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Abstract

Effect of different mechanisms of the synchro-betatron coupling (dispersion function at the
interaction points, chromatic tune modulation, finite bunch length) on the p-bar stability in the
Tevatron Run II configuration is considered. It is found that the long-range interactions in the
presence of large dispersion produce large contribution (~10) to the chromaticity of the betatron
tunes. This chromaticity, in its turn, can give rise to multiple synchrotron satellites of the betatron
resonances increasing their effective width.

Novel formulae are presented which permit to significantly speed up analytical calculations
of the beam-beam tuneshifts and resonance strength.
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1 Introduction
There are several reasons owing to which the beam-beam driven resonances (the synchro-betatron ones
in particular) can present in the Tevatron Run II configuration [1] a greater danger than in the previous
runs. Besides some increase in the beam-beam tuneshift due to a larger number of protons per bunch
and a smaller proton emittance (see Table 1), there will be a factor of seven larger number of the
parasitic long-range interactions, some of them at only ~ 7σ⊥ separation (see Fig.1) with the Run II
lattice version available on the Web [2]. These numerous parasitic encounters will strongly enhance
excitation of the odd-order resonances.

              Table 1.  Comparison of the proton beam parameters for different Tevatron runs.

Another important effect which the long-range
interactions give rise to is the beam-beam induced
chromaticity (observed experimentally at LEP [3]). It
depends on the particle transverse amplitudes and the
bunch collision schedule and therefore can not be
eliminated with the help of sextupoles. The large
chromatic tune modulation of the off-momentum
particles will produce synchrotron satellites increasing
the effective width of the betatron resonances. There is
also an additional contribution to the satellite excitation
owing to the finite dispersion at the location of parasitic
encounters.

The effect of the head-on interactions can be
more pronounced in the Run II configuration as well due
to a smaller bunch length (see Table 1), especially with
introduction of the superconducting RF which will
provide VRF = 20MV at 212MHz as compared to
VRF = 1MV at 53MHz with the existing RF system. The
reduction in the bunch length is big enough to weaken

the beneficial phase averaging effect [4, 5, 6] but may be insufficient to avoid excitation of the
synchrotron satellites by the betatron phase modulation of the beam-beam kicks at the low-beta
interaction points (IPs).

The present report is devoted to the analytical study of the beam-beam driven synchro-betatron
resonances in the Run II configuration and to some development of the theoretical tools which occurred
necessary to perform this study.

Run Ib Run II Run II, SC RF
Np /bunch,               1011 2.32       2.7       2.7       
εp (95% normal.),   π⋅mm⋅mrad 23       20       20       
ξ /nominal IP 0.0074       0.01       0.01       
N parasitic IPs 10       70       70       
ξ, total ~ 0.015       ~ 0.025       ~ 0.025       
σs ,                          cm 63       37       14       
σE ,                         10-4 1.5        0.9       3.1       
νs ,                          10-3 0.7        0.7       6.4       

dx/σxβ

dy/σyβ

Figure 1.   Normalized beam separation at all
possible interaction points with 36×36 bunches.



2 Beam-beam potential

Let us choose the generalized azimuth θ = s/R, R being the mean radius of the orbit, as the independent
variable (so that the longitudinal momentum plays the role of the Hamiltonian) and introduce
canonically conjugated coordinates and momenta q  = (x, y, σ), p  = (px, py, δp), where in the ultra-

relativistic case σ = s - ct for one beam (let it be p-bar) and σ = - s - ct for the other.
Due to the synchrotron motion the actual collision point (CP) of two particles belonging to the

counter-rotating bunches is shifted w.r.t. the interaction point (IP) of the reference particles by the
amount

2
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IPCP
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If the r.m.s. bunch length σs is comparable with the beta-function this shift leads to: i) modulation of
the betatron phase by synchrotron motion thus provoking SBRs; ii) phase averaging of high order
betatron resonances.

