
Fermilab FERMILAB-TM-2156 D0 August 2001

Distributed Processing and Analysis of Physics

Data in the D0 SAM System at Fermilab

Igor Terekhov

Fermi National Accelerator Laboratory, Batavia, IL 60510

terekhov@fnal.gov

May 4, 2001

Abstract

SAM (Sequential Access through Meta-data) is the data access sys-

tem for the D0 high energy physics (HEP) experiment at Fermilab. The

system is being developed and used to handle the Petabyte-scale experi-

ment data. The D0 applications, like virtually all HEP applications, are

data-intensive, which poses special problems for the data management

and job control facilities in the distributed environment. The fundamen-
tal problem is to bring the user applications and the data together, and

SAM attacks the problems from both sides. First, we describe how the

system moves the data through the distributed disk cache. Second, we

describe how SAM interacts with the batch system to synchronize parallel

user jobs with the data availability. All the design solutions herein have

been implemented in a real system that handles the mission-critical data

of the D0 experiment; thus, we present our work from the standpoint of

real experience.

KEYWORDS: data-intensive applications, distributed systems, parallel process-
ing

1 Overview

In the past, most scienti�c jobs, including those at the D0 experiment at FNAL,
were run and controlled by the batch systems. The classic batch system is how-
ever, strongly centered at computing resources and does not take into account
the data availability, particularly when the data is to be retrieved from outside
the processing station. Scientists were responsible for writing pre-requisite job
scripts that would ensure, on a per user basis, the availability of the data prior
to the job dispatch. There has not been a provision to run long jobs whose

1

 Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

input data size exceeds the capacity of a local station that would require data
replenishment in the course of the job run. Unless it could be described by
e.g., a single �le, input data was never part of the job speci�cation, which made
it impossible to coordinate usage of resources connected with data movement
across multiple jobs, and data sharing was minimal.

Aside from being inconvenient for the users and error-prone, the old ap-
proach is simply impossible with the modern amounts of data and access vol-
umes. In Run II, which is a major upgrade of the accelerator facility at Fer-
milab, the D0 experiment will accumulate on the order of 1 peta-byte of data
whose signi�cant fraction will continuously be accessed by hundreds of collabo-
rators throughout the world. Furthermore, the HEP community moves rapidly
towards distributed computing whereby collaborators prefer owning of highly
eÆcient locally operated clusters to committing resources to a central power.

In response to these and other challenges, the D0 experiment is developing a
fully distributed data handling system, SAM. It is an ongoing project[1], which
has a number of goals, or aspects, more fully described elsewhere[2, 3]: full data
cataloging, including processing history and dataset management, globally dis-
tributed uniform access by possibly remote users, data replication and caching
on disk, hardware resource management and user job control. In the center of
the system is the meta-data (the "M" in SAM) catalog implemented in a rela-
tional database (Oracle). Most of the data model of the catalog pertains to the
contents description of the actual physics data, which is somewhat D0-speci�c
and is left outside of this paper's scope. Other meta-data is used for the actual
data-handling system and include data replica catalog (�le location tracking),
resource management policies and con�guration information. The actual data
movement and job management is done by a hierarchy of servers communicat-
ing via CORBA[9] interfaces among themselves and with the database. The
complete description of the architecture is found in various documents at the
SAM WWW site[1]. The system has been operational in production use for
over two years, with much practical experience gained in the time.

In our paper we concentrate on how the data is distributed and processed
in parallel fashion with SAM. The data access is fully distributed in the sense
that the hardware resources are not concentrated on any particular machine or
even site, rather, they are arbitrarily apportioned by the processing stations.
Each station is typically a homogeneous cluster or a single multi-processor ma-
chine. A server called station master runs at each station to coordinate the
associated collection of resources, as well the user jobs to be run therein. The
system is therefore distributed in both the global (the network of stations) and
the local (within a station) senses. In the present paper we concentrate on
the local cluster aspects; some of the global aspects are described in [4], others
constitute future work we outline at the end of the paper. We �rst describe
the physical data management, which for the reasons explained later is essen-
tially the distributed disk caching for the purposes of "bringing the data to the

2

applications". Second, we describe the batch system integration component,
which is responsible for communication between the data delivery system with
the abstract batch system, for the purposes of "bringing the applications to the
data".

