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1 Introduction

This report describes the dynamic aperture tracking for the Recycler Ring [1] based on the latest modified lattice
Ver 20. The purpose of the calculation isto check the optical properties of the |attice with the replacement of the
high beta straight section (H B30) by alow beta straight section (L B30) for stochastic cooling.

2 Tracking code, lattice and magnetic field errors

The codeused for thetrackingisMAD (Ver8.16). Magneticfield errors can be characterized interms of coefficients

(bn, ay) Inamultipole expansion of the magnetic field,

By+iBy = By 3 (bn +ian) (L) (1)
n=0
where by, by, bo, ..., are the normal dipole, quadruple, sextupole, . . ., field components, ag, a1, as, .. ., are the

corresponding skew components and r is the reference radius at which the multipole components are measured.
In the bare recycler lattice of Version 20, the design angle and measured b; and b, are included in the gradient
magnet named G4, (See the beam line defined in Appendix A), and the measured normal quadrupol e component
b, isreflected in the main quadrupolenamed Qpoq4y. All other high order multipol e components of each magnet are
trested inthe lattice as two thinlenses, placed at the entrance and the exit of the magnet respectively. The measured
dipoleerror by istreated in the lattice as an EFIELD element.

The field errors, represented by field coefficients b,,, a,,, are extracted from field harmonic measurements at a
radius of 1 inch (2.54cm). These coefficients multiplied by 10,000 equal a single unit in the tables supplied by the

magnet measurement group, i.e.

F _F
(bn y Ay

) Fermilab Units = (b, an) X 10% 2



However, the strength of amultipole K,, in MAD[2] isdefined as

B(n) B(n)
Ky=2— =" 3
- PRy/e Bp ®)

Thus, theintegrated strengths of thin multipol e el ements are converted from the multipole componentsin Fermilab

unitsto MAD unitsas follows:

(N, 565,) 5 =107 % (0 ) - mt 2L @

L
n»'n rn 2
for normal and skew components K’ N,,, K.S,, where L isthemagnet length, B, isthereferencefield, »r =17=0.0254m
and (Bp) isthemagnetic rigidity. The energy of the Recycler Ringistaken as8 GeV'. The momentum and rigidity
are

P,
Poc = /W (2Eg+ W) = 8.889GeV (Bp) = 20€ _ 29,650 Tesla - m (5)
ec

3 Opticsof the latticeswith high beta and low beta straight sections

The high beta strai ght section (H B30) will soon be replaced by alow beta section (1.B30) for stochastic coolingin
the Recycler Ring. The optical cal culationisbased on thelattice with alow betasection (L B30)(V er2.0), designed
by W. Wan. For the purpose of comparison, thecal culation for thelatticewith the high betasection (H B30) hasa so
been done. Figures 1 and 2 show the betafunctionsin the high betaand low betalattice respectively. The significant
differences are of course in the cooling insertion. Compared to maximum betavalues of (5,, 5,) = (242,278)m
in the H B30 lattice, the low beta version L. B30 has maximum values of (71,56)m, roughly factors of 3-5 lower.

To first order in multipol e strength,
Resonance driving terms oc 37/2 @(,"_m)/ 2(bp, an) , m=0,...,n

The tune shift with amplitude terms are al so smaller when the beta functionsare reduced. We therefore expect that
the low beta lattice will have a higher dynamic aperture than the high beta lattice. Thisreport will quantitatively
estimate the difference in the theoretical dynamic aperture.

We observe that there is some beta beating in the arcs in both lattices, as seen in Figures 1 and 2. Since we use
the measured values of the quadrupol egradients (as opposed to theideal vaues) inour | attice descriptions, thereisa
betabeat. Retuning the quadrupoles, especialy thosein the phase trombone, could reduce thisbeating and possibly
increase the dynamic aperture.

