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Abstract 

The Pacman bunches will experience two deleterious effects: tune shift and orbit dis
placement. It is known that the tune shift can be compensated by arranging crossing 
planes 90' relative to each other at successive interaction points (!Ps). This paper gives 
an analytical estimate of the Pacman orbit displacement for a single as well as for two 
crossings. For the latter, it can be minimized by using equal phase advances from one 
IP to another. In the LHC, this displacement is in any event small and can be neglected. 

1 Introduction 

It is believed that the attainable beam-beam tune shifts in hadron colliders may not be 
limited by bunches in a standard environment, but by bunches that circulate past "gaps" 
in the counter circulating beam, the so called Pacman bunches. Such bunches will suffer 
tune shifts and orbit displacements different from the "average" bunches. Therefore if the 
machine is optimized for average bunches the Pacman bunches will not be in an optimized 
environment and will suffer enhanced losses. However loss of a Pacman bunch will create 
new Pacman bunches in the counter circulating beam, and over the course of time holes 
will develop in both beams and eventually the beams may be destroyed. A circulating 
bunch encounters the identical counter circulating bunches at points separated by half the 
circumference. It is then possible to compensate the tune shift differences by arranging for 
cancellation between the two points. For example, in the LHC, this is easily accomplished 
for equal f3';p ({3-function at the IP) by crossings planes at 90° relative to each other at the 
two high luminosity IPs 1 and 5. Below we examine whether by an appropriate choice of 
phase advance between the IPs we can also achieve cancellation for the orbit displacements. 
Obviously if the crossings are successively in horizontal and vertical planes no cancellation 
are possible. However if two horizontal or vertical crossing planes are used, or if the probably 
superior tilted plane geometry is used, there is an optimum phase difference that minimizes 
but doesn't cancel the orbit displacements at the IPs. This phase advance is calculated in the 
following section. Not, perhaps, surprisingly it corresponds to equal phase advances between 
the two IPs for the two half sectors of the machine. We also calculate the displacement for a 
single horizontal or vertical crossing and find that it gives an almost identical displacement 
to that found for two crossings symmetrically related in phase. A further point should be 
mentioned. Bunches that do not encounter an opposing head-on bunch collision should be 
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quite stable. Therefore the gaps in the counter circulating beam which straddle the IP are 
not destructive and only gaps that lie on one side or the other of the IP are destructive. 
(However a bunch that does not suffer a head-on collision with the counter circulating beam 
does not contribute to the luminosity and therefore even if stable is of little interest.) 

Finally we examine the physical magnitude of the expected orbit effect in the LHC. We find 
them to be relatively small compared with the degradation of the beam-beam limit due to 
the additional Pacman tune spread. 

2 Theoretical Derivation 

The derivation uses a number of straightforward properties for finding eigen solutions for 
the equilibrium orbit in a machine. We assume a machine with two identical IRs, A and 
B, at the start and midpoint of the circumference around the machine. The IPs are at a 
(slope of the /3-function) equal to zero, and are assumed to have equal /3ip· In units of"' //3'[P 
the transfer matrix R around the machine from IP A back to IP A is given by 

R _ ( cos(µ) sin(µ)) 
- -sin(µ) cos(µ) 

where µ is the phase shift around the machine. We shall use the shorthand notation 

R = M(µ) 

and this has the standard property that 

M(µ)M(<f>) = M(µ + </>) 

(1) 

(2) 

(3) 

Orbit displacements are only significant for bunches that suffer head-on collisions. The 
missing "Pacman gap" in the counter circulating beam can then be encountered before 
collision ("IN" configuration) or after collision ("OUT" configuration). In a single passage 
across the IR to the IP the gap will cause the bunch to deviate from its equilibrium orbit 
by a deflection as it passes the missing bunch( es). To a good approximation the missing 
parasitic crossings are 90° in phase away from the IP and the net effect is for there to be a 
transverse displacement at the IP and a close to zero angular displacement. In units of the 
net displacement (see subsection 2.4 below) we can represent the single pass displacement 
as a vector, V, 

v ~ (~) 
< /3ip/ L 

where L is the distance of the missing bunch from the IP. 