To analyze these effects (well-known in principle) we will apply here a technique permitting to
lump the interaction with a long bunch to a single point.

It was shown in Ref.[7] how to ascribe the interaction which takes place at a shifted point to the
position of the reference IP with the help a similarity transformation and construct a symplectic
“synchro-beam” map. The generating Hamiltonian for this map can be found [8] and presented in the
form
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where δp(θ) is the periodic δ-function, N is the number of particles in the bunch, F0 is the normalized to
unity distribution function, rp is the classical radius of the particles, γ is the relativistic mass factor, G is
Green’s function.

In the case of a finite horizontal crossing angle, 2α, Green’s function can be written in the form









σ′−σ
′+

+′−+σ′−σ
′++α+′−−= 22 )](

2
[)])(

2
([ln yyxx

pp
yy

pp
xxG , (2.3)

its dependence on the momenta being the price paid for lumping all the interaction at the point θ = θIP .
Let us assume that the particle motion in the strong (proton) beam is regular so that invariants

of motion I I I Ix y s= ( , , )  exist. They can be used in the construction of the equilibrium distribution

function which we presume to be Gaussian:
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where εi, i = x, y, s, are the r.m.s. emittances (mean values of the action variables).
To evaluate the beam-beam potential (2.2) let us express the coordinates and momenta via the

action-angle variables. First we extract the closed orbit and dispersion
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where the tilde marks variables describing betatron and synchrotron oscillations (uncoupled in the
linear approximation) and prime denotes differentiation by s. The most important nonlinear term for the
subsequent analysis arises from the betatron tune modulation by the synchrotron motion (see Ref.[8]
for the rigorous introduction via a Lie-transform)
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where αx = - βx′/2 is the Twiss parameter, βs = RαM /νs is the longitudinal β-function with αM  being the
momentum compaction factor,
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is the periodic betatron phase function and
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The formulas for the vertical plane are analogous to (2.5-8).
Let us note that parameters αx, xco′, Dx′ entering Green’s function (2.3) via momenta can be

important only for low-beta interaction points where they should be zero (in an absence of
misalignments). Therefore we may put αx = xco′ = Dx′ = 0 everywhere (and so for the vertical plane).
Also, we make a number of assumptions to simplify the formulae:
1) the betatron functions at the low-beta IPs to be equal, βx

*= βy
*= β*, so that the finite bunch length

effect in both planes is described by the same variable

∗β
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2
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2) the dispersion functions for both beams are equal (which is not really so in Tevatron);
3) the vertical dispersion function and crossing angle are negligible.

Now let us introduce the r.m.s. beam sizes of the strong bunch and their ratio r:
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Representing Green’s function as a Fourier transform
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and performing in (2.2) integration by the transverse variables we obtain
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where FL is the longitudinal distribution function (normalized to unity), ui = ki (1+b2)1/2, double tilde
denotes additional phase shift due to displacement (2.1) of the actual collision point:
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In the following we will neglect the variable b appearing anywhere else in eq.(2.12) besides the phase
ϕ. This is justified in the absence of large crossing angle α since at the nominal IPs, where b can reach
appreciable values, parameters dx,y , Dx should be zero (in the absence of imperfections) whereas at
parasitic IPs b is small. Let us note, in passing, that the terms we are going to neglect provide extra
suppression of the effect of imperfections in addition to the phase averaging described by ϕ.

When the finite bunch length effect can be ignored altogether, the beam-beam potential can be
reduced to the form
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which was the starting point for analysis in Ref.[9]1. In its derivation we made use of the formula
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with subsequent integration by the longitudinal variables and u1,2 and finally setting τ = (t -2 -1)/2r2.

                                                          
1 In the Mathematica notebook inc_bb.nb cited in Ref.[9] the sign of the potential had been chosen opposite to that in
eq.(2.14) to describe the p-p interaction. Also, there was a minor misprint in the formula not affecting the actual
calculations. Let us note that a similar representation of the beam-beam potential was used by J.Jowett [10].



