
FERMILAB-TM-2110

FP X COR
ARCHITECTURE

AND
T E PR FPIX C IP

ARC TU AND SIM ON

B EO co TEN s

I INTRODUCTION .. 4

2 A SHORT NOTE ON TERMINOLOGY .. 5

3 CORE CELLS AND PERIPHERY CEI"LS .. 6

4 CORE ORGANIZATION ... 8

5 THE PINEL CELL .. 10

5.1 SIGNALS " JO
5.2 PIXEL CELL ANAUXi FRONT END !2
5.3 PIXEL CELL DlGfTAL CONTROL 13

5.3. 1 Kill 13
5.3.2
5.3.3
5.3.4

5.3.4.l
5.3.4.2
5.3.4.3
5.3.4.4 The Reset
5.3.4.5 The Passed Crn:nmand rn.gic
5.14.6 "fhe FastOR

5,3,5 Token c:ontrol
5.3.6 Address

5.4 A DETAILED DESCRIPTION OF A HIT FROM THE PIXLLCELL's PERSPECTIVE

14
......... 18

20
20

'" """ 22
.. "'"'"'" 24

...... 24
25
26
30

' .. , 34
35

6 THE END-OF-COLUMN LOGIC ... ,.. 38

6. l SIGNALS..
6.2 OVERVIEW....... ,.,, , ...

"' 38
.. 40

. .. Al 6.3 THE COMMAND STATE MACHINES ,,,

6.4 THE COLUMN STATE MACHINE, .. 46
6.4. l Nothing to
6,4,2
6.43
6.4.4 Silent , ..
6.4.5 Sin1u!ation.s
6.4.6 lforiwntal Taken Pa.1sirtr
6.4,7 Clock Control Lo.inc ...

6,5 THE END-OF-COLlfMN REGISTERS , , .. ,

6,6 FAST OR Lorne ,...
6.7 LISTEN PRIORITY ENCODER , ,

6.8 OUTPUT PRIORITY ENCODER , .. ,...

6.9 A DETAILED DESCRIPTION OF A HIT FHOM THE END·OF-CO!..UMN LOGlc'S PERSPECTIVE

46
47

........ 47
.. , ... 47

''"""''48
.......... 49

50
.. 51

H••53
...53
..54

......... 56

7 CORE LOGIC .. 58

7. l S!GNALS , ,.,

7.2
7.3
7.4
7.5

INTRODUCTION,

CORE COUNTE!L

CORE STA TE M AClllNE

DIAGNOSTIC S!GNALS .. .

2

........ 58
....... 58
...... 58

<>• 58
.... ,,,, .. 59

8 VERILOG SIMULATION .. 61

3

IX C R
T

AR CHIT
PREFPIX2

R
HIP

AND SIMULATIONS

l INTRODUCTION

rm,FJ'.'IX:2 is a in architecture. It is a
smnll1'r version of a functional FPIX Core. lt is a necessary FPIX l and FPIX2
mo,stlv for reasons . .Both and must be lo l 8xl 60 amtys of
ATLAS pixel detectors. Therefore, since each pixel is 50 µm by 400 µm, each chip cannot
P'"oiuiy be smaller tban 7.2 mm 8 mm. such a the collaborators

conservative when testing

Most importantly, preFP!X2 continues a progression towards smaller and smaller device
Hewlett-Packard's CMOS process. FPIXI was

Hewlett-Packard's process. FP!X2 will be in IBM's
}!m process or 0.25 µm process or in botb of the

development of are to test our ability to develop deep snbmicron IC chips
and to test the of both TSMC and The of the

ad•rnrtla!!C of the h;oho•

radiation
tolernm design tec1m1qu,es, in transistors
chip developed at to use such techniques.

rrn1a11v. p•reF1PIX2 has been de•Jt,l•:ipc'd to test a number to the
ori,gin:al !. The FPIX J readout atchitE,cttml. also called the
Command Driven snccessful in all tests, it was decided
that it could be improved substantially and simplified dramatically without changing it
fundamentally,

The pmpose of this paper is to describe in detail this new version of the Command Driven
Architecture and to describe a that is somewhat new to FPIX - the division of lahor
between the Core and Periphery.

4

2 A SHORT NOTE ON TERMINOLOGY

be'cat.ise so many words mean the same
to mean many is a

in this paper.

L Pixel Detector actual which a
energy will pass and leave an electrical trace.

2. Pixel Cell VLSI circuit that deals with the electrical signals of the
m1ngs, converts into usable data

3. Pixel Cell Array The array of Pixel Cells viewed as a single entity

4. Detector TI1e array of Detectors viewed as a

5. Hit.Data The electrical signal of a Detector or the electrical
Hit data can be conside1-ed the current state the Pixel

Detector

6. Recorded Data result of the conversion of Hit Data into usable
data that is in stored in the Pixel Cell Array and in pmi in the E11d-c1f-c:ol:um,n

data remains stored it is read out

7. Output called Core Output Data. lt is the stream
from the Core.

Most of the confusion occurs with the overuse of tbe word "data". This is it is 1mnrn·1:n11

be with three types of m FPIX Core. Hit data is by
It is an ever-changing snap shop of the interaction chamber. Hit data is converted

recorcled data the cell array. Recorded data is held It is to
the of Pixel and the Core

As recorded data is into it is erased from the pixel cell The
detector array supplies or has hit data. The pixel cell array has recorded data. The streams
omom data. If the Core done its hit data can he rcco11stn.1ct,~d

the that is the ultimate Core.

5

1

Pixel

8x160

Detectors

3

. ..

CORE CELLS AND PERIPHERY CELLS

HeveData • -coreData _

•

Core . RejectHits Periphery
• SendData

....
• Read clock -.BCOclock -

FPIX Architecture

I: Core and Prrinhr•~• Cells

~ · ·'lo DAO .
,,.

Input from -
-..

nn•.PIPCO the FPIX architecture should viewed as two black boxes: the Core
p,..,,.;,,h,.,,,. l). The Core is connected to the detector array and to the

Perioher·v f'erioherv is connected to the Core and to the The of the Core
hit data from the detector array, convert it into the Core

oresrmt that stream to the in a consistent The of
predictable output data stream and convert it into a form acceptable hy whatever DAQ

<"''"'m is connected to the The of this division of labor is to allow Core and
PPrin.hPru urcbiteclures to with some lt ensures that chan.ges
rn<tr•m do not influence !he way detector arrays are handled
the way detector are handled do not influence way the
This allows the pixel readout to be in iso.Jation
output data organization. Some users might want triggered operation whereas others might want

Some \vhereas others not care.
Sorne on!J)tit. etc. AU andlor as well as
any reclt!i:ren:ier1ts c!l1,1H.rH.JAU co1Y1m1:mication should be handled in the The Core

To accomplish this division of labor, a consistent inte1face between the Core and Periphe1·y
has been defined l). The the Core with the Beam Cross
Clock the for hit data and

hi order to reduce sources error, the of the be such that these
two to related in The Peripbe11

with two signals, SendData
conversion of hit into recorded data that is nprfr.m>P~
the is and new data is ig1101-ed
enabled, and new bit data is recorded. controls the conv1ersier

data that is the and the Core

controls the
If it is active,

IS

moor·ded data into
lf it is active

the the conversion is enabled and recorded the Core. If it in ;"'"'''",,

6

recorc!ed data is conversion is suspi,nc!cd
mdepi,,1de!11 as shown in Table I.

in the cell am1y. The two co:ntr•ols are

Table J: Meaning <~l Send Data and Reject Hits

State

Ol

IO

II Send Data active
Reject active

No data is sent will new hit data. After
an infinite amonnt of time, the entire pixel cell array will be full
of recorded data.

No recorded is sent No new hit darn is acce11te•c!. The state
of the Core will no:t one or hoth these is

changed.

Recorded data is sent
op•eranonal mode.

will new Normal

Recorded data is sent will not new hit data.
a short time, the will be empty of recorded data.

The I.he with HaveData When HaveData is the
stncarnmg output data. When inactive, the Core NOT streaming output data. It is

HaveData to be inactive in spite of fact that there is recorded data somewhere in
cell array. This would on is an indicator that the Core is

stnearnir111 It is not an of the presence of recorded data in the cell array
or of the presence of hit data in the pixel detector array. coreData is the data the Core.
In the interest of speed, no compromises were made on the width of the output data word. Each
word contains the full BCO number stamp) of the event, column full
row address and full the concatenation or of data
words should be in the Peirip'her·y

The amount of output data manipulation and organization that occurs in the Periphery can
vary over a very wide lt no logical limit. Its limitation is

amount of cell
Peiriphery could contain nrus. sermt1ze1rs, c:onter1!·i\.dilressable

etc. nrr.vuled that the can be stmctured to nrc•V1fle

signals necessary to mn the This last fact demonstrated by preFP!X2 itself
onffl'I:X:2 is an Core with a (18x32) cell array and no P1ennher·v

7

Pixel Cell Pixel Cell Pixel Cell Pixel Cell

Pixel Celi Pixel Cell Pixel Cell

Pixel Cell Pixel Cell Cell

Pixel Cell Pixel Cell Pixel Cell Pixel Cell

End of Column End of Column End of Column End of Column

Core

4 x 4 Core

4 CORE ORGANIZATION

is very similar to the of FPIX I
cells controls the array of pixel detectors cell to one de1tector),

The pixel cells must be, of course, the same physical size as the pixel detectors. The cells are
"aware" from and mKens

time at alL in a cell can receive hit data from its
pixel detector. If commanded to so, it records (stores) that hit data. Finally, if commanded to
do so, the cell will either or reset its recorded data.

colul!'ms, each of which is an tn<H)t-1~olul!'m
Logic, The Logic is "aware" of the presence of recorded data somewhere in the
column. It also controls the commands and tokens sent to cells in its it
is not aware which are which commands, is aware

mnmPn the clock and Read dock as as the number orr.v1flf'rl the Core
Most importantly, the End-of-column Logic knows whether it is Talkinig If it is
it knnws if it has Nothing to if it has to next time it the
or if it

Finally, the
Horizontal

or Silent.

Logic controls access to the output bus hy controll1ng the so-called
Similar to the Logic, the Core 11 is

At the Core is reset to the Silent state, When there is data to be
the state and

drop, When the Horizontal side of

8

makes the transition back to the Silent state.

It is very important to that nothing in the Core is aware of a chip token. The
chip token was used in FPIXl to indicate to an FPIXJ that it bad the right to output data onto
the external data Core thinks it the to data that
SendData is active. an external bus handled the

9

5 THE PIXEL CELL

5.1 SIGNALS

The Kill and Inject Logic Signals

KCRESET

2 KILL_CLK
KILL_CLKB

3 KILL_SHIN

4 KILL_SHOUT

s INJ_CLK
INJ_CLKB

6 INJ_SHIN

7 INJ_SHOUT

Command Signals

8 COMA<l:O>

9 COMB<l:O>

10 COMC<l:O>

11 COMD<l:O>

Input. Resets the kill and inject logic so that the cell is not killed and
not injected

Input. Advances/clocks the kill shift register

Input. Shift input for the kill shift register

Output. Shift output for the kill shift register

Input. Advances/clocks the inject shift register

Input. Shift input for the inject shift register

Output. Shift output for the inject shift register

Input. Command Pair

Input. Command Pair

Input. Command Pair

Input. Command Pair

Token and Control Signal

12 ACCEPT

13 COLTOKENIN

14 RFASTNOR

15 HFASTNOR

Input. Controls the Hit Data to Recorded Data conversion. If
ACCEPT=l, the pixel cell accepts new hits. If ACCEPT=O the pixel
cell ignores new hits

Input. The Column Token Input. If COLTOKENIN=l and the pixel
needs the token, then on the next rising edge of the COLREADCLK,
the pixel will output its data. If COLTOKEN!N=O, then the pixel
must wait.

