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Abstract

The Minimum Distance test in the DIEHARD suite for validating random number

generators often indicates \false positives," rejecting the quality of what is actually

a good generator. A reason for this is presented: The test has enough sensitivity to

detect the discrepancy between the approximate theoretical distribution of minimum

distance used, and the actual distribution. We present next-order corrections to the

theoretical expected distribution, for the 2-dimensional case used in DIEHARD and

for higher dimensions. The corrected expectation will eliminate false positives arising

from theoretical distribution discrepancies, at any practical test sensitivity level.

1 Motivation

1.1 The Minimum Distance Test

One of the tests in Marsaglia's \DIEHARD" suite for pseudo-random number generators is
a 2-dimensional minimum distance test: Plot a set of N points in the unit square, where
each point has coordinates given by a consecutive pair of variants. Determine the minimum
distance between any pair of these points. Repeat this procedure M times, to get M
variates. Finally, compare (using a Kolmogorv-Smyrnov or related test) the cumulative
distribution function for these minimum distance variates with the theoretical expectation
for the distribution of minimum distance.

Such a test has good resolution power for detecting clumping or banding in 2-dimensional
space, since such clumping will almost surely skew the distribution of minimum distances
toward the smaller distances. A generalization of the test to d-dimensional space gives a
test for improper distribution in d-tuples of variates.

The observation, when applying the Minimum Distance test to generators in CLHEP
which otherwise appear to be excellent (including some such as RanLux64, which can be
proven to have excellent properties) is that these distributions fail the 2-dimensional Mini-
mum Distance test for N = 8000 and M = 100.

At the time (1997) this was done, these failures were ascribed to one of three possible
errors:

1. The original form of this test was coded in Fortran; the actual test applied was cre-
ated using f2c. The original Fortran contained some \clever" index manipulation for
e�ciency, and it was thought that this manipulation might not have survived the
transition to C, which uses a di�erent array index ordering.
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2 1 MOTIVATION

2. Some other aspect of coding, most likely the K-S test procedure itself, might have
been incorrect.

3. We may not have understood what constitutes failure. In point of fact, Marsaglia
mentions that quite good engines nonetheless have P-values like .9995, and that he
would not reject without seeing numbers as bad as .99999. However, clearly this
contradicts the de�nition we would like to use for P-value.

At any rate, these generators were, in the end, accepted as passing despite what should have
been a nominal failure in this test.

1.2 Corrections to the Minimum Distance Distribution

In October 1998, we realized that the underlying theoretical expectation for the distribution
of minimum distance was correct only to lowest order, and that this discrepancy would
show up as apparent failures of distributions whenever the number of trials M was large.
In particular, there was no hope of studying the apparent inconsistency by going to more
statistics, since we would then expect the distribution to be \wrong" with respect to our
(incorrect) theoretical distribution.

This paper provides a next-order correction to the approximate theoretical distribution
used in the DIEHARD test, which will permit testing generators with signi�cantly more
resolution power and fewer false rejections.

We will compute the Cumulative Distribution Function for the square of the minimum
distance s2 between pairs of N points selected at random in a unit square with periodic
boundary conditions:

P (s2 < a2) (1)

for a given a.

In Marsaglia's test, and according to Luscher's explanation, the distribution is taken
to be exponential with average a2 value of 2=[�N(N � 1)]. The actual distribution di�ers
from this, by a correction factor of (1 + O(Na2)). The consequence of this error is that
the number of trials which can validly be done with a �xed N to test randomness of a
distribution is limited: For a su�ciently large number of trials, the sensitivity of the test
becomes comparable to the error in the theoretical distribution, and even a good random
generator will be rejected. Though the details are sensitive to the square of the coe�cient
of Na2 in the actual distribution, this undesirable situation limits the sensitivity of the test.
For N = 8000, which probes clustering on a scale of roughly 10�4, one dare not exceed a
few hundred trials without understanding and incorporting that correction coe�cient.

On the other hand, if the error in the assumed distribution were of order N2a4 (or 1=N2)
then you could con�dently use up to a million trials; the sensitivity of the test becomes
limited only by how much computation time you are willing to spend. This will be the case
when using the corrected theoretical distribution.