3 Beam-beam contribution to the tunes and chromaticity
The beam-beam tuneshifts are defined by the formula
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where the brackets denote averaging over all phase variables, ψi, and the azimuth, θ. The averaging
eliminates dependence on the phase ϕ, so there is no finite bunch length effect on the tunes under the
assumptions made (equal β-functions and small offsets and dispersion at low-beta IPs, large β-
functions at parasitic IPs).

In the simplest case α = dx,y = Dx = 0 averaging over ψi can be done analytically.
Normalizing the action variables of the weak beam particles by the r.m.s. emittances of the

strong beam:
syxiIJ iii ,,,/ =ε= , (3.2)

and introducing the beam-beam parameter
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(κ = 0 for now) we obtain the formula
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which was given without derivation in Ref.[11] and, in the case of a round beam, r = 1, in Ref.[12].
In the general case the averaging over ψi can be performed quite efficiently by direct numerical

integration as proposed in Ref.[9]. We will employ this method in the present study as well. Let us
remind the expression for the averaged beam-beam Hamiltonian
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where δx= dx/σxt√2, δy= dy/σy√2 and
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Hn(x) being the Hermite polynomials. Now we can calculate the tuneshifts with the help of the relation
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and an analogous formula for Y.
Fig.2 shows the footprint of the antiproton bunch #6 in the tune diagram obtained with the

standard optics [2] at the working point (WP) νx0=20.585, νy0=20.575. The 5th, 7th and 12th order sum
resonance lines2 are also shown. The arc lines in the footprints correspond to equidistant step 2 values
of the normalized transverse amplitude
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the radial lines being equidistant in arctan(ax/ay) value.
Due to the finite dispersion at parasitic IPs there

should be some dependence of the beam-beam
tuneshifts on the synchrotron motion. Calculations for
the standard Run II configuration show that for the
average values of the tuneshifts over the synchrotron
period this dependence is negligible.

However, there can be significant variation of
the instant values of the tuneshifts which we will treat in
terms of the beam-beam contribution to chromaticity.
To get a feeling of the order of the effect let us consider
a single long-range interaction point at horizontal
separation dx. The tuneshift for a particle with constant
momentum deviation δp is
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Correspondingly, we have for the beam-beam
contribution to chromaticity (which we will call just
“the beam-beam chromaticity” for brevity)
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The ratio |Dx/dx| can be as large as 103, so that for
the tuneshift of the order of 10-3 the shift in chromaticity
may be ~1.

Calculating the beam-beam chromaticity on the
Tevatron helix one should take into account the vertical

dispersion as well which can be quite large3 (see Fig.3).
                                                          
2 analysis shows that the difference resonances are less important at the considered WPs.
3 Still its contribution to the beam sizes is not significant which justifies its exclusion from all other expressions.

νy

Figure 2. Footprint of the p-bar bunch #6 in
the tune diagram obtained with the optics [2]

νx

Dy

Figure 3. Vertical dispersion on the p-bar helix
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The necessary formulas can be obtained from eq.(3.5) with account of the differentiation rule
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and its counterpart for Y.
Fig.4 shows the footprint of the antiproton bunch #6 in the plane of the beam-beam

chromaticities
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the arc lines now corresponding to the values a⊥ = 1, 2, 3, 4. The beam-beam contribution to
chromaticity is really very large and strongly depends on the betatron amplitudes.

There is also significant bunch-to-bunch variation. Fig.5 shows the total distribution of
antiprotons (represented by 1000 points/bunch) in the plane of chromaticities.

We see that the chromaticities can not be made small simultaneously for all particles in all
bunches with the help of correction sextupoles.

