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Abstract

Beam crossing schemes in the LHC interaction regions impose non-zero vertical closed orbit in
the low-� triplets, which excite a perturbative periodic dispersion ; the phenomenon is described
and quanti�ed in detail. It is shown that this dispersion reaches values at the limit of tolerances
in the nominal optics of Version 5.0 of the LHC ring, and prohibitively large values in particular
in the low-� quadrupoles and interaction regions in the foreseen extreme �-squeeze case (�� =
0:25 m). Such behaviour justi�es including a local correction in the LHC design, in order to
damp the e�ect and con�ne it as much as possible in the vicinity of the excitation sources
(the low-� triplets). An optical compensation scheme based on the use of skew quadrupoles is
described in detail, as well as the entailed residual dispersion.

�CEA, DSM/DAPNIA/SEA, CE-Saclay, 91 Gif-surYvette, France
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1 Introduction

Crossing angle and orbit o�-centering schemes at interaction points (IP) in LHC ring in collision
optics mode are foreseen [1, 2], for full separation of the beams during energy ramping phase, or
early separation of the beams beyond the IP during collision, in order to reduce as much as possible
harmful e�ects related to beam-beam interactions in that region where they share a commonvacuum
pipe. Both planes may be a�ected by crossing or o�-centering, e.g., in the 45 deg. inclined crossing
plane scheme. In terms of orbit design this means non-zero closed orbit (c.o.) angle (crossing) or
non-zero c.o. o�-centering (separation) at the IP of concern, and in consequence in the low-� triplets,
which has a sensible e�ect on the dispersion function in collision optics when betatron functions reach
very large values. In terms of the equations of motion, the non-zero c.o. induces dispersive terms of
�rst order in momentum deviation, with corresponding particular closed solution.

This phenomenon has been subject to detailed investigation in Ref. [3] in the frame of the
LHC Version 4.2. We now address the recently designed Version 5.0 [5] of the ring. The main
aspects of dispersion excitation are recalled ; it is shown that in the nominal optical conditions
(Qx=Qy = 63:32=59:31, �0:1 mrad vertical crossing, ��y = 0:5 m) and under propitious betatron
phase relations between IP's, the so induced vertical dispersion may reach the limit of tolerances
in the case of a single crossing and even exceed it in the case of several crossings. It is also shown
that prohibitively large �gures are attained in the extreme �-squeeze conditions (�0:2 to �0.4 mrad
vertical crossing, ��y = 0:25 m), therefore justifying foreseeing a local correction scheme.

Correction strategies for horizontal crossing induced dispersion have already been investigated in
detail and are now part of the LHC design [4]. Vertical crossing induced dispersion and correction
principles for its compensation have also been investigated in Ref. [3], however a practical correction
scheme for LHC V5.0 still remained to be de�ned, which is done here. The device is based on the
use of skew quadrupoles located as close as possible to the low-� triplets at the neighbouring arc
ends. Corrector strengths are derived analytically and allow quantifying the needs for Version 5.0.

The report is organized as follows. In Section 2 the di�erential equation for the vertical crossing
induced dispersion is established and its e�ects are derived and quanti�ed. Section 3 describes
the proposed correction optics. Numerical applications and simulations undertaken in the report
are based on the Version 5.0 of the LHC optics [5]. MAD [6] simulations are performed wherever
necessary, with the regular LHC lattice �les [7] and preliminary �� = 0:25 m optics [9]. The present
work largely leans on Ref. [3] which may in particular be referred to for comparison with prior similar
study involving Version 4.2 of the optics.

2 Vertical crossing/o�-centering induced dispersion

2.1 Perturbative periodic dispersion ; scaling

Vertical dispersive e�ects related to c.o. geometry derive from the equation of motion

d2yr=ds
2 +K(s)yr = �(1� �)�By(s)=B� +K(s)yr� (1)

in which yr is the transverse excursion w.r.t. machine axis, B� is the particle rigidity, K(s) the
quadrupole strength and � the momentum deviation. The �eld term ��By(s)=B� is due to the
c.o. dipoles and its factor (1 � �) accounts for their �rst order chromatic e�ect. The second order
dispersive term K(s)yr� is due to quadrupoles. Taking yr = y + yco (yco = c.o. excursion, y =
particle excursion w.r.t. c.o.) leads to the di�erential equation

d2Dy=ds
2 +K(s)Dy = �By(s)=B� +K(s)yco (2)

for the vertical dispersionDy = y=�. The elementary kick approximationK(s)yco(s) =
R
K(s)yco(s)�(s�

sq)dsq [�(s� sq) = Dirac impulse at azimuth sq ], yields the solution
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Figure 1: Betatron functions and vertical betatron phase in IR5, Version 5.0, �� = 0:5 m.
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Figure 2: Perturbative Dy (Eq. 3) induced by y0� = 10�4 rad c.o. angle at IP5 with �� = 0:5 m, as observed
at Octant 5 and in IR1, IR2 and IR8 regions. With ��y = 0:25 m and y0� = 0:4 mrad (assuming identical
phase at IP) the vertical scales increase by a factor of 4

p
2.
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Table 1: Values of the sums relevant with the calculation of the perturbative dispersion. (��y = 0:5 m,
y0� = 0:1 mrad).

