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Abstract

We describe a method to calculate upper limits when there are background events, but
no reliable background subtraction can be made. The method avoids using a �nal arbitrary
cut to remove the remaining events.
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1 Introduction

Searches for rare phenomena are common in particle physics. Typically, the search is for
a new resonant state or a new decay mode that yields an enhancement in an appropriate
kinematic distribution. The analysis proceeds by de�ning a set of requirements that would
be satis�ed by events originating from the signal process, but reject most, and hopefully all,
of the events arising from background processes. Sometimes events survive the selection all
the way to the \�nal" kinematic distribution, but do not populate the region expected for
\signal". If no reliable background subtraction can be made, then upper limits on the rate
at which the signal process occurs can be calculated after placing a somewhat arbitrary cut
on the �nal distribution to remove some or all of the remaining background events. However,
the dependence of the result on the exact position of the �nal cut is unsatisfactory.

In this note we discuss a method of setting an upper limit on the signal event rate that
avoids using an arbitrary cut to remove the events remaining in the �nal distribution. The
method is similar in spirit, but di�erent in detail, to the one described in Ref. [1]. This
note is organized as follows. In Section 2 the statistical method is described. In Section 3
the method is compared with a few alternative approaches. Finally, a summary is given in
Section 4.

2 The Method

We begin by de�ning the statistical question we are trying to answer. Consider an experi-
ment in which N events are observed after imposing a set of selection criteria. We can plot
the number of surviving events as a function of the magnitude of an appropriate kinematic
variable K, and compare the observed distribution with the distribution predicted for our
signal{process. We wish to ask, for a given theoretical prediction :

\What is the probability P of observing a �nal distribution that is more signal{like than the
distribution we have actually observed ?"

To make progress, we must de�ne what we mean by \more signal{like". We will proceed by
considering the simplest case, in which we have observed only one event (N = 1). After this
we consider the N = 2 case, and then generalize the method to arbitrary N .

2.1 One observed event

Suppose we have observed one event passing our selection criteria. Let the value of the
kinematic variable K for this event be K1. We wish to test the viability of a theory that
predicts that on average our experiment should have observed � signal events with a known
distribution d�=dK populating the range from Kmin to Kmax. If the theory is correct, and if
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Figure 1: Upper limits �max on the number of predicted events that can be tolerated at 90%
and 95% C.L. when one event is observed (N = 1) shown as a function of the single{event
integrated probability (p1).
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f1 is the fraction of signal events predicted to be less \signal{like" than the observed event,
then :

P = 1 � e�� � f1 �e
�� ; (1)

where the second term is the statistical probability of observing no signal events (Poisson
statistics), and the third term is the probability of observing one signal event that is less
\signal{like" than the observed event. Note that in the limit f1 ! 0 (f1 ! 1) Eq. 1 reduces
to the normal expression corresponding to the observation of N = 0 (N = 1) events.

To determine how \signal{like" our one observed event is, we introduce p1 which is
de�ned as the fraction of signal events that are predicted to have values of K in the tail of
the distribution beyond K1 :

p1 � min

�
1

�

Z Kmax

K1

d�

dK
dK ;

1

�

Z K1

Kmin

d�

dK
dK

�
: (2)

In the following we will refer to p1 as the single{event integrated probability. Note that p1
lies within the range 0 � p1 � 0:5, and the predicted distribution of single{event integrated
probabilities is uniform for the signal process. Hence, the fraction of signal events predicted
to have single{event integrated probabilities less than p1 is given by 2 p1. We will use p1 as
our measure of how \signal{like" an event is. Therefore :

f1 = 2 p1 ; (3)

and
P = 1 � e�� � 2 p1 �e

�� : (4)

If the theory we are testing is correct, then P is the fraction of an ensemble of identical
experiments that will yield a more signal{like result than the observation of one event at
K = K1. The theory can therefore be excluded with a con�dence level (C.L.) of P . To
�nd the maximum value of � that can be tolerated at a given C.L. we must solve Eq. 4 to
�nd �max, the value of � that yields P equal to the desired con�dence level. The resulting
90% and 95% C.L. upper limits on � are shown in Fig. 1 as a function of p1. As expected,
as p1 ! 0 we �nd �max ! 2:3 at 90% C.L. and �max ! 3:0 at 95% C.L. These are just
the Poisson upper limits [2] associated with the observation of zero events. Furthermore, if
the observed event approaches the bisector of the kinematic distribution (p1 ! 0:5), we �nd
�max ! 3:9 at 90% C.L. and �max ! 4:7 at 95% C.L., which are just the Poisson upper
limits associated with the observation of one event.