4 Beam-beam resonances
In the present report we include the effects of the synchrotron motion into the analysis of the beam-
beam driven resonances in the Tevatron Run II configuration started in Ref.[9]. Since the longitudinal
emittance εs = σsσE ≈ 3.5⋅10-5m is by four orders of magnitude larger than the transverse one we may
ignore variation of the longitudinal action in the resonance exchange of energy and consider it as a
constant of motion:

Is = const. (4.1)
Again we limit ourselves to a single resonance approximation considering one resonance at a

time and then applying the Chirikov criterion to access the cooperative effect of multiple resonances.
In the vicinity of the resonance4

∆m = m⋅ν – n ≡ mxνx + myνy+ msνs – n ≈ 0 (4.2)

we can transform to the rotating frame and write the main terms in the Hamiltonian in the form

                                                          
4 Here the synchrotron tune should be understood as an algebraic value negative above the transition energy.
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Figure 5.  Total p-bar distribution in the
chromaticity plane
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Figure 4.  Footprint of the p-bar bunch #6
in the chromaticity diagram
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where the new transverse action-angle variables were introduced
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the resonance coefficient Cm and phase ψ0 are defined by the Fourier transform of the beam-beam
potential (2.12) with account of the phase shift (2.13) as
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The synchrotron motion affects the resonance behavior in a number of ways. First, it somewhat
weakens the principal resonance, ms = 0, by the virtue of: i) dephasing the successive beam-beam kicks
in the result of chromatic tune modulation; ii) phase averaging of every kick due to a finite bunch
length. On the other hand, these very same mechanisms give rise to the synchrotron satellites, ms ≠ 0,
which can effectively widen the resonance if the Chirikov overlap condition is met. In addition to these
mechanisms, the crossing angle and finite dispersion can contribute to excitation of the synchrotron
satellites.

Let us consider these factors in some detail.

4.1 Effect of finite crossing angle and dispersion
Let us first consider the effect of finite crossing angle and dispersion ignoring for a while the
chromaticity and finite bunch length. Using representation (2.14) we obtain in this case for the
contribution of one IP
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where the functions X, Y are defined by eqs.(3.6), the phase µs is defined by the relations
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also, we have dropped the constant phase common to all IPs.
Calculations for the Tevatron lattice show that effect of the horizontal dispersion at parasitic IPs

is not significant even in the case of large synchrotron amplitudes characteristic to the superconducting
RF parameters. Table 2 gives the strength Cm of the synchrotron satellites of the mx

 = 5, my
 = 0

resonance at Jx
 = 16, Jy

 = 0, Js
 = 1 for the two RF systems.



         Table 2. The strength Cm of the synchrotron satellites of the 5Qx resonance with two RF systems.

The effect of the dispersion on the strength of the principal resonance, ms = 0, also being rather
small, we will exclude the horizontal dispersion from the following analysis (as well as the crossing
angle which is not foreseen for the first stage of Run II).

4.2 Finite bunch length effect on resonance excitation (phase averaging)
Let us now consider the effect of rapid phase advance variation in the vicinity of low-beta IP on the
resonance excitation. In the case of βx

*= βy
*= β* and of no offsets, no crossing angle nor dispersion at

the IP, we can factorize the resonance coefficient introducing the longitudinal factor5
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where FL is the normalized to unity distribution function in the longitudinal action variable, which we
again choose to be Gaussian, FL = exp(- Js). It is obvious that |Lm(Js)| ≤ 1 always.

In the case of a small bunch length, σs << β*, we may put ϕ  = - b and obtain (assuming
ηx = ηy  = η = const for simplicity) the generalization of the Bessel satellite formula:
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Jn(x) being the Bessel function and

2∗β
σ=λ s . (4.10)

For infinitely short bunches, σs → 0, the longitudinal factor is just the Kronecker delta: Lm(Js) = δms,0 .
It is interesting to note that while the finite bunch length provides most of the phase averaging

described by the exponential factor in eq.(4.9), the chromaticity could suppress excitation of the
synchrotron satellites at ηβ* = 1/2 or, recalling the definition (2.8), at
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for the Tevatron parameters αM = 2.3⋅10-3, R = 1km, β* = 35cm. However, the large spread in the beam-
beam chromaticity makes such suppression impossible even for short bunches.