P
q
(KL)q�y(sq)

P
q
(KL)qyco(sq)

p
�y(sq)

IP Left/Right Left/Right (10�2)

IP1/5 -160 / -209 -1.13 / 1.47
IP2/8 -210 / -156 -1.44 / 1.10

scaling � 1

��y
scaling � 1p

��y

Dy(s) = �yco(s) +
q
�y(s)=(2 sin�Qy)

X
q

(KL)qyco(sq)
q
�y(sq) cosQy[� � j�(s)� �(sq)j] (3)

where Qy = vertical tune, �(s) = 1=Qy

R
ds=�y is the normalized vertical betatron phase, �(sq) =

normalized phase at the kick, �y = betatron function. The summation
P

q extends over those
quadrupoles located within the c.o. bump. Plots of Dy(s) obtained in the collision optics conditions
schemed in Fig. 1 and c.o. geometry discussed in Appendix A (y0� = 0:1 mrad c.o. angle at IP5,
Fig. (6-left)) are given in Fig. 2 ; it is shown below that 1 mm c.o. displacement (Fig. 6-right) causes
less than 8% the e�ect of 0.1 mrad c.o. angle.

Calculation of Dy(s) from the nominal lattice

In Version V5.0 of LHC optics the c.o. bump encompasses quadrupoles in the range Q4/Q6
(App. A). However the quadrupoles Q5, Q6 have very weak e�ect (e.g., less than 6% contribution
for ��y = 0:5 m with the c.o. geometry used here) and it is good enough approximation to assume
that all the c.o. bump dipoles are located beyond the quadrupoles (namely, Q1-Q3) sources of
the dispersion. This allows to introduce the c.o. in terms of unperturbed �rst order optics by its
transport from IP,

yco(sq) = y�
q
[�y(sq)=��y cosQy[�(sq)� ��] + y0�

q
�y(sq)��y sinQy[�(sq)� ��] (4)

in which '�' denotes quantities taken at the IP and beam divergence �� = 0 is assumed. Note that,

due to the product
q
�y(sq)��y being preserved 8��y the closed orbit yco(s) in the low-� quadrupoles

region does almost not depend on ��y and becomes simply proportional to the c.o. angle y0� ; this
feature will be useful in determining the maximumnecessary correction strength. Reporting Eq. (4)
in Eq. (3) yields

Dy(s) = �yco(s)
+ y�

q
�y(s)=��y=(2 sin�Qy)

P
q(KL)q�y(sq) cosQy[�(sq)� ��] cosQy[� � j�(s)� �(sq)j]

+ y0�
q
�y(s)��y=(2 sin�Qy)

P
q(KL)q�y(sq) sinQy[�(sq)� ��] cosQy[� � j�(s)� �(sq)j]

(5)
This conveniently allows calculation of the perturbative dispersion from the bare optics, regardless
of c.o. bump excursion beyond the IP.

Characteristics of the perturbation

Figure 1 shows that the betatron phase is about constant over the all low-� triplet, which permits
factorizing the sine and cosine terms out of the summations in Eq. 5 ; this is convenient since it allows
quantifying the e�ect of the perturbation by simply evaluating

P
q(KL)q�y(sq). This is detailed in
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Table 1 for ��y = 0:5 m, at all four IP's. By comparison one had quasi-identical values of that sum
with Version 4.2 optics [3, App. B]. From this we see that the two Versions are about equivalent
as to crossing angle and c.o. displacement induced dispersion, and also that all IP's in Version 5.0
generate similar perturbation. Another consequence is that all IP's need identical sets of correctors.

On the other hand, given that the low-� quadrupole strengths stay unchanged whatever ��y [5],
it can be shown that the amplitude and shape of the function ��y�y(sq) across the low-� triplets does
not signi�cantly change whatever ��y < few meters ; besides, the closed orbit is also independent

of ��y . It results that in the 0.25 m to about 5 m ��y range the quantity Dy(s)=
p
�y(s) scales as

1=
p
��y (cf. Eq. 7) (its behaviour for ��y values above 5 m is of no concern since the dispersion then

does not exceed � 0.1 m, 8s as shown below).