(4) 

(5) 

We assume that the IPs are separated in phase by <f>. We will give a detailed derivation 
first for the IN case and for the equilibrium displacement"' at IP A (the first IP), which is 
defined as 

x = (:) (6) 
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Then in matrix notation the eigen solution for X is found by equating the X at each 
sequential turn with the X at the previous turn. We then find 

X = M(µ)X + M(µ-</>)V + V (7) 

This can be rearranged as 

(M(O)- M(µ))X = M(µ- </>)V + M(O)V (8) 

X is then specified by 

(9) 

2.1 Evaluation of Orbit Displacement X 

The previous result can be simplified by noting that the term 

M(O) _ M( ) = (l -.cos(µ) -sin(µ) ) 
µ sin(µ) 1 - cos(µ) (10) 

or 
M(O)- M( ) = 2sin(~) (•in( I) -~o•(I)) 

µ 2 co•(I) sin(I) 
(11) 

Taking the inverse 

(12) 

This in turn can be written as 

( )
-1 -1 ( µ '11') 

M(O)- M(µ) = 2sin(I)M -2 - 2 (13) 

Substituting this into Eq. (9) we get 

X = -l (M(~ - </>- 1!.) + M(-~ _ 7!.)) V = SV 
2sin(I) 2 2 2 2 

(14) 

where S is a matrix defined by the above equation. 

A small change in the angular component, 8, of X has an insignificant effect on the deflection 
at the IP, and the only quantity of interest is the spatial component, z, of X. Remembering 
V is approximated by Eq. ( 4) and therefore 

(15) 

or substituting we obtain the simple and final result 

"'c= :-1 (-sin(~)+ sin(~ - </>) - e(cos(~) +cos(~ - <Pl)) (16) 
2sin( I l 2 2 2 2 
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2.2 Results for Two Crossings 

The previous subsection evaluated the offset at IP A for a gap in parasitic crossings on 
the incoming side of the IP. There are four cases, incoming and outgoing gaps and IPs A 
and B. We summarize the basic equations and solutions for the four cases. The results 
are evaluated for same sign crossing angles at the two IPs. The four additional cases for 
opposite sign crossings can be found by replacing t/J by t/J + 1r. These additional cases are 
degenerate to an interchange of IPs A and B and therefore do not modify the following 
results. 

IN for IP A 

(17l 

IN for IP B 

(18l 

OUT for IP A 

(19l 

OUT for IP B 

(20l 

The results evaluated for these cases are 

z;nA °" 2.:.~Il (-sin(il + sin(i - c/Jl - <(cos(il + cos(i - <Pl)) (21l 

"inB"' 2si~~Il (-sin(i) - sin(i - t/J)- <(cos(~)+ cos(~ - <Pl)) (22) 

"outA"' 2.:.~I) ( +sin(il + sin(i-<Pl + <(cos(il + cos(i- c/Jl)) (23) 

"outB"' 28i~~I) (+sin(~) - sin(i- t/J) +<(cos(~)+ cos(~ - <Pl)) (24l 

Using the approximation that <is small, to order <terms in cos can be neglected. We then 
obtain the following simple results. 

ZinA + ZinB ~ +1 (25) 

and 
ZoutA + ZoutB '.:'.::::'. -1 (26) 

Equivalent, for either the in or out case to 

(27) 
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For the symmetric case where cf> = ~ 

(28) 

The symmetric case represents the optimum configuration. 