The low betalattice L B30 has fractional tunes closer to the desired values (0.425, 0.415). Theinteger part of
thetuneinthe z - plane in thislattice is one integer larger than the high beta lattice H B30. Compared to the bare
lattice, the tune shifts resulting from the changes in closed orbit due to dipole field errors and all the other high
order multipole components (except sextupol e components) are quite small, Av, = 0.00076, Av, = 0.000376. A

summary of the optical parameters of the two latticesis shownin Tables 2 and 3 in Appendix B.
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Figure 2: Betafunctionsin the low betalattice L B30.
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It was foundintracking simulationsthat treating each combined function magnet asathick element withasingle
thin lens nonlinearity at the center isincorrect. For instance the dipolesin the arc cells are 3.099 meters long and
thoseinthedispersion cellsare 4.496 meterslong. For reasonsto be explainedin Section 5 these magnets need to be
dividedinto severa dices. Theoptical resultsafter splittingthe gradient magnetsinto 16 piecesfor thelatticeswith
H B30 and LB30 arelisted in Tables 2 and 3 respectively. From the tableswe can see that there are no significant
differences in the linear optical functionswith and without splitting. There are however significant differencesin

the nonlinear behaviour as a consequence of the splitting.

4 Dynamic aperturetracking

Stability of particlesinthe Recycler Ring istested by launching an array of particles at different amplitudesin the
presence of magnetic field errors described in Section 2. The misalignments of the ring have not been included in
the tracking simulations. We do not need to use the phase tromboneto adjust the tunes since the tune shifts due to
thefield errors are small enough.

Chromaticity sextupoles are used to correct the linear chromaticitiesto the designed value z/; =-2.0, z/; =-20.
Sextupolesare placed inthe arc cellswhere the dispersionis non zero. Inthe Recycler Ring, there are 8 and 16 sex-
tupolesfor chromaticity correction in the horizontal and vertical plane respectively. The strengths (in unitsof m—3)

of the linear chromaticity correcting sextupoles can be found approximately from the foll owing expressiong 3]

47

2 — : : = C«latt max C — C«latt min 6

k F LFNSFD;nax (6;naacﬁénaac _ Bgmnﬁgmn) {[C z ]B’y + [ Y Yy ]636 } ( )
47 i max
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L D NS D D;min ( 6;naac 6Ln,agc _ 637;1,1’,71, 651,1171,)

where L and L arethelengthsof the sextupoles. Ngr and Ngp are the numbers of cells with sextupolesin the
horizontal and vertical planes. The minimum and maximum Twiss functions 3., 3, and D, refer to the extreme
valuesinacel. C, and C,, arethecorrected values of thelinear chromaticity, typicaly set to-2in both planeswhile
Clatt and Clat* are theuncorrected linear chromaticities of thelattice. The HARMON modulein MAD can be used
to adjust the strengths of the sextupolesto correct linear chromaticity. Setting theinitial values of the strengths of
the sextupolesin thel attice to the val ues obtained from Eq.(6) and Eq.(7), we get the corrected chromaticities z/; =
-2.000 and 1/;= -2.000 when the strengths of sextupolesare k2x = 0.2627 and k2p = —0.2794.

The normalized 95% emittances e,,, and ¢,,,,, are 18mmm.mrad in both planes. The lattice description begins

with the cell H(C328 inthe Recycler Ring and the beam sizes at thispoint are

6% rmn 6 n
7o (67)6- on 70T (ﬁvy)e% AT ®)

Particles are launched with a distribution of amplitudeswith neighbouring particlesdiffering in amplitude by either

1o 0Or 1loy. For each fixed z-amplitude, we search thelargest y-amplitudefor which the particle survives 100,000



(DA) (unitsof o)

High g lattice | Low 3 lattice
With 1 kick per magnet (Ap/p = 0) 3.0 3.0
With 16 kicks per magnet (Ap/p = 0) 95 16.5
With 16 kicks per magnet (Ap/p = —0.003) - 13.0
With 16 kicks per magnet (Ap/p = +0.003) - 9.2

Table 1: Average radial dynamic aperture calculated after tracking for 100,000 turns with the high and low beta
lattices. Increasing the number of kicks to 16 per gradient magnet increases the dynamic aperture significantly.
Aswill be argued in Section 5, this number of kicksis sufficient to assure convergence of the calculated dynamic

aperture.

turns. We al so check that particleswith smaller y amplitudesare stable over these numbersof turns. Thisisrepeated
for several « amplitudes until the largest y-amplitude falls to zero. The dynamic aperture is then defined as the

average of all thelargest stable radia amplitudes, i.e.