Output. Will be pulled low when the pixel needs to output data. The
signal is always in response to an Output Command from the End-of
column Logic

Output. Will he pulled low when the pixel cell has received a hit (has
converted hit data into recorded data). The signal is always in
response to hit data from a detector cell while ACCEPT=l and the

10

End-of-column Logic is driving a Listen Command.

16 COLTOKENOUT Output. If the pixel cell does not need to outpnt its data,
COLTOKENOUT=COLTOKENIN. If the pixel docs need to output
data, then COLTOKENOUT=O until the pixel cell gets control of the
bus.

17 COLREADCLK Input. Clock strobe for output data
COLREADCLKB

l8 DATARESET

19 READRESET

Data Signals

20 PIXDATA<7:0>

21 PIXDATA<.!0:8>

Bias Signals.

20 VTH<7:0>

21 VREF

22 VFB2

23 VBBP

24 VBBP2

25 VDIFFB

26 VFF

27 VBBNL

Input. Driven from the main Reset signal pad. When active, any
recorded data is wiped from the pixel.

Input. Equal to the main Reset signal pad OR-ed with the End-of
column Logic entering the Silent state. Guaranteed reset of pixels
that have been outputting.

Ontput. Row address.

Ontput. Pixel Cell ADC ontput

Input. Threshold control input (includes main threshold and ADC
thresholds).

Input. Reference voltage for second stage amplifier (threshold
voltages arc relative to VREF)

Input. Second stage feedback bias voltage (can be connected to
VREF)

Input. Input cmTent. Bias current for the front end preamp.

Input. Bias current for the second stage. Can be connected to VBBP
provided that the current is doubled.

Input. Bias current for the leakage compensation amplifier.

Input. Bias current controlling the feedback of the preamplifier

Input. Bias current for the preamplifier

11

5.2 PIXEL CELL ANALOG FRONT END

To be written by Abder Mekkaoni

12

. '

f- -
Kill and Inject ADC Encoder ADC Output Command

logfc Logic Logic ;:- Logic ~ E- '

J, J, l
3: (Jenera! or15a11iz,1ti.1n

5.3 PIXEL CELL DIGITAL CONTROL

true the
the pixel detector it controls.
n~u1c 4 shows the oriian1iz1tticm

analog front end is to the far left nnd oul•51cle
""""'"'" of a of shift that wind throught)u!

the of the analog front end. The inject

T

Token

Logic ~

T
Pixel Cell

front end. The AOC Encoder converts the seven··011 th1•mmnnnin.r

J,

is one
closes

analct!Fto-auam11 converter into a Ou:to1n drives the
the column. The Command interprets the and control

signals coming from the End-of-column to the It the conversion of hit data
into recorded data. It also controls the of the a read-out or a
wide reset. The Token controls the access to column hus or a
column token. Finally, the Address is the unique positional data of the pixel cell that is driven to
the whenever the cell its recorded data.

5.3. 1 KILL AND INJECT LOGIC

It is essential to the and the of the FPIX
cell be individually aud killable. he means

into the pixel cell. This allows each individual to he
means that a cell can be forced to hit data from its

from test A cell masks hit data from the digital sections
co11sequently, orc,vents the hit data from being recorded. This allows noisy pixels to

the that the Periuherv unwi1:!es
that

The logic for the Kill and signals is simplicity itself. From the perspective of a single
the kill state •=•rn•eu. O=not is stored in m1r•.vi; and the state

=111.1ect2tbl<e, O=not on a second tli1p-flo;>. omtputs of each are
passea to the front where kill and
There arc independent clock signals for each of the two rn1>- rtops,

This is shown in 4 on !he left-hand side.

13

D Q

Reset Reset

4: Kill and cell and in a 4x4 cell arra.r

From the of the and
This is shown in 4 on hand

cell are the inputs to the kill and inject mi:1-tl•:ips of the next
seiiar:ate cmcKs allow the two scan to be op:erated inclep:enrlently. an

im1'>rove1ne11t over FP!X L The common reset is also an over , which
the kill and inject states, even if the user no kills and no

bei1on:d, a reset will reset to "not killed" and
"not injecterl"

The kill and llO Oil the bac•lHlm:I of the

5.3.2 ADC ENCODER LOGIC

The ADC as its the 7-hit thennometer-cmle that is the
flash ADC located in the analog front end of the pixel cell, The ADC Encmler ge:ner·atE'S

from the as shmvn in Table 2

1Cible 2: ADC Thermometer Code Output vs. Input

0 0 0
0 0 0 0 0 0 0 I
0 0 0 0 l 0 l 0
0 0 0 I l 0 1 I
0 0 l I ! l l 0 0
0 l I l I l l 0 l
0 l l I I l l l 0

There are a number ways to im1plement this transforrnation
It is a nand-nand the ou1:pnts come

14

It is an im;gu1lar uc1Hgit1, which would have rec1uh·ed a amount of rm1!m1!!
c011se1que111Jy, a For these reasons, method was re1ected.

extrerneily n:guilar in its in an area
is essentially an army of of the

seven input bits controls three multiplexors, one per output bit. Depending on the state of each
the choose to either the of the or a

is as:

Po=O

+ l::::: +
=

where Tn is each of the seven thr1m1mne1ter-cc1ae
Tn= I, Pn is the multi1Jle1mr
themmmeter code to
shown in 3

Table 3

0 0

0

0 0

0 l

0

The schematic that implements this transformation is shown in 5.

bqm111on l

nmnh1or to drive if
To achieve a

hits are defined as

"""''"·' 6. This method is slower than full CMOS versm111,
m111rn1 :mt l!mitation for the ADC Encoder. gm1ra1ate1es

minirnmn of one beam crossing period between the arrival of a
request for outpnt. The pass-transistor logic implementation is easily of settlir•g to its
final value in that of time. 7 shows that not the ADC Encoder
ac<:m·att~ly make the hut it also does it less Ins.

15

5: The sc1:1e11wt1c the Pixel ADC Encoder. The om! surrounds a
The etl<CIJCter is obviously an array of these devices, Their le_ft inputs are the outputs

the rm·v1tmsm"11ti,1.ilexors and their et'.ther tied to povver or the
nurnbers sho1,vn in Tt:tble 3.

16

6: The Pixel ADC Encoder Layout The oval surrounds a

.
"~·· ..
V('fti} I
\f(Th) '
V(T4) :
V(T~l) I

V{'fZ)

V(11} :
Y(!O.) i.~-.1
V(!Vl) /-·· . ·---· -··" ····~ •.. ..
V(llt1J

\'(OOJ / I . I ' I I

ttUH:tv(:o;g)

RHt12V(t1,) I I
lt'.I.C:lJV(MI') I ! I I I I -- I xl I I •' I I I xj, I

' i ' i

·~·' i " " . ' ''

7: ELDO simulation of'the ADC Encode.
w:c·o:1m.n11 therrnon1eter code ivhich cn.wi;es

' I '
' ' "

The
20ns. ne.rt

··~······ •-•w~·-.

•7

I
j 11..-1

'

em.·ocfed outputs. The the hexhiecitnaf output

17

are the

(Af

8: (A) The old (FPIX]) way ofdrivineADC outputs (B) The new (FPIX2) way
outputs

533 ADC OUTPUT LOGIC

ADC

ln there was no encoder. of three comr>aratcrr
latches were driven switches controlled the GetBus
signal either connected the drivers to or tri-stated the drivers from the three column-wide ontpnt
lines. This is shown in S(A).

1mnnwr,,r1<cnts that can be made to this the drivers
Seco1ad, the CMOS switches must be

made very to numrm;1.2 1mw1n lines. These CMOS also
serve to load the GetBus which controls the release both address data and
ADC dam.

or

or low the 2m'r"lerl

bit is a In this case. the nmrm,1ed because it is
a minimum size CMOS

18

the hox in is very If GetBus is a zero, then a=O
and If GetBus is a one and ADC Bit is a zero, then tt=l and L If GetBus is a one and
ADC Bit is a one, then tt=O and This the for u and

/3=

These equ1at11:ms

ADC Outtp1.1t drivers
sho\vn in

All three
this is

Figure 9: The ADC Outpu DriverLayout The three ovals cover (clockwise from the tower right) the
two drive transistors, the NOR a and 1he NAND ff. These

19

5.3.4 COMMAND LOGIC

In the interest of keeping this section self-contained, some of this information may be a
repetition of information given elsewhere. First, the Command Logic of a pixel cell is either Full
or Empty, meaning it is either holding recorded data from a previous hit or it is not. Second, the
Command Logic in each pixel cell accepts as input four pairs of Command Lines from the End
of-column Logic. Each pair of Command Lines is used to transmit the following commands:

l. Idle (00) - do nothing

2. Listen (11) - listen for incoming hits

3. Output (10) - output data (address and ADC) when the pixel cell gets the bus

4, Reset (01) - reset the Command Logic of a pixel cell back to Empty and reset the
ADC data

Other Command Logic input signals are:

l. AnaNewHit - from the analog front end of the pixel cell: the actual "new hit" signal

2. Accept' - from the End-of-column Logic: If high (One), accept new data; If low
(Zero), reject new data.

3. GetBus (gbus) - from the Token Control Logic; indicates whether or not the pixel cell
controls the output bus

The Command Logic output signals are:

1. NeedToken

2. HFastOR

3. RFastOR

5.3.4.l Algorithm

a signal to the Token Control Logic that pixel cell needs the output bus;
only happens when the Command Logic is Full and has been ordered to
Output.

- a signal to the End-of-column Logic that the pixel cell has received new
hit data and converted it to recorded data; only happens when an End-of
column register is issuing a Listen

- a signal to the End-of-column Logic that the pixel needs to the output
bus; only happens when the Command Logic is Full and has been ordered
to Output.

I) While Empty, the Command Logic observes all four command lines with equal priority and
ignores all commands except the Listen Command.

