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ABSTRACT: We have come up with a way for calculating longitudinal wake-

�elds for high Q resonances by mapping the wake functions to a two dimension

vector space. Then in this space, a transformation which is basically a scale change

and a rotation, allows us to calculate the new wake�eld by knowing only one pre-

vious wake�eld and one previous particle passage through the cavity. We will

also compare this method to the brute force method which needs to know all the

passages of the previous particles through the cavity.
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INTRODUCTION

The inspiration for this paper came when we wondered whether it is possible to do our

simulation in a smarter way when it comes to wake�eld calculations. The brain dead way

of calculating the wake�eld requires us to remember the longitudinal positions of all the

particles which have gone through the rf cavity. Then from all these previous longitudinal

positions, the wake�eld is calculated for the particle which is just about to enter the cavity.

This is really ineÆcient, what we really like to do is to be able to calculate the new wake�eld

by only knowing the previous wake�eld. Intuitively, we thought that this can be done |

and in fact, we did do this | however, it was not too obvious when we started.

We will illustrate what we want to do by creating a �ctitious universe where the wake

function is

W 0

m(z) =

8>>><
>>>:

0 if z > 0

W if z = 0

2We�z if z < 0

(1)

where � is the decay length. For simplicity, we will assume that every particle which goes

through the cavity has the same charge in this paper. Referring to Figure 1, the wake w0

left by particle 0 is w0 =W as it just leaves the cavity. When particle 1 is about to enter

the cavity, the wake is

w+
0 = 2We�z10 (2)

where zij = zj � zi. When it just leaves

w1 = 2We�z10 + 2W (3)

For particle 2, the wake just before it enters the cavity is

w+
1 = 2We�(z21+z10) + 2We�z21 (4)

and similarly, for particle 3 before it enters the cavity is

w+
2 = 2We�(z32+z21+z10) + 2We�(z32+z21) + 2We�z32 (5)
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and ad in�nitum for every particle before it enters the cavity. Clearly we can write

w+
0 = 2We�z10

w+
1 = e�z21

�
w+
0 + 2W

�

w+
2 = e�z32

�
w+
1 + 2W

� (6)

which is really nice because for each particle going through the cavity, we need remember

only the last w+ and the position of the last particle through the cavity, i.e. w+
1 is written

in terms of w+
0 and z21, w

+
2 is in terms of w+

1 and z32 etc. The reason why we have such

a nice relationship in the �ctitious universe is because exponentials have the property

exey = eyex

exey = ex+y
(7)

Next, let us come back to the real universe and see whether we have the same nice

relationship. For a high Q resonator with resonant frequency !R, the longitudinal wake

function W 0

m(z) from equation (2:84) of Chao is

W 0

m(z) =

8>>>><
>>>>:

0 if z > 0

�Rs if z = 0

2�Rse
�z=c

�
cos

�!z

c
+
�

�!
sin

�!z

c

�
if z < 0

(8)

where Rs is the shunt impedance of the cavity, � = !R=2Q and �! =
q
!2R � �2. Again

referring to Figure 1, we can go through our previous analysis of particles 0 to 3 and see

that

w+
0 = 2�Rse

�z10=c
h
cos

�!z10
c

+
�

�!
sin

�!z10
c

i

w+
1 = 2�Rse

�(z21+z10)=c
h
cos

�!

c
(z21 + z10) +

�

�!
sin

�!

c
(z21 + z10)

i
+

2�Rse
�z21=c

h
cos

�!z21
c

+
�

�!
sin

�!z21
c

i

w+
2 = 2�Rse

�(z32+z21+z10)=c
h
cos

�!

c
(z32 + z21 + z10) +

�

�!
sin

�!

c
(z32 + z21 + z10)

i
+

2�Rse
�(z32+z21)=c

h
cos

�!

c
(z32 + z21) +

�

�!
sin

�!

c
(z32 + z21)

i
+

2�Rse
�z32=c

h
cos

�!z32
c

+
�

�!
sin

�!z32
c

i

(9)
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Looking at w+
0 , w

+
1 , and w

+
2 , there is not any obvious relationship between them like that

of the �ctitious universe. The cause of the problems are the cosine and sine terms in (8)

which spoil the properties of the exponentials which means that we cannot write w+
1 in

terms of w+
0 and z10 etc. This is the reason why we must remember the z position of every

particle which have entered the cavity before the current particle in order to calculate the

wake�eld on the current particle | we will call this the brute force method. Of course,

the point of this paper is that we have found a way reproduce the eÆciency of (6).

Figure 1 This is the example which we will use throughout the

paper. The particles 0, 1, : : : are all going into a rf cavity.
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THEORY

If we look closely at the wake function W 0

m(z)

W 0

m(z) =

8>>>><
>>>>:

0 if z > 0

�Rs if z = 0

2�Rse
�z=c

�
cos

�!z

c
+
�

�!
sin

�!z

c

�
if z < 0

(10)

and stare at it long enough, we see that when the third line of (10) is re-written as

w0(z) �W 0

m(z)=2�Rs = e�z=c
�
cos

�!z

c
+
�

�!
sin

�!z

c

�
if z < 0 (11)

the rhs looks suspiciously like a vector projection onto the v axis of a plane de�ned by

an orthogonal axis (v̂; v̂0). Our suspicions will be vindicated with the calculations shown

next.

First let us de�ne

V =

�
1
�
�!