2.2 Two observed events

Suppose we have observed two events passing our selection criteria (N = 2). Let the values of
K for these events be K1 and K2. We de�ne pi to be the single{event integrated probability
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Figure 2: Upper limits �max on the number of predicted events that can be tolerated at 90%
shown as a function of the single{event integrated probabilities (p1 and p2) for two observed
events (N = 2).
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Figure 3: Upper limits �max on the number of predicted events that can be tolerated at
95% C.L. shown as a function of the single{event integrated probabilities (p1 and p2) for two
observed events (N = 2).
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for event i, and order the event labels so that p1 > p2. Equation 1 now becomes :

P = 1 � e�� � g1 �e
��
� f2

�2e��

2
; (5)

where g1 and f2 will de�ne what we mean by \more or less signal{like" than the observation
of two events at K = K1 and K = K2. There is some freedom in de�ning what we mean by
\signal{like". However, we will require that as p2 ! 0 we recover our one{event result, and
hence :

As p2 ! 0 ; g1 ! 2 p1 and f2 ! 0 : (6)

We also require that as both events approach the bisector of the distribution (p2 ! 0:5) we
recover the standard expression for a limit based on the observation of two candidate events,
and hence :

As p2 ! 0:5 ; g1 ! 1 and f2 ! 1 : (7)

The simplest way to satisfy Eqs. 6 and 7 is to set :

g1 = f1 = 2 p1 ; (8)

and
f2 = 2 p2 : (9)

Equations 8 and 9 de�ne what we mean by \signal{like". Explicitly, we consider a result
to be more signal{like than the observation of two events at K = K1 and K = K2 if (i)
more than two events are observed, or (ii) two events are observed, both having single{
event integrated probabilities greater than p2, or (iii) one event is observed with single{event
integrated probability greater than p1. Although there are certainly other ways of de�ning
how \signal{like" a particular observation is, our choice seems at least to be reasonable, and
has the added virtue of simplicity. Using our de�nition of \more signal{like" we obtain :

P = 1 � e�� � f1 �e
��

� f2
�2e��

2
; (10)

or more explicitly :

P = 1 � e�� � 2 p1 �e
��

� 2 p2
�2e��

2
: (11)

To �nd the maximum value of � that can be tolerated at a given C.L. we must solve
Eq. 11 to �nd �max, the value of � that yields P equal to the desired con�dence level. The
resulting 90% and 95% C.L. upper limits on � are shown respectively in Figs. 2 and 3 as a
function of p1 and p2. Note that the curves corresponding to p2 = 0:01 are very similar to
the single{event curves in Fig. 1. Furthermore, as p1 ; p2 ! 0:5 we �nd �max ! 5:3 at 90%
C.L., and �max ! 6:3 at 95% C.L., which are just the normal Poisson upper limits based on
the observation of two events.
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2.3 N observed events

We now generalize our method of computing P to apply to an arbitrary number of observed
events N . We will label the events i = 1; 2; ::: N and order the labels so that p1 > p2 >
:::: > pN , where pi is the single{event integrated probability for event i. The expression for
P becomes :

P = 1 � e�� � f1 �e
��
� f2

�2e��

2!
::: � fN

�Ne��

N !
; (12)

with
fi = 2 pi : (13)

Equations 12 and 13 provide our de�nition of \signal{like". We consider a result to be more
signal{like than the observation of N events at K = K1;K2; ::: KN if (i) more than N events
are observed, or (ii) i events are observed (i � N) all of which have single{event integrated
probabilities greater than pi. With this de�nition :

P = 1 � e�� � 2 p1 �e
��
� 2 p2

�2e��

2!
::: � 2 pN

�Ne��

N !
: (14)

To �nd the maximum value of � that can be tolerated at a given C.L. we must solve Eq. 14
to �nd �max, the value of � that yields P equal to the desired con�dence level.

