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BINARY 
BREVOL 
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Optical elements versus keywords 

This glossary gives a list of keywords suitable for the simulation of the common optical elements. They 
are classified in three categories: magnetic, electric and electromagnetic elements. 

Field map procedures are also cataloged; in most cases an adequate field map can be used for simulating 
these elements. 

MAGNETIC ELEMENTS 

Decapole 
Dipole 
Dodecapole 
Multipole 
Octupole 
Quadrupole 
Sextupole 
Skewed multipoles 
Solenoid 

Field maps 

1-D, cylindrical symmetry 
2-D, mid-plane symmetry 
2-D, no symmetry 
3-D 

ELECTRIC ELEMENTS 

Decapole 
Dipole 
Dodecapole 
Multipole 
Octupole 
Quadrupole 
R.F. cavity 
Sextupole 
Skewed multipoles 
2-tube (bipotential) lens 
3-tube (unipotential) lens 

Field maps 

lD, cylindrical symmetry 

ELECTROMAGNETIC ELEMENTS 

Decapole 
Dipole 
Dodecapole 
Multipole 
Octupole 
Quadrupole 
Sextupole 
Skewed multipoles 
Wien filter 

DECAPOLE, MULTIPOL 
AIMANT, BEND, DIPOLE, MULTIPOL, QUADISEX 
DODECAPO, MULTIPOL 
MULTIPOL, QUADISEX, SEXQUAD 
OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD 
QUADRUPO, MULTIPOL, SEXQUAD 
SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD 
MULTIPOL 
SOLENOID 

BREVOL 
CARTEMES, POISSON, TOSCA 
MAP2D 
TOSCA 

ELMULT 
EL MU LT 
ELMULT 
ELMULT 
ELMULT 
ELMULT 
CAVITE 
ELMULT 
EL MU LT 
EL2TUB 
UNIPOT 

ELREVOL 

EBMULT 
EBMULT 
EBMULT 
EBMULT 
EBMULT 
EBMULT 
EBMULT 
EB MU LT 
SEPARA, WIENFILT 
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1 INTRODUCTION 

The computer code Zgoubi calculates trajectories of charged particles in magnetic and electric fields. At the 
origin specially adapted to the definition and adjustment of beam lines and magnetic spectrometers, it has so­
evolved that it allows the study of systems including complex sequences of optical elements such as dipoles, 
quadrupoles, arbitrary multipoles and other magnetic or electric devices, and is able as well to handle periodic . 
structures. Compared to other codes, it presents several peculiarities: 

• a numerical method for integrating the Lorentz equation, based on Taylor series, which optimizes com­
puting time and provides high accuracy and strong symplecticity, 

• spin tracking, using the same numerical method as for the Lorentz equation, 

• calculation of the synchrotron radiation electric field and spectra in arbitrary magnetic fields, from the 
ray-tracing outcomes, 

• the possibility of using a mesh, which allows ray-tracing from simulated or measured (1-D, 2-D or 3-D) 
field maps, 

• Monte Carlo procedures: unlimited number of trajectories, in-flight decay, etc. 

• a built-in fitting procedure, 

• multiturn tracking in circular accelerators including many features proper to machine parameter calcula-
tion and survey, and also the simulation of time-varying power supplies. 

The initial version of the Code, dedicated to the ray-tracing in magnetic fields, was developed by D. Garreta 
and J.C. Faivre at CEN-Saclay in the early 1970's. It was perfected for the purpose of studying the four spec­
trometers (SPES I, II, III, IV) at the Laboratoire National Saturne (CEA-Saclay, France), and SPEG at Ganil 
(Caen, France). It is now in use in several national and foreign laboratories. 

The first manual was in French [1]. Since then many improvements have been implemented. In order to 
facilitate access to the program an English version of the manual was written at TRIUMF with the assistance 
of J. Doornbos. P. Stewart prepared the manuscript for publication [2] · 

An updating was necessary for accompanying the third version of the code which featured spin tracking and 
ray-tracing in combined electric and magnetic fields; this was done with the help of D. Bunel for the preparation 
of the document and lead to the third release [3]. 

Lately, provisions were introduced for the computation of synchrotron radiation electromagnetic impulse and 
spectra. In the mean time, several new optical elements were added, such as electro-magnetic and other elec­
trostatic lenses. Used since several years for special studies in periodic machines (e.g., SATURNE at Saclay, 
COSY at Julich, LEP and LHC at Cern), Zgoubi has also benefited from extensive development of storage 
ring related features. 

The graphic interface to Zgoubi {Part D) has also undergone concomitent extended developments, which 
make it a performant tool for post-processing Zgoubi outputs. 