�
(12)

to represent V = v̂ + �
�! v̂

0 and T to be a transformation which is a scale change and a

rotation about the origin in this plane

T (z) = e�z=c
�

cos �!zc sin �!z
c

� sin �!z
c cos �!zc

�
(13)

Therefore, if we write

w
0 = T (z) � V

= e�z=c
�

cos �!zc sin �!z
c

� sin �!z
c cos �!zc

��
1
�
�!

�
(14)

then clearly the v̂ component of w0 which is the projection of w0 onto the v̂ is (11). Since

the v̂ component of any vector in the (v; v0) plane is a wake function, we will call these

vectors the wake vectors. Furthermore, T satis�es the properties

T (a)T (b) = T (b)T (a)

T (a)T (b) = T (a+ b)
(15)

5



which is exactly the type of transformation which we want as was discussed in the Intro-

duction. This is the key for getting to the fast wake�eld calculation method.

The fast wake�eld calculation can be summarized with the following iterative formula

V
+
k = T (�zk+1;k) � Vk particle (k + 1) just before entering the cavity

V
�

k = V
+
k +

�
1
2
0

�
particle (k + 1) is in the cavity

Vk+1 = V
+
k +

�
1
�
�!

�
particle (k + 1) just leaves the cavity

(16)

where k 2 f0; 1; : : :g, �zk+1;k = zk � zk+1, and V0 =

�
0
0

�
. This means that for every

iteration, only two parameters Vk and �zk+1;k are needed to calculate Vk+1. This is what

di�erentiates the fast method from the brute force method which requires the knowledge

of every z0, z1, : : :,zk for calculating the wake�eld on particle k + 1.

To understand how to use (16), we will refer again to Figure 1 as an example. Just

before particle 0 enters the cavity, V0 =

�
0
0

�
. Therefore V +

0 =

�
0
0

�
which means that

when particle 0 just leaves, the wake vector left by particle 0 is V1 =

�
1
�
�!

�
. Next, when

particle 1 is just about to enter the cavity

V
+
1 = T (�z10) � V1 (17)

and when it leaves

V2 = T (�z10) � V1 +

�
1
�
�!

�
(18)

And thus when particle 2 is just about to enter the cavity

V
+
2 = T (�z21)

�
T (�z10) � V1 +

�
1
�
�!

��

= T (�z21 +�z10) � V1 + T (�z21)

�
1
�
�!

� (19)

Expanding (19) with (13),

V
+
2 =

�
e�(�z21+�z10)=c

�
cos �!

c (�z21 +�z10) sin �!
c (�z21 +�z10)

� sin �!
c (�z21 +�z10) cos �!

c (�z21 +�z10)

�
+

e��z21=c
�

cos �!
c�z21 sin �!

c�z21
� sin �!

c�z21 cos �!
c�z21

���
1
�
�!

� (20)
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and extracting the v̂ component of V +
2 , we have

[V +
2 ]

v̂
= e�(�z21+�z10)=c

h
cos

�!

c
(�z21 +�z10) +

�

�!
sin

�!

c
(�z21 +�z10)

i
+

e��z21=c
h
cos

�!

c
�z21 +

�

�!
sin

�!

c
�z21

i

= w0

�
�z21 +�z10

�
+ w0

�
�z21

�
(21)

which is exactly the solution if we had used (11) to calculate the wake function for particle 2

just before it enters the cavity.

Proof

We will use mathematical induction to prove that the iterative formula (16) works.

Using the previous example, the formula is true for k = 1. Assume that the formula is

true for k = n, i.e.

[V +
n ]

v̂
=
h
T (�zn+1;n) � Vn

i
v̂

=
nX
i=0

w0

0
@ nX

j=i

�zj+1;j

1
A (22)

then

[V +
n+1]v̂ =

h
T (�zn+2;n+1) � Vn+1

i
v̂

=

�
T (�zn+2;n+1) �

�
V
+
n +

�
1
�
�!

���
v̂

=

�
T (�zn+2;n+1 +�zn+1;n) � Vn

�
v̂

+

�
T (�zn+2;n+1) �

�
1
�
�!

��
v̂

(23)

where we have used (15) and (22). In order to continue, we have to expand (22)h
T (�zn+1;n) � Vn

i
v̂

= w0(�zn+1;n) + w0(�zn+1;n +�zn;n�1) + : : :

+ w0(�zn+1;n +�zn;n�1 + : : :+�z10)

(24)

and thus�
T (�zn+2;n+1 +�zn+1;n) � Vn

�
v̂
= w0(�zn+2;n+1 +�zn+1;n)+

w0(�zn+2;n+1 +�zn+1;n +�zn;n�1) + : : :

+ w0(�zn+2;n+1 +�zn+1;n + : : :+�z10)

(25)
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which is the �rst term in the last line of (23). It is also trivial to show that the second

term of the same line is

�
T (�zn+2;n+1) �

�
1
�
�!

��
v̂

= w0(�zn+2;n+1) (26)

Summing (25) and (26) gives us the required result

[V +
n+1]v̂ =

n+1X
i=0

w0

0
@n+1X

j=i

�zj+1;j

1
A (27)

Therefore, our iterative formula is true by mathematical induction.

CONCLUSION

Although we have proved our formula for the case when the charge of each particle

is the same, it is trivial to extend it to the case of di�erent charges by modifying (16)

by multiplying the charge to

�
1
2
0

�
and

�
1
�
�!

�
. By incorporating this new method to our

wake�eld calculations, we have seen a huge improvement in speed between the fast and

brute force methods.
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