2.2 Upper limits of the perturbation

It can be shown that the perturbative dispersion amplitude is locally bound by [3]

Dy;extr=
p
�y(s) = f [Pq(KL)qyco(sq)

p
�y(sq) cosQy(� + ��(sq))]

2

+ [
P

q(KL)qyco(sq)
p
�y(sq) sinQy(� + ��(sq))]2 g1=2=(2 sin�Qy)

(6)

with � = �1 for resp: �(s) >< �(sq); 8q. Calculation of the cosine and sine squared sums above from
the �rst order optical functions in collision optics yields

Dy;extr=
q
�y(s)jy�=0 � 109 y0�=

q
��y ; Dy;extr=

q
�y(s)jy0�=0 � �0:84 y�=

q
��y (7)

Eq. (7) con�rms that 10�4 rad c.o. angle has about 13 times the e�ect of 10�3 m c.o. o�-centering
at IP. Under crossing, typical upper limits to Dy(s) for ��y = 0.5 m are, 0.21 m in the arcs (�y;max �
180 m/rad) ; 1.06 m in the odd-type low-� triplets (�y;max = 4700 m/rad) ; 1.02 m in the even-type
low-� triplets (�y;max = 4420 m/rad). These extrema increase by a factor of 4

p
2 in the ��y = 0:25 m,

y0� = 0:4 mrad optics (leading to 1.19 m peak in the arcs and 6 m in the low-� triplets), and by an
additional factor of four in the worst con�guration of uncorrected 4-crossing optics (see section 2.4) ;
they are attained i� adequate betatron phase is reached at �y;max (contrary to what happens with
63.31/59.32 tuning, see Fig. 2), however the correction should allow for such possibility (e.g., with
non-split tunes Qx=Qy = 63:28=63:31 in LHC Version 4.2) as well as for the y0�=

p
��y scaling.

2.3 Dispersion at IP's

Dispersion at IP's under c.o. angle y0� is given with good precision by

Dy(IP
�) =

y0���y
2

��; Dy(IP 6= IP �) = �y0�
p
��y
p
�y(IP )

2 sin(�Qy)
sinQy[� � j�(IP )� ��j] �+; (8)

with� sign inDy(IP 6= IP �) for resp. �(IP )><�
�, and �� =

P
Q1=Q6(KL)q�y(sq)jLeft �

P
Q1=Q6(KL)q�y(sq)jRight.

The left sum in Eq. (8) holds for the IP where the crossing occurs, the right one for the other IP's.
Taking y0� = 0:1 mrad with ��y = �y(IP ) = 0:5 m and (Version V5.0, Qx=Qy = 63:32=59:31) phases
�(IP1; 2; 5; 8) = 0; 7:601; 29:769; 51:715 (�2�=Qy) respectively, and with �

+ � �369 and �� � 50
(Table 1, col. 2), one gets

Dy(IP1; 2; 5; 8) = 6:93 mm; �0:56mm; 1:22 mm; �10:6 mm; (9)

(MAD simulations give 6.87, -0.51, 1.21 and -10.6 mm). These values scale as y0�=
p
��y .

As to the impact on beam size at IP it amounts to up to �d = Dy �p=p � 1 �m at ��p=p = 10�4,
that is, about 7%. In the extreme optics �� = 0:25 m, y0� = 0:4 mrad the e�ect on beam size at IP
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Table 2: Peak Dy values in the arcs and in the low-� triplets in the nominal Version 5.0 of LHC (��y = 0:5 m
at IP1, 2, 5 and 8), due to y0� = 0:1 mrad vertical crossing set at a single IP, 2 IP's or 4 IP's, in the absence
of local compensation (the + and - signs in the �rst column stand for the respective crossing signs at the

various IP's of concern). Following Eq. (7) these values scale as y0�=
p
��y and thus, considering identical

betatron phase behaviour, need be multiplied by 4
p
2 in the case of the extreme squeeze optics (��y = 0:25 m

and y0� = 0:4 mrad).

Peak vertical dispersion (m)
Crossing In the arcs In the low-� triplets

IP1 0.20 0.95 (at IR2, 8)

IP1 and 5

+ + 0.33 0.71 (at IR8)
+ - 0.40 1.96 (at IR2)

IP1, 2, 5 and 8

+ + + + 0.50 2.21 (at IR1)
- + + + 0.73 3.45 (at IR1)
+ - + + 0.45 1.15 (at IR5, 8)
- - + + 0.50 2.40 (at IR2)
- - - + 0.51 0.82 (at IR6)
- - + - 0.32 0.58 (at IR1)

is about 5.7 times larger leading to Dy � 60 10�3 m and Dy �p=p � 6 �m, while the betatron size
squeezes down to about 11�m, which entails a prohibitive e�ect of more than 50%. This is in the
case of a single, uncompensated crossing ; things are liable to worsen by an additional factor of four
with four crossings (see below).

2.4 Interferences

Interference arises when crossings are set at several IP's. They may be either destructive or con-
structive, depending on the local phase, on the phase di�erence between IP's of concern and on the
signs of the crossings. Note that the issue of phase shift from IP to IP is still pending ; indeed,
recent studies [8] tend to show that special relations ought to be preserved in order to improve the
dynamic aperture.