These recent developments of Zgoubi [1, 2, 3, and the present version of the guide] have strongly benefited of 
the environment of the Groupe Theorie, Laboratoire National SATURNE, CEA/DSM-Saclay. 

This manual is intended only to describe the details of the most recent version of Zgoubi, which is far from 
being a "finished product". 
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2 NUMERICAL CALCULATION OF MOTION AND FIELDS 

2.1 Zgoubi Frame 

The reference frame of Zgoubi is presented in Fig 1. Its origin is in the median plane on a reference curve 
which coincides with the optical axis of optical elements. 

2.2 Integration of Lorentz Equation 

The Lorentz equation, which governs the motion of a particle of charge q, mass m and velocity v in electric and 
magnetic fields e and b, is written 

Taking 

z 

0 

d(mv) (.... .... b ... ) --=qe+vx 
dt 

Figure 1: Reference frame and coordinates (Y, T, Z, P) in Zgoubi. 
0 X: in the plane of the reference curve in the direction of motion, 
OY: in the plane of the reference curve, normal to 0 X, 
0 Z: orthogonal to the ( X, Y) plane, 
W: projection of the velocity, v, in the (X, Y) plane, 
T = angle between W and the X-axis, 
P = angle between W and v. 

v 
il= -, 

v 
ds = vdt, 

... , du 
u = ds, mv= mvu= qBpu 
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where B p is the rigidity of the particle, this equation can be rewritten 

(Bp)'u+Bpu' =~+ax b 
v 

(2.2.3) 

From position R(Mo) and unit velocity u(Mo) at point Mo, position R(Mi) and unit velocity u(M1) at point 
Mi following a displacement ..6.s, are given by Taylor expansions (Fig. 2) 

R(M1) = R(Mo) + u(Mo) .6.s +u'(Mo) ~~
2 

+ ... + u""'(Mo) ~~
6 

""(M) ""(1") ... ,(1")" ... ,,(~")..6.s2 ... ,,,,,(1")..6.ss 
U 1 = U lY10 + U lY.LO 4.l.S + U lY.LO 2! + ... + U lY.LO 5! 

The rigidity at Mi is obtained in the same way from 

..6.s4 
(Bp)(Mi) = (Bp)(Mo) + (Bp)'(Mo).6.s + ... + (Bp) ""(Mo)41 

(2.2.4) 

(2.2.5) 

The derivatives if.n) = ~d u and (Bp)Cn) = ~dBp) involved in these expressions are calculated as described in 
sn sn 

the next sections. For the sake of computing speed, three distinct software procedures are involved, depending 
on whether e or bis zero, or e and bare both non-zero. 

Figure 2: Position and velocity of a particle in the reference frame. 

2.2.1 Integration in magnetic fields 

Admitting that e = 0, and noting B = :p, eq. (2.2.3) reduces to 

u' =ux B 
dn ... 

The successive derivatives aCn) = d u of u needed in the Taylor expansions (Eqs. 2.2.4) are calculated by sn 
differentiating u 1 = u x B 
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dnB 
where jj(n) = --. 

dsn 

a" = a' x .B +ax .B' 
a"'= u" x B + 2a' x B' +il x B" 

u'"' = u"' x .B + 3u" x B' + 3u' x .8 11 +il x B"' 
a""'= u"" x B + 4u"' x B' + 6il" x .B 11 +4il' x .8 111 +u x B"" 

... ajj ajj ajj ajj 
From dB= ax dX + ay dY + az dZ = L ax dXi, and by successive differentiation, we get 

i=l,3 • 

._,, '""'a.B 
B = L- ax ui 

i • 

2 _, _, 

... 11 '""' a B '""' aB , 
B = L.J ax.ax. UiUj + L.J ax ui 

ij • 3 i • 

B ... ,,, '""' a3B '""' a2B , '""' ajj II 
= L.J ax.ax .ax UiUjUk + 3 L.J ax.ax. UiUj + L ax ui 

ijk • 3 k ij • 3 i • 

... ,,II '""' a4B '""' a3B I 
B =Lax.ax .ax ax uiujuku1 + 6 Lax.ax -ax uiujuk 

ijkl • 3 k l ijk • 3 k 

2_, 2-+ -
'""' a B ,, '""' a B , , '""' aB "' + 4 L.J ax ax. Ui Uj + 3 L...J ax.ax. UiUj + L...J ax Ui 
ij • 3 ij • 3 i • 

(2.2.6) 

(2.2.7) 

From the knowledge of it( Mo) and B(Mo) at point Mo of the trajectory, we calculate alternately the derivatives 
of u(Mo) and B(Mo), by means of Eqs. (2.2.6) and (2.2.7), and inject it in Eq. (2.2.4) to get R(M1) and it(M1). 