To derive the distribution, imagine placingN balls of radius a in the square, and compute
the probablilty that no center ever lies inside a ball already placed. At each step there is
some area excluded from the area safe to place a ball.

The O(Na2) or O(1=N) terms in the distribution come from two places. Firstly, the
cumulative distribution involves a product of N decreasing terms each a bit smaller than
1; the exponential distribution is obtained if you add the logs of those terms and expand
each log in the small distance away from 1. This discards terms of order N3a4, which is
O(1=N). Secondly, that product assumes no overlap in excluded volume, and therefore
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tends to underestimate the probability of large distances. The overlap terms again lead to
an error of order N3a4.

In the rest of this note, we will derive the distribution to �rst order \for practice," then
study the geometry of those overlaps, and use that to �nd the next order correction. Then
we discuss the situation in higher dimensions. Lastly, a discussion of technique for �nidng
the minimum distance variate is presented.

2 Lowest Order Calculation

Sometimes when two balls are placed, the amount of volume they cover is less than 2�a2

because though the center of each is outside the other, the two circles overlap. Ignoring this
overlap, which leads to next-order corrections in Na2, we can immediately write the c.d.f.:

P (s2 < a2) = 1�
NY
k=1

(1� (k � 1)u) (2)

where we will always designate u � �a2.

(To successfully place N balls of area u, you must survive about N chances to hit a �lled
area which is typically N=2u. This simple consideration argues that when N2u � 1 the
probability of succeededing is negligible. So we can always assume that N2u is not much
more than 1. The useful equivalent statement is that Nu = O(1=N), which is small.)

Assuming N is even, we can group the �rst and N -th term, the second and (N � 1)-st
term, and so forth. Multiplying two such terms gives a trinomial with a �xed coe�cient of
u:

P (s2 < a2) = 1�
N=2Y
k=1

�
1� (N � 1)u+ (k � 1)(N � k)u2

�
(3)

There are (at least) three ways of approximating this, all of which agree to zero-th order:

We can multiply out the polymomial, discarding terms whose N exponent is less than
twice their u exponent. By considering terms with just a single (N � 1)u and the rest ones
in the product, you get:

P (s2 < a2) � (N=2)(N � 1)u � (N2=2)u (4)

This is correct until u becomes of order (1=N2); but it is not very useful because when
u reaches that size, it exceeds 1|it is not a plausible form for a cumulative distribution
function.

Instead, we can look at the log of each term. To �rst order in Nu we can ignore the
expressions that include k, and are left with

log
�
1� P (s2 < a2)

� � �(N=2)(N � 1)u (5)

P (s2 < a2) � 1� e�(N=2)(N�1)u (6)

This is the exponential distribution that is used by Marsaglia, and it is a perfectly good
distribution and matches the actual one with errors of order 1=N .

Let's consider a third way of doing the expansion, which will be extended when we do
the higher order terms. Each term in the product can be written as 1 � (N � 1)u times
some correction vactor which is one, to order N2u2. As long as we are interested only



4 3 OVERLAP OF COVERAGE

in O(Nu) accuracy, we can ignore those corrections. (We could not ignore corrections of
O(Nu), because there are N=2 such contributions.)

P (s2 < a2) = 1� (1� (N � 1)u)N=2
N=2Y
k=1

�
1 +

(k � 1)(N � k + 1)u2

1� (N � 1)u

�
(7)

The product here is simply 1, with a correction of order Nu, so

P (s2 < a2) � 1� (1� (N � 1)u)N=2 (8)

We stress that this is equivalent (within corrections of order 1=N) to the exponential distri-
bution derived above. But you need to pin the distribution o� at (N � 1)�a2 = 1. If it is
uncomfortable to do this, then the exponential form is superior.

