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Abstract

Recently, it was proposed to use negatively charged electron beams for compensation of beam-
beam effects due to protons in the Tevatron collider [1]. We show that a similar compensation is
possible in space-charge dominated low energy proton beams. The idea has a potential of several-
fold increase of the FNAL Booster beam brightness. Best results will be obtained using three elec-
tron lenses around the machine circumference, using co-moving electron beam with time structure
and profile approximately matched to the proton beam. This technique, if feasible, will be more
cost effective than the straightforward alternative of increasing the energy of the injection linac.
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1 Introduction

Defocusing repulsive forces due to self space charge lead to degradation of high-intensity particle
beams. In circular accelerators, the figure of merit of such an effect is shift of incoherent betatron
oscillations [2]:

∆νSC = −NtotrcBf

4πεnβpγ2
p

, (1)

where Ntot is total number of particles in the ring, rc = 1.53 · 10−18m for protons, εn is rms nor-
malized emittance, βp = vp/c and γp are usual relativistic parameters, and the numerical factor
Bf ≥ 1 is defined by the ratio of the peak current to the average current. For the most of exist-
ing and planned high-brightness proton accelerators the tune shift lays in range of -0.1...-0.5 (see,
e.g.,[3]). Above the threshold, coherent and incoherent instabilities result in the beam emittance
dilution and particle losses which can not be tolerated.

The tune shift rapidly decreases with increase of the beam energy, thus, fast acceleration helps
low-energy high-intensity proton machines. The short time at low energy is enough for developing
only the lowest order resonances of incoherent motion (e.g., parametric resonance in a single par-
ticle motion inside the beam) as well as in coherent motion (e.g., quadrupole “breathing” modes of
the beam shape variation).

As for incoherent motion, it should also be pointed out that in actual beams with non-uniform
transverse beam distribution, the betatron oscillation frequency is a function of a particle’s position
in the beam. For example, for round Gaussian profile of proton density with rms size of σr:

nG(r) = n0exp(−
r2

2σ2
r

), (2)

the space charge tune shift is function of betatron amplitude r :

∆ν(r) = ∆νSC
4

α
[1− exp (−α/4)]I0(α/4), (3)

where α = (r/σr)2 and I0(x) is the modified Bessel function of order 0. Thus, the tune shift for
the beam core is larger than for the Gaussian tail. As a result, the core particles may encounter
a resonance, while the outer particles remain unaffected. In principle, particle loss and emittance
growth due to resonances can be reduced by proper choice of the betatron frequencies νx,y but it it
possible only if the tune spread inside the core (' 1/3∆νSC for r = 2σr) is less than the distance
between resonances.

In bunched beams, transverse space charge force varies along the bunch proportionally to line
charge density λ(s), and, consequently, the tune shift depends on longitudinal position s the way
similar to Eq.(3) ∆ν = ∆ν(r, s), i.e., again, the betatron frequency shift is smaller in the tails. As
bunches of particles usually have much larger longitudinal dimension than transverse ones (typi-
cally σz/σr > 100), the longitudinal space charge forces are weak, though visible as they distort
RF potential. In this article we will not address the longitudinal space charge effects - it’ll be a
subject of separate consideration.
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Compensation of space charge forces on average, can significantly improve dynamics in low-
energy accelerators, and allow higher beam intensities.

2 Compensation of Space Charge Forces in Proton Machines
with Electron Beams

Negatively charged electron beams can be used for compensation of space-charge effects in low
energy proton beams the same way as in the ongoing Tevatron Electron Lens (TEL) project to com-
pensate beam-beam effects due to protons in the Tevatron collider [1]. Protons going through the
electron beam experience focusing force which has opposite sign to self space charge force and can
precisely compensate the latter if:

1. transverse profile of the electron beam charge ne(r) is the same as proton beam profile,

2. temporal structure of the electron space charge force matches the proton space charge force,

3. integrated impact of electrons is equal to the total proton space charge impact over the ring.