2.2.2 Integration in electric fields [4] 

Admitting that b = 0, eq. (2.2.3) reduces to 

(Bp)'u + Bpi1' = ~ 
v 

which, by successive differentiations, gives the recursive relations 

(Bp)'it + Bpi1' = ~ 
v 

(Bp)"u + 2(Bp)'il' + BµU" = ( ~) 'e+: 

(Bp)"'it + 3(Bp)"il' + 3(Bp)'u" + BµU"' = ( ~)" e + 2 ( ~ )' e' + ( ~) e" 
(Bp) ""it+ 4(Bp)"'u' + 6(Bp)"il" + 4(Bp)'it"' + Bpii, 1111 = 

( ~) "' e + 3 ( ~)" e' + 3 ( ~ )' e" + ~ e"' 

that provide the derivatives ~d i1 needed in the Taylor expansions (2.2.4) sn 
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(2.2.10) 

where E = Bep' and (n) lsp denotes differentiation at constant Bp: Ej(n) Is = _!__ a:ne_ These derivatives of 
P Bpdsn 

the electric field are obtained from the total derivative 

.... a"E a"E a"E 
dE = ax dX + fJY dY + fJZ dZ 

by successive differentiations 

.... , "ae 
E = L.Jax. ui 

i • 

2.... .... 

E" " a E " aE , 
= L.i 8X·fJX. UiUj + L.i ax ui 

ij • 3 i • 

(2.2.11) 

(2.2.12) 

These eq. (2.2.10), as well as the calculation of the rigidity, following eq. (2.2.5), involve derivatives (Bp)<n) = 

dn~Bp), which are obtained in the following way. Considering that 
sn 

dp2 dj/2 
dt =--;Ji' i.e., (2.2.13) 

with ':t = q (e + v x b) (eq. 2.2.1), we obtain 

dp ("""' b .... ) .... .... .... - p = q e + v x · p = qe · p 
dt 

(2.2.14) 

since (v x b) · p = 0. Normalizing as previously with p = pf1 = qBpil and ds = vdt, and by successive 
differentiations, eq. (2.2.14) leads to the (Bp)<n) 
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(Bp)' = .!_ (e ·it) 
v 

(Bp)" = ( ~ )' (e. it)+;; (e. it)' 

(Bp)"' = (;;)" (e. u) + 2 (;)' (e. U)' +;; (e. it)" 
(2.2.15) 

(Bp) "" = ( ~)"' (e. u) + 3 ( ~)" (e. it)'+ 3 (;)' (e. u)" +; (e. u)"' 

Note that the derivatives (e · it)(n) = d!"~e· it) can be related to the derivatives of the kinetic energy W by sn 

dW = ~ . v dt = qe · v dt which leads to 

an+1w rl!"(e·u) 
dsn+l = q dsn (2.2.16) 

(1) (n) dn -
Finally, the derivatives (!) = d v involved in eqs (2.2.10,2.2.15) are obtained from p = ~ W + mc2, 

v ~ c c 
by successive differentiations, that give the recursive relations 

(!) = ..!:_ W +mc2 
v c2 qBp 

(
1)' 1 (e· u) 1 (Bp)' 
; = c2 ~-; Bp 

(!)" = ..!:.. (e· u)' _ 2 (!)' (Bp)' _ ! (Bp)" 
v c2 Bp v Bp v Bp 

(!)"' = ..!:.. (e·u)" -3 (!)" (Bp)' -3 (!)' (Bp)" _ .!_ (Bp)"' 
v c2 Bp v Bp v Bp · v Bp 

2.2.3 Integration in combined electric and magnetic fields 

(2.2.17) 

When both e and b are non-zero, the complete eq. (2.2:3) must be considered. Successive differentiations give 
the following recursive relations 

(Bp)'u + Bpit' = ~ + i1 x b 
v 

(Bp)"it + 2(Bp)'it' + Bpit" = (;)' e + ( ~) e' +(it x b)' · 

(Bp)"'u + 3(Bp)"u' + 3(Bp)'u" + Bpit"' = (;)" e + 2 ( ~) 'e' + ( ~) e" +(it x b)" 
(Bp) ""it+ 4(Bp)"'it' + 6(Bp)"it" + 4(Bp)'i1"' + Bpit"" = 