2 Disk Caching

In the earlier days, the D0 experiment envisioned that the bulk of the data would
be stored on tape in a mass storage system (MSS) and that the primary purpose
of disk caching would be to maintain a dynamically selected small subset of data
on disk for user access, thus mediating user access to the MSS1. Access to an
MSS is usually expensive because it often requires operator mount or mechanical
robotic arm movement, with latencies far exceeding computer data access time
scale. The SAM architecture therefore included a global optimizer primarily to
control MSS access (not discussed here).

As we have already said earlier, for a lack of the distributed technologies and
infrastructure, data access (especially analysis) tended to be centralized on large
cost-ineÆcient analysis servers. Such centralized servers, while accumulating
large disk by most traditional measures, could not always handle any signi�cant
fraction of the data (e.g., for about one peta-byte of the total D0 data, only a
few tera-bytes of disk was initially envisaged).

With the de-centralization of the data access at D0, the mission of the disk
data caching in SAM is transforming into taking full advantage of the distributed
network of disk caches. A signi�cant subset of the interesting data can in fact
be placed on such distributed disk and replicated as necessary often without the
costly MSS access. In this section we show how the SAM architecture handles
the challenge of distributed caching.

Each machine in a cluster at a station has locally mounted disks. These
disks are known to the station master and are part of its con�guration, stored
in the aforementioned database. Running at each machine is a station's agent
called stager (the name is due to the fact that making a local copy of data is
called staging in HEP). The stager has physical access to the local �le systems
and invokes �le transfer facilities. The latter are selected based on the type of
transfer; for MSS access the MSS-speci�c client is invoked whereas for disk to
disk copies an eÆcient ftp-like program such as bbftp is used.

When the station's cache manager receives a request to cache a dataset, it
issues a request to the "global" (site-wide) optimizer mentioned above (which
has evolved from an MSS access controller to a manager of network traÆc and
other global resources). Requests for di�erent datasets are regrouped based on
global resource optimization consideration. For every group of �les authorized
for transfer, the cache manager allocates disk space from the distributed pool

1The D0 MSS of choice is the Enstore system[5].

3

of caches on the cluster and issues requests to the stagers to deliver the group
at about the same time.

Cache replacement is based on the �le usage. The physical total disk of
the station is logically divided by groups, each group using its own cache man-
agement scheme. Multiple cache management algorithms (such as LRU, FIFO,
various avors thereof, etc.) are known and con�gured at run time in the sta-
tion independently for each group, as in the "strategy" design pattern. When
data used by di�erent groups have little overlap, having multiple independent
virtual cache managers gives great exibility in disk usage. When di�erent
groups access some �les, the �les' ownership migrates accordingly after the last
or most frequent user. The tracked "users" of the cached �les are not the user
applications, these are the projects to be described later in the job management
section.

We will note in passing that, while managing the locally distributed caches,
stations exchange data in the course of global data routing and replication as
we described earlier in [4].

3 Job Management

In the present discussion, by user job we primarily mean the activity of compu-
tation on data that has been retrieved and cached by the above cache manager.
Production and storing of data by user applications is largely symmetric to the
consumption. The user job speci�cation, when submitted to the system, there-
fore contains two parts: the application to be run (e.g., a script or a binary
name), and the input dataset 2. At present, the job is submitted to a station
selected by the user, although we envision a global request broker in the future
to balance the load among the stations.

The end goals of the job control and data management are to ensure "fair"
resource allocation by certain user categories, subject to the collaboration's
policies, and maximization of the overall job throughput. In the data intensive
world, both goals require approaches that fully incorporate the data manage-
ment issues. To attain the �rst goal, the system uses fair share scheduling; for
the second, the system performs resource co-allocation.

3.1 Fair Share Allocation and Scheduling

The SAM scheme for Fair Share Allocation and Scheduling (FSAS) of resources
and user jobs, respectively, serves more than the purpose of data consideration
in job scheduling. It provides a exible and general framework that can be used
in any job scheduling environment.

2Although speci�cation of the intended output is desired, the output is seldom predictable
before the job is run and is absent initially.