Condition #1 can be satisfied without difficulties - an electron beam profile can be controlled by
special electrodes in the electron gun the same way as in the TEL [4]. The rigidity of the electron
beam due to the solenoid field in the interaction region prevents the proton beam from distorting the
electron beam. Moreover, exact matching of the transverse profiles of the electron and proton may
not be necessary at all if the major brightness limitation comes not from incoherent (single-particle)
motion but from coherent modes. In that case only linear forces count [5] and consequently, even
rectangular electron beam current profile will help to stabilize the proton beam.

The time structure of a proton beam space charge force has two characteristic scales: one cor-
responding to beta-function variations with periods T1 = L/βc (e.g., L can be length of FODO
structure half cell in strong focusing synchrotrons) and T0 = C/βc; the second one corresponds
to the bunch structure T2 ∼ σz/βc. It is impossible to have electron beam covering entire circum-
ference of a proton accelerator. A more practical electron beam set-up should occupy only a small
fraction of the ring circumference C . Therefore, the kick experienced by every proton has period
T0 but much shorter than the revolution period, and condition #2 can not be be fulfilled for lattice
period T1 modulations. Nevertheless, the proton bunch structure can be matched by fast modula-
tion of the electron current. Even having a short interaction region, there will be certain integrated
compensation (on average) if condition #3 is satisfied.

The condition #3 of the compensation can be rewritten is the form of equality of the betatron
tune shifts due to electron beam [1] and the proton space charge tune shift Eq.(1):

∆νe ≡
βr
4π

(1− βeβp)JeLrc
eβecσ2

eγpβp
= −∆νSC, (4)

where Je is electron current, σe is the rms electron beam radius, L is interaction length, βr is beta
function at the location of the electron lens. The factor 1−βeβp reflects contributions of electric and
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magnetic forces due to co-moving electron beam. If the electron beam collides with proton beam,
then the factor has to be changed to 1 + βeβp.

In fact, the necessity of fast longitudinal electron current modulation for matching the proton
bunch profile almost definitely will require co-moving electron beam, i.e., the sign to be “-”. Indeed,
a characteristic modulation length which can be provided by an electron pulse interacting with pro-
tons along distance L and moving in opposite directions (i.e., beams collide) is about σ ' L(βp +
βe)/βe (see Fig.8 in Ref.[1] for explanations). Therefore, even for βe ' βp one getsL ≤ σ/2. That
is not practical for short bunches as σ ∼ σs ∼ 1 m because the interaction length has to be too short
(L ≤1/2 m) and accordingly to Eq.(4), the required current becomes too large. On the other hand,
if the electron and proton beams move in the same direction then σ ' L(βp − βe)/βe and one
can provide very fast modulation if the electron velocity is close enough to the proton one βe ≈ βp.

If one requires the rms size of electron beam has to match proton beam size in the location of
the electron lens σ2

e = εnβpγpβr, then we obtain the necessary electron current in the lens:

Je = JpBf
C

L

βe
γ2
pβ

2
p(1− βeβp)

, (5)

As we will show in the next Section, optimum compensation requires even smaller current (about
one third) than given by Eq.(5).

3 Coherent Modes and Optimal Compensation

The beam own space charge forces shift down both single-particle (incoherent) modes and the beam
coherent modes. An exception is the coherent dipole mode (beam centroid motion) which does not
depend on the space charge at all. If one of these modes is in resonance with the focusing lattice
(structure resonance), the mode becomes unstable that leads to the beam loss and/or growth of the
beam emittance. The electron lens shifts up all the frequencies, therefore, can be used compensation
of the space charge effects. An important point is that the space charge and electron tune shifts
are mode-specific, so if the electron lens compensates the space charge tune shift for one of the
modes, it does not compensate it for others. Therefore, the electron lens can increase the proton
beam brightness threshold but can not eliminate it. by the electron lens, but, at best, it could be
increased. The tune shift introduced by the electron lens ∆νe can be considered as proportional to
the Laslett tune shift ∆νSC , i. e. ∆νe = −κ∆νSC , with compensation coefficient κ to optimize.