( ~) '" e + 3 ( ~) "e' + 3 ( ~) 'e" + ~2111 + (it x b)"' 

dn-< 
that provide the derivatives d u needed in the Taylor expansions (2.2.4) sn 
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u' = (!) E + (u x B) - (Bp)' u 
v Bp 

u" = (!)' E+ (!) E' IBp +(ux B')' IB -2(Bp)' a' - (Bp)" a 
v v P Bp Bp 

U111 = (!)II E + 2 (!)IE' IBp +! E" IBp +( u x B)" IBp -3 (Bp)' u" - 3 (Bp)" u' - (Bp )"' i1 
v v v Bp Bp Bp (2.2.19) 

a""= (~)
111 

E+3 (~)" E' IBp +3(~)'E" IBp + (~) E"' IBp 

+ca x B)m IB -4 (Bp)' am - 6 (Bp)" u" - 4 (Bp)lll a' - (Bp) "" i1 
P Bp Bp Bp Bp 

- e - ~ . 
where E = Bp, B = Bp, and (n) IBp denotes differentiation at constant Bp 

-< ) 1 dne ... < ) 1 ... < ) En IB = -- and (u X B) n IB = -(i1 X b) n. 
P Bp dsn P Bp (2.2.20) 

These derivatives Ej(n) and jj(n) of the electric and magnetic fields are calculated from the vector fields 
- ... Qi+Hk E Qi+Hk B 
E(X, Y, Z), B(X, Y, Z) and their derivatives BXiBYjBZk and BXiBYjazk, following eqs. (2.2.7) and (2.2.12). 

2.3 Calc1,11ation of B and its Derivatives 

Zgoubi calculates B(X, Y, Z) and its derivatives in several different ways, depending on whether field maps or 
analytic representations of optical elements are used. The five basic means are the following. 

2.3.1 Extrapolation from a 1-D axial field map [4] 

A cylindrically symmetric field (e.g., using BREVOL) can be described by an axial 1-D field map of its longitu­
dinal component Bx (X, r = 0) (r = (Y2 + Z2 ) 112), while the radial component on axis Br(X, r = 0) is assumed 
to be zero. Bx ( X, r = 0) is obtained at any point along the X-axis by a polynomial interpolation from the map 
mesh (see section 2.4.1). Then the field components Bx(X,r), Br(X,r) at the position of the particle, (X,r) 

are obtained from Taylor expansions to the fifth order in r (hence, up to the fifth order derivative~:: (X, 0)), 

assuming cylindrical symmetry 

r 2 82Bx r 4 a4Bx 
Bx(X,r) = Bx(X,O) - "4 BX2 (X,O) + 64 ax4 (X,O) 

r 8Bx r 3 a3Bx r 5 a5Bx 
Br(X, r) = -2 8X (X, O) + 16 axs (X, O) - 384 8X5 (X, O) 

(2.3.1) 

By differentiation with respect to X and r, up to the second order, these expressions provide the derivatives of 
B(X,r). Finally a conversion from the (X,r) coordinates to the (X, Y,Z) Cartesian coordinates of Zgoubi is 

Qi+Hk B 
performed, thus providing the expressions BXiBYjBZk needed in the eqs. (2.2.7). 

2.3.2 Extrapolation from Median Plane Fields 

In the median plane, Bz(X, Y, 0), and its derivatives with respect to X or Y, may be calculated from analytical 
models (e.g. in Venus magnet- VENUS, and sharp edge multipoles SEXQUAD and QUADISEX) or numerically 
by polynomial interpolation from 2-D field maps (e.g. CARTEMES, TOSCA). 

Median plane antisymmetry is assumed, which results in 
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Bx(X, Y,O) = 0 

By(X, Y, 0) = 0 

Bx(X, Y, Z) = -Bx(X, Y, -Z) 
By(X, Y, Z) = -By(X, Y, -Z) 

Bz(X, Y, Z) = Bz(X, Y, -Z) 

(2.3.2) 

Together with Maxwell's ~uations, this results out of the median plane in the following Taylor expansions, for 
the three components of B (here, B stands for Bz (X, Y, 0)) 

aB Z
3 

(a3B a3B ) 
Bx(X, Y, Z) = z ax - 6 ax3 + axay2 

aB Z
3 

( a3B a3B) 
By(X, Y, Z) = z ay - 6 ax2ay + ay3 (2.3.3) 

Z
2 

(a
2
B a

2
B) Z

4 
(a4B a4B a4B) 

Bz(X, Y, Z) = B - 2 ax2 + ay2 + 24 ax4 + 2 ax2ay2 + ay4 

which are then differentiated one by one with respect to X, Y, or Z, up to second or fourth order (depending 
on optical element or IORDRE option, see section 2.4.2) so as to get the expressions involved in eq. (2.2.7). 

