original and black one is compensated.

Top, �x. Bottom, Dx.
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APPENDIX Local Beta Bump and Its Application

in the Booster

Under some circumstances, we may want to suppress (or increase) the beta
function at one location keeping it intact elsewhere. Here we show how this
can be done with three quadrupoles. One is placed at the location and the
other two beside it, one upstream and one downstream, respectively.

For the normalized betatron phase-space coordinates Y , P, which are
related to the usual coordinates y, y0 by

�
Y
P
�
=

�
1=
p
� 0

�=
p
�

p
�

��
y
y0

�

the transfer matrix is

M(s2js1) =
�

cos sin 
� sin cos 

�
(A-1)

where  is the phase advance from s1 to s2. It is easy to see that the transfer
matrix for a thin quadrupole is

M =

�
1 0

�[k�l] 1

�
(A-2)

where k = � B0

B�
with `�' for horizontal plane and `+' for vertical plane.

Recalling that the linear optics functions �, � and 
 transfer according
to [1] 0

@ �2
�2

2

1
A =M

0
@ �1

�1

1

1
A (A-3)

with

M =

0
@

M2
11 �2M11M12 M2

12

�M11M21 M11M22 +M12M21 �M12M22

M2
21 �2M21M22 M2

22

1
A (A-4)

we get 0
@ �N2

�N2

N2

1
A =

0
@ c2 �2cs s2

cs c2 � s2 �cs
s2 2cs c2

1
A
0
@ �N1

�N1

N1

1
A (A-5)

for a section with c = cos and s = sin , and
0
@ �N+

�N+


N+

1
A =

0
@ 1 0 0

��[k�l] 1 0
(�[k�l])2 �2�[k�l] 1

1
A
0
@ �N�

�N�


N�

1
A (A-6)

for a thin quadrupole. Superscript N indicates properties in the normal-
ized coordinates (normalized to the unperturbed lattice), + indicates the
downstream side and � indicates the upstream side.
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In normalized coordinates, the unperturbed lattice has (�N ; �N ; 
N ) =
(1; 0; 1) everywhere. Let's label parameters at the three quadrupoles with
subscript 1,2,3 with 1 for the one at upstream, 3 for the one at downstream
and 2 in between. By applying the quadrupole correctors, we want to meet
three conditions

1 �N2 = r

2 �N3 = 1

3 �N+
3 = 0

In condition 1, r is a pre-set value to specify how much change we want to
make at location 2 (e.g. 0.95, to suppress �2 to 95% of its original value) and
the other two conditions are required so that the perturbation is con�ned in
the range between quadrupole 1 and 3.

According to equation (A-6), a thin quadrupole will not change �N at its
location. But it will change �N to �N � �[k�l]�N and 
N will be changed
according to 1 + �2 = �
. Thus at the downstream side of quadrupole 1,
we have 0

@ �N1
�N+
1


N+
1

1
A =

0
@ 1

�x1
1 + x21

1
A (A-7)

with x1 = �1[k�l]1. Combining with equation (A-5), the condition �N2 = r
becomes

s21x
2
1 + 2c1s1x1 + (1� r) = 0 (A-8)

in which c1 = cos 12,s1 = sin 12. Also we let c2 = cos 23 and s2 = sin 23.
Equation (A-8) has 2 roots of x1 in which we pick up the one with smaller
absolute value. Quadrupole 2 turns (�N2 ; �

N�
2 ; 
N�

2 ) to (�N2 ;X2; 1 + X2
2 )

with X2 = �N+
2 = �N�

2 �x2�N2 . The latter is then transfered to quadrupole
3 to meet condition �N3 = 1, which yields

s22
r
X2
2 � 2c2s2X2 + (

s22
r
+ c22r � 1) = 0 (A-9)

Again we choose the solution with smaller absolute value,

x2 =
�N�
2 �X2

�N2
(A-10)

Now we can calculate �N�
3 with equation (A-5)

�N�
3 = c2s2(r � 1�X2

2 ) + (c22 � s22)X2 (A-11)

Condition �N3 = 1 and condition �N+
3 = �N�

3 � x3�
N
3 = 0 together lead to

x3 = �N�
3 (A-12)
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The integrated strengths of quadrupole 1, 2, 3 can thus be determined with
x1,x2 and x3 known.

As an example, we apply this local beta bump scheme to Fermilab
Booster. To change linear optics of the horizontal plane e�ectively, we use
QS quadrupoles. Since the solution to equation (A-8) is of the form

x1 =
1

s1
(�c1 �

q
r � s21) (A-13)

and to equation(A-9)

X2 =
r

s2
(c2 � 1

r

q
r � s22) (A-14)

r > s21;2 must be ensured for a meaningful solution to exist. For the Booster,
the phase advance over one section is about 100 degrees. So if we want to
suppress �x at section n, we have to use QS at section n-2, n and n+2.
For the current dogleg layout, with all quadrupole correctors turned o�, the
maximum of �x is 46.95m at S11. To suppress 10% of it, the procedure
described above requires

� iqs09=0.6490A

� iqs11=-0.7202A

� iqs13=0.5674A

�x at S11 becomes 42.47m, which is 90.5% of the unperturbed value. Figure
(9) shows the change of �x and dispersion throughout the ring. There is little
change to �x out of the range from QS09 to QS13. However, inside it, at
QS10 and QS12, �x is increased. And dispersion is perturbed globally. We
can apply this method together with harmonic compensation to constrain
dispersion. The method can still be useful despite the two side e�ects.

Since our knowledge about the unperturbed lattice is not perfect, we
are interested in the sensitivity of the locality to errors in beta functions
and phase advances. A Monte Carlo simulation is carried out for it. For the
above example the result is shown in Figure (10) and Figure (11). When the
error of phase advance is in the level of 2 degrees, the global perturbation is
roughly 30% of the desired local bump.
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Figure 9: Changes to �x and dispersion due to QS09, QS11, QS13 set up for local beta

bump. Top, �x. Bottom, Dx.
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Figure 10: Magnitude of global ��
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5% of � at S11 of the current layout. Phase error is 2 degrees and ��
�

= 0:1

13