2) When AnaNewHit arrives from the analog front end:

1
The Accept signal is derived fro1n the RejcctHits input to the Core.

20

a) If the Accept signal is low (Zero), the new hit data is ignored and discarded. Nothing
happens.

b) If the Accept signal is high (One) and the pixel cell is Full, the new hit data is ignored
and discarded. Nothing happens.

c) If the Accept signal is high (One) and the pixel cell is Empty:

i) If no Command Lines are ordering the pixel to "Listen", the pixel cell waits until one
of the Commands Lines orders it to "Listen". The pixel cell will wait indefinitely for
this to happen. lt is the responsibility of the End-of-column Logic to make sure the
pixel cell does not wait forever.

ii) If a pair of Command Lines is ordering the pixel to Listen:

(!) the pixel cell will latch the hit data, thereby completing the transformation of hit
data to recorded data

(2) The pixel cell will focus its attention onto the pair of Command Lines that had
issued the Listen Command when the hit data arrived. Until the pixel cell is
read-out or reset by commands from that particular pair of Command Lines, the
pixel cell will ignore commands from all other Command Lines. This is called
associating the pixel with an End-of-column Register.

(3) The pixel cell will consider itself Full until it is read-out or reset.

(4) The pixel cell will alert the End-of-column Logic of the presence of a hit by
pulling low the HFastOR signaL It will hold this signal low until its associated
End-of-column Register acknowledges the hit by withdrawing the Listen
Command.

3) While Full (not Empty):

a) Commands issued on unassociated Command Lines are ignored.

b) If the associated Command Lines issue an Idle Command, the pixel cell does nothing,
and the recorded data remains recorded

c) If the associated Command Lines issue a Listen Command, the pixel cell will pull the
HFastOR signal low until the Listen Command is withdrawn. Recorded data remains
unchanged. (This situation should never happen under ordinary operation. This condition
was added to the algorithm to increase the Single Event Effect tolerance of FPJX2.)

d) If the associated Command Lines issue a Reset Command

i) The pixel cell will reset itself

ii) The Full pixel cell will become Empty.

iii) The recorded data will be erased

21

iv) A reset will be issued by the Command Logic to the analog front end of the pixel cell
for the purpose of resetting the ADC latches.

e) If the associated Command Lines issue an Output Command

i) The pixel cell acknowledges the command by pulling the RFastOR low. The pixel
cell will remain in this state for as long as the Output Command is being issued to the
Full pixel ce!L

ii) The Command Logic signals the Token Control Logic via the NeedToken signal that
it needs the output bns. The pixel cell will remain in this state for as long as the
Output Command is being .issued to the Full pixel celL

iii) Eventually, the Token Control Logic will signal the Command Logic that the pixel
cell has control of the output bus (via the GetBus signal),

(I) The GetBus signal will reset the Command Logic (see 3.d.i through 3.d.iii
above).

(2) The pixel cell will release the RFastOR signal.

(3) The next read clock cycle, a signal will be released by the Command Logic to
reset the analog front end of the pixel cell.

The true difficulty in the above algorithm is that all of this functionality had to be
implemented in an area 50µm by 75µm. The design is best understood if it is broken down into
five subsections: the Front Command Cells, the Hit Conditioners, the Reset Logic, the Passed
Command Cells, and the FastOR Logic.

5.3.4.2 The Front Command Cells

Figure JO: A Schematic of the Front Command Cell

There are four Front Command Cells in each pixel cell. One Front Command Cell connects
to each pair of Command Lines. These fonr separate Front Command Cells allow an Empty pixel
cell to observe all fonr End-of-column Registers with equal priority as required in the above
Algorithm, Part l.

22

Each Front Command Cell contains the logic to decode the Listen Command (and only the
Listen Command). In fact, the code for the Listen Command (l 1) was chosen to simplify the
Front Command Cell because with this code, a single nand gate is all that is necessary to decode
the command.

All Front Command Cells are connected to the InterestingHit signal, which is a conditioned
version of the hit signal output by the analog front end of the pixel cell. More will be said about
this signal later. For now, it is enough to know that it activates when there is new hit data for this
pixel cell. It is active low.

Each Front Command Cell contains a single SR flip-flop. This flip-flop is actually where
recorded data is stored. If a pair of Command Lines connected to a Front Command Cell is
issuing the Listen Command and InterestingHit goes active, then the SR flip-flop in that Front
Command Cell will be set and the pixel cell is now Full. The flip-flop will remain set until the
pixel cell is reset or until the pixel cell is read out. The act of setting one of these flip-flops is
actually the transformation of hit data to recorded data. The complementary outputs of this SR
flip-flop are called Hit and NoHit. They have two purposes:

I. Within each Front Command Cell, the Hit and NoHit signals are used to open or close
two CMOS switches (see Figure IO). The inputs to these switches are the two Command
Line inputs to the Front Command Cell. The outputs of these two switches are the two
PassCmd signals. If a Front Command Cell has recorded a hit in its SR flip-flop, then the
two Command Lines are passed to the PassCmd signals. If a Front Command Cell does
not have a recorded hit in its SR flip-flop, then the two Command Lines are blocked from
the PassCmd signals. This is how the Command Logic associates itself with only one
End-of-column register. When the pixel cell is Empty, each of the fonr Front Command
Cells are "looking" at their respective End-of-column register. The Front Command
Cells can only recognize the Listen Command. Any End-of-column register issuing Idle,
Output or Reset is ignored. At any given time, only one of the End-of-column registers
will be issuing a Listen command. When a hit arrives, the SR flip-flop in the Front
Command Cell connected to that pair of Command Lines will be set, and those
Command Lines will be passed to the rest of the pixel cell where logic exists to decode
other commands. Other Command Lines will be blocked from the rest of the pixel cell
and their commands ignored. As shall be shown later, InterestingHit will he prevented
from going active as long as the pixel cell is Full.

2. External to the Front Command Cells, all of the NoHit signals are ORed together to
produce a signal that is high (One) when the pixel cell is Empty and low (Zero) when any
Front Command Cell SR flip-flops are set. This signal is called PreviousHith.

23

5.3.4.3 The Hit Conditioners

Figure J l: The Crnnnu:ind Logic Hit Conditioner. "n1sp~c{ff"_ar" is an as.rnchronously resettable
positive edged. D flip.flop.

The job of the Hit Conditioner is to block unwanted hits while passing the desired ones as
quickly as possible. The Hit Conditioner is shown in Figure l l.

The Accept signal is a One if the End-of-column Logic wishes the pixel cells in its column to
accept new hits. It is a Zero otherwise. AnaNewHit is the discriminator ontput of the analog
front end of the pixel cell, which goes high when there is a new hit. The positive edge of
AnaNewHit clocks an edge-triggered D flip-flop (msp_dft_ar). If Accept is a One, then the
output of the flip-flop will be a One indicating a new hit. If Accept is a Zero, then the output of
the flip-flop will be (remain) a Zero, and the Command Logic will never know that a hit occurred.
It is possible to condition AnaNewHit with a simple AND gate that combines Accept and
AnaNewHit. However, the output of that AND gate would depend on the duration of the
AnaNewHit signal, which itself is dependent on bias settings and radiation damage. Hits that
occurred while Accept was a Zero might appear as hits that suddenly occurred as soon as the
Accept signal was restored to a One. The flip-flop prevents that from happening. Only hits
whose rising edge arrives when Accept is a One will generate hit data in the Command Logic.

The output of the flip-flop is further conditioned by the PreviousHitb signal which is a Zero
when the pixel cell is full and a One when it is Empty. InterestingHit the output of the Hit
Conditioner, will go to Zero only for a hit that arrives when Accept is a One and the pixel cell is
Empty.

5.3.4.4 The Reset Logic

There are several resets that affect the pixel cell. The first is the Reset Command, which is an
order by the End-of-column Logic to reset This would be a column-wide reset for any pixel cells
obeying that particular pair of Command Lines. The second is a Master Reset, which is a chip
wide order from a user to erase the data in the FPIX and start over. The third is an indication
from the Token Control Logic that the pixel has the bus. When this signal is received, the pixel is
outputting its data, and the recorded data can be erased in prepm-ation for the next hit.

24

:·/z

f~igure 12: The pixel reset logic

Cn:-r -~ C"··~?r.~.e •

Note that in Figure 12 there are two outputs from the reset logic. One is PixelReset, which
resets the Front Command Cells and the Hit Conditioner. The other is the ADC reset, which
resets the flip-flops in the analog front end. The only difference between the two is delay. In the
Figure, gbusb is the indication from the Token Control Logic that the pixel cell controls the bus.
"delayed_gbusb" is identical to gbusb except that it is delayed by one Read Clock period. This
delay is essential because the ADC data is stored on latches and it cannot be reset until after the
read-out is done.

5.3.4.5 The Passed Command Logic

Figure 13:]'he Passed Conunand Logic showing the outputs ofthe,four }~ront Con1n1and Cells (filr
left}, the poll-down transistors (bottom), the command decode logic (center right) and the RFastOR

transistor (jar right).

In Section 5.3.4. L the Algorithm for the Command Logic specifically mentions that an
Empty pixel cell must view all fonr Command Lines with equal priority and must respond only to
a Listen Command. A Full pixel cell, on the other hand, must obey only the commands issued to
it by its associated End-of-column Register. The fonr Front Command Cells accomplish these

25

two all-important tasks. First, each Front Command Cell is connected to a different pair of
Command Lines and each Front Command Cell contains its own Listen Command decoder so
that all four pair of Command Lines are observed equally. Second, an association between a
pixel cell and a particular End-of-column Register is established when one of the Front Command
Cells is receiving the Listen Command from its Command Lines as a hit occurs'. Under this
specific set of circumstances, a flip-flop internal to that particular Front Command Cell is set, and
CMOS switches are opened in the Front Command Cell, allowing only its Command Lines to be
passed onward.

These associated Command Lines are passed to the Passed Command Logic shown in Figure
13. This is little more thau two two-bit decoders, one that looks for 0 l (Reset) and the other that
looks for 10 (Output). If the Reset Command is issued, theu the Passed Command Logic
activates the CommandReset signal to the Reset Control Logic. lf the Output Command is
issued, then the Passed Command Logic activates the NeedToken signal to the Token Control
Logic and pulls down the RFastOR. If the Listen Command or Idle Command are issued, they
have no effect on the Passed Command Logic.

When the pixel cell is Empty, no Command Lines are passed to the Passed Command Logic.
This ensures that the pixel cell ignores all commands but Listen while it is empty. However,
floating inputs to the Passed Command Logic could cause spurious errors by dynamically storing
erroneous commands. This would also be a serious source of Single Event Effect errors if left
uncorrected. Therefore, the transistors shown on the bottom of Figure 13 arc used to force the
inputs to the Passed Command Logic to the Idle Command (00).

5.3.4.6 The FastOR Logic

FastNO FastO

End of Column

Figure 14: A schematic 14 the Fast OR Logic

Figure 14 shows a simple schematic of a FastOR system. It is essentially a distributed
pseudo-NMOS NOR gate with an inverter. Each of the four "pixel cells" in the "column"
contains a single pull-down transistor. The "End-of-column Logic" contains a pull-up transistor
and an inverter. Whenever a gate of one of the pull-down transistors goes high, the FastNOR line

2 It is the job of the End-of-column Logic to 1nake sure only one End-of-column Register is issuing the Listen
Comn1and at any given time.

26

!mvfl·pfl and the Fast()R line is driven the transistors are
nu'll-u'p u."nsm<Jr mises the Fas;tNiOR Fas;!OR line is driven !ow.

inverter (See Figure 14).
Fas;tN<OR lines is to be rec:tartgular.

gerimc1trv of tbe FastNOR lines are their width.
colunnn, of course, define the 1c:rtgrt1.