Dynamic Aperture = (y/ A2 + A2)

where A, isthe largest stable amplitudein y for agiven « amplitude A,

Includingall errors, tracking over 10,000 turnsin thelattices with high beta and | ow beta sections showsthat the
dynamic apertures for both lattices are about 30 on average, plotted in black in Figure 3 and 4. Thisvalueis much
less than expected. An earlier simulation with the tracking code TEAPOT of the lattice with the high beta section
showed alarger dynamic aperture [4]. By default TEAPOT splits each magnet into a number of dices whereasin
MAD this needs to be explicitly specified in the lattice. To determine whether the difference between the tracking
codes was dueto the splitting, the lattice descriptionin MAD was modified with each gradient magnet splitinto 16
pieces. Now by using MAD again, we find that the dynamic apertures are 9.50 (271mmm.mrad) on average for
the high beta | attice after both 10,000 and 100,000 turns. The dynamic apertures for the low beta lattice are 16.10
(778mmm.mrad ) on average after 10,000 turnsand 16.50 (817mmm.mrad ) on average after 100,000 turn and
with the chromaticity corrected in thistracking. They are plotted in red in Figure 3 and Figure 4 respectively.

The dynamic aperture for particles with constant momentum deviations of +0.003 are shown in Figure4. The
results are summarized in Table 1. Particles with a constant negative momentum deviation have a larger dynamic
aperture than those with a positive momentum deviation. A possible explanation of this may be due to the tune
dependence on amplitude and momentum deviation, and the resonances that are nearby. Figure 5 shows that 7th
and 12th order resonances are the closest resonances. Large amplitude particlese.g. a 70 with negative Ap/p are
in the space between skew 7th order resonances which may not be strongly driven while those with positive Ap/p

are closer to anormal 7th order resonance and severa 12th order resonances.
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Figure 3: Dynamic aperture in Recycler Ring after 100,000 turns with the high beta insertion for two different
models of the nonlinearites. In one case, thereisonly asingle nonlinear kick at the center of each gradient magnet
and in the other there are 16 kicks (keeping the integrated kick strength constant) over the length of these gradient

magnets. With more kicks per magnet, the dynamic aperture is found to increase considerably.

Dynamic Aperture in Recycler Ring with Low Beta Insertion
dipole errors + all the high order multipoles
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Figure 4: Dynamic Aperture in the Recycler Ring after 100,000 turnswith the low betainsertion and for the same
two modelsasin Figure 3. Also shown are the dynamic aperturesfor particles with constant momentum deviations
of +0.003. The beam pipe contour (in units of the rms beam size) isdrawn to illustratethe fact that in thistracking

model, the dynamic aperture of particleswith Ap/p = 0 exceeds the physical aperture.
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Figure 5: Resonances, the zero amplitude tune shown as an empty circle (), and the tune at an amplitude of 7o
shown as afilled box. The dotted line shows the tunes for 7o particles with momentum deviations in the range
—0.005 < Ap/p < 0.005 dueto alinear chromaticity of v/ = —2. Particleswith Ap/p < 0 have larger tunes
whilethosewith Ap/p > 0 have smdler tunes. The closest resonances are the 7th order and 12th order resonances.
Particles with Ap/p < —0.004 lie in the space between 7th order skew resonances which may not be strongly
excited. Particleswith Ap/p > 0 are close to the 7th order normal resonance 7v,, = 178 and severa 12th order

resonances.
5 Analyss

The tracking results yielded a few surprises. The first surprise was that with only a single multipole kick in the
center of each magnet, the dynamic aperture of both lattices was nearly the same. Thisresult which is specific to
thisparticular model of nonlinearitiescan be understoodif the dynamic apertureisdominated by the nonlinear kicks
fromthe arcs. Since the arcs have more magnets than the strai ght sections and the beta functionsin the arcs are of
the same order of magnitude as those in the straight sections for both lattices, this explanation is in the realm of
being plausible but somewhat unexpected nonetheless. This explanation turns out to be wrong however when the
nonlinear lattice model is changed to incorporate 16 multipolekicks, each with 1/16th of the integrated strength of
thesinglekick inthe previousmodel, a ong thelength of each gradient magnet. We found that the dynamic aperture
increases in thismodel for both lattices but the low beta | attice has the larger dynamic aperture - the result that we
expected. The surprisein thismodel was the rather large increase in dynamic aperture when the number of kicks
per magnet was increased to 16.