Within a simple model of the smooth approximation, assuming approximately equal vertical
and horizontal lattice tunes νx ≈ νy ≈ ν0, and that the tune shifts are small in comparison with the
tunes themselves ∆ν << ν0, one gets single-particle frequency equal to

ν = ν0 + (κ− 1)∆νSC (6)

Conventional stability analysis of the coherent motion is limited by a linear consideration of
the dipole mode (first-order) and the envelope modes (second-order) [2]: coherent instabilities of
higher orders do not reveal themselves neither experimentally, nor numerically; only integer and
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half-integer resonances are taken into account. The tune of the coherent dipole mode (frequency of
the beam centroid oscillations) is not influenced by the space charge, so it goes as

νd = ν0 + κ∆νSC (7)

As for frequencies of beam envelope oscillations, there are two modes driven by linear forces. If
vertical and horizontal lattice tunes are (approximately) equal, then for the symmetric mode, vertical
and horizontal envelope oscillations are in phase so the beam “breathes” in both directions, while
for the antisymmetric mode these phases are opposite. In the presence of the electron beam, the
symmetric (+) and antisymmetric (−) coherent tunes can be calculated as

ν+ = 2ν0 + (2κ− 1)∆νSC
ν− = 2ν0 + (2κ− 3/2)∆νSC .

(8)

Dependence of the fractional tunes (6, 7, 8) on the Laslett tune shift ∆νSC without any compensa-
tion κ = 0 is illustrated in Fig. 1 - result similar to Ref.[6]. One can see, that the system becomes
unstable at threshold value of ∆νSC = 0.33 when the antisymmetric mode tune becomes equal to
integer ∆ν− = 0.
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Figure 1: Incoherent, dipole and envelope fractional tunes versus Laslett tune shift. Compensation
is not applied κ = 0. The working point (0.75, 0.75) approximates the case of the Fermilab Booster.

Table 3 summarizes data from various space-charge limited low-energy proton synchrotrons
[3] - the first row shows bare lattice tunes νx and νy, the second row contains maximum empiri-
cally achieved Laslett tune shift for each machine ∆νexp. We compare experimental values with
calculated distance ∆νinc to the nearest incoherent resonance (third row) and the nearest coherent
resonance ∆νcoh.

The table reveals some noticeable features. First, the empirically reached Laslett tune shift sig-
nificantly exceeds the single-particle limit ∆νinc. Second, for all machines but AGS and AGS-
Booster ∆νexp is close to the threshold of the envelope instability ∆νcoh. This leads to a conclu-
sion that the incoherent resonances may not be important; the actual threshold is rather determined
by the coherent instabilities. Finally, we see that zero-current envelope tunes can be safely slightly
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Parameter KEK-B FNAL-B ISIS AGS AGS-B CERN PS CERN PS-2

νx/νy 2.17 / 2.3 6.7 / 6.8 3.7 / 4.2 8.75 / 8.75 4.8 /4.9 6.22 / 6.22 6.22 / 6.28

∆νexp 0.23 0.4 0.4 0.58 0.5 0.27 0.36

∆νinc 0.17 0.2 0.2 0.25 0.3 0.22 0.22

∆νcoh 0.27 / 0.08 0.36 / 0.08 0.32 0.33 0.07 / 0.2 0.27 0.33

Table 1: Laslett tune shift reached empirically ∆νexp at various low-energy synchrotrons as com-
pared with calculated Laslett tune shifts related to the nearest incoherent ∆νinc and coherent ∆νcoh
resonances.

above the resonance; the resonances at ∆νcoh ≤ 0.1 do not reveal themselves, perhaps, due to a
weak space charge at the resonance crossing.

Behavior of the modes changes when the compensation is applied - see Fig.2. Dynamics of the
dipole mode is rather different from the envelope modes, that makes it difficult to even double the
threshold by varying the compensation degree κ, because one or another mode should cross linear
resonance. Threshold Laslett tune shift of about 0.6 can be achieved with κ = 0.33 as shown in
Fig. 2 (a factor of ≈ 1.6 in comparison with the no-compensation case).
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Figure 2: The same tunes for the compensation κ = 0.33.