3 Overlap of Coverage

When going to the next order in Nu, two contributions must be considered. The �rst is
that the terms involving k in equation 7 must be treated to �rst order in Nu. The second
e�ect, discussed in this section, is that when two balls are placed the excluded volume is not
always 2u. Sometimes the centers are separated by a distance between a and 2a, in which
case the excluded volume is 2u� q, where q is the overlap area. After placing k balls, the
(expected) actual excluded area is k(k � 1)=2 hqi where hqi is the expected overlap of two
randomly placed balls of area u.

(We shall treat the overlap as always being its expected value, even though it is slightly
skewed (given success in the previous k placements) toward larger values. Correction of this,
along with correction for triple-discounting any triple-overlap regions, and denominators
correcting the expected value of overlap because the new ball does not have the entire
volume to land in, would be O(N2u2) e�ects.)

To compute hqi:
Consider circle O of radius a centered at point O, and circle P of the same radius centered

at point P, such that OP = r with a < r < 2a. Label the points of intersection of the two
circles X and Y , and the intersection of lines OP and XY as point Z. Also, label the
interscetion of cirle P with line OP as point W . Then the overlap area in that diagram is
composed of four small areas, each of which is congruent to the area bounded by Z;W;X .
That area is given by the di�erence between the areas of circular wedge PWX and 4PZX.

Let 6 ZPX be �. Then:

Area (wedge PWX) =
1

2
a2� (9)

Area (4PZX) =
1

2
PZ ZX =

1

2
a2 cos � sin � (10)

total overlap = 2a2(� � cos � sin �) (11)

The expected overlap is the integral of this over all possible positions in the unit square
of point P (since the boundary conditions are periodic, we can take O to be at the origin,
which in turn we can take to be the center of the unit square). The radial distance of P
from the origin is r = 2a cos �. The overlap is zero unless a < r < 2a, which corresponds
to 0 < � < �=3. By axial symmetry, the area element corresdponding to dr is 2�rdr So we
have:

hqi =
Z r=2a

r=a

2�rdr2a2(� � cos � sin �) (12)
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or with dr = �2a sin �d�,

hqi =
Z �=3

�=0

16�a4(� sin � cos � � cos2 � sin2 �)d� (13)

= 16�a4
Z �=3

�=0

�
1

2
� sin 2� � 1

4
sin2 2�

�
d� (14)

= 8�a4
Z 2�=3

�=0

�
1

4
� sin�� 1

4
sin2 �

�
d� (15)

= 2�a4
�
sin�� � cos�+

1

2
sin� cos�� 1

2
�

�2�=3
0

(16)

= 2�a4

"p
3

2
+
�

3
�
p
3

8
� �

3

#
=

3
p
3

4
�a4 � 4:081a4 (17)

That is, after k disjoint balls of radius a have been placed, the remaining open space for
the next ball is (at average)

1� ku+
k(k � 1)

2

3
p
3

4�
u2 (18)

= 1� ku+Q
k(k � 1)

2
u2 (19)

Q � 3
p
3

4�
� 0:4135 (20)

4 More Accurate Distribution of Minimum Distance

To take the distribution to the next order in Nu we need to include the e�ect of the overlap
(but only to the lowest non-zero order) and we need to keep one more order of terms when
expanding the product.

Including the overlap, equation 2 de�ning the probability becomes

P (s2 < a2) = 1�
NY
k=1

�
1� (k � 1)u+

(k � 1)(k � 2)

2
Qu2

�
(21)

Again we combine the �rst and last terms:

P (s2 < a2) = 1�
N=2Y
k=1

f1� (N � 1)u

+

�
(k � 1)(N � k) +

Q

2
(k � 1)(k � 2) + (N � k)(N � k + 1)

�
u2 +O(N3u3) +O(N4u4)

�

In those terms, we count a factor of k or of N as a power of N . Because of the sum
up to N=2 they pick up another power of N . So the u2 term contributes O(N3u2) which is
O(Nu); we must keep it. But the last two terms are of O(N4u3) and O(N5u4) which are
respectively second and third order small in Nu so we can discard them.