A possiblecause of thislarge changein dynamic aperture could be arapidvariationin thebetafunctiona ong the

magnet. A singlekick at the center of amagnet where the betafunctionislarge may have alarger effect compared
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Figure6: Betafunctionin Magnet GM 328B shown at thetwo ends (no split) and also at 16 different locationswithin
the body of the magnet.

to the case when there are severa kicksat locations of smaller beta. Thishypothesiswastested on atypica magnet
G M 328 Binthehighbetalattice. Figure6 showsthebetafunctionswith and without the several splits. We observe
that the beta functionsare not varying rapidly a ong the length and furthermore the horizontal betafunctionsarein
fact larger at severa locations with the splits than the beta function at the center without the splits. The source of
theincrease in dynamic aperture therefore lies el sawhere.

Themain reason (we believe) for thislarge change in dynamic apertureisthat thereisasufficient phase advance
(about 7 degrees) aong the length of each gradient magnet. When there are several kicks aong the length, each of
these occurs at a dightly different phase. The resultant of these somewhat incoherent kicks will always be smaller
than a single coherent kick which has the same strength as the sum of all the individua kicks. Thisisillustrated
in Figure 7. Thisisaqualitative explanation of the effects of severa incoherent kicks. A more exact calculation
in Appendix C shows that the change in the linear Courant-Snyder invariant J decreases as the number of kicksis
increased from 1 to 2 and based on these arguments we expect that the change in J will decrease with increasing
number of kicks until we reach the asymptotic limit when the change in J remains nearly constant.

There are several ways of determining the minimum number of kicks necessary to reach the asymptotic limit.
Thefigure of merit we choose is the tune shift with amplitude. We compare the model where the gradient magnets
are splitinto 16 pieces with another model where the gradient magnets are split into 32 pieces and the quadrupol es
are splitinto 4 pieces. The tune shifts are determined by tracking two groups of particles for 1024 turns. Within
each group the xamplitudeisfixed, one a 0.10,, and the other a 100, respectively, whilethe y amplitudes are

varied from 1.00y0 to 11.000.
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Figure 7: Resultant of several incoherent kicks. The sketch labelled (2) showstheresultant R, when there are two
kicks, each of length K /2. The sketch (3) showstheresultant in the asymptoticlimit of an infinite number of kicks.
Herethekicksliealongthearc of acirclewhiletheresultant R;,, ; isthechord aongthisarc. Theresultant decresses
as the number of kicksisincreased while keeping the sum of thelength of individua kicks constant at K and the
angle between thefirst and last kick constant at 6, i.e. Ry > Ry ... > Ripy.

The FFT spectrum for each particle under theinfluence of al field errorsis cal culated from the tracking results.
Figure 8 showsthe FFT spectrafor two selected particles with the same y amplitude but at two different = ampli-
tudes. A Hanning filter isapplied toimprovetheresolution of thetune cal culation. Even thoughthey amplitudesof
these two particles are the same, there isasignificant difference in the vertical tune Av,, = 0.0022 dueto thelarge
cross-detuning term dv,, /0J,, (=0v,,/d.J,) or in words due to the dependence of the vertica tune on the horizon-
tal amplitude. We also observe a significant signa of the horizonta tunein the vertical spectrum (and vice versa)
which indicates that the coupling is non-negligible. Figure 9 showsthe variation of the horizontal and vertical tune
asthe vertica amplitudeisincreased keeping the horizontal amplitude constant. We observe that the changein v,
islarger than that in v,. At amplitudes (4, = 0.1040, Ay > 110,9), v, approaches the 7th order resonance.