For instance interference between IP1 and IP5 with y0� = 10�4 rad vertical c.o. angle and ��y =
0.5 m give the following extremum in the IP5 low-� triplets (with � = y0�IP1=y

0�
IP5) [3]

Dy;extr = �y0�p�y;max��y=(2 sin�Qy)(1 + � cos �Qy)
P

q(KL)q�y(sq) (� = �1)
yielding; �y0�p�y;max��y=(2 tan�Qy=2)

P
q(KL)q�y(sq) � 0:46m if � = +1

and � y0�
p
�y;max��y=2 tan�Qy=2

P
q(KL)q�y(sq) � 1:64m if � = �1

(10)

liable to be reached with close to � (normalized) phase shift between IP1 and IP5. In the particular
case of the nominal V5.0 tuning 63.32/59.31, these extrema are not attained, actual peaks are,
0.25 m if � = +1 (identical signs) and 1.36 m if � = �1 (opposite signs). This shows the possible
enhancement of harmful e�ects under multiple crossing or separation schemes in the absence of local
correction. The situation can be worse and the dispersion peak can reach twice the values above
with 4-IP interference, and about 50% more with ��y = 0.25 m leading for instance to Dy extremum
of more than 20 m in low-� triplets. Given ��p=p � 10�4 this entails a non-negligible contribution
of �2 mm to the transverse aperture in the - costly - bore of the low-� quadrupoles. More details
obtained from MAD simulations can be found in Table 2.

In terms of beam size at IP, contributions of various crossings are liable to add up and entail
signi�cant beam cross section increase, e.g., from MAD simulations, Dy(IP8) = �19 mm with
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y0� = 0:1 mrad at all IPs', Dy(IP5) = �18 mm with y0� = 0:1 mrad at IP1,2 and -0.1 mrad at
IP5,8.

3 Correction of the dispersion

The c.o. angle/displacement induced vertical dispersion can be compensated by arrangement of
skew quadrupole correctors located at the neighbouring arc ends, whose e�ect is to locally close
independently the Left and Right chromatic c.o. bumps excited by the o�-centering in the low-�
quadrupoles1.

3.1 Correction strength

Adding skew quadrupole correctors of strength R(s) to the structure results in coupled motion whose
dispersion function veri�es [3]

d2Dy=ds
2 +K(s)Dy = R(s)Dx (11)

with solution (index SQ denotes skew correctors)

Dy(s) =
q
�y(s)=(2 sin�Qy)

X
SQ

(RL)SQDx(sSQ)
q
�y(sSQ) cosQy[� � j�(s)� �(sSQ)j] (12)

where � is the normalized vertical betatron phase. This is to be added to the solution (Eq. 3) of
Eq. (2), hence the condition for mutual compensation beyond the chromatic bump writes (index q
designates the low-� triplet quadrupoles)P

q(KL)qyco(sq)
p
�y(sq) cosQy[� � j�(s) � �(sq)j]

�PSQ(RL)SQDx(sSQ)
p
�y(sSQ) cosQy[� � j�(s) � �(sSQ)j] = 0

(13)

Now, on the one hand the correction strength (RL)SQ is minimized if Dx(sSQ)
p
�y(sSQ) is maxi-

mized, on the other hand better horizontal/vertical decoupling is insured if correctors are located at
maximum �y=�x, which dictates that they be placed at defocusing quadrupoles. The phase di�er-
ence from the correctors to the source of the defect may signi�cantly di�er from �=2Qy [�=2Qy]23

which imposes the use of two sets SQ1 and SQ2 of correction lenses (one set can for instance be a
pair of skew quadrupoles, as below) to compensate the excitation source (KL)q . It can be shown
(App. B) that the strength [(RL)SQ1; (RL)SQ2] of the correctors (SQ1,SQ2) is given by

(RL)SQ1 = � sin(�)
�q

Dx

p
�y

; (RL)SQ2 = cos(�)
�q

Dx

p
�y

(14)

with radius �q =
P

q(KL)qyco(sq)
p
�y(sq) and � = Qy(�

� � �(SQ)) � �=2 [�=2].
As an illustration the correction strengths in the LHC Version 5.0 optics with split tunes

63.31/59.32 can be calculated, as follows. From MAD simulations reported on col. 4 of Tables 3
we get �Left � 0:10 � 2� on the left hand side of IP5, �Right � 0:15 � 2� on the right hand side,
and Dx

p
�y � 14 at the corrector locations ; from col. 3 of Table 1 we get �q;Left � �1:13 10�2

1A compensation by an opposing bump in the arcs can be thought of ; principle of such correction has been
addressed in Ref. [3] as concerns the dispersion excited in the dispersive plane by the horizontal component of the
crossing. As to the vertical plane we leave it to further investigations.