3 Comparison with alternative methods

In the following we consider several alternative methods of setting an upper limit when N
events have been observed and no reliable background subtraction is possible.

3.1 Using an aggressive cut

Suppose we use the technique of placing an aggressive cut on our �nal kinematic variable
by requiring pi > p1, i.e. we place a cut right up against the \most signal{like" event so
that we are left with no candidate events. If we then compute an upper limit based on the
observation of zero events we will obtain at 90% C.L. :

�max =
2:3

1 � p1
; (15)

where the factor of 1=(1 � p1) takes account of the reduction in the selection e�ciency for
signal events associated with the cut pi > p1. The upper limits on the number of predicted
events �max obtained using the method proposed in Section 2 divided by the corresponding
limits obtained using the aggressive cut technique are shown in Fig. 4 for the N = 1 case
as a function of the single{event integrated probability. When p1 is small the aggressive cut
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Figure 4: The upper limits on the number of predicted events obtained using the method
proposed in the text divided by the corresponding limits obtained using the aggressive cut
technique. The ratio of limits is shown as a function of the single{event integrated probability
for one observed event.
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technique results in a more restrictive upper limit than the method we are proposing. Note
however that the ratio of the limits never exceeds 1.1. As p1 becomes large the aggressive
cut technique yields a less restrictive upper limit than the method we are proposing. This
makes sense since, if we had observed one event exactly at the bisector of the predicted
distribution, and calculated an upper limit based on the observation of one event, we would
indeed obtain a more restrictive limit than if we reduced our selection e�ciency by a factor
of two and calculated a limit based on the observation of zero events.

3.2 Background populating only one side of the distribution

Consider an experiment in which the background processes are expected to populate only
one side of the observed kinematic distribution. Can we make use of this knowledge to obtain
a more restrictive upper limit �max ?

To explore this possibility, consider an experiment in which one event is observed (N = 1)
having K = K1, corresponding to a single{event integrated probability p1. If K0 is the
bisector of the predicted signal distribution, we can de�ne two regions of the kinematic
space: region A de�ned as Kmin � K < K0, and region B de�ned as K0 � K � Kmax. The
theory we are testing predicts that on average we should observe �=2 signal events in region
A, and �=2 signal events in region B. Let the background preferred side of the distribution
be region B, and let the observed event also be in region B. We want to know if we can we
modify our de�nition of \more signal{like" to exploit the knowledge that the observed event
is in region B rather than A. Therefore, we will consider a result to be \more signal{like" if
any of the following are true : (i) One or more events have been observed anywhere in region
A; (ii) No events in have been observed in region A, but one event has been observed in
region B with single-event integrated probability exceeding that of the an event at K = K1;
(iii) No events have been observed in region A, but more than one event has been observed
in region B. The probabilities associated with each of these \more signal{like" cases can be
added to yield :

P =
�
1� e��=2

�
+
�
(1� fB)

�

2
e��
�
+
�
e��=2 � e�� �

�

2
e��
�
; (16)

where the brackets delineate the contributions associated with (i), (ii), and (iii) above, and
fB = 2 pB with pB de�ned as the single event integrated probability for an event observed
at K = K1 in an experiment sensitive only to region B. Note that pB = 2 p1; if 10% of the
tail of the predicted signal distribution within the region (A + B) lies beyond K1, then 20%
of the part of the signal distribution within region B will lie beyond K1. Hence, fB = 4 p1,
and we �nd that :

P = 1 � e�� � 2 p1 �e
�� : (17)

This is just Eq. 4. The knowledge that the observed event lies in the half of the distribution
which might be populated by background processes has made no change to our result. It
is easy to see why. No matter how we divide the distribution, we will always end up with
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two regions in integrated probability space which we consider to be associated with \less
signal{like" observations, each having area p1. If we are to obtain a more restrictive limit we
will need more information about the background than just the region within which it lies.