2.3.3 Extrapolation from arbitrary 2-D Field Maps 

2-D field maps that give the three components Bx (X, Y, Zo), By ( X, Y, Zo) and B z (X, Y, Zo) at each node 
(X, Y) of a Zo Z-elevation map may be used. B ~nd its derivatives at any point (X, Y, Z) are calculated 
by polynomial interpolation followed by Taylor expansions in Z, without any hypothesis of symmetries (see 
section 2.4.3 and keyword MAP2D). 

2.3.4 Interpolation in 3-D Field Maps [5) 

In 3-D field maps Band its derivatives up to the second order with respect to X, Y, or Z are calculated by 
means of a second order polynomial interpolation, from a 3-D 3 x 3x 3-point grid (see section 2.4.4). 

2.3.5 3-D Analytical Models of Fields 

In analytical optical elements (such as QUADRUPO, MULTIPOL, SEXTUPOL, EBMULT, etc.) the three 
components of B and their derivatives with respect to X, Y or Z are derived at any step along trajectories 
from the analytical expression of the scalar potential V ( X, Y, Z) starting, for instance, with 

Multipoles 

av 
Bx= ax' 

aBx a2v 
ax = ax2' 

av 
By= 8Y' 

aBx a2v 
ay - axaY' 

av 
Bz=­

az 

etc. 
(2.3.4) 

·+j+k .... 

The scalar potential used for the calculation of the derivatives 8'BXiB~~:t? (i + j + k = 0 to 4) for the 

magnetic and electromagnetic multipoles with 2n poles (namely, QUADRUPO (n = 2) to DODECAPO (n = 6), 
MULTIPOL (n = 1 to 6), EBMULT (n = 1 to 6)) is [6] 

Vn(X, Y, Z) = (n!)2 "(-l)q "-~2~--
( 

00 Q(2q) (X) (Y2 + z2 )q ) ( n sin (m~) yn-m zm) 

~ 4qq!(n+q)! ~ m!(n-m)! 
(2.3.5) 

where G(X) is the longitudinal gradient, defined at the entrance or exit of the optical element by 
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Go 
G(s) = 1 + exp(P(s))' 

and s is the distance to the EFB. 

Skewed multipoles 

Bo 
Go=­Rn 

0 
(2.3.6.) 

Any multipole component n can be rotated independently by an angle An around the X-axis. If so, the 
calculation of the field and derivatives in the rotated axis (X, YR, ZR) is done in two steps. First, they are 
calculated at the rotated position X, YR, ZR), in the (X, Y, Z) frame, as derived from the expression (2.3.5) 
above. Second, B and its derivatives at (X, YR, ZR) in the (X, Y, Z) frame are transformed to the rotated 
(X, YR, ZR) frame by a rotation of the same angle An. A skewed 2n-pole component is thus obtained by taking 
An= 7r/2n. 

2.4 Calculation of B from Field Maps 

2.4.1 1-D Axial Map, with Cylindrical Symmetry 

Let Bi be the value of the longitudinal component Bx(X, r = 0) of the field .B, at a node i of the uniform 
mesh, which defines a 1-D field map along the symmetry X-axis, while Br(X, r = 0) is assumed to be zero 
(r = (Y2 + Z2 ) 112). The field component Bx(X, r = 0) is calculated by a polynomial interpolation of the fifth 
degree in X, using a 5 points grid centered at the node of the 1-D map which is closest to the actual coordinate 
X of the particle. 
The interpolation polynomial is 

(2.4.1) 

and the coefficients Ai are calculated by expressions that minimize the quadratic sum 

(2.4.2) 

Namely, the source code contains the explicit analytical expressions of the coefficients Ai solutions of the normal 
equations 8S/8Ai = 0. 

The derivatives r;;~ (X, 0) at the actual position X, as involved in eqs. (2.3.1), are then obtained by differen­

tiation of the polynomial (2.4.1), giving 

(2.4.3) 

a5B axs (X, 0) = 120As 

2.4.2 2-D Median Plane Map, with Median Plane Antisymmetry 

Let Bij be the value of Bz(X, Y,O) at the nodes of a mesh which defines a 2-D field map in the (X, Y) plane 
while Bx(X, Y,O) and By(X, Y,O) are assumed to be zero. Such a map may have been built or measured in 
either Cartesian or polar coordinates. Whenever polar coordinates are used, a change to Cartesian coordinates 
(described below) provides the expression of Band its derivatives as involved in eq. (2.2.7). 
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Zgoubi provides three types of polynomial interpolation from the mesh (option IORDRE); namely, a second 
order interpolation, with either a 9- or a 25-point grid, or a fourth order interpolation with a 25-point grid 
(Fig. 3). -
If the 2-D field map is built up from a simulation, the grid simply aims at interpolating the field at a given point 
from its 9 or 25 neighbors. If the map results from measurements, the grid also smoothes field measurement 
fluctuations. 
The mesh may be defined in Cartesian coordinates, (Figs. 3A and 3B) or in polar coordinates (Fig. 3C). 
The interpolation grid is centered on the node which is closest to the projection in the (X, Y) plane of the actual 
point of the trajectory. 
The interpolation polynomial is 