2Modulo �=2Qy.
3Referring to works under completion at FNAL [11], local chromaticity correction might in the future lead to

imposing �=2Qy [�=2Qy] IP to arc phase shift. In such case this remark is no longer true and a single set SQ will
insure local Dy compensation.
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while �q;Right � 1:473 10�2. We also consider sets SQ made of a pair of quadrupoles placed �
apart from one another and with opposite strengths in order to minimize e�ects on the focusing,
hence the strength in a single corrector is half the value (RL)SQ above which we note (RL) 1

2
SQ,

namely (Eq. 14)

(RL) 1
2
SQ1 � �2:3 10�4; (RL) 1

2
SQ2 � �3:3 10�4 on the Left side of IP

(RL) 1
2
SQ1 � �4:2 10�4; (RL) 1

2
SQ2 � �3:1 10�4 on the Right side of IP

(15)

This is in agreement with MAD simulations reported in col. 5 of Tables 34.

3.2 Corrector characteristics

After Eq. (14) the maximum strength a corrector may be demanded is (RL) 1
2
SQ = �q = 2Dx

p
�y.

Considering that �q is proportional to y0�=
p
��y (Eqs. 6,7) with a maximum value � 1:5 10�2 (col.

3 of Table 1), one gets the maximum strength of a skew quadrupole in a pair

(RL) 1
2
SQ;max = 3:8 y0�=

q
��y (16)

that is for instance, 5:37 10�4 m�1 for 0.1 mrad c.o. angle at ��y = 0:5 m. Given B� = 23352 Tm
rigidity (7 TeV) the gradient of a 0.32 m long skew quadrupole comes out to be about 39 T/m.
About 10% strength has to be added to allow for simultaneous compensation of y� = 1 mm c.o.
orbit displacement (Section 2) for beam-beam separation during injection phase. Additional safety
margin is to be foreseen to allow on the one hand for possible vertical beta and horizontal dispersion
beatings that would a�ect correction e�ciency at the location of the skew quadrupoles (scales as
Dx

p
�y), and on the other for beta beatings in the low-� region that would enhance the strength

of the excitation (scales as �y). This leads to a safety margin of about 50% which allows the use of
MQS type correctors whose nominal gradient is 86 T/m [10].

More demanding is the ��y = 0:25 m, y0� = 0:2 mrad optics. (RL) 1
2
SQ;max reaches 15:2 10

�4 m�1

and the gradient about 110 T/m, which is close to the maximum value allowed by the MQS type
correctors (120 T/m [10]). These may thus seem too weak ; however it can be foreseen to impose
such betatron phase at IP as to have signi�cant � value (Eq. 14) so that the total strength is shared
by the two sets SQ1 and SQ25. Such is the case in the V5.0 optics where (RL) 1

2
SQ does not exceed

about the two thirds of (RL) 1
2
SQ;max. This would leave a safety margin of about 30% on the gradient

w.r.t. 120 T/m.
However this margin would again be lost with y0� = 0:4 mrad crossing which calls for integrated

correction strength (RL)SQ;max � 40 10�4 m�1 (about 140 T/m per skew quadrupole of a pair) ;
in order to allow for these extreme working conditions, it may be foreseen installing quadruplets
instead of doublets.

3.3 Short range correction scheme

We describe here a correction scheme which, apart from allowing for the various criteria above,
provides the shortest chromatic c.o. bump. This is done by placing the skew quadrupoles as close
as possible to the excitation source (the low-� triplets) at such locations as speci�ed in Table 36.

4Corrector strengths in the LHC Version 4.2 optics were calculated in Ref. [3] assuming the SQ1 pair to have
very weak role, which was good enough since �Left=Right � 0:03=0:02 � 2� ; however Eqs. (14) allow recovering all

strengths with very good precision, namely taking �q;Left=Right � 1:5=1:12 10�2 and , Dx

p
�y � 14:2 leads to

(RL)SQ1;Left=Right � 1:0=0:50 10�4 and (RL)SQ2;Left=Right � 5:19=3:91 10�4, in excellent agreement with related
MAD simulations [3, Table 9, col. 5].

5This is not possible though if �xed arc to IP phase shift is imposed by other considerations (see footnote 2 in
Section 3 [11] ; in such case however the number of quadrupoles in the unique SQ set can be increased in order to
allow for the desirable safety margin.

6This might impose moving the tune shift quadrupoles.
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Table 3: Corrector strengths for y0� = 0:1 mrad, ��y = 0:5 m (scale as y0�=
p
��).