.m1rn1<n1ca1 and determine FastJ\fOlR

from pixel

R

-

R I
-

lower pixel

15: .Pixel Cell J\'1odel used in sirnulations

increases the fall time
vn!I;""' apr>roflCl1'1S the

In order to simulate tbe relative effects of nfet width, width and line
sinml:atirms were In each sinmlati1)!1, cell was as
J 5. It was dec:ide:d si2·11a1s prop:ag;un1g up or down a eol.umrn
be meta!2 is to be 50µm, the
resistance R in the the cap:aci11am:e
C the cap:aci1tam:e

and of metal2 on either side. In other the
that could by a metal2 run. It was also assumed that the width W would be
constrained to those widths obtainable enclosed geometry transistors. For a 160 pixel column,

16

these in Table 4.

Table 4: FastOR optima.f J<,,ome11us

Pfet width 5.0µm

Line width

Simulations the above geometries under sigma and supply var'ial!ron are shown in ~1·0111·p

u
2. s
2.ll ''

1.5 '

"° I},~

14-l!'.;;b-2000 Fil0 fastOr,eou
1.6:20:05 S!G'MA, TEMP and

u , .. -·••·-- ,,L c,,._ ••••-~-•• ·- -

16: Sitnulations Fa.stOR

The waves in the show the its The
upper set of waves are the on FastNOR line right next to the End-of-column Logic.
The lower set of waves are the FastOR output.

ofthe the Fa5;t0R is 2.5 to 3ns. The pmpagat1cm
of the is 5 to lOns. The minimum volt1w"' of FastNOR

28

to 0.6

volts.
width.

cons11derolJ!e impo1rtm1ce is also how the behaves over a vai1lotion in line
co•m1s11•or><ls to n ±20% in line re1sisun1ce

LS

LO

: 0

(LS ..

lS-Feb~2000 :ti.le. : :fastOr:.cou
17:43:11 ELD·O v4. .1 {production)

..

*-~---------------

;l '*'.

:1 •

is 2.2ns to The
Fn111N10R mi11imum vo11taJ!e is between 0.4V

FPIX2. Note: All gccm1e1tnc:s
width or in the nmnbi~r

53.5 TOKEN CONTROL LOGIC

-· ~ .. ----

Token Ou Pixel N+i

NeedToken Combinatorial gbEnable D Q Gbus

Logic i Gbusb

Token Reset Token!n
-~- - '°w ~- "~~-

-~ -·-·-
Token Ou Pixel N

NeedToken Combinatorial Q
Gbus

Logic
Gbusb Q

Token Reset Tokenln

Token Ou

NeedToken Combinatorial gbEnable D Q Gbus

logic
Gbusb Q

Reset Token~n Master Reset __ ,. __ ~ .. --

18,· The Interactions several Token Ct)ntrol Cells

several in a column are hit all
will associate themselves with the same End-of-column register.

hnd-(J!-11o!umin "'ll""c1 issues the all those to
A column token those

so
follows:

their data the readout sequence is as

l) A recorded data.

The receives the Ot1tp11t Command from ass•JCi<lted End-of-column reg.1stt1r

The

When the pre'VKms three conc!:1t1Cms are met, at the next
pixel cell

Ou1tp11t its

b) Release the column token to the next pixel that needs the bns; and

Reset

30

the the

To accomplish the above sequence, each pixel needs Token Control Logic interacting as
shown in Figure 18. This logic has three main goals: l) to acquire the token when it becomes
available if the pixel cell needs it; 2) to pass the token as rapidly as possible if the pixel cell does
not need it; and 3) to clear all token information as rapidly as possible to make the column ready
for the next readout sequence. Goal number 3 was a limiting factor for previous versions of FPIX
which did not have the Token Reset shown in Figure 18. In these older versions, the End-of
column Logic would assert the column token at the beginning of a readout sequence, and then
withdraw it when the readout was finished. The asserted token would propagate up the column,
being grabbed by pixel cells that needed it and being passed by pixel cells that did not. At the
conclusion of the readout sequence, the "withdrawal" of the token would have to propagate up the
column through all pixel cells sequentially. Obviously, if a second readout sequence was issued
too quickly, then it wonld be possible for more than one pixel cell to think it had control of the
bus at the same time. The "withdrawal" of the token might not have had enough time to propagate
all the way up the column, and pixels higher in the column might think that they still had the
token.

The Token Control Logic has two pm1s, a purely combinatorial section and an
asynchronously resettable, positive edge-triggered d-flip-flop that ensures that data output will be
synchronous to the Read Clock. The combinatorial section, labeled as such in Figure 18, has two
inputs, NeedToken from the Command Logic section of the pixel cell and Tokenln from the
previous pixel cell. It also has two outpnts, ghEnable which is the input to the Token Control
flip-flop and TokenOut which hecomes the Tokenln of the uext pixel cell. Within the Token
Control Logic itself, for historical reasons, NeedToken is referred to as "hit" and the inverse of
NeedToken as "hitb". Details of the combinatorial section are shown in Figure 19.

Hold

(~ate l'ull UD

Figure 19: The comhinatorial portion of the Token Control Logic

31

18, the Read is d1>>tntmt:ed to all cells in a column sinnn!tar1eously.
In order ltl the readout sequence, should be activated wben the
cell bas the token and the pixel cell needs the token. By DeMorgan's Law,

l)

that is cariabl:e
then the

+

T11ken(lut must be a zero. ln the token
ga:meu cnntrol of the bns and has been reset to

an nfet transistor that

cell (T1ikenln
to the

Tc•ken(lntdown to zero. If is a innactive (T1:ik1,n ... re!t=l
to the inverse of Tokenln.

not arrived (Tokenln then the output of the NAND gate is a one, and
TokenOut is a zero.

v'"'"--"'"' IS activated (T1Dk1m __ R<~S=,O).
Therefo1·e. TokenOut will be

the NAND.

of the N AND is autorrta!lcally
the pu!Hlmvn transistor

4) When the
a one, the -~Gate'' transistor connects the
up trnnsistor. as soon as the Tokenln anives. TokenOut
This is how fast the is ac1:mnp!islhe1l.

5) When the pixel cell needs the token), then hitb is a zero, and the "Gate"

6)

transistor disconnects the output of the NAND from the TokenOut pw'"''"
the the 1m,11-u'I' transistor

a zero.
Read

To,ke11C1ut in the hands of the

numerous simulations were ne1form1ed to optimize the circuit. In
each transistor in 19 was the IBM process. This makes it

less than optin1izcd for the TSMC process" If the collahomtion elects to go with the
TSCM process or with a this will have to be m>rlnnr>Pfi

Tahle 5 the final t.rm151s,mr

Table 5.· Optimized Token Passing Widths

NANDnfet Width=l6J5µm
Length=0.8um

Tolcenl:Jutpu!Hlc>wn nfets

Gate nfet

Hold

Width=655µm
Lendth=0.8µm
Width=!

20: Token rass1ne Simulations

Figure 20 shows a simulation of an entire column of Token Control Logic Cells interacting as
they will in the FPIX chips. Since it is too confusing to show all 160 TokenOut signals at the
same time, the lower graph in Figure 20 shows every tenth TokenOut. The upper graph shows
the token input to the column, and the final token output from the column. The simulation is a
worst case scenario in which pixelO, the pixel cell closest to the End-of-column Logic, and
pixel!59, the pixel cell furthest from the End-of-column Logic, are both hit simultaneously, and
no pixel cells in between them are hit. Under this specific condition - admittedly very rare, the
token must be passed through 158 pixel cells between the start of one Read Clock cycle and the
start of the next. In the lower graph, the series of rising edges indicate the token skip frequency -
the frequency at which the Token Control Logic will pass the token through pixel cells that do not
need the Token. At the rising edge of the Read Clock, pixe!O will grab the bus and begin to pass
the token. The time between the rising edge of TOK_OUTO and the rising edge of TOK_OUTE
is the time required for the token to skip through 140 pixel cells. This time is l 6.5ns, which
corresponds to l 18ps per pixel cells or a pixel skip frequency of 8.48 GHz. As a side note, if
there were 256 pixels in a column, the entire column could be traversed in 30.2ns. With a 160-
pixel column, the entire column could be traversed in 18.Sns. For the 256-pixel column, the pixel
skip frequency would be a limiting factor for Read Clock frequencies greater than 32.3 MHz. For
the 160-pixel column, the pixel skip frequency would be a limiting factor for Read Clock
frequencies greater than 53 MHz.

The reset time is simply the difference between the falling edges of the column Token iuput
and the column Token output shown in the upper graph of Figure 20. This time is 6.48ns, which
is considerably shorter than any Read Clock frequencies being considered. In fact, it only
becomes a limiting factor for Read Clock frequencies in excess of 155 MHz.

5.3.6 ADDRESS LOGIC

The address logic is very straightforward in the pixel cell. Each pixel cell in the column has
its own unique combination of nmos and pmos transistors that make up its physical address. All
address transistors, whether pull-up (pfet) or pull-down (nfet) are the same physical size. This
means that the fall times will be faster than the rise times. However, the physical size and
regularity of the address transistors are more important than the relative speeds of the rise or fall
times. As long as an address settles to its final value within the read cycle, that is all that matters.

The final design specifications are shown below.

Table 6: Optimized Token Passing Widths

Trace Width

34

9.8µm

lµm

5.4 A DETAILED DESCRIPTION OF A HIT FROM THE PIXEL CELL'S P};RSPECTIVE

ADC

Sequence

schenuuic

AOC

Om

Us!ilt1

Command

When a Detector, a
of electrons

the na1·ticle. This cnanre

of electrons is injected into a
the amount of r.nar<·~

external to the

+

data is to program the
The effect on Vb will

the

Regardless of how the charge was injected, Vb is simultaneonsly compared to eight ,i;f'fcw.,nt

voltages by eight different comparators. Seven of these Comparators a flash analc>e-to-
converter which a thermometer code. These Sl?;nais

Reset which will hold tile thermometer code Note that this use
forms a natural detector. The seven S-R Tl

the ADC Encoder which converts them into a 3-bit
ADC Output Note also the Encoder and Drivers are purely
combinatorial. The memory of the hit magnitude is in the seven S-R flip-flops that latch the
tilennometer code.

The ff Vh exceeds a hit
to be the hit data will he blocked

back end never know a occurred. the End-
of-column Logic and the rest of the chip will never know a hit has occurred. the user has not

cell as the

A

of the

the back
Th11refme, the

Acce1pt 1s a one,
DigHit remains a zero, and the rest the cell will

never know a occurred.