Let us continue analysis of an arbitrary bunch length case remembering that in the absence of
the offsets only even-order resonances (and their satellites) can be excited by the beam-beam
interaction:

mmm yx 2=+ . (4.12)

Making notice that

                                                          
5 In fact it may depend on the transverse amplitudes due to the beam-beam contribution to the chromaticity related
parameters ηx,y.

|ms| 0 1 2 3 4 5
Cu RF 4.367⋅10-12 4.103⋅10-13 8.989⋅10-14 1.717⋅10-14 3.019⋅10-15 4.266⋅10-16

SC RF 3.678⋅10-12 8.453⋅10-13 2.115⋅10-13 2.859⋅10-14 3.561⋅10-14 1.919⋅10-15
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we can perform integration in (4.8) and obtain
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For the graphical representation it is more convenient to introduce the normalized synchrotron
amplitude, as, related to the normalized action variable by the formula (we assume the longitudinal
emittances in the two beams to be equal)

ss Ja 2= (4.15)

First we consider the finite bunch length effect on the principal resonance, ms = 0, at zero
chromaticity, η = 0. Fig.6 shows the dependence of the absolute value of longitudinal factor (4.14) on
the resonance order, 2m, for several values of the normalized synchrotron amplitude, as, at σs = β*. For
an on-momentum particle, as = 0, the longitudinal factor rapidly falls off with the resonance order due
to the phase averaging, reaching as small value as 10-3 at 2m = 12. However, with increasing as the
phase averaging is less effective, as found in Ref.[6]. It may occur not sufficient to suppress the head-
on contribution to excitation of high order resonances.

Fig.7 shows the longitudinal factor as a function
of as for the resonances of the order 2m = 8, 12, 16, the
dependence qualitatively reminds that found analytically
in Ref.[6], though quantitatively it is rather different.

Now let us turn to the synchrotron sidebands,
ms ≠ 0. Fig.8 shows the dependence of the longitudinal
factor of the 2m = 12 resonances on the sideband number
for several values of as at σs/β* = 1, η = 0. We see that
the strength of the synchrotron satellites can be
comparable with that of the principal resonance
effectively increasing its width. Fig.9 shows beatings in
the transverse amplitudes due to the 12th order betatron
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resonances and their synchrotron satellites excited by the beam-beam interaction at two Tevatron low-
beta IPs at Js = 1, η = 0, σs/β* = 37/35, νs = 7⋅10-4 (left) and σs/β* = 14/35, νs = 6.4⋅10-3 (right). In the
first case the effect, although quite pronounced, should not pose significant problems in the Tevatron
operation since the resonance groups are well separated. Let us note that the lines representing effect of
a particular resonance are not shown if their length does not exceed a certain threshold value (~ the line
width) or if they lie outside the circle a⊥ = 11.

In the second case, which corresponds to the 20 MV, 212 MHz SC RF, i) the width of the
resonances becomes larger due decrease in the phase averaging, ii) satellites are farther apart due to a
larger synchrotron tune. In the result the 12th order resonances and their satellites form a maze through
which particles, with some assistance from the external noise and higher order resonances, can escape
starting from amplitudes possibly as low as a⊥ ~ 4.

As noted earlier, in the case of a short bunch the chromaticity can (in principle) compensate the
effect of the finite length on the synchrotron satellite excitation. It is no longer so in the case of a long
bunch as illustrated by Fig.10 which shows the dependence of the longitudinal factor of the 12th order
resonances on the sideband number for as = 3 and several values of η at σs/β* = 0.1 (left) and σs/β* = 1
(right). In any case, this compensation will not work in Tevatron due to a large beam-beam
chromaticity.
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Figure 9. Swing of the transverse amplitudes due to the 12th order resonances
and their synchrotron satellites excited by the head-on interactions in the
case of the existing RF (left) and SC RF (right).