Now (as in the expansion method that led to the geometric distribution to lowest order)

we factor 1� (N � 1)u out of each pair of terms. The residue is of the form 1 + u2M(N;k)
1�(N�1)u .
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That denominator can be treated as 1 since the u2 term is already going to contribute
O(Nu) to the distribution. So the analogue of equation 7 is:

P (s2 < a2) = 1� (1� (N � 1)u)
N=2

�
N=2Y
k=1

�
1 +

�
(k � 1)(N � k) +

Q

2
((k � 1)(k � 2) + (N � k)(N � k + 1))

�
u2
�

(22)

In the product here, a term with a factor of u2 will be too small to matter unless it is
multiplied by two powers of k and N . Such a term will contribute at O(N3u2) � O(Nu);
terms involving just one power would contribute at O(u) which for large N is negligible.
Similarly, in formulas for

P
k and

P
k2, only the leading-N term need be kept. Thus the

product, to this order, can be expressed as

1 +

N=2X
k=1

�
Nk � k2 +

Q

2
(k2 +N2 � 2Nk + k2)

�
u2 (23)

or

1 +

�
N3

8
� N3

24
+Q

�
N3

48
+
N3

4
� N3

8
+
N3

48

��
u2 (24)

Replacing u with �a2, we obtain the result:

P (s2 < a2) = 1� �1� (N � 1)�a2
�N=2�

1 +
�2N3a4

12
(1 + 2Q)

�
(25)

and this is accurate neglecting terms smaller than O(1=N).

This behaves reasonably for a cumulative distribution function, until pushed to large
a; when (N � 1)�a2 > 1 you have to pin the distribution at a c.d.f. of 1. Although the
likelihood of a being anywhere near that big is in�nitesimal, an exponential factor would be
better. With some care, we can express this result in that manner. When Nu is small,

N=2Y
1

(1� (N � 1)u) = 1� N

2
(N � 1)u+

1

2

N

2

�
N

2
� 1

�
(N � 1)2u2 + : : : (26)

while

e�
N(N�1)

2 u = 1� N

2
(N � 1)u+

N2(N � 1)2

8
+ : : : (27)

We will need to keep terms of order N3u2 and higher|and the N4u2 terms match.

N=2Y
1

(1� (N � 1)u) = e�
N(N�1)

2 u

�
1 +

N3

4
u2 + : : :

�
(28)

Finally, the cumulative distribution function, expressed as an exponential times a polynomial
series and including corrections of order 1=N , is:

P (s2 < a2) = 1� e�
N(N�1)

2 �a2
�
1 +

2 +Q

6
�2N3a4

�
(29)

The sensible behavior of equation 29 when a grows large makes it very useful.

As to using the more exact distribution in the context of a minimum distance test for
randomness: For each trial with minimum distance squared a2, instead of forming a variate
from 1� exa2 you merely form that variate from 1� exa2(1+ ya4). The additional accuracy
costs very little.
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5 How Many Trials Can Be Done?

The Minimum Distance test of the quality of a random numbers generator probes whether
there are any areas in the square which are more densely populated than they ought to
be. N is taken to be large so as to probe this issue at a granularity of 1=N , that is, (with
N = 8000) if there were an area of length scale 1/50000 with too high a density, the test
would fail to perceive that.

The number of trials in the test determines the sensitivity to that 
uctuation. For exam-
ple, with one trial, you would not expect to detect a hint of an incorrect distribution unless
the typical high-density area were ten times as dense as it should be. By this reasoning, one
would like to use at least 2500 trials, to be sensitive to small-grain 20% density 
uctuations.
(Note that the test in DIEHARD uses only 100 trials, and would probably not detect a
problem in a generator that had areas with 1.5 times the proper density.)

Now that we know the �rst order error in the exponential approxiation to the true
distribution, we can examine how many trials one could use before the deviation from the
proper distribution might cause \false positives" declaring a good random engine as 
awed.
That is a danger if the assumed c.d.f. ever deviates from the actual c.d.f. by at least about
:1=
p
T where T is the number of trials done. That is, T trials probes the distribution with

a sensitivity of :1=
p
T , and if we do not stray by more than a tenth on that scale, then the

error in our approximate c.d.f. is completely unimportant.