"''"u;, is ANDed with a that is a one if there are no nrc•vl1»i<

cell a zero if there are '"" v "'u' hits stored in the
this new hit is an and 1n1•.enestm~rtt11t h1ecc1m1;s a one. If there were orc1vi!ms
then new hit is not intere:s!!ng, remain a zero and the rest of the
cell will never know a hit occurred.

bn<:H>H;ornrnm C'.on1m1md Regis:ter is a Listen Comrnru1d, then a Listen Deco1:ler
recorded onto an S·R The Hit will

recorcled hit in
affr1ctir1g the

or Readout Sequence
~--~,~~~,~~·~-----+

22: A schenuttic

the hit has been rPc.onl1:rl

co1m1:ctmg the commands r1f the hntHJH:ol1umn n;g1Mer

blc•ckimg any

Readout Se171u•nce

the celL When the Output M •. ,oA'r~t'~"

the column token to arrive,
Ccimmimd unless it had received a hit be•cmrse
is all Command

it activates

causes the addrr1ss
ADC Output driver<,

sutiseqm:nt hits from

hit closes a
"··'-''" Decoders in

the

At the next rising edge of the Read Clock, Gbus is latched by a second flip-flop, the output of
which activates the Analog Reset Logic that resets the Thermometer code in the Analog Front
End.

If a Reset Command had been issued instead of the Output Command, the Reset Decoder
would have activated the CommandReset line which would have simultaneously reset both the
thermometer code in the Analog Front End and the S-R flip-flop that recorded the hit in the
Digital Back end.

37

6 THE END-OF-COLUMN LOGIC

6.1 SIGNALS

Outputs from an End-of-column Logic to the pixel cells in its column.

l COMA<l:O>

2 COMB<l:O>

3 COMC<l:O>

4 COMD<l:O>

5 ACCEPT

6 COL TOKENIN

7 COLREADCLK
COLREADCLKB

8 DATARESET

9 READRESET

Output. Command State Machine A command pair

Output. Command State Machine B command pair

Output. Command State Machine C command pair

Output. Command State Machine D command pair

Output. Controls the Hit Data to Recorded Data conversion for all
pixels in the column. If ACCEPT=I, the End-of-column Logic is
ordering pixel cells to accept new hits. If ACCEPT=O the End-of
column Logic is ordering pixel cell to ignore new hits

Output. The Column Token for arbitrating bus access

Output. The Read Clock released by the End-of-column Logic to the
pixel cells in the column. It is only released when the End-of-column
is "Talking" otherwise, it is held at zero.

Output. The Master Reset relayed from the chip input pads, through
the End-of-column Logic and to all pixel cells. Will cause a reset of
all pixel cell digital back ends and analog front ends.

Output. A Reset specifically for the two flip-flops in each pixel cell's
Token Control Logic. This Reset is activated when the End-of
column Logic has "Nothing to Say"

Outputs from an End-of-column Logic to the Core Logic.

JO HTOKOUT

ll HAVEDATA

Output. Horizontal Token Output for column-to-column bus
arbitration

Output. Indication of the presence of data to be output from the
column

12 COLDATA<7:0> Output. Row address.

l3 COLDATA<12:8> Output. Column address.

14 COLDATA<20:l3> Output. BCO Number

15 COLDATA<23:21> Output. ADC Magnitude

Inputs to an End-of-column Logic from the Pixel Cell.

38

16 HFASTOR

17 RFASTOR

18 PIXDATA<7:0>

19 PIXDATA<l0:8>

20 COLTOKENOUT

Input. Hit Fast OR indicator of the presence of a hit somewhere in the
column

Input. Read Fast OR indicator of the presence of data to be output
somewhere in the column. When this signal goes from active to
inactive, the End-of-colnmn Logic knows that the column is done
Outputting data

Input. Row address.

Input. ADC Magnitude.

Input. The Token Out of the highest pixel cell's Token Control Logic.
When this activates, the token has passed through all of the pixels.
This signal is used as a diagnostic. If COLTOKENOUT activates
and the RFASTOR still has not gone inactive, then something is
wrong.

21 COLDATA<23:21> Output. ADC Magnitude

Inputs to an Eud-of-column Logic from the Core Logic.

22 BC0<7:0>

23 HTOKIN

24 BCOCLK_IN
BCOCLKB_IN

25 READCLK_IN
READCLKB_IN

26 CHIPSENDDATA

27 MASTERREJECT

28 DATARESET_IN

29 CORESILENT

Input. The Beam Cross-over Number; indicator of time.

Input. Horizontal Token Input for column-to-column bus arbitration

Input. Beam Cross-over clock.

Input. Read Clock

Input. When active (1) a "Talking" End-of-column Logic can
continue to change its data at every rising edge of the Read Clk.
When inactive (0) a "Talking" End-of-column Logic must latch the
data being sent and not change it until CHIPSENDDATA goes
active.

Input. When high (1), the ACCEPT signal output to the pixel cells
must be low (0). When low (0), the ACCEPT signal output to the
pixel cells will be high (I) unless all four End-of-column registers are
full. MasterReject is a system-wide throttle.

Input. The Master Reset directly from the chip pads

Input. When high(!), the Core is not outputting data. When low (0),
the Core is outputting data.

39

6.2 OVERVIEW

Command Lines

D D D D

Nt:xt Empty? r1
Who's

Listen

Listen

Priority

Encoder

Who's

Full? It Next

t I o~~put ---
Output

Priority

Encoder

Talking/Silent Column

State

Machine

Figure 23. A Scheniatic Overvieiv of the E"nd~oj~colrunn J...,ogic

The majority of the intelligence in the FPIX Core is located in the End-of-column Logic. It
needs to understand what commands to issue to the pixel cells and when to issue those
commands. It must also understand time with respect to the BCO clock, the Read Clock and the
BCO number.

Each End-of-column cell consists of

1. four Command State Machines which issue commands to pixel cells via the Command
Lines,

2. four Registers which are paired one-for-one with Command State Machines and which
store BCO numbers when necessary,

3. one Column State Machine which controls the End-of-colnmn Logic in general,

4. one Hit Priority Encoder which detennines which State Machine/Register pair is the next
to "listen" for hits

5. one Output Priority Encoder which determines which State Machine/Register pair is the
next to output data., and

6. necessary support logic.

All of these snbcircuits are considerably different from their counterparts in FPIXJ. Figure 23
shows the interactions between the major components of the End-of-column Logic.

40

6.3 THE COMMAND STATE MACHINES

The four Command State Machines operate independently of one another and their primary
purpose is to generate the four Command Line pairs. Each is a Mealy state machine that changes
with each rising edge of the BCO clock and that has four states:

l. Empty No hit has been received and not listening for hits

2. Listen - No hit has been received, but listening for one

3. Full A hit has been received, but not outputting yet

4. Ontput A hit has been received and the data is being output

The states flow as shown in Figure 24.

All transitions occur on
the rising edge of the
BCO Clock

HNext

Empty

Read Done HNext(Hit+Nolisten)

Read Done Hit

RNext(ReadDone+NoOutput)

RNext

Figure 24: The Conunand State Machine state diagran1

At any given time, only one Command SM can be allowed to be in the Listen state. If there
is a hit somewhere in the column, the pixel cells that are hit are going to try to associate

41

themselves with whichever Command SM is issuing the Listen Command. If more than one
Command SM is issuing a Listen Command, then any hit pixel cells are going to try to obey more
than one Command SM. The results could he unpredictable.

Moreover, there must be a Command SM in the Listen state unless all four Command SMs
are full. Recall from the description of the pixel cells that they only pull down the HFastOR line
if they get a hit when a Command Line is issuing the Listen Command. If no Command SMs are
in the Listen state, then no one will be issuing a Listen Command and no pixel cells will pull
down the HFastOR line. The result is a hung chip.

This problem is solved by the Hit Priority Encoder and the HNext and NoListen signals that it
generates. There is one NoListen signal for all four Command SMs. When it is active (l), then
no Command SMs are in the Listen state. There is a unique HNext signal for each Command SM
and it is the job of the Hit Priority Encoder to make sure that a maximum of one of these signals
is active at any time. When HNext is active for a particular Command SM, then that Command
SM will be the next SM to make the transition to the Listen state. The function of these signals
and the state machines is best described by example.

l. If Command SMa is in the Empty state and has an active HNext signal and no Command
SMs are in the Listen state, then NoListen will be active. On the next rising edge of the
BCO clock, Command SMa will make the transition to the Listen State.

2. If Command SMa is in the Listen state and Command SMb is in the Empty state and has
an active HNext signal, NoListen will be inactive. At the next rising edge of the ECO
clock after there has been a hit somewhere in the column, Command SMa will make the
transition to the Full state and Command SMb will make the transition to the Listen state.

Similarly, at any given time there can be only one Command SM in the Output state. If more
than one SM were allowed into the Output state at a given time, then information from more than
one time slice would be output at the same time.

As in the case with the Listen state, these problems associated with the Output state are
solved by the Output Priority Encoder and the Rnext and NoOutput signals that it generates.
There is one NoOutput signal for all four Command SMs. When it is active (!), then no
Command SMs are in the Output state. There is a unique RNext signal for each Command SM
and it is the job of the Output Priority Encoder to make sure that a maximum of one of these
signals is active at any time. When RNext is active for a particular Command SM, then that
Command SM will be the next SM to make the transition to the Output state. The function of
these signals and the state machine is again best described by example.

3. If Command SMa is in the Full state and has an active RNext signal and no Command
SMs are in the Output state, then NoOutput will be active. On the next rising edge of the
ECO clock, Command SM a will make the transition to the Output State.

4. If Command SMa is in the Output state and Command SMb is in the Full state and has an
active RNext signal, NoOutput will he inactive. At the next rising edge of the BCO clock
after the column is done reading out, Command SMa will make the final transition back
to the Empty state and Command SMh will make the transition to the Output state.

In the above four examples, two signals are left unexplained. A Command SM receives
information about hits via the HFastOR circuitry, which will be described later. Since hit arrival
is virtually synchronous with the ECO clock, no further conditioning of the HFastOR signal is
necessary. It might he logical to assume that the Command SM receives information about the

42

conclusion of the read cycle directly from the RFastOR circuitry. However, since read out is
performed synchronous with the Read Clock and not the BCO clock, an additional conditioning
step is necessary to ensure stability. This circuitry is shown in Figure 25. The first part of this
conditioning is performed by the Column State Machine, which operates at the Read Clock
frequency and which accepts the output of the RFastOR circuitry and generates the co!Silent
signal (column silent). The edge triggered d-flip-flop in the figure ensures that only the rising
edge of colSilent affects Done and NotDone. This guarantees that only the completion of the
present read out will activate the Done signal. The input to the edge-triggered d-flip-flop is the
Output state signal. This guarantees that Done will only be activated in the SM in the Output
state. An S-R flip-flop actually creates the Done and NotDone signals. It is reset to NotDone
whenever the Command SM is in either the Empty state or the Listen state. The Empty state also
resets the edge-triggered d-flip-flop. The S-R flip-flop is set and Done is activated only at the
rising edge of the colSilent signal if the Command SM is presently NotDone. This two-step
process guarantees signal stability in spite of the fact that the Command SMs operate on the BCO
clock and readout occurs on a different clock.

edge-triggered
d-ff

Output sr-ff
ata q Drv

Done
qb q

colSilent set
lk

lkb

reset reset
qb Not Done

Empty

Listen

Figure 25: Conditioning Circuitry for Read Done

Finally, the actual commands sent np the Command Lines are generated from the Empty,
Listen, Full and Output states and the Done and NotDone signals.