4

For the purposes of FSAS, the system uses the concept of a "bene�t". When-
ever a user job is run, the user 3 receives a number of bene�ts of di�erent types,
because it (a) uses or consumes resources, and (b) accomplishes some (hope-
fully useful) results. Each resource is assigned a bene�t type; in addition, having
achieved certain work, such as having processed an input �le, also counts as a
bene�t. In fact, any quanti�able quantity that increases monotonically with
every job run may be treated as a bene�t type. A cumulative vector of ben-
e�ts received by each user is maintained. At the time of job submission, and
possibly at run time, the user's fraction of the cumulative bene�ts in the grand
total bene�t allocation for all users, is computed. The fraction received by this
user is compared to its allotted fraction of bene�ts. To do so, the station master
weights the di�erent components of the bene�t vector by con�gurable quantities
called bene�t type weights. If the user is below its intended fair share, its job
will be scheduled ahead of the other jobs, and vice versa.

Note that simpler versions of fair share scheduling are used in some batch
systems. For example, the LSF commercial batch system uses CPU consump-
tion alone to schedule jobs. In our system, on the other hand, the administrators
are given the power to control which bene�t types contribute heavier into the
fair share scheduling, thus focusing on the resources that are most scarce, or,
under the overall shortage of resources, guaranteeing that the amounts of work
done by di�erent users reect the democratically decided priorities and policies.

3.2 Co-allocation of Data Management and Computing

Resources

When a user job is submitted to the station master, the latter translates the
input dataset into an explicit set of �les using the meta-data catalog mentioned
in Sec. 1. The already available �les, if any, are "locked" temporarily for the
duration of the project being started. The station master launches the project
master (Sec. 3.4) and queues data retrieval for the �les missing from the caches,
if any. The cache replenishment for this project, as part of the overall station
cache management described above, is done asynchronously from the progress
of the job, to minimize the overall job turnaround time. The initial dispatch of
the job is, however, coordinated with the availability of some minimum amount
of data (usually, any one �le from the dataset) on local disks. The SAM system
augments the original user job speci�cation by additional (user-transparent)
requirement of a certain resource becoming available, or an event occurrence.
If there are no �les available to the job at all, the job will not be dispatched
until SAM signals somehow to the Batch System (BS) that the job is runnable.
SAM thereby brings jobs to the data in the temporal sense.

3In our resource management discussion, a "user" is usually a group of individual users,
so that resources are allocated by groups rather than by individuals.

5

9 getConsumerEndStatus/stop5 checkIfDeliveryStarted

SMBS Client Station Master
2 getBSSubmitCommand

User

1 submit(project,script)

Batch System

4 submit(script)

SAM Script

6 dispatch

User Script8 invoke

7 started()

Project Master

10 resubmit(self)

3 start

Figure 1: Station Master - Batch System (SMBS) Collaboration Diagram.

SAM also strives to bring the applications to the data in the spatial sense,
contingent on the capabilities of the underlying BS. In a distributed environment
on a cluster, when some dataset �les are already cached, the SAM system will
"recommend" to the BS where the job's processes should be dispatched. Note
that this recommendation cannot be a directive because in general, the initial
availability of the �les may not be the most important criterion for the selection
of the execution sites, even in the data-intensive environment (Sec. 4).

3.3 Implementation of the Data Delivery Integration with

the Batch System

The above design ideas are carried out as follows, see Fig. 1. The client passes
the input dataset speci�cation to the SM which uses the above considerations
to return the exact job submission command string. The exact mechanisms
for communicating information between SAM and the Batch System (BS) are
dependent on the batch system in question, of course, that is why SAM uses
abstract BS adapters to execute the above plans. For example, in one batch
system the job is made to wait on data arrival by requiring a resource that is
coded as the name of the job's project. In another, the batch system awaits an
explicit event for the job. The SAM system will declare resource availability
in the �rst case and generate event in the second. All the details about the
particular batch systems are hidden into the respective adapters.

The user job is wrapped, also transparently to the user, into a SAM script
that �nally invokes the user script. The wrapper script is capable of resubmit-
ting itself when a long job fails on account of temporary data unavailability. In
addition, the wrapper script ensures proper clean-up and bene�t accounting,
Sec. 3.1.