The maximum deviation happens when a2 � 4=(�N2) and the deviation is about
16(2+Q)

6N . For N = 8000, this is .0007. This gives T � 200 so we are quite comfortable
at 100 trials, but would be pushing things at a thousand, with a non-negligible risk of false
rejections. And there would be a very high chance of false rejection were we to probe with
as many as the desired 2500 trials.

On the other hand, with the corrected distribution in equation 29, the error will be
down by approximately another factor of N . The coe�cient of the next correction term is
probably about three times that of the present one (based on the di�erence between the
exponential and the product at that level|the other deviations are comparable in scale).
But even taking that coe�cient to be twenty instead of three, with the accurate c.d.f of
equation 29, we should be completely safe taking up to twenty million trials. Practical time
considerations limit our ability to probe beyond about a million trials of 8000 numbers; thus
the present approximation is accurate enough that further work to extend it to third order
is not warranted.

6 Higher Dimensions

The merit of the Minimum Distance test lies in the fact that it will detect any rank-de�ciency
with stripe-spacing bigger than the expected distance, and any clumping or 
uctuations in
the density on a scale larger than that distance. These are as useful in higher dimensions
as in two. The only hurdle is that you may need more points in each trial to get to a given
characteristic distance.

The issues we will discuss here are

� What is the expected distribution, to �rst order, for the d-dimensional case, with
d > 2?

� How many trials are we likely to be able to do for d-dimensional points, and is the
resulting accuracy good enough that the test is practical in that dimension?
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� Will we need higher-order corrections in dimensions past two, or is the �rst order
distribution adequate?

� If we need higher order corrections, what are the coe�cients for each dimension?

6.1 Lowest Order Distribution in d Dimensions

If we stick to lowest order so that overlaps are irrelevant, the entire section 2 for computing
the lowest order distribution function remains applicable, except that u, which is the volume
of the sphere of radius a, is no longer �a2 but instead is given by:

u =
�d=2ad

(d=2)!
d even (30)

u =
(2�)(d�1)=2ad

d!!
d odd (31)

The fact that ad appears instead of a2 merely implies that the lowest order distribution
is an exponential when expressed as a distribution of sd rather than s2.

Later when we can discuss how many points to use in each trial, it will be useful to know
something about the characteristic distances probed by a given N value in d-dimensional
space.

The characteristic minimum distance comes when N(N � 1)=2 times that volume is
roughly one. Using Stirling's approximation

d! � (d=e)d
p
2�d (32)

we �nd for the even cases (the odd cases will be quite similar) that

a � d

q
2
p
�d

r
d

2�e
N�(2=d) (33)

This is a slowly-varying function of d (which stays between about 1.4 and 2 for d < 16)
times N�(2=d).

6.2 Higher Order Corrections in d Dimensions

The reasoning that leads to a correction of the distribution given by equation (6) does not
change when the expression for u in terms of a changes. The contributions still come from
two sources: Overlaps of d-spheres, and expanding the product that leads to the exponential.
Although geometry will dictate the size of the former correction, at the very least the latter
is of the same form (and thus as important) in higher dimensions as it is in 2 dimensions.

In Section 3, one step was to compute the expected overlap hqi of two randomly placed
balls of radius a, situated such that the center line and the line from either radius to any
intersection point form an angle �. This overlap volume is twice the di�erence between the
volume of a wedge of a sphere of radius a, subtending a central angle � and a right circular
d-cone of side a and fulcrum half-angle � (in 2 dimensions this is an ordinary triangle with
base angle 2�).

For example, in 2 dimensions, the cone is a triangle with a base of 2a sin � and height
of a cos �, while the wedge has area a2�. Twice the di�erence is 2a2(� � cos � sin �), as in
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equation (11). We then multiply this by the area element at a radius of r, 2�r dr, and
integrate from r = a to r = 2a to obtain

hqid=2 =
3
p
3

4
�a4 (34)

We need to do this in higher dimensions; we will present the results for up to 5 dimensions.
The technique pattern is the same for all cases: We �nd the base d� 1 volume of the cone,
multiply by the height a cos � and divide by d to get the volume of the cone. We perform
a trivial integral in d dimensional poler coordinates to get the volume of the wedge, and
take twice the di�erence, which is the overlap for some �xed value of �. We �nd the volume
element in the r integration as the surface area of a d-sphere or radius r, and always have
dr = �2a sin � d� to turn the overlap integral into an integral over � from �=3 to 0. This
gives hqi. We �nally �nd the correction coe�cient Q by dividing u2 where u is the volume
of the d-sphere of radius a.