ComO =Listen+ Output ·Done

Com! =Listen+ Output · NotDone
Equation 3

When in the Listen state, Como and Com 1 will both be high, and 11 is the Listen Command.
When in either the Empty or the Full state, Como and Co ml will both be low, and 00 is the Idle
Command. When in the Output state before the readout is done, Como will be a l and Corn 1 will
be a zero, and 10 is the Output Command. Finally, when in the Output state after the readout is
done, ComO will be a 0 and Com l will be a 1, and OJ is the Reset Command. This last feature
was added to ensure that if there was any communication difficulty with the column token, then
at least the column could he made to function up to the point of the communication difficulty. If
any pixel cells remained unread after the End-of-column Logic thought it was done, then those
pixel cells would be reset and they would not interfere with further operation of the colnmn.

43

/SilliWiWe·ada 'f):i M<it<l. 17;0,T;l};f'2QQQ

!l
I l I I

) l l M 00 "
' 1 "" 00

1 l 1~ 01 00

' 1 'x~ 01 00

~~tom 0:1 oedl.~£m;~ ! 1110

\Cc:i: pei .:2$ cl l;~en 0000 l 0001

l.xm1'1 °"'"'"" >

'>

' I
'; 0

«O::ce.r{'ticl!i.HN~
II 0010

;~
\j

1',ne!os)

°" ';<)\\ 'OIJ(' 'C{>Q :trn D bOC ;;;JO,U

Figure 26: End-of-colunin Logic at l?eset. The signals are, frotn top to bottom, Master Reset, the
BCO clock, the j(Jur pairs of Cornmand Lines, Empty state indicators, Listen state indicators, f'ull

state indicators, Output state indicators, the NoListen signal, the RNext signal, the HNext signal, the
Hit indicator, and the colrunn Silent signal. The state indicators decode the state of each of the four

Coniniand State Machines and indicate (vvith a 1) vvhen a state 1nachine is in a certain state.

Figure 26 shows an End-of-column Logic cell during a Master reset, and, in particular, shows
those signals important to the Command SMs. First, during the actual reset (in the first 20 ns of
the graph), all four Command Lines are driven to the Reset Command (01). This is accomplished
not in the state machines themselves, but rather in "override" logic attached to the drivers of the
Command Lines. In this fashion, regardless of the state of the Command SM, the Reset
Command will be driven up the column during a Master Reset. Note that after the completion of
the Master Reset, all four Command Lines are showing the Idle Command (00); the Empty state
indicator is showing that all four Command SMs are in the Empty state (l 111); the Listen state
indicator is showing that no Command SM is in the Listen state (0000); as expected, the NoListen
signal is active (1) because no Command SM is in the Listen state; and, finally, the HNext signal
indicates that Command SMa has been selected as the next state machine to move to the Listen
state (0001). At the next rising edge of the BCO clock, Command Line A changes to the Listen
Command (l I); the Empty state indicator changes to 1110, indicating that Command SMa is no
longer in the Empty state; the Listen state indicator changes to 0001 indicating that Command
SMa is now in the Listen state; NoListen goes inactive; and HNext indicates that Command SMb
has been selected as the next state machine to move to the Listen state. Finally, note that at the
next rising edge of the BCO clock, everything remains the same because nothing has happened
that would precipitate a state change in any of the Command SMs.

44

Figure 27 shows a single Command SM during a hit cycle. All of the signals in the figure are
connected directly to that Command SM. At first, the SM is in the Listen state as indicated by the
Listen state indicator and by the presence of the Listen Command (l l) at the Command Line pair.
At approximately 800ns, there is a hit. At the next rising edge of the BCO clock, the SM makes
the transition to the Full state. The Command Line changes to the Idle Command (00). The
Output Priority Encoder selects the SM to be the next to output by activating the RNext signal at
approximately 850ns. At the next rising edge of the BCO clock (almost lOOOns), the SM makes
the transition to the Output state where it remains until the rising edge of the BCO clock after the
arrival of the colSilent signal at approximately 1200ns. During the Output state, the Command
Line pair issues first the Output Command (10), and then the Reset Command (01). Finally, at
approximately 1250ns, the SM makes the transition back to the Empty state. Note that the Listen
Priority Encoder selects this SM (via the HNext signal) to be the next SM to make the transition
to the Listen state. This is coincidental.

es!CW..;x;1RC'ock I i ! i I i I I - I ! _ I i i LJ~Ul Jl JlJlLJl· LflfLJr·ur-u,·ur·u·,u··, J··u··u,-Lf1 nJllIU~Ul,
1 _ l. : r 1 L ! 1 ~ 1 - 1 L

14000 'OiJ,10

Figure 27: One Com1nand SM in the End~of~colzann Logic during a hit cycle. Froni top to bottorn the
signals are the Read Clock, the BCO clock, the E1npty state indicator, the Listen state indicator, the

Full state indicator, the Output state indicator, the flit signal, the lVolisten signal, the NoOutput
signal, the RNext signal, the JJNext signal, the colu1nn silent signal, and the C'onunand line pair.

45

6.4 THE COLUMN STATE MACHINE

Each End-of-column Logic cell has one Column State Machine that, in short, controls the
read out of the column. It changes its state, if necessary, only on the rising edge of the Read
Clock and it has four states:

l. Nothing to Say No pixels need to he read out at this time

2. Something to Say Pixels are waiting to be read out

3. Talking Pixels are being read out

4. Silent The column is done reading out this event

The states flow as shown in Figure 28.

All transitions occur on
the rising edge of the
Read Clock

Silent

Column Read

FastOR goes away

Nothing

Talking

Any Output Command

issued by any Command SM

Arrival of
Horizontal Read Token

Figure 28: The Column State Machine State Diagram

6.4. l NOTHING TO SAY

Upon Reset, the Column State Machine is forced into the "Nothing to Say" state. This is only
logical since, after a Reset, the column cannot possibly need to output data, The SM will remain
in the "Nothing to Say" state until any one of the four Command State Machines issues an Output
Command (10). At the first rising edge of the Read Clock after receiving an Output Command,
the Column SM will make the transition to the "Something to Say" state.

Waiting until there is an Output Command has some important implications. First, this
implies that the some Command SM had been in the Listen State; some pixel had received hit

46

data; the Command SM moved into the Full State and finally into the Output State. Second, the
same circuitry that decodes an Output Command in each pixel cell is also used to decode the
Output Commands for the Column SM. Furthermore, the Column SM decodes the actual
command lines that are sent up the column. Therefore, by the time the Column SM is aware that
some Command SM is issuing the Output Command, all pixels associated to that Command SM
are also aware that it is issuing the Output Command. This eliminates almost all timing-sensitive
problems associated with read out. For example, the Output Command must arrive before the
Column Token. If the Column Token arrives first, then the pixel cell will not yet realize that it
needs to grab the token and it will therefore pass it on. This can lead to more than one pixel
driving the bus at the same time.

During the "Nothing to Say" state, the Read Clock is blocked from the column via the Clock
Control Logic which will be explained hereafter.

6.4.2 SOMETHING TO SAY

After the Column SM has received an Output Command and has made the transition to the
"Something to Say" state, clearly there are pixels in the column that need to be read out.
However, the Core is not ready for this column to read out yet. The Core needs to arbitrate
among all of the columns that have "Something to Say". Like the column which arbitrates via the
Column Token, the Core arbitrates via the Horizontal Token (Htok). The first rising edge of the
Read Clock after the Column State Machine receives the Htok, it makes the transition into the
Talking state.

During the "Something to Say" state, the Read Clock is still blocked from the column via the
Clock Control Logic. CoreHasData, a diagnostic signal that indicates when there is data to
output, is activated during this phase. CoreHasData is a distributed OR similar to the HFastOR
and it can be activated by any End-of-column Logic. Finally, and most importantly, the Column
Token is sent up the column in this phase. Again, this guarantees that the Output Command has
been sent to the pixel before the token gets there. Secondly, this makes sure that in each column
the first pixel with output data has the token before the Read Clocks are released into the column.

6.4.3 TALKING

After the Column SM has received the Horizontal Token and makes the transition to the
Talking state, it is free to output its data. lt will remain in this state until the RFastOR circuitry
indicates that the last pixel is outputting its data. The first rising edge of the Read Clock after the
rising edge of the RFastOR line, the Column SM will make the transfonnation to the Silent state.

During the Talking state, the Read Clock is finally transmitted up the column via the Clock
Control Logic. CoreHasData, the diagnostic signal that indicates when there is data to output, is
still active during this phase. Tri-state buffers are enabled in this state connecting the column bus
to the Core output bus.

6.4.4 SILENT

After a Talking Column SM has seen the rising edge of the RFastOR and makes the transition
to the Silent state, it no longer has data to output, but other columns in the Core may still be
outputting. Therefore, the Column SM remains in the Silent state until it receives the coreSilent

47

signal indicating that the whole Core is done outputting. This helps prevent a hot column from
grabbing the Core Output bus again and again while other columns are trying to output. When
the coreSilent signal is received, the Column SM will make the transition back to the "Nothing to
Say" state after the next rising edge of the Read Clock.

During the Silent state, the Read Clock is still transmitted up the column via the Clock
Control Logic. This ensures that the last pixel cell to output receives enough clock edges to reset
both the digital back end and the ADC latches. The column token is reset in this phase to prepare
for the next read out cycle. The co!Silent signal is issued to the Command SM so they can make
their necessary transition between their Output states and their Empty states. Finally, the tri-state
buffers connecting the column bus to the Core output bus are disconnected.

6.4.5 SIMULATIONS

000000

'""''"'

r-igure 29: Verilog siniulation o.f a single Colurnn State Machine.

Figure 29 shows a single Column SM as it progresses throngh an entire read out cycle. At
approximately 800ns (A), the Column SM is in the "Nothing to Say" state and a hit occurs
somewhere in the column. This has no effect on the state of the Column SM. Also, though the
Read Clock is free running, it does not reach the pixels in the column. At approximately IOOOns
(B), the AnyRead signal activates indicating that some Command SM is issuing the Output
Command. At the first rising edge of the Read clock after the arrival of the Any Read signal, the
Column SM makes the transition to the "Something to Say" state (C). In this state, the column
Token is issued (D). After the arrival of the Horizontal Token (E), the Column SM makes the
transition to the Talking state (F). Once in the Talking state, the Read Clock is released to the
column (G), and for each rising edge of the Read Clock, one pixel of information is driven to the
Core Output bus (H) until the rising edge of the RFastNOR (I) which indicates that this column is

48

outputting its last pixel. At this point the Horizontal Token is released (J) and on the next rising
edge of the Read Clock, the Column SM makes the transition to the Silent state (K). While in the
Silent state, other columns continue to drive the Core Output bus (L) and the Read Clock remains
active in the Silent column (M). Finally, the coreSilent signal activates (N) (shown here inverted)
and at the next rising edge of the Read Clock, the Column SM makes the transition back to the
"Nothing to Say" state (0).