Figure 10 displaysthe tunedifference between thel atticeswith two split model svs the particle amplitudes. The
tunedifferences arewithin 1.4 x 10~° whichisa so roughly the resol ution of the tune cal cul ation with the Hanning
filter. We take this convergence in tune shiftsto indicate that splitting the gradient magnets into 16 pieces suffices
for the cal culation of the dynamic aperture. If thisrequired greater justification, one could examine other nonlinear

features such as the smear in order to prove convergence.
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Figure 8: Tune spectrum of two particles at the same large y amplitude of 11c,, but at different x amplitudes of
0.10,¢ (l€ft figure) and 100, (right figure). Note that these particles with the same y amplitude have different
vertical tunes because of the cross detuning. Coupling between the transverse planes can aso be observed in the

tune spectra of these particles.

Variation of Tunes with Particle Amplitudes

Lattice with low beta insertion, FFT results from track 1024 turns
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Figure9: Variations of the horizontal and vertical tunewith vertical amplitude- the horizontal amplitudeisconstant

a 0.10,0. Notethat a around 1100, v, approaches the 7th order resonance.
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Tune differences between two lattices

Lattice—1:dipole—16 pieces, lattice—2 : dipole—32 pieces & quadrupoles — 4 pieces
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Figure 10: Tune difference between two lattices vs the particle amplitude. Lattice 1: dipoles split into 16 pieces,
Lattice 2: dipoles split in 32 pieces, quadrupolesino 4 pieces. The differencesin tune are of the order of the reso-

lution of the tune calculation.
6 Conclusion

Thisstudy of dynamic aperturein Recycler Ring with low beta strai ght section showsthat the optical design of the
low beta section improves the optical properties of the ring. Without misalignments, tracking cal culations for on-
energy particlesover 10° turnspredict adynamic aperture of 16.50(8177mmm.mrad) whichislarger than the phys-
ical aperture of 47.625mm x 22.225mm. Misalignmentswill reduce this dynamic aperture but, if small enough,
they should not limit the performance of the Recycler.
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Appendix A. The definition of a magnet asa beam line
Including high order multipole components, a magnet is defined by the following beam line,

A combined function dipole magnet = (DWELD, DEND, MP_N, MP_S, | ...F(l ...D), G_Body, O
...F(O...D), MP_S, MP_N, DEND, DWELD)
A quadrupolemagnet = (DWELD, QEND, QMP_N, QMP_S, Q_Body, QMP_S, QMP_N, QEND, DWELD)

where | ... F(I ... D) are the focusing and defocusing quadrupole components of combined function magnets,
MP_N and M P_S aretheintegrated normal and skew componentsrespectively of thenonlinear multipolesQ M P_N
and QM P_S aretheintegrated normal and skew componentsrespectively of the nonlinear multipol esinthe quadrupole
magnet. DWELD and DEND are drift spaces.

A magnet after being split is defined as abeam line as follows:

A combined function dipolemagnet = (DWELD, DEND, MP_-N, MP_S, I ...F(l ...D), 16* G_Body_16,
O...FO ...D), MP_S, MP_N, DEND, DWELD),

where G_body_16 is apiece with the length of L/16, L isthe length of the gradient magnet.
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Appendix B. Opticsfunctionsin Recycler Ring

Optical properties

Barelattice

Lattice with all the errors

Lattice with all the errors

gradient magnets split into 16 pieces

Vas Uy 24.4062, 24.3933 24.4071, 24.3936 24.4071, 24.3936
Vs 1y -2.046,-2.736 -1.999, -2.709 -1.983,-2.770
Bemaz Bymazx 243.496, 278.447 241525, 277.744 241521, 277.721
D, (mazx), Dy(mazx) 2.152,0. 2.159,0.0806 2.159,0.0806
Dy (r.m.s.), Dy(r.m.s.) 1.280, 0. 1.278,0.0243 1.324,0.0241
Zeo(MAL), Yeo(maz) 0., 0. 1.970, 0.0407 1.970, 0.0407
Teo(rm.5.), Yeo(r.m.s.) 0., 0. 0.655, 0.0119 0.661, 0.0120

Table 2: Optica propertiesin the lattice with high beta straight section

Optical properties

Barelattice

Lattice with all the errors

Lattice with all the errors

gradient magnets split into 16 pieces *)