in second order, or 

B(X, Y,O) = Aoo +A10X +Ao1Y + A20X2 +A11XY +Ao2Y2 

B(X, Y, 0) =Aoo + A10X + Ao1 Y + A20X2 + A11XY + Ao2Y2 

+ A3oX3 + A21X2Y + Ai2XY2 + Ao3Y3 

+ A4oX4 + A31X3Y + A22X2Y 2 + A13XY3 + Ao4 Y 4 

(2.4.4) 

(2.4.5) 

in fourth order. The coefficients Aij are calculated by expressions that minimize, with respect to Aij, the 
quadratic sum 

8= L(B(X,Y,O)-Bij)2 

ij 
(2.4.6) 

The source code contains the explicit analytical expressions of the coefficients Aij solutions of the normal 
equations 8S/8Aij = 0. 
The Aij may then be identified with the derivatives of B(X, Y, 0) at the central node of the grid 

1 Bi+jB 
Aij = i!j! 8Xi8Yj (0, 0, 0) (2.4.7) 

The derivatives of B(X, Y, 0) with respect to X and Y, at the actual point (X, Y, 0) are obtained by differentiation 
of the interpolation polynomial, which gives (e.g. from (2.4.4) in the case of second order interpolation) 

8B ax (X, Y,O) = A10 + 2A20X + A11Y 

8B 
ay (X, Y, 0) = Ao1 + AnX + 2Ao2Y (2.4.8) 

etc. 

This allows stepping to the calculation of B(X, Y, Z) and its derivatives as described in subsection 2.3.2 
(eq. 2.3.3). 

The special case of polar maps 

It is necessary to change from polar to Cartesian coordinates. This is done as follows. 
In second order calculations the correspondence is 
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8B 
8X 
8B 
8Y 
82B 
8X2 

82B 
8X8Y 
82B 
8Y2 
03B 
8X3 

03B 
8X28Y 

03B 

1 8B 

8X 8Y2 = R3 8CY. - R 2 8CY.8R 
03B 

=0 

In fourth order calculations the relations are the same up to second order, and then 

03B 
8X3 

03B 
8X28Y 

03B 
8X8Y2 

03B 
8Y3 

&4B 
8X4 

04B 
8X38Y 

04B 
ax22Y2 

04B 
8X8Y3 

&4B 

(2.4.9) 

(2.4.10) 

NOTE: If a particle goes beyond the limits of the field map, the field and its derivatives will be extrapolated by 
means of the same calculations, from the border grid which is the closest to the actual position of the particle. 
Its flag JEX is given the value -1 (see section 5.6.8). 
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(A) (8) 

y 

(C) 

Figure 3: Mesh in the (X, Y) plane in Cartesian coordinates. The grid is cen­
tered 
on the node which is closest to the actual position of the particle. 
A: 9-point interpolation grid. 
B: 25-point interpolation grid. 
C: Mesh in the (X, Y) plane in polar coordinates. 

2.4.3 Arbitrary 2-D Map, no Symmetries 

The map is supposed to describe the field B(Bx,By,Bz) in the (X, Y) plane at elevation Z0 . It pr~vides the 
components Bx,ij, BY,ij, BZ,ij at each node (i,j) of a 2-D mesh. 

The value of Band its derivatives at the projection (X, Y, Zo) of the actual position (X, Y, Z) of a particle is 
obtained by means of a polynomial interpolation from a 3 x 3 points grid centered at the node (i,j) which is 
closest to·the position (X, Y) 

Be(X, Y, Zo) = Aoo + AioX + Ao1 Y + A20X2 + AuXY + Ao2Y2 (2.4.11) 

where Bt stands for any of the three components Bx, By or Bz. Differentiating then gives the derivatives 
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aB.e 
ax (X, Y, Zo) = A10 + 2A20X + AuY 

a2B.e 
axaY (X, Y, Zo) =Au 

(2.4.12) 

etc. 

Then follows the procedure of extrapolation from (X, Y, Zo) to the actual position (X, Y, Z), as described in 
section 2.3.3 

No special symmetries are assumed, which allows the treatment of any type of magnet. 