6.4.6 HORIZONTAL TOKEN PASSING LOGIC

Nothing
sr~ff

Drv

Have Token q HTokOut

set
Talking

Read Done
reset

coreSilent qb

Figure 30: Horizontal Token Passing Logic

The Horizontal Token Passing Logic in the Column SM is complicated enough to warrant
further explanation. It is shown in Figure 30. The token itself is originally generated by the Core
when the Core makes its own transition from coreSilent to coreTalking. It would be possible to
have a completely combinatorial horizontal token pass. However, it is critical to the read out
speed of the Core that the horizontal token resets uniformly across the Core. Moreover, since the
horizontal token pass is so critical to proper operation of the Core and in the interest of single
event upset (SEU) tolerance, it is important that one SEU in the Core Logic cannot hang the chip
by destroying the horizontal token. Therefore, the h01izontal token passes through a series of SR
flip-flops, one per column. These are all reset at once when coreSilent activates.

If a column has "Nothing to Say" and it has the token, it immediately sets the SR flip-flop
and passes the token. If it has "Something to Say", then when it has the token, HtokOut will not
be set. Instead, the Column SM will make the transition to the Talking state and then, when the
RFastOR logic activates the ReadDone signal, the Horizontal Token Passing Logic will set the
SR flip-flop and pass the token. Note, ReadDone activates while the End-of-column Logic is
outputting the last pixel. Therefore, the next column with "Something to Say" will get the
Horizontal Token and be ready to output by the next rising edge of the Read Clock. This is
demonstrated in Figure 29 (L).

Another important note regards the Column SM "having the token". The signal
"HaveToken" in Figure 30 is not simply the Htokin signal in Figure 29. Instead,

HaveToken = HTokln • HTokOut Equation 4

In other words, a column has the token when it has received the token from the previous
column but has not yet passed the token to the next column. If a column has passed the token on,
then it does not have the token any more.

49

The Horizontal Token Passing Logic actually poses a minor problem for the FPIX Core. It is
a limiting factor in the readout speed. By simulation, if there is a hit in the 17"' column, it takes
more than one Read Clock cycle for the horizontal token to reach the 17'" column. This is
because the skip frequency of the Horizontal Token Passing Logic is only 22.2 MHz.

Additional simulations have revealed that the majority of the problem is in the driver shown
in Figure 30. If that driver is eliminated and replaced with a properly sized inverter of qb, then
the skip frequency is increased to 34.4 MHz.

6.4. 7 CLOCK CONTROL LOGIC

Send Data

RiilK
I

11111111111

Reset

C!k I65

DctcRcsctcL.otc -~

Figure 31: The clock control logic

The Clock Control Logic needs to do a number of things.

l. When the Column SM is in either the "Nothing to Say" or "Something to Say" states, the
Read Clock must be blocked from the column. Moreover, the column Read Clock must
be a zero during these states.

2. When the Column SM is in either the Talking or Silent states, the Read Clock must be
passed to the column.

3. When ChipSendData is inactive (low), the Clock Control Logic needs to hold the clock at
its present state regardless of whether that state is a one or a zero.

4. The Clock Control Logic must be resettable.

5. It must be capable of driving the entire column in a timely fashion.

These functions are accomplished in several steps as shown in Fignre 31. The two drivers,
bigDrvl and bigDrvO, have enough strength to drive the column's line capacitance. Moreover,
when either Talking or Silent are active, bigDrvO drives the colReadClk to a zero and bigDrv l
drivers the colReadC!kb to a one.

50

The circuit cLatch converts ReadClk to a differential CMOS signal when SendData is active.
When SendData is inactive, cLatch holds the last state of the ReadClk. Finally, at Reset Out and
Outbar are set to one and zero, respectively.

6.5 THE END-OF-COLUMN REGISTERS

Wctrlh>---111

Wclrl >---+----e
Negative Edge Triggered

Dflip·flop

Input >---11---i ,_.,..._ D Q

BCO Clk>----------< lk Ob

RST

Reset >--------------~

Dev

Figure 32: A single bit of an End-of-column Register

~-< Rctrl

Output

'---<R,ctrlb

There is one eight bit End-of-column Register for each End-of-column Command State
Machine. When a particular Command SM is in the Listen state and receives a hit, the job of the
Register is to record the current BCO number which acts as a timestamp for the event. When the
Command SM is in the Output state, then the Register must output the recorded BCO number.

The Command SM makes the transition from the Listen state to the Full state at the same
time that the BCO number is changing from "n" to "n+ l ". (They both change state on the rising
edge of the BCO Clock.) To prevent any race condition from developing, each bit of the End-of
column register is designed as shown in Figure 32. The heart of each bit of the End-of-column is
a negative edge-triggered d flip-flop. The input to each flip-flop is a CMOS 2-to-l multiplexor.
When the write control (Wctrl) is active, then on the negative edge of every BCO clock. the
Register will be updated to the present value of the BCO number. When the write control is
inactive, then on the negative edge of every BCO clock, the Register will be refreshed to its
present value. The Wctrl signal of each End-of-column Register is equivalent to the Listen signal
of the corresponding End-of-column Command SM.

The CMOS switch at the output of Figure 32 allows all four End-of-column Registers to be
placed on the same bus. The Rctrl signal of each End-of-column Register is equivalent to the
Output signal of the corresponding End-ot~co!umn Command SM.

A simulation of an End-of-column Register is shown in Figure 33. "Dataln" in the figure is
the BCO number. It changes on every rising edge of the BCO clock. "StoredBCO" is the
number being held by the End-of-column Register. Note that it changes to the current value of

51

"Dataln" on every negative edge of the ECO clock as long as the Command SM is in the Listen
state. "DataOut" is the output of the End-of-column Register. It is tristated unless the Command
SM is in the Output state.

tes\Core.oc1 RC lock

tostCorn.pc1 .BClock:

Figure 33: Silnulation o.f a single End-o,f-colunin Register through a hit cycle

52

6.6 FAST OR LOGIC

There are two types of FastOR logic used in the End-of-column Logic. The first and simplest
is the HFastOR logic shown in Figure 34. In this circuit, a weak PMOS transistor serves as the
pull-up for the distributed NOR gate throughout the column. This NOR is inverted to an OR and
then run through a non-clocked d flip-flop. The output, Hit, is a one when the HFastOR is low
(pulled down).

sr-ff
Orv

)0.,.----lset
q it

reset
qbf----1

Figure 34: HFastOR Logic

The RFastOR logic is slightly more complicated because it is actually looking for the rising
edge of the RFastNOR signal. On that rising edge, the column is outputting the last pixel that
needs to be output. To accomplish this, the RFastNOR signal is brought directly into the clock
input of a positive edge-triggered d flip-flop. On the rising edge of RFastNOR, the flip-flop
changes ReadDone to active. ReadDone remains active until it is reset, which is accomplished by
either the column going silent or the master reset activating.

positive edge triggered
d-tt

'----1 D q

RFastNO, '---'----------;

colSilent

Figure 35: RFastOR Logic

6.7 LISTEN PRIORITY ENCODER

Orv
Read Done

Orv
ReadNotDone

As indicated earlier, there were extensive modifications to Command State Machine in the
development of the FPIX Core. Principle among them was the change in the state structure from
the simple "Empty" and "Full" used in FPIX I to the more complete "Empty", "Listen", "Full",

53

and "Output" used in the FPIX Core. Using the latter allows the complicated. state-machine
based Priority Encoder used in FPIX! to be replaced with a simple combinatorial logic block in
the FPIX Core. The logic simply makes State Machine 0 the next to listen if it is currently in the
Empty state. If SMO is not Empty, then SMl is next if it is Empty. If both SMO and SMl are not
Empty, then SM2 is next if it is Empty. If SMO, SMl and SM2 are all not Empty, then SM3 is
next if it is not Empty. This logic is shown in Figure 36.

Empty[O] Empty[1] Empty[2] Empty[3]

Next[O]

Drv
Next[1]

Next[2]

Next[3]

F'igure 36.· Listen Priority Encoder

Also, the Listen Priority Encoder is responsible for determining if no Command State
Machines are in the Listen state and if not Command State Machines are free. "NoneFree" is
active (high) if no Command SM is in the Listen state and no Command SM is in the Empty
state. If NoneFree is active, then the Accept signal to the pixel column is brought low (inactive)
so that no new hit data will be converted into recorded data until an End-of-column register is
free. This prevents hits from appearing in the wrong BCO number on hot chips.

6.8 OUTPUT PRIORITY ENCODER

One of the inefficiencies in FPIXl involves how it selects which Command SM to output
next. External to the End-of-column Logic, the a requested BCO counter incremented through
possible BCO numbers and a Command SM started to output when their was a match between the
requested BCO and its stored BCO number.

In the FPIX Core, there are no requested BCO numbers, so each End-of-column Logic must
have the ability to determine which Command SM goes next. A straightforward priority encoder
such as the one used in the Listen Priority Encoder will not work. Old data could get "trapped" in
Command SM3 and never get out because Command SMO continually receives the right to
output. Instead, what is used is a circular priority encoder in which, at any given time, the

54

Command SM with the lowest priority is the SM that is currently in the Output state. If no SM is
in the Output state. then a "seed" SM establishes the priority.

The algorithm has two parts. The first describes how to pass or withhold the right to output.

!) If I am not in the Full state and I receive the right to output from my
neighbor to my left, I pass the right to output to my neighbor on my right.

2) If I am not in the Full state and I am the seed register, I pass the right to
output to my neighbor on my right

3) If I am in the Output state, I pass the right to output to my neighbor on my
right.

4) If I am in the Full state and I receive the right to output from my neighbor to
my left, l withhold the right to output from my neighbor to my right

5) If I am in the Full state and I am the seed register, I withhold the right to
output from my neighbor to my right.

The second part of the algorithm describes which register gets to advance to the Output state next.

l) If I am in the Full state and not in the Output state and I am the seed register,
then I am the next to Output

2) If I am in the Full state and not in the Output state and I receive the right to
output from my neighbor to my left, I am the next to Output.

Output Full

From Neighb To Neighbor

Output Output

I'm Next

Full Full

From Neighbor

To Neighbor From Neighbor

Output Full

Figure 37: A diagrani of the Output Priority Encoder logic

55

The above algorithm can be accomplished with purely combinatorial logic. Four identical
circuits are arranged in a circle. The seed input of three of them are grounded and the last is tied
to a signal which is high if not Command SMs are in the Output state.

6.9 A DETAILED DESCRIPTION OF A HIT FROM THE END-OF-COLUMN LOGIC'S
PERSPECTIVE

Upon reset, the four Command State Machines are forced to their Empty state and the
Column State Machine is forced to its Nothing-to-say state. The column Token and the column
Read Clock are both forced to a zero. The RFastOR Logic is reset, indicating that any reads are
not done.

The fact that all four Command State Machines are Empty, NoListen is activated indicating
that nobody is in the Listen State. Moreover, since all of the State Machines are Empty,
NoneFree is inactive, indicating that there are free State Machines. Therefore, at the next rising
edge of the BCO clock, one state machine will be moved to the Listen state. The Listen Priority
Encoder selects SMO for this honor since it is Empty. RecalHhat an Empty SMO supersedes all
other State Machines. Furthermore, since NoneFree is inactive the Accept signal driven up the
column is a one (assuming the user is not activating the MasterReject).