For d = 3:

base = �a2 sin2 � (35)

cone =
�

3
a3 cos � sin2 � (36)

wedge =

Z a

0

dr

Z �

0

r d#

Z 2�

0

r sin � d� (37)

wedge =
2�

3
a3(1� cos �) (38)

overlap =
8�

3
a3(2 + cos �) sin4

�

2
(39)

r-volume element! �32�a3 cos2 � sin � d� (40)

hqi = �256�2

3
a6
Z 0

�=3

cos2 �(2 + cos �) sin4
�

2
sin � d� (41)

hqi = 17�2

18
a6 (42)

Q =
17

32
� :5312 (43)

For d = 4:

base =
4

3
�a3 sin3 � (44)

cone =
�

3
a4 cos � sin3 � (45)

wedge =

Z a

0

dr

Z �

0

r d#

Z �

0

r sin � d�

Z 2�

0

r sin � sin� d (46)

wedge = �a4(
�

2
� 1

4
cos �) (47)

overlap =
�

12
a4(12� � 8 sin 2� + sin 4�) (48)

r-volume element! �32�2a4 cos3 � sin � d� (49)

hqi = �8�3

3
a8
Z 0

�=3

cos3 � sin �(12� � 8 sin 2� + sin 4�) d� (50)

hqi = 9
p
3

32
�3a8 (51)
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Q =
9
p
3

8�
� :6202 (52)

For d = 5:

base =
1

2
�2a4 sin4 � (53)

cone =
�2

10
a5 cos � sin4 � (54)

wedge =

Z a

0

dr

Z �

0

r d#

Z �

0

r sin � d�

Z �

0

r sin � sin� d 

Z 2�

0

r sin � sin� sin d� (55)

wedge =
2�2

5
a5(

2

3
� 3

4
cos � +

1

12
cos 3� (56)

overlap =
4�2

15
a5(19 + 18 cos � + 3 cos2�) sin6

�

2
(57)

r-volume element! �128

3
�2a5 cos4 � sin � d� (58)

hqi = �512�4

45
a10

Z 0

�=3

cos4 �(19 + 18 cos � + 3 cos2�) sin6
�

2
sin � d� (59)

hqi = 353

3600
�4a10 (60)

Q =
353

256
� 1:3789 (61)

Although a slight trend toward increasing Q can be perceived, we see that this correction
term is roughly the same magnitude for d = 2 through d = 5.

The rest of the reasoning in Section 4 holds intact, so that in d dimensions, the cumulative
distribution function, expressed as an exponential times a polynomial series and including
corrections of order 1=N , is:

P (s2 < a2) = 1� e�
N(N�1)

2 u(a)

�
1 +

2 +Qd

6
N3u(a)2

�
(62)

where Qd is the correction coe�cient for d dimensions, and u(a) is the volume of a d-sphere
of radius a.

6.3 Are Higher Order Corrections Needed for Higher Dimensions?

At arbitrary d, the maximum deviation from the lowest order c.d.f. still comes at u � 4=N2

and the deviation is about 16(2+Qd)
6N . So at �rst thought, the same argument that shows the

�rst order correction to be important in d dimensions applies for higher d, with almost the
same quantitative results (since (2 +Qd) does not change much.