An additional option is associated with a possibility to have the degree of compensation κ vari-
able and dependent on the Laslett tune shift. In that case, modulation of the electron beam current is
almost as easy as for the constant κ strategy. The variable rate allows to jump over the resonances,
for example, as illustrated in Fig. 3.

According to this plot, a simultaneous jump over two resonances {νd} = 1 and {ν+} = 0.5
allows to reach the Laslett tune shift ∆νSC = 1.2, more than 3 times higher than without com-
pensation. However, this option has to be studied in more detail, in particular, finite width of the
resonances have to be taken into account.

Symmetry of an accelerator focusing lattice is important for the space-charge compensation. If
the lattice consists of P identical periods, then strong and wide structure linear resonances occur
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Figure 3: Tunes at jumped compensation: κ = 0.33 for ∆νSC ≤ 0.55, and κ = 0.55 otherwise.

at coherent/incoherent frequencies νcoh, inc = Pm/2, where m is integer. All other integer and
half-integer tunes relate to relatively weak and narrow non-structure linear resonances, excited by
periodicity perturbations (errors). Having high machine periodicity and properly chosen working
point, one can have all the nearest linear incoherent and coherent resonances to be non-structure res-
onance, and thus allow, e.g., incoherent tune to cross half-integer or integer resonance, as in many
machines analyzed above in Table 3.

A single strong electron lens may worsen the situation as it reduces the lattice periodicity from
to P to 1. Thus, more than one compensation set-up is needed to keep nearest incoherent and co-
herent linear resonances being0 non-structure resonances. For example, the Fermilab Booster has
periodicity P = 24, and tunes νx,y = (6.7, 6.8). If we have two electron lenses symmetrically
placed in opposite parts of the ring, then the effective periodicity is reduced to P = 2. Thus, the
nearest incoherent resonance ν = 6.5 is non-structure (as it is without compensation devices at
P = 24), but the envelope resonances at ν−,+ = 13 = Pm/2 = 2 · 13/2 become structure. As the
result, one has to have three identical compensators symmetrically positioned at the orbit in order
to preserve non-structure weakness of the nearest incoherent and coherent resonances.

4 Numerical Example: Fermilab Booster

Let us consider the space-charge compensation in the Fermilab Booster. Parameters of FNAL Booster
are presented in Table 1 [7, 3]). Accordingly to Eq.(1) the space charge tune shift at injection is
about

∆νSC(t) = −0.435 ·Bf(t) ·
(
[εnβpγ

2
p ](t)/[εnβpγ

2
p ](t = 0)

)
if parameters are Ntot = 5 · 1012, εn = 1πmm ·mrad, γp = 1.4, βp = 0.7. The period of strong
space-charge action is comparatively short - injection itself takes about 12 turns, then some 20-40
turns the beam circulates without RF to wipe off the Linac RF structure - it corresponds toBf = 1.
After that the Booster RF is being adiabatically turned on over some 100 turns, and then the beam
energy rapidly grows, e.g., to 2.5 GeV after about 3000 turns. Note, that the ratio of peak to average
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current rapidly increases from 1 to Bf (t) ≈ 2− 3 over a hundred turns, while the factor 1/(βpγ2
p)

slowly decreases 4 times from 0.71 to 0.174 over thousands of turns. If there would be no particle
loss and emittance blow up then the Booster beam space charge tune shift parameter would reach
the maximum value of right after bunching ∆νSC ≈ 0.9− 1.3.

Table 2: FNAL Booster Parameter List

Parameter
Circumference, C , m 474

Proton energy at injection, Einj , GeV 0.4

Peak energy, Emax, GeV 8.0

Cycle time, Tc, ms 67

Ramp time, Tramp, ms 33

Number of protons, Ntot Run Ib at 2.5 Hz 3 · 1012

Ntot Run IIa at 0.7 Hz 5 · 1012

Ntot Run IIb at 8 Hz 5 · 1012

Number of bunches, Nb 83

RF harmonics, hRF 84

RF frequency, fRF , MHz 38-53

Tunes, νx, νy 6.7 / 6.8

Transition γt 5.4

Beta-function, βmin,avg,max, m 6.0, 11.3, 20.5

Dispersion function, Dx, m, max -1.9

Transverse emittance at injection, εn, mm mrad, rms 1

Transverse emittance at extraction, εextrn mm mrad, rms 3

Efficiency, 0.6-0.8

Currently, due to space charge effects, the beam loses some 35-40% of particles during that
initial period of 5-6 ms, and its transverse emittance blows up about 3 times [8]. From that we
can conclude that the beam brightness deteriorates quickly if the space charge tune shift exceeds
∆νSC ≥ −(0.25− 0.4), that is consistent with conclusions of previous studies in the Booster [9].