Vs 1y 25.4289, 24.4158 25.4296, 24.4162 24.4297, 24.4162
v, v, -0.822, 0.327 -0.815, 0.347 -2.000, -2.000
Bamazs Bymaz 71.123, 56.179 71.977, 56.049 72.243,56.013
D, (maz), Dy(mazx) 2.144, 0. 2.164, 0.0785 2.159, 0.0786
Dy (r.m.s.), Dy(r.m.s.) 1.274, 0. 1.273,0.0223 1.321, 0.0224
Zeo(maz), Yeo(maz) 0., 0. 1.902, 0.0372 1.903, 0.0372
Teo(rm.5.), Yeo(r.m.5.) 0., 0. 0.630, 0.0107 0.638, 0.0109

Table 3: Optical propertiesin the lattice with low beta straight section. *) The result in this column isthe one after

the adjustment of the strengths of chromaticity sextupolesin the arc cells.
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Figure 11: We compare the effect of asingle kick acting at the center of a magnet (a) with that of two kicks (b),
each of half the strength of the singlekick in ().

Appendix C. Amplitude change due to a single kick vs. due to two kicks.

Figure 11 showsanonlinear kick at the center of amagnet and al so two kicks each with half the strength of thesingle
kick. For the purposes of illustration we will consider the nonlinear kick to be a sextupolekick of total integrated
strength k- and evaluate the change in the linear Courant-Snyder invariant .J,. after traversal through the magnet
GM328B. With only asinglekick at the center, the phase space variables are transported as

before
X X
( ) M, ( ) before kick (9
' z’
K in

after
before
’ K frer kick (10)
/ before o a
x/ T efore + kQ(xZefo 6)2

after
T T )
( ) = M, ( ) at exit (12)
z’ z’
out K

Then thelinear invariant in the = plane at the exit of the magnet can be calcul ated as follows

Ji [xzut + (ﬁﬁfout'r,out + Oéacou,txout)Q] (12)

1
B 263701“‘,
We split G M 328 B into two pieces as shown in Figure 11 (b). The kick strengthsat each location are k5 /2. We

do the same calculation as above and obtain the phase space variables at the magnet exit to be

split after
x ; x
( / ) = Mgp“t( / ) (13)
* out t 2nd kick
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Distancein thelattice (m) Single kick Two kicks

pm | a@) | v(2m) | M) | a(l) | v(27)
0.609 42938 | 0.026 | 0.002 | 42.938 | 0.026 | 0.002
1.733 42429 | 0.542 | 0.006
2.857 40.525 | 1.026 | 0.011 | 40.525 | 1.026 | 0.011
3.981 37.726 | 1.453 | 0.015
5.105 34.057 | 1.796 | 0.020 | 34.057 | 1.796 | 0.020

Table 4: Twiss functionsin Magnet GM328B in the lattice with high betainsertion.

Initid (z, z) Linear Invariant J
Singlekick: J; | Twokicks: Jo

(3.88,0.) 0.25277 0.24768

(3.88,0.01) | 0.23291 0.22931

Table 5: Linear invariants at the exit of Magnet GM 328B

and thelinear invariant in the z planethiscaseis

1 split s split split
J2 = 26 [('r;zlff)Q + (633011,#7:011,1‘/ + aﬂcou,f,x;glf/t)Q] (14)
ZTout

Thebetafunctionsat each locationinthemagnet, listedin Table 4, aretaken fromthebeam lineinthelatticewith

high beta section, and are used to calcul ate the transfer matrices My, Mo, . . ., M§””t. With two kicks per magnet,
there is a phase difference of about 3 degrees between the kicks. In itself thisis not large but thisis repeated in
every magnet and these small changes can lead to significant differences in amplitude after severa turns.

We have calculated the quasi-invariants, J; and Jz, at the exit of magnet G M 328 B after a single pass for two
different initid conditions. The linear invariantsin these two cases are shown in Table 5. We observe that in both
cases Jo < Ji. Thisdemonstratesthat thecombined effect of two dightly incoherent kicksleadsto asmaller change
in amplitude compared to a singlekick of the same total integrated strength. Asargued in Section 5 we expect the

change in amplitudeto decrease as the number of kicksisincreased before reaching an asymptotic limit.
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