3.3 Using the distance from the peak of the distribution

It has been suggested [1] that the distance of an event from the peak of the predicted
distribution for the signal process may provide a good measure of how signal{like the event
is. However, in the method proposed in Section 2 this distance has no special signi�cance.
Indeed, instead of plotting theK{distribution for signal events we could have chosen, without
loss of information, to plot the distribution of some function f(K), and discovered that events
near the peak of the K{distribution are no longer near the peak of the f(K){distribution.
As an example let us assume we measure an interaction energy E for each event, and that
we wish to test a theory that predicts dN=dE � 1=E. If we plot the predicted distribution
of interaction energies for the signal, the distribution will peak at 1=Emin, and events near
the peak will have energies near Emin. However, if instead we decide to plot the distribution
of the inverse of the interaction energies dN=d(1=E) we will obtain a peak at (1=E)min, and
events near the peak will have energies near Emax. Hence, we choose not to use the distance
from the predicted peak of the distribution as a measure of how signal{like any given event
is.

3.4 Using the distance from the bisector of the distribution

Unlike the distance of an event from the peak of the predicted distribution, the distance in
integrated probability space from the bisector of the distribution (0:5�pi) does have a special
signi�cance in the method proposed in Section 2. Indeed, the bisector of the distribution is
the most signal{like location for an event. Furthermore, the distance (0:5�pi) is independent
of which function f(K) we choose to plot, provided we do not lose information in going from
K to f(K). We might therefore think that a quantity like:

rN �

vuut NX
i=1

(0:5� pi)2 (18)

would provide a good measure of how signal{like N observed events are. Note that rN can
be interpreted as the radius of an N{dimensional hypersphere in probability density space,
with the center of the hypersphere coincident with the center of a uniformly populated
N{dimensional unit hypercube. The fraction FN of the hypercube that is outside of the
hypersphere is equal to the probability that N randomly selected events from the signal
process will be \less signal{like" than the N observed events. Equation 12 is then replaced
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Table 1: Volumes of N -dimensional hyperspheres of radius r, for N = 2 { 7.

N VN N VN

2 � r2 5 8

15
�2 r5

3 4

3
� r3 6 1

6
�3 r6

4 1

2
�2 r4 7 16

105
�3 r7

by :

P = 1 � e�� � F1 �e
��
� F2

�2e��

2!
::: � FN

�Ne��

N !
: (19)

Note that as pN ! 0:5, rN ! 0 and FN ! 1, satisfying Eq. 7. Furthermore, as pN ! 0,
FN ! 0, and the expression for P with N observed events reduces to the corresponding
expression for (N � 1) observed events.

The FN can be easily computed by a Monte Carlo technique. If rN < 0:5, then FN =
(1 � VN), where VN is the volume of an N{dimensional hypersphere of radius rN , and we
have:

P = 1 � e�� � 2p1 �e
��
� (1� V2)

�2e��

2!
::: � (1� VN)

�Ne��

N !
; (20)

where simple analytical expressions can be calculated for the VN . As an example, the VN
are summarized in Table 1 for N = 2, 3, 4, 5, 6, and 7.

We conclude that Eqs. 18 and 19 provide a viable alternative to the method described in
Section 2. However, this alternative method is more complicated than the Section 2 method,
and the associated de�nition of \signal{like" does not seem to be better (or worse) than
the corresponding Section 2 de�nition. We therefore advocate using the simpler method
described in Section 2.

4 Summary

We propose a simple method of computing upper limits when N candidate events have been
observed but no reliable background subtraction can be made. The method avoids using
a �nal arbitrary cut to remove events, but requires a de�nition of how \signal{like" each
observed event is. As a measure of how \signal{like" an event is, the method uses the
single{event integrated probability pi, de�ned by Eq. 2. After ordering the event labels so
that p1 > p2 > ::: > pN , a result is considered to be \more signal{like" than the observation
of a particular set of N events (set A) if (i) more than N events are observed, or (ii) i events

12



are observed (i � N) all of which have single{event integrated probabilities greater than
the single{event integrated probability for the ith event of set A. With this de�nition, if the
theory we are testing predicts on average the observation of � events, then Eq. 14 can be
used to �nd �max, the maximum value of � that can be tolerated at a C.L. of P . Although
our de�nition of what is more or less \signal{like" is not unique, it has the virtue of being
simple, and leads to a method that provides sensible asymptotic limits as the pi approach
their extreme values (0 and 0.5).
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