However, a subtle factor does matter: Since a �xed value of N probes, for higher d,
a coarser granulatiy in d-space (the granularity behaving like N�2=d) a tester might well
choose to use a slightly higherN for 3 dimensions than for 2, compensating for the extra time
needed per trial by doing fewer trials. A prudent tester might trade o� such that both the
granularity and sensitivity degrade slightly, rather than taking the entire hit on granularity.
If that is done, N increases, and thus the deviation of the lowest order approximation
dereases as 1=N . Also, if the number of trials decrease, then the accptable deviation level
rises.
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This argument shows that the necessity of higher order corrections diminishes in higher
dimensions. In particular, we can justify disregarding the corrections in, say, 6 or more
dimensions. One might in fact be tempted to disregard the corrections for all d > 2 but
since the cost of applying the correction is tiny (one the calculation of the coe�cient Qd has
been done), we suggest correcting the distribution in all cases where Qd is available.

7 Technique for Computing the Minimum Distance in d

Dimensions

To evaluate the probative power of a minimum distance test in d dimensions we should know
something about the time taken to do one trial of N points. This, in turn, requires some
assumption about how the minimum distance would be found. The naive method would
involve calculating the distance of each point to each other point; this requires O(N2)
distance computations for a trial of N points.

For large N , a superior technique is to store all the d-tuples of variates, sort by �rst
coordinate, then for each d-tuple, compute the distance to all the later d-tuples until the
di�erence in �rst coordinate exceeds the minimum distance found thus far. Schematically:

double mindist = 1;

for (int i = 0; i < N; ++i) {

dTuple p = v[i];

for (int j = 0; j < N; ++j) {

if ( v[j][0]-p[0] > mindist ) break;

if ( distance ( p, v[j] ) < mindist ) mindist = distance ( p, v[j] );

}

}

This technique takes O(N logN) for the sort, followed by the distance computation, which
turns out (non-trivially) to be O(N). The overall time is O(N logN), which is good.

A a better technique for �nding the minimum distance given N points in a trial might
be to divide the unit hypercube into many smaller hypercubic regions. If the side of the box
is greater than the minimum distance between the points, then the two minimally distant
points must lie in in the same box or in touching boxes. So if we choose boxes at least as
large as the greatest possible minimum distance, then we need only check distances against
the few points lying in the same box, plus, for points closer to some box side(s) (or corners)
than the current minimum, against the points lying in the boxes neighboring along those
sides. We can be sure to catch the actual minimum in that way.

Since we want the boxes to be small if possible, we would like to know a relatively small
upper bound on the minimum distance. We can construct that by the following reasoning:
If for a given set of points fPg the minimum distance is a, then for any given point p 2 fPg,
we can assign to p all the volume inside a d-sphere of radius a=2 around p. With that
assignment, no point in the unit cube can be in the d-spheres assigned to more than one
point p. Now, assume we were to know that it is impossible to pack N d-spheres of radius
� into a unit cube. Then if the minimum distance for any set fPg of N points were greater
than or equal to 2�, the assignment discussed above provides a packing of N d-spheres of
radius at least � into the unit cube{contradicting the assumption. Thus 2� is an upper boud
for the possible values of minimum distance.

So we could ask how tightly can we pack N d-spheres. Optimal sphere packing is a
tough problem; but we easily can construct a � (though not a smallest possible such �) such
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that it is plainly impossible to pack N d-spheres of radius � into a unit cube. Consider each
such sphere to fully contain a small cube of diagonal 2�, of of side 2�=

p
d. If the cubes

can't �t into the unit cube, then the spheres certainly can't. The number of small cubes of
side s=

p
d that can be �t into the unit d-cube is (

p
d=s)d, ignoring small boundary e�ects.

This implies that the minimum distance can be at most
p
d= d
p
N . That is, if we choose the

division to be into boxes of shorter than
p
d= d
p
N in each dimension, then we are guaranteed

that the two closest points lie in the same box or in touching boxes.

The technique derived from this reasoning would be to create a list for each of those
boxes; by the time all N points are added most lists will have several points (because of
our conservative choice for size) but not many. When a point is added, check the distances
between it and the contents of its list and the lists for the appropriate neighbor boxes. This
is a hash-table technique; it uses extra memory but its time-complexity grows linearly with
N .

That said, the simpler �rst good method, which relies on sorting, may be good enough
for the granularity and number of trials one would want. The loss of a factor of logN in
the sort step may be compensated by the simplicity of this method, for any practical value
of N .