INTERLEAVED CORRECTION SCHEME

Corrector Neighbouring Dx

p
�y Phase w.r.t. IP (RL) 1

2
SQ

name quadrupole (m3=2) (2�) (10�4m�1)

SQ2a/b.Left QD13/17.Left 14. -1.351 /-1.838 �=+ 3.28
SQ1a/b.Left QT.Q11/15.Left 14. -1.107 /-1.594 �=+ 2.26
SQ1a/b.Right QD10/14.Right 14. 0.672 / 1.143 �=+ 4.47
SQ2a/b.Right QD12/16.Right 14. 0.899 / 1.386 �=+ 2.84

NON-INTERLEAVED CORRECTION SCHEME

Corrector Neighbouring Dx

p
�y Phase w.r.t. IP (RL) 1

2
SQ

name quadrupole (m3=2) (2�) (10�4m�1)

SQ2a/b.Left QD17/21.Left 14. -1.837 /-2.324 �=+ 3.30
SQ1a/b.Left QT.Q11/15.Left 14. -1.106 /-1.594 �=+ 2.00
SQ1a/b.Right QD10/14.Right 14. 0.673 / 1.143 �=+ 4.22
SQ2a/b.Right QD16/20.Right 14. 1.387 / 1.874 �=+ 2.90

Given the optical and geometrical similitude between all four IR's in LHC, identical corrector im-
plementation can be used for all.

We investigate two implementations, interleaved (upper Table 3) and non-interleaved (lower
Table 3) . The skew quadrupole correctors are placed next to the multipoles MSCV at Dx

p
�y � 14

(Tables 3, col. 3). The integrated correcting strength is matched with constraints exclusively on DY
= 0 and DY' = 0 at IP and Octant ends and indeed meets the results above (Eq. 15 and col. 5 of
Tables 3). The strength is shared in comparable way by the SQ1a/b and SQ2a/b pairs on both the
Left- and Right-hand sides of the IR.

Both interleaved and non-interleaved con�gurations have similar e�ects. The residual dispersion
in the arcs is quasi-zero (Fig. 3). The absence of e�ect on the �rst order focusing is apparent in
Tables 4 which display the ensuing values of the optical functions at IP1,2,5,8, as well as tunes
and other parameters as obtained from a one-turn MAD TWISS procedure without any additional
re-tuning of the IR ; it is clear that any induced mismatch is negligible. Horizontal and vertical
�-beating in the arcs are also quasi-zero thanks to the �-distant opposite strength quadrupoles
constituting the correction pairs, and the machine tunes are not a�ected. From these results the
induced coupling appears negligible too.

3.4 Correction scheme for LHC V5.0 optics

The LHC V5.0 optics is particularized in that many corrector locations are already attributed.
Our goal here is to insert necessary sets of skew quadrupole correctors proper to Dy compensation
within remaining locations. As to these, we refer to [10, 12]. All quadrupoles from Q11 to Q19 are
occupied ; we don't consider placing correctors in the DS in order to avoid unbalancing of the pairs
and to preserve a good �y=�x ratio. The �rst available spots are from Q20 after moving the coupling
skew quadrupoles and the octupoles towards the centre of the arc [12]. It does not make principle
di�erences with the previous 'Short range correction scheme' (Section Sec3.3), the main e�ect will
be an extension of the chromatic bump over a longer range.

Correctors pairs are interleaved at quadrupoles QD21-27 and QD20-26 on respectively the left-
and right-hand side of the IR ; their strengths are as in the upper Table 3, col. 5. The resulting
residual vertical dispersion is shown in Fig. 4.
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Table 4: Optical functions after correction, with y0� = 0:1 mrad, ��y = 0:5 m.

INTERLEAVED CORRECTION SCHEME

pos. beta1 alfa1 mu1 xco pxco Dx Dpx
beta2 alfa2 mu2 yco pyco Dy Dpy

(m) (m) [2pi] [mm] [.001] (m) (rad)

1 IP1 0.500 0.001 0.000 0.000 0.000 0.000 0.000
0.500 0.001 0.000 0.000 0.000 0.000 0.000

599 IP2 0.500 -0.001 8.242 0.000 0.000 0.000 0.000
0.499 0.000 7.601 0.000 0.000 0.000 0.000

2417 IP5 0.500 -0.001 31.838 0.000 0.000 0.000 0.000
0.500 0.000 29.770 0.000 0.100 0.000 0.000

4214 IP8 0.500 0.000 55.378 0.000 0.000 0.000 0.000
0.500 0.004 51.715 0.000 0.000 0.000 0.000

Q1 = 63.309890 Q2 = 59.320094
betax(max)= 4705.599893 betay(max) = 4706.096404
Dx(max) = 2.859208 Dy(max) = 0.134132

yco(max) = 4.850630

NON-INTERLEAVED CORRECTION SCHEME

pos. beta1 alfa1 mu1 xco pxco Dx Dpx
beta2 alfa2 mu2 yco pyco Dy Dpy

(m) (m) [2pi] [mm] [.001] (m) (rad)