2.3 Results for a Single IP 

ff the crossing planes are 90° relative to each other, horizontal or vertical, then the orbit 
displacements in the two planes are orthogonal and we need only consider displacements 
from one plane. For instance assuming horizontal crossing for IP A and vertical crossing 
for IP B the horizontal orbit displacement at IP A will be given at A from 

XA = M(µ)XA + M(O)V (29) 

equivalent to 

XA = (M(O) - M(µ))-'v (30) 

or evaluating as in the previous subsection 

(31) 

or neglecting terms in ' 

(32) 

The corresponding displacement at B is 

(33) 

and again evaluating as before for equal phases A to B and B to A 

(34) 

or equivalently 

' -· 0 ZB= -~=·-
2sin( ~) -

(35) 

Thus again in units of V the deflection at the IPs is one half, identical to the previous result. 

2.4 Numerical Results 

The units of V are easily evaluated for the LHC. The orbit displacement at the IP for a 
single pass is [1] 

(36) 

where ~"'•is in units of rTx (therms beam transverse size), ~Vho is the head-on tune shift 
per IP, Bero" is the full crossing angle in units of rT x' (the rms beam angular size), and NP 

5 



is the number of parasitic crossings. For multipasses the displacement with equal phasing 

between IPs is ~~"•· 

We approximate NP as being equal to the number of crossing points from the IP to an 
effective point in the separation magnets, namely eighteen effective crossings. Orbit dis
placement only destroys bunches that collide head-on with the counter circulating beam, 
and thus a worst case is for all the bunches in the counter circulating beams to be rrilssing 
either prior or after the IP. If destructive bunch loss required all bunches to be rrilssing on 
one side of the IP, then only a single bunch would be lost in the counter circulating beam 
(insufficient to destabilize the circulating beam) and the beams would remain stable after 
the loss of a single bunch. To propagate, destructive bunch loss must occur when at least 
half the bunches are rrilssing, i.e., for a propagating Pacman effect the bunches must be 
unstable for NP '.O 9. 

Using a (3;p of 50 cm, an errilttance of 5 x 10-8 cm-rad, a Bero" of 200 µrad, a ~llho of 0.0034 
per IP, and Np equal to 9, the spatial component of~ V (the symmetric case) is 0.06 <Tx or 
1 µm for a beam with a <Tx of 16 µm. Such an orbit displacement is very small and will 
contribute rrilnimally to instability. For all practical purposes it is negligible and the orbit 
displacement will not contribute to any appreciable extent to a Pacman effect. Of course 
the additional tune spread from Pacman bunches, comparable to the head-on beam beam 
tune shift does play a major role and successive crossing planes rotated by 90° will be very 
helpful. 

Herr has previously investigated the impact of the Pacman effect on LHC running. [2] Our 
results agree with his with the exception of our distinction of a localized loss of bunches 
(where we agree with Herr) and a runaway Pacman effect, where we require a factor two 
times higher threshold. Herr points out that if more IPs than IPs 1 and 5 are run simultane
ously at high luminosity the Pacman orbit effects are substantial and rrilght require a bunch 
by bunch feedback control system. However it is presently envisaged that high LHC lurril
nosity running will only occur simultaneously for IPs 1 and 5. Therefore with symmetric 
phasing both our and Herr's results show feedback control of Pacman orbit displacements 
will be unnecessary. 

3 Conclusions 

The cases of interest described above are for successive horizontal or vertical crossings at 
the high luminosity IPs, or for 45° tilted crossings. For Pacman bunches the most impor
tant deleterious effects are associated with tune shifts. The Pacman tune shift effects are 
elirrilnated by using crossing planes 90° relative to each other, and therefore in all proba
bility the candidates for crossing geometries are "horizontal/vertical" or tilted planes. The 
horizontal/vertical case is not modified by interferences between the two IPs and therefore 
for a given tune all phase advances between IPs are equally acceptable. For the tilted planes 
the optimum choice to rrilnirrilze orbit excursions is to use equal phase advances from IPs 
1->5 and from IPs 5-> 1. 
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In any event the orbit displacement contribution to Pacman instability is small and, even 
for a 200 µrad "worst case" crossing angle, can for all effective purposes be regarded as 
negligible and close to zero. 
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