According to our analysis in the previous Section, the optimal compensation coefficient is less
than 1, κ = 0.33−0.55, therefore, we can rewrite Eq.(5) to get the peak electron current to compen-
sate the space charge effects at the current Booster beam intensity of Jmax = JpBf = 0.35[A] Bf :
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Je = 0.35[A]Bf · κ · (βe (1− 0.7βe)) · (474[m]/Ltot[m]), (9)

where we took into account that γpβp ≈ 1 at injection. As concluded in Section 3 above, it is
beneficial to install three equally strong lenses in the Booster, so if each is L =4 m long (to fit 6 m
long drift sections), then Ltot = 3×L = 12 m and for the Bf = 3 we yield Je(κ = 0.33) = 12.7A
of the peak current in each of three 80 kV electron beams, βe = 0.56. The choice of the electron
beam energy and βe is made to satisfy condition σs ≈ L(βp− βe)/βe, where the rms proton bunch
length of σs = 1 m is taken. Again, if the goal is to deliver the existing intensity in significantly
smaller emittance (i.e., prevent the emittance blow-up), then the electron current could be 12.7 A.

If the ultimate goal is to double the Booster intensity - that is allowed by the FNAL Linac and
will require more Booster RF power - then Je(κ = 0.33)=25.4 A of the electron current are needed.
We will use that maximum number in our further calculations.

In general, the Booster Electron Lens (BEL) will be much alike the Tevatron Electron Lens
(TEL) for compensation of beam-beam effects - see Fig.4. All considerations of the TEL [1] are
applicable to the BEL, and we present here only brief summary of technically important features of
the set-up.

The BEL will consist of three solenoid magnets, electron gun and collector, high voltage mod-
ulator, vacuum system, beam diagnostics and control.

Figure 4: Layout of the Tevatron Electron Lens.

The main 4 m long normal-conducting solenoid magnet will provide up toB =15 kG of longi-
tudinal magnetic field. Magnetic field lines in that magnet has to be straight within 1 mm over 4 m
length. 4-8 dipole corrector coils will help to make the field lines straight as well as be used for the
electron beam steering. Bg=3-4 kG side solenoids are necessary for electron beam injection and
extraction. It may be necessary to add two toroids to make that 90 degrees turns smoother. This
will be the subject of more detailed studies.

Electron gun with high perveance P = 3µA/V 3/2 is some modification of the TEL electron
gun [4]. It has an oxide cathode with 1-1.6 inch diameter, and can provide Je = PU3/2

a = 25.4A
of current if the voltage between anode and cathode is Ua = 41.5 kV. Proper choice of the gun
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geometry allows to get the beam with bell-shape or close to to Gaussian current profile with rms
size at the cathode of about σc =13 mm. The gun is immersed into the magnetic field Bg which
keeps electron beam from from spreading due to its own space charge forces. The electron beam
transverse size is later adiabatically compressed to about 8 mm as the beam enters higher field of
the main solenoid (the value of σ2B is adiabatic invariant of the beam).

It can be shown that impedance of the electron beam is negligible if the magnetic field in main
solenoid is more than B > 4 kG.

After symmetric 90 degree turn, the beam goes into an electron collector with µP ≈ 10, sim-
ilar to the one already built for the TEL. The collector absorbs more than 99.5% of the beam cur-
rent. The collector can be placed under potential higher than the cathode potential, so beam en-
ergy recirculation is possible. Average power dissipated in each of three electron beam collectors
Wcoll=50kW - under the assumption of 75% power recirculation efficiency, 6.6 ms pulse duration
and 15 Hz repetition rate of injection into Booster.