1 IP1 0.500 0.000 0.000 0.000 0.000 0.000 0.000
0.500 0.000 0.000 0.000 0.000 0.000 0.000

599 IP2 0.500 0.000 8.242 0.000 0.000 0.000 0.000
0.500 0.000 7.601 0.000 0.000 0.000 0.000

2417 IP5 0.500 0.000 31.838 0.000 0.000 0.000 0.000
0.500 0.000 29.769 0.000 0.100 0.000 0.000

4214 IP8 0.500 0.000 55.378 0.000 0.000 0.000 0.000
0.500 0.000 51.715 0.000 0.000 0.000 0.000

Q1 = 63.309969 Q2 = 59.320013
betax(max)= 4706..495006 betay(max) = 4706.265351
Dx(max) = 2.859727 Dy(max) = 0.134131

yco(max) = 4.850630
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Figure 3: Residual vertical dispersion in Octant 5 after compensation of y0� = 10�4 rad c.o. angle at IP5
(��y = 0:5 m) with four skew quadrupole pairs placed at the arcs ends ; the dispersion is zero in the rest of
the machine. Left plot : interleaved scheme ; Right plot : non-interleaved scheme.
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Figure 4: Residual vertical periodic dispersion in Octant 5 after compensation of y0� = 0:1 mrad c.o. angle
at IP5 (��y = 0:5 m) with four skew quadrupole pairs placed at the quadrupoles QD21-27 and QD20-26
on respectively the left- and right-hand side of the IR. This correction di�ers from the 'Short range one'
(Section 3.3) mostly by the increased extent of the closed chromatic bump.

Table 5: Corrector strengths for y0� = 0:2 mrad, ��y = 0:25 m (to be doubled for y0� = 0:4 mrad).

INTERLEAVED CORRECTION SCHEME

Corrector Neighbouring Dx

p
�y Phase w.r.t. IP (RL) 1

2
SQ

name quadrupole (m3=2) (2�) (10�4m�1)

SQ2a/b.Left QD13/17.Left 14. -1.392 /-1.879 �=+ 7.25
SQ1a/b.Left QT.Q11/15.Left 14. -1.147 /-1.634 �=+ 8.49
SQ1a/b.Right QD10/14.Right 14. 0.635 / 1.164 �=+ 13.62
SQ2a/b.Right QD12/16.Right 14. 0.923 / 1.411 �=+ 8.21

3.5 Ultimate squeeze

The LHC should eventually accommodate ��y = 0:25 m, while beam-beam e�ects impose y0� =
0:2 mrad (and possibly even up to y0� = 0:4 mrad [8]). Dispersion corrector characteristics in this
case have been discussed in Section 3.2. We now show the behaviour of the interleaved scheme
described in Section 3.4 [9]. Table 5 gives the corrector strengths ; it can be checked that their
square sum is in a ratio of y0�

p
��y � 2

p
2 (Eq. 20) with the nominal optics (Table 3). Table 6

shows the residual dispersion function after correction ; the peak dispersion has been damped from
2.6 m (attained inside IR2 low-� triplets) and in the arcs down to 0.35 m peak in IR5 region and
practically zero beyond.

4 Conclusion

The vertical perturbative dispersion excited by crossing angle and orbit o�-centering at IPs' in the
Version 5.0 of the LHC ring in collision optics has been investigated and its most signi�cant e�ects
quanti�ed.

It has been shown that in the nominal optical conditions (Qx=Qy = 63:32=59:31, �0:1 mrad
vertical crossing, ��y = 0:5 m) and under propitious betatron phase relations between IP's, the so
induced vertical dispersion reaches values close to the limit of tolerances namely, �0.2 m beats in
the arcs, more than one meter in the low-� triplets, and about 11 mm at the IP's in the case of a
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Table 6: Optical functions after correction, with y0� = 0:2 mrad, ��y = 0:25 m. Tunes, maximum beta, etc.
are practically unchanged w.r.t. non perturbed case [9].

INTERLEAVED CORRECTION SCHEME

pos. beta1 alfa1 mu1 xco pxco Dx Dpx
beta2 alfa2 mu2 yco pyco Dy Dpy

(m) (m) [2pi] [mm] [.001] (m) (rad)

1 IP1 0.500 0.001 0.000 0.000 0.000 0.000 0.000
0.500 0.001 0.000 0.000 0.000 0.000 0.000

599 IP2 0.500 -0.001 8.242 0.000 0.000 0.000 0.000
0.499 0.000 7.601 0.000 0.000 0.000 0.000

2417 IP5 0.500 -0.001 31.838 0.000 0.000 0.000 0.000
0.500 0.000 29.770 0.000 0.100 0.000 0.000

4214 IP8 0.500 0.000 55.378 0.000 0.000 0.000 0.000
0.500 0.004 51.715 0.000 0.000 0.000 0.000

Q1 = 63.326144 Q2 = 59.383959
betax(max)= 9471.582314 betay(max) = 9262.963729
Dx(max) = 2.932897 Dy(max) =0.353314

yco(max) = 9.699951
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Table name = TWISS