2νx+10νy

Lm

Figure 10. Longitudinal factor of 12th order resonances vs. synchrotron
satellite order at the indicated values of the chromaticity parameter η and
σs/β* = 0.1 (left) and σs/β* = 1 (right)
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4.3 Betatron tune modulation
At parasitic interaction points the betatron functions are
usually so large in comparison with the bunch length that
one may put ϕ→0 in eq.(4.8) and obtain the classical
formula for the synchrotron satellites excitation by the
betatron tune modulation
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= (4.16)

where the prime means differentiation of the tunes by δp,
the relation σs = β sσE was used.

Due to the large beam-beam contribution
discussed in Section 3 the total chromaticity can not be
made small by the conventional means of the sextupoles.

In the result the synchrotron satellites up to a high order,
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can be excited leading to an appreciable increase in the effective resonance width.
Fig.11 shows the swing of the transverse amplitude, a⊥, defined by eqs.(3.8), due to the 5th

order resonances and their satellites excited by the long-range interactions for particles in the 6th

antiproton bunch with initially ax = ay and Js = 1 (as = √2) in the absence of the bare lattice chromaticity
(ηx0 = ηy0 = 0). The sidebands of different resonances overlap which means the possibility of fast
particle transport over the entire set of resonances almost doubling the particle amplitude (from
a⊥ ≈ 1.75 to a⊥ ≈ 3.25). This can affect not only the particle lifetime but the luminosity as well.

A 2D picture of the resonance satellites overlap is presented in Fig.12. The left plot shows the
width of the betatron resonances for on-momentum particles (Js = 0) when no satellite is excited. At
large synchrotron amplitudes (Js = 1) these resonances are, in accordance with eq.(4.16), noticeably
suppressed (e.g. the 2νx+3νy resonance width falls below the chosen threshold). However, due to
excitation of numerous satellites the effective resonance width is substantially increased.

With the superconducting RF the distance between the satellites of each of the 5th order
resonances becomes larger than the resonance width (Fig.13) but now the satellites of different
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Figure 11. Swing of the transverse amplitude
due to the 5th order resonances and their
synchrotron satellites at as = √2.
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Figure 12. Swing of the transverse amplitudes due to the 5th order resonances and
their synchrotron satellites at as = 0 (left) and as = √2 (right).
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resonances overlap so that the amplitude range over which
the fast diffusion can occur is further increasing.

5 Summary
The effects of the synchro-betatron coupling via the beam-
beam interaction appear to be quite significant in the
Tevatron Run II configuration with 36×36 bunches, the
main conclusions being:

♦ There is a strong beam-beam contribution to
chromaticity rendering the total (intrabunch + bunch-to-
bunch) spread in chromaticity of ~ 14 units horizontally
and ~ 5 units vertically.

♦ The chromatic tune modulation presents the major
driving mechanism of the synchro-betatron resonances;
the betatron phase modulation at low-beta IPs also
provides a noticeable synchro-betatron coupling, whereas
the effect of a finite dispersion at the parasitic IPs appears
to be less important.

♦ With the standard bare lattice tunes, νx0=20.585,
νy0=20.575, there is a strong excitation of the 5th order
resonances and their synchrotron satellites by the long-
range beam-beam interactions leading to fast particle

diffusion over the range of normalized betatron amplitudes from a⊥ ≈ 1.75 to a⊥ ≈ 3.25. This can affect
not only the particle lifetime but the luminosity as well.

♦ Excitation of the satellites of the 12th order resonances by the betatron phase modulation, although
quite pronounced, should not pose significant problems in the Tevatron operation with the existing RF.
However, with the planned upgrade to the superconducting RF it will lead to particle diffusion from
amplitudes possibly as low as a⊥ ~ 4.

♦ It is necessary to extend the present analysis on the TEV33 configuration (140×121 bunches,
crossing angle, SC RF) where the effect of the odd-order resonances should be even stronger.
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