In this state, with no Command State Machines Full or Outputting, the Output Priority
Encoder is indicating that no one will be the next to Output and that everyone has the right to
output. However, nobody is paying attention to the Output Priority Encoder at this point.

The End-of-column Logic can remain in this state indefinitely, with one Command SM
outputting a Listen Command, the other three outputting the Idle Command, and the Column SM
indicating Nothing-to-say. The Listen Priority Encoder indicates that SMl will be the next to
Listen, hut there has been, as yet, no cause to advance the state machines so the Listen Priority
Encoder will just continue to indicate that SM I will be the next to Listen. The Output Priority
Encoder is still outputting nonsense, but at this point, no one cares. At every falling edge of the
BCO clock, the BCO number is latched by SMO' s End-of-column Register.

Eventually, the HFastOR logic will indicate that a hit has been received. This will cause
several things to happen.

I) SMO will make the transition from the Listen State to the Full State.

2) SMO will stop outputting the Listen Command and start outputting the Idle
Command.

3) SMJ will make the trans1t10n from the Empty State to the Listen state
because it was marked as the next to listen by the Listen Priority Encoder.

4) SM I will start outputting the Listen Command

5) The Listen Priority Encoder will mark SM2 as the next to listen.

6) Now that something is in the Full state (SMO), the Output Priority Encoder
will indicate that SMO is marked as the next to output.

7) SMO' s End-of-column Register will hold the last BCO number it latched.

56

The system will not remain in this state for long. Since no one is in the Ontput State,
NoOutput is active. With an active NoOutput signal and an Output Priority Encoder which
indicates that someone (SMO) is marked as the next to output, then on the next rising edge of the
BCO clock, SMO will make the transition from the Fnll State to the Output state.

For the sake of simplicity, we can assume that no other hits have occurred. However, this is
not a requirement of the system. Had their been another hit, SMJ would have moved into the Full
state, SM2 would have moved to the Listen state, etc.

The transition to the Output state drives the Output Command up the column. This alerts the
Column State Machine that someone is in need of outputting. At the next rising edge of the Read
Clock, the column state machine will make the transition from the Nothing-to-say state to the
Something-to-say state. This has two effects.

1) The Column Token will be driven up the column to the first pixel that
requires it.

2) The Core Logic will be alerted that the Core "HasData".

The system can remain in this state indefinitely with Command SMO in the Output state and
the Column SM in the Something-to-say state. What we are waiting for is the horizontal Token
to indicate that this End-of-column Logic can grab the Core bus. When this happens, at the next
rising edge of the Read Clock, the Column SM will make the transition from the Something-to
say state to the Talking state. This will release the column Read Clocks into the column and data
will begin to pour through the End-of-column to the Core bus. It will also release the BCO
number stored in SMO' s End-of-column Register to the Core bus.

At the rising edge of the RFastOR, the ReadDone signal is activated. This passes the
Horizontal token to the next needy column, and on the next rising edge of the Read Clock, the
Column SM will make the transition to the Silent state. This activates the Done signal in
Command SMO.

While Done is active and until the next rising edge of the BCO clock, Command SMO will
output the Reset Command just in case there is some miscommunication between the End-of
column Logic and the pixels. At the next rising edge of the BCO clock, Command SMO will
make the transition back to the Empty state. This will reset the Done signal, completing SMO's
hit cycle.

The Column SM will remain in the Silent state until it receives the signal from the Core
indicating that the Core has gone silent, i.e. that no other columns are talking. When this
happens, the Column SM makes its final transition back to the Nothing-to-say state completing its
hit cycle. This last transition also resets any flip-flops in the address section of the column that
may still be active. Again, this is just a precautionary measure in case there is some
miscommunication between the End-of-column Logic and the pixels.

57

7 CORE LOGIC

7.1 SIGNALS

Outputs from the Core Logic to the End-of-column Logic cells.

CORETALKING Output. Signals that the Core is Talking

2 CORESILENT Output. Signals that the Core is Silent

3 BC0<7:0> Output. The current BCO number

4 COMD<l:O> Output. Command State Machine D command pair

Outputs from the Core Logic to Periphery.

5 COREHASDATA

6 COREHIT

7 COREERROR

Inputs to the Core Logic

8 BCOCLK_IN
BCOCLKB_IN

9 READCLK_IN
READCLKB_IN

IO DATARESET

Output. Signals that the Core has data it needs to output

Output. Signals that some pixel the Core has been hit

Output. Signals that the column Token in some column has exited the
top of the column before Read Done activates.

Input. Beam Cross-over clock.

Input Read Clock

Input. Reset

7.2 INTRODUCTION

The increased intelligence of the End-of-column Logic and the decision to design the FPIX
Core as a purely non-triggered system has greatly simplified the Core design. It consists of a
simple counter, a very stupid state machine and a trio or diagnostic output circuits.

7.3 CORE COUNTER

One of the three principle components of the Core Logic is the Core Counter that is nothing
more than a resettable counter that changes state on the rising edge of the BCO clock. The
counter has seven bits wide. The reset is asynchronous.

7.4 CORE STATE MACHINE

The second major component of the Core Logic is the Core State Machine. Its sole purpose
is to determine when the Core is Talking and when it is Silent. lt operates synchronous with the
rising edge of the Read Clock.

There is no chip token as far as the FPIX Core is concerned. Therefore, as soon as the Core
has data to send, the Core SM changes state to Talking on the next rising edge of the Read Clock.

58

The Talking signal hecomes the horizontal token passed among the columns during the Output
sequence. The Core SM remains in the Talking state until the horizontal token comes out of the
last column in the Core. At the next rising edge of the Read Clock after the horizontal token
comes out of the last column, the Core SM switches back to the Silent state. Its that simple.

Horizontal

Token Out

ChipHasNoData

coreSilent

core Talking

Horizontal

Token Not Out

ChipHasData

Figure 38: Core State L>iagrarn

7.5 DIAGNOSTIC SIGNALS

The Core Logic also supports three diagnostic circuits identical to the HFastOR logic in each
column. However, instead of operating within a single column, they operate across all of the
columns. Within each End-of-column Logic, there are three pull-down transistors. One is gated
by the hit signal output from that column's HFastOR Logic. This transistor will be used to
generate a signal indicative of the presence of a hit anywhere in the Core.

59

A second pull-down transistor is gated by the logical ORing of the Column State Machine's
Something-to-say and Talking signals. This transistor will be used to generate the ChipHasData
signal used by the Core State Machine to make transitions between Silent and Talking.

The third pull-down transistor is gated by the logical ANDing of Column Token Out with
ReadNotDone. If the column Token comes out of the top of the column before Read Done
activates, then there has been some kind of error. This pull-down transistor is used to indicate the
presence of such an error.

This is illustrated for three columns in Figure 39.

Col2

Coli

Colo

Hit

Talking OR Someth!ng~to~say I

Co1Token0ut AND ReadNOTDone I
core Error

HFastOR Logic

coreHasData
HFasiOR Logic

core Hit
HFastOR Logic

Figure 39: Core IJiagnostic signals

60

8 VERILOG SIMULATION

The FPIX Core design was subjected to extensive Verilog simulation both before and after
layout. First, realistic propagation delay values were determined by SPICE simulation for
standard blocks such as inverters, 2- and 3-input Nand gates, 2- and 3-input Nor gates, etc.
Larger components such as flip-flops were created from the building blocks. Other components
such as large drivers were simulated in SPICE driving the maximum conceivable load. The delay
required to drive such a load was back annotated to the Verilog model. Finally, special nodes
such as HFastOR lines were individually simulated under realistic conditions (i.e. full sized
transistors and full l 60-pixel columns). The delays on such Jines were back annotated to the
Verilog model as well.

The Verilog model of the FPIX Core itself is completely structural in nature. No behavioral
modeling was used. The reason for this is simple: since such pains were taken to accurately back
annotate structural block delays to tbe Verilog model, it made no sense to short-cut those delays
by modeling circuits behaviorally. Furthermore, Cadence provides a path whereby schematics
can be extracted directly from structural Verilog code. Using this path assured the designers that
layout-versus-schematic comparison was, in effect, a layout-versus-Verilog comparison, and,
therefore, we could be comfortably certain that the final chip would behave as it was simulated.

The Verilog code for the simulation could be broken down into three parts- the Detector, the
FPIX Core, and the DAQ. The stimuli for the Verilog simulation was derived from the results of
Monte Carlo analysis of the BTe V interaction chamber. Each set of stimuli represents 5000 time
slices of operation or approximately 0.7 milliseconds. Three primary sets of stimuli were used,
one at half the expected luminosity, one at full luminosity, and one at double the expected
luminosity. Each hit includes the row and column number of the hit pixel and the magnitude of
the hit expressed as a 5-bit number.

At the start of each simulation, all 5000 time slices are read into a memory array, and then at
each rising edge of the BCO clock, 18xl60 "pixels" in the Detector are loaded with the hits for
that times slice. Each "pixel" in the detector is actually a tiny delay element that connects to one
of the pixel cells in the FPIX Core. Based on the magnitude of the hit, the arrival of the hit data is
delayed from the pixel cell in the FPIX Core. For a very large hit, the delay is very small -
approximately 40ns. For a very small hit, the delay can be greater than !00 ns. These delays
were determined by tests of earlier FPIX preamplifiers, and they can be adjusted to allow for
studies of time walk. In addition to the hit data, the most significant 3 bits of the 5-bit magnitude
are held by the "analog section" of the pixel cell to be used as the ADC values. Finally, each
pixel in the detector "dies" for a period of time after it has been hit. lf the hit was small in
magnitude, the pixel dies for only 50 ns. If the hit was very large, the pixel dies for as much as 2
µs. This corresponds to the expected behavior of the preamplifier.

The DAQ is a very simple system latches the output of the FPIX Core on the falling edge of
every Read Clock whenever core Talking is active. It stores all of these values and then compares
them with the original data inpnt to the simulation. It then give an indication of the number of
matches, misses (output data not found in the stimuli), scratches (garbage data), and missed
originals (stimuli not found in the output data). This is sbown in the table below:

61

Table 7: Simulation Results

Luminosity Hits Scratches Matches Misses Missed Accuracy
Originals

1342 0 1341 l

l.O 2751 0 2748 4 99.8%

2.0 l 1643 0 11537 31 106 99.1%

A detailed analysis of the data revealed that the majority of the missed originals correspond to
one of two things. One, a second hit occurs on the same "pixel" while the "pixel" is dead. Two,
a second hit occurs on the same pixel while the digital section is waiting to output its data. As a
consequence, these hits, which are real to the Monte Carlo analysis, are never seen hy the DAQ
system since FPIX "ignores" them. Hence, they are "missing originals" i.e. hits present in the
stimuli that do not make it to the DAQ system.

A large percentage of the Misses can be attributed to time walk on small magnitude hits.

In any case, the accuracy of the FPIX Core and its ability to reconstruct its inputs faithfully is
extremely encouraging. Even at twice the luminosity, we should not be limited in any way by the
FPIX Core.

62