2.4.4 Calculation of B from a 3-D Field Map 

The vector field B(X, Y, Z) and its derivatives necessary for the calculation of position and velocity of the 
particle are now defined by means of a 3-D field map, through second order polynomial interpolation 

B.e(X, Y,Z) = Aooo + A100X +Ao10Y +Aoo1Z +A200X2 + Ao20Y2 +Aoo2Z2 + AuoXY +A101XZ + AouYZ 
(2.4.13) 

B.e stands for any of the three components, Bx, By or Bz. By differentiation of B.e one gets 

aB.e 
ax = A100 + 2A200X + AuoY + Aio1Z 

a2B.e 
ax2 = 2A200 

(2.4.14) 

and so on for first and second order derivatives with respect to X, Y or Z. 

The interpolation involves a 3 x 3 x 3-point parallelipipedic grid (Fig. 4), the origin of which is positioned at 
the node of the 3-D field map which is closest to the actual position of the particle. 

Let Bfjk be the value of the - measured or computed - magnetic field at each one of the 27 nodes of the 3-D 
grid (B.e stands for Bx, By or Bz ), and B.e(X, Y, Z) be the value at a position (X, Y, Z) with respect to the 
central node of the 3-D grid. Thus, any coefficient Ai of the polynomial expansion of B.e is obtained by means 
of expressions that minimize, with respect to Ai, the sum 

S = L (B.e(X, Y, Z) - Bfi1o)
2 

(2.4.15) 
ijk 

where the indices i, j and k take the values -1, 0 or +1 so as to sweep the 3-D grid. The source code contains 
the explicit analytical expressions of the coefficients Aijk solutions of the normal equations as; aA.ik = 0. 
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FERMILAB-TM-2010 

·-x• 
(i) 

Figure 4: A 3-D 27-point grid is used for interpolation of .ii and its derivatives 
up to second order. The cent;ral node of the grid (i = j = k = 0) is 
at the closest vicinity of the actual position of the particle. 

2.5 Calculation of E and its derivatives 

Zgoubi calculates E(X, Y, Z) and its derivatives in several different ways, depending on whether field maps or 
analytical representations of optical elements are used. The three basic means are the following [7]. 

2.5.1 Extrapolation from a 1-D axial field map 

A cylindrically symmetric field can be described by an axial 1-D field map of its longitudinal component 
Ex(X,r = 0) (r = (Y2 + Z2 ) 112), while the radial component Er(X,r = 0) is assumed to be zero (e.g. in 
ELREVOL). Ex(X,r = 0) is obtained at any point along the X-axis by a polynomial interpolation from the 
map mesh (see section 2.4.1). Then the field components Ex(X, r), Er(X, r) at the position of the particle, 
(X, r) are obtained from Taylor expansions to the fifth order in r (hence, up to the fifth order derivative 

~:: (X,O)), assuming cylindrical symmetry 

r 2 fPEx r 4 B4Ex 
Ex(X,r) = Ex(X,O) - "4 ax2 (X,O) + 

64 
ax4 (X,O) 

r 8Ex r 3 a3Ex r 5 a5Ex 
Er(X, r) = -2 ax (X, O) + 16 8X3 (X, O) - 384 axs (X, O) 

(2.5.1) 
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By differentiation with respect to X and r, up to the second order, these expressions provide the derivatives of 
E(X,r). Finally a conversion from the (X, r) coordinates to the (X, Y, Z) Cartesian coordinates of Zgoubi is 

()i+Hk E 
performed, thus providing the expressions BXiBYjazk needed in the eqs. (2.2.12). 

2.5.2 Extrapolation from analytically defined axial fields 

This procedure assumes cylindrical symmetry with respect to the X-axis. The longitudinal field component 
Ex(X, r = 0) (r = (Y2 + Z2 ) 112), along this axis are derived from differentiation of an adequate model of the 
electric potential V(X) (e.g. in EL2TUB, UNif',OT). The longitudinal and radial field components Ex(X, r), 

Er(X, r) and their derivatives off-axis ~;~!~ and :;:! are obtained by Taylor expansions to the fifth order 

in r assuming cylindrical symmetry (see eq. (2.5.1)), and then transformed to the (X, Y, Z) Cartesian frame of 
'+j+k .... 

Zgoubi in order to provide the derivatives a:.ayj:zk needed in eq. (2.2.12). 

2.5.3 3-D Analytical models of fields 

In analytical elements (e.g. WIENFILT, ELMULT, EBMULT), thethree components of E, namely Ex, Ey, Ez, 
and their derivatives with respect to X, Y or Z are derived at any step along trajectories, from the analytical 
expressions of field models that give E(X, Y, Z). 