Note that in the Figure, the initial data availability is polled by the batch
system, e.g., by asking for an abstract resource or executing an external pre-
execution command. Some BS's require that such an event is in fact pushed
into the BS, which is supported as well.

For the purposes of this paper's relevance to data-intensive computing in

6

general, it is very important that the data delivery system in SAM and the
Batch System are coupled rather loosely. Virtually any BS can be adapted
to our scheme, and, symmetrically, any external data delivery system may be
interfaced with the BS as our scheme suggests.

3.4 Actual Data Processing

During the run of the job, or \project", consumption of �les by applications
is coordinated by the server called project master. The details of this have
been described earlier, see [6]; we merely summarize the scheme here. The D0
applications served by the system process and/or analyze HEP data, which is
typically a collection of events objects. SAM caches the data in the form of �les
on the local disk, with applications having the infrastructure to deliver event
objects to the end user code[7]. Some D0 applications are readily parallelizeable,
i.e., allow multiple threads or processes, others require users to do special work
to combine results. Parallelism infrastructure in the application is outside the
scope of SAM, however, and the applications need not be D0 applications in
the strictest sense. The project master in SAM will ensure distribution of �les
(cached for it by the station master) to the consumer processes al long as they
conform to a simple protocol.

4 Future Work

The future design work in SAM is planned for the overall resource management
and job control, with the emphasis on global distribution. One aspect of par-
ticular importance is studying and balancing the relative costs of dispatching
a job at a site with computing resources, but without a priori available data,
versus queuing the job at a \busy" site where the data is available. Already at
a small distributed cluster, it is evident that the initial availability of (some) of
the project's data at a machine is only one of the several factors to a�ect the job
placement. The sites recommended by the cache manager may or may not be
used by the job scheduling system, depending on the \costs" of data replication
and the \value", or \bene�t" of running the job sooner rather than later.

We therefore plan to develop a general language to express resources as well
as \costs" and other economics-like terms, in order to address such issues, espe-
cially with the inter-cluster, inter-station job management. This work is planned
for a collaboration with Computer Scientists in the course of the Particle Physics
Data Grid, most notably with the Condor team[8].

7

5 Acknowledgements

This work presents some of the conceptual design of the SAM project. The
work is only a part of the project, carried out by the team of several people [1],
who design, implement, integrate, test and support the system. The author is
proud to be a member of this group. The author is grateful to Ruth Pordes and
Gabriele Garzoglio of FNAL for comments on the content and quality of this
paper.

References

[1] The SAM team, L.Lueking (co-leader), V.White (co-leader), L. Loebel-
Carpenter, C. Moore, H.Schellman, I.Terekhov, J.Trumbo, S.Veseli,
M.Vranicar. The home page http://d0db.fnal.gov/sam.

[2] L. Carpenter et. al. \SAM Overview and Operation at the D0 Experiment",
submitted to The International Conference on Computing in High Energy

and Nuclear Physics (CHEP 2001), September, 2001.

[3] V.White for the SAM project, \The Data Access Layer for D0 Run II:
Design and Features of SAM", talk given at The International Conference

on Computing in High Energy and Nuclear Physics (CHEP 2000), February,
2000, Padova, Italy,

[4] I. Terekhov et. al. \SAM for D0 - a fully distributed data access system",
talk presented at VII International Workshop on Advanced Computing and
Analysis Techniques in Physics Research (ACAT 2000), Oct. 2000, Batavia,
IL, in proceedings.

[5] The Enstore home page http://www-isd.fnal.gov/enstore.

[6] I. Terekhov and V. White, Distributed Data Access in the Sequential Access
Model at the D0 Experiment at Fermilab, poster presentation, in proceed-
ings of The Ninth IEEE International Symposium on High Performance
Distributed Computing, Aug, 2000, Pittsburgh, PA

[7] The D0 framework is described by J. Kowalkowski, in \The D0 Frame-
work", talk given at CHEP2000, see [3].

[8] The Condor project home page http://www.cs.wisc.edu/condor/.

[9] The OMG home page http://www.omg.com. For C++ components, \OR-
Bacus for C++ and Java" http://www.ooc.com. For Python components,
\Fnorb, a Python ORB" http://www.fnorb.org.

8