Depending on the longitudinal proton bunch profile, we will need or will not need 38MHz elec-
tron current modulator. If the longitudinal bunch profile (current) is flat, than no modulator is needed.
If the bunch shape is more like Gaussian, then we have to modulate some 40 kV of the cathode-
anode voltage. That is about 5 MW peak RF power at 38 MHz, and will require about 50 kW
(pulsed) RF generator for a narrow band RF system with Q ∼ 100.

Vacuum system of the BEL has to provide vacuum better than 10−8Torr in order to avoid sig-
nificant ion production (ions can cause electron beam instability in the main solenoid).

A compensating solenoid magnet may need to be required to prevent strong coupling due to
field of main solenoid.

Finally, we list main parameters of the Booster Electron Lenses for two scenarios: an Emittance
Upgrade scenario where the goal is avoiding 3 fold emittance blow-up at existing intensities, and
a Double Intensity upgrade which requires higher electron beam current:

Emittance Upgrade Double Intensity

maximum e-current Je, A 12.7 25.4
e-beam length 3 lenses, each L =4 m long 3 lenses, each L =4 m long
rms e-beam size, σe, mm 4.5 8
cathode radius, mm 12 20
B-field in gun/main solenoid, kG 3/11 4/13
e-beam energy Ue, kV 80kV 80 kV
anode-cathode voltage Ua, kV 26 41
HV RF modulator power, kW 20 50

5 Discussion and conclusions

The use of low-energy high-current electron lenses to compensate space charge effects in high-
brightness proton accelerators looks very promising. Our consideration shows that in optimal con-
figuration few (three) electron lenses can compensate space charge tune shifts as large as ∆νSC ≈
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0.6 − 1.2. With further increase of the proton beam brightness some coherent modes or incoher-
ent motion can become unstable while crossing particular resonances. Depending on working point
and ∆νSC the electron beam profile should or should not approximately match the transverse profile
of the proton beam. For example, if the space charge coherent modes limit the accelerator perfor-
mance, than there is not need in a perfect profile matching. Still, matching of longitudinal proton
bunch profile seems to be necessary. For that the electron beam current need to be correspondingly
modulated.

We have considered electron lenses for the compensation in the Fermilab Booster. We found
that electron beam systems are quite feasible for realization of either proton beam emittance up-
grade or two-fold intensity upgrade in the Booster. These upgrades can significantly improve the
performance of fixed target experiments, e.g., NuMI; and/or will allow to increase the antiproton
production, proton beam brightness in collision and ultimately increase the luminosity of the Teva-
tron.

We note that neutralization or compensation of a beam space charge was the subject of many
theoretical and experimental studies in the past. Notable examples are Budker relativistic stabilized
electron beam [10], and neutralization of electron beam by ions in plasma [11], [12]. Bibliography
on the topic and consideration of charge neutralization effects including instabilities can be found
in the book of M. Reiser [2]. Recently, it was proposed in Ref.[13] to use highly non-linear exter-
nal focusing to conserve emittance of a high-brightness beam. The nonlinearities are assumed to
be created by a plasma lens with a specific distribution of particles or by AG quadrupole structure
with a higher mode (duodecapole) field component. Both proposals are shown to work well in sim-
ulations but far from being practical for existing rings and their feasibility is not being considered.
In addition, the dynamics of the coherent modes has not been considered at all, while thought to be
the most important phenomena in the space-charge dominated beams [5], [2].

In principle, there are other tools to compensate the tune shift but they all have serious disadvan-
tages. For example, pulsed γt-jump quadrupoles in the Booster can shift the tune for about 2, but it
does not seem possible to modulate their gradients over the bunch length of few ns. RF quadrupoles
can provide necessary modulation along the bunch but a) can not match transverse beam profile; and
b) will require very powerful RF sources.

The proposed electron lens has a number of advantages: easier beam shape control and current
modulation, moderate power consumption. The parameters of the lens are quite feasible that make
the proposal attractive for further consideration and practical implementation.
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