∗10∗∗(  3)

63_59, beta*=0.25m, global phases of kcol.63_59
SUN version 8.16/6 01/09/97  11.22.38

0.0

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

(m
)

*1
0

**
(

3
)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

D
y

(m
)

Figure 5: Residual vertical periodic dispersion in Octant 5 after compensation of y0� = 0:2 mrad c.o. angle
at IP5 with ��y = 0:25 m, by means of the interleaved correction scheme described in Section 3.4 (Optics
after Ref. [9]) - the Dy scale has to be doubled for y0� = 0:4 mrad.
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single crossing. These �gures are four times larger in the case of four crossings, which is su�cient
to justify local compensation. It has also been shown that these e�ects are prohibitively large in
the extreme �-squeeze conditions (�0:2 to �0.4 mrad, ��y = 0:25 m), for instance more than 20 m
dispersion in the low-� triplets and 60 mm at IP's in the case of a single, uncompensated crossing.

The principle of a local compensation based on the use of skew quadrupoles is addressed and its
major aspects are described. It is in particular shown that it allows killing the dispersion everywhere
beyond a residual chromatic bump con�ned in the vicinity of the IR of concern. Correction schemes
are shown in detail, as well as characteristics of the skew quadrupoles of concern. These can be of
the MQS type already foreseen for coupling corrections, used by pairs down to �� = 0.25 m as long
as the projected crossing angle does not exceed �0.2 mrad, or by quadruplets beyond.

A Appendix : Beam crossing and o�-centering schemes

Appendix A describes the crossing and/or o�-centering c.o. bumps on which the numerical applica-
tions and other plots presented in this report are based.7

The steering is to include a combination of crossing or o�-centering at IP in each plane (e.g.,
in order to achieve �45 deg. inclined crossing plane). This imposes a pair of COD's per plane on
each side of the IP (rather than a single one at �=Qy (normalized) phase-shift in crossing optics, for
instance). Another argument in favour of early closing of the orbit bump is avoiding propagating
non-zero c.o. in the dispersion suppressor region. This last criterion guided the present design in
con�ning the c.o. bump within the range Q6.Left/Q6.Right : on each side of the IP, a vertical COD
has been placed at Q6 and another one at D2.
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Figure 6: Vertical c.o. geometry and beam-beam separations (normalized to largest �) in collision optics
for ��y = 0:5 m, as used for numerical applications presented in the report. Left plot : �10�4 rad c.o. angle
at IP5. Right plot : �10�3m o�-centering. The c.o. kicks do not exceed 6 10�5 rad.

B Appendix : Skew quadrupole strengths

The strengths of the skew quadrupoles to be located at arc ends for compensation of the vertical
crossing angle induced dispersion are calculated. We start fromEq. (13) and considering that �(sq) =
Cste = �q and Dx

p
�y � Cste since the skew quadrupoles are placed close to arc quadrupoles, we

rewrite it under the form

cosQy[��j����qj]�q = (Dx

p
�y)
�X
SQ

(RL)SQ cosQy[��j����SQj]+
X
SQ

(RL)SQ cosQy[��j����SQj]
	

(17)

7c.o. implementation was still in discussion at CERN when this study was being performed [12].
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For simpli�cation we consider in a �rst step a single corrector SQ1 (respectively SQ2) located � [�]
(�=2 [�]) away from the IP with strength (RL)SQ1 (resp. (RL)SQ1)and write, Qy(�

� � �SQ1) =
� + �1 [�] (Qy(�

� � �SQ2) = �=2 + �2 [�]). After some algebra Eq. 17 becomes

sin(�Qy)
�q

Dx

p
�y

= cos(�Qy � �1)(RL)SQ1 � sin(�Qy � �2)(RL)SQ2 (18)

We now neglect the slight departure of the cell tune from �=2 (e.g., by up to about 2 deg in V5.0
optics) which entails �1 � �2 � � and, by identi�cation between the left and right hand side terms
in the equality above leads to(

cos(�) (RL)SQ1 + sin(�) (RL)SQ2 = 0

sin(�) (RL)SQ1 + cos(�) (RL)SQ2 =
�q

Dx

p
�y

(19)

which leads to Eq. (14). If SQ1 (resp. SQ2) is a pair of skew quadrupoles �=Qy [�=Qy] distant both
share the total strength with alternate signs. In particular Eq. (19) above leads to

�X
SQ1

jRLjSQ
�2
+
�X
SQ2

jRLjSQ
�2

=
� �q

Dx
p
�y

�2
(20)
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