Multipoles and skewed multipoles 

A right electric multipole is considered to have the same effect as the equivalent skewed magnetic multipole. 
Therefore, the calculation of the right electric or electromagnetic .multipoles (ELMULT, EBMULT) uses the 
same eq. (2.3.5) together with the rotated process described in section 2.3.5. The same method is used, for 
rotating arbitrary multipole components around the X-axis, whatever the angle of rotation. 

2.6 Calculation of E from field maps 

1-D axial map, with cylindrical symmetry 

The only type of field map treated in the actual version is the 1-D axial map, with cylindrical symmetry. The 
same procedure as for the case of magnetic fields is involved (see section 2.4.1). 

3 SPIN TRACKING (8] 

The depolarization of a particle beam travelling in a magnetic field iJ takes its origin in the spin precession 
undergone by each particle. This motion of the spin§ is governed by the Thomas-EMT first. order differential 
equation [9) 

where 

ds q ........ 
-=-Bxn 
dt "Ym 

fi = (1 + "YG)b + G(l - "Y)b;; 

(3.1) 

(3.2) 

q, m, "Y and G are respectively the charge, rest mass, Lorentz relativistic factor, and anomalous magnetic 
moment of the particle. b;; is the component of b which is parallel to the velocity v of the particle. 

These equations are normalized by introducing the same notation as previously. Let b =II b II and v =II v II; 
ds = vdt is the differential path, "Ymv = B p is the rigidity of the particle; § 1 = ddS = }:_ ddS is the derivative of 

q s v t 
the spin with respect to the path. 
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.... b .... b11 
Introducing also B = Bp and B11 = Bp' and 

n ~ ~ 
w = Bp = (1 + 'YG)B + G(l - 'Y)Bll (3.3) 

eq. (3.1) can be re-written in a normalized way 

B'=Bxw (3.4) 

This equation is then solved in the same way as the reduced Lorentz equation (2.2.3). From the values of the 
magnetic factor w(Mo) and the spin S(Mo) of the particle at position Mo of its trajectory, the spin S(M1) at 
position M 1, following a displacement ds (fig. 2), is given by the Taylor expansion 

.... .... dS d2S ds2 d3S ds3 d4§ ds4 

S(M1) = S(Mo) + ds (Mo) ds + ds2 (Mo)2 + ds3 (Mo)31 + ds4 (Mo)T! 

The derivatives §(n) = d!"d §of§ at Mo are obtained by differentiating eq. (3.4) sn 

S' =Bx w 
S II = SI X W + S X W1 

§ 111 = § 11 x w + 2§' x w' + § x w" 
81111 =§111 xw+3§" x w' + 3§1 x w" + § x w111 

where the derivatives iJ(n) are obtained from eq. (3.3). 

(3.5) 

(3.6) 

The last point consists in getting B II and its derivatives. This can be done in the following way. Let it = ~ be 
v 

the normalized velocity of the particle, then, 

ii11 = (B. it)it 

B .... I (B .... I .... B.... ....,) .... (B.... ....) .... , 11= ·u+ ·u u+ ·U u 

BJ = (B" . it+ 2B' . it'+ B. it") it+ 2(ii' . it+ B. it') it'+ (B. it) it 11 

etc. 

(3.7) 

The quantities it, iJ and their n-th derivatives as involved in these equations are picked up from eqs. (2.2.6, 
2.2.7). 
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4 SYNCHROTRON RADIATION [10] 

The ray-tracing procedures1 provide the ingredients necessary for the determination of the electric field radiated 
by the particle subject to acceleration, as shown in Fig. 5. 

y -r(t) 

z <!:>~~~~~~~~~~~--
0 x 

Figure 5: A scheme of the reference frame· in Zgoubi together with the vectors entering in the 
definition of the electric field radiated by the accelerated particle: 
(x, y): horizontal plane; z: vertical axis. 
R( t) = particle position in the fixed frame ( 0, x, y, z); 
X (time-independent) = position of the observer in the ( 0, x, y, z) frame; . 
r(t) = x - R(t) =position of the particle with respect to the observer; 
ii(t) = (normalized) direction of observation= r(t)/IT(t)I; 
jJ = normalized velocity vector of the particle iJ/ c = ( 1 / c )dR/ dt. 

4.1 Calculation of the electric field £ (ii, r) 

The expression for £(ii, r) as seen by the observer in the long distance approximation is [11] 

-- q ii(t) x [ ( ii(t) - ;J(t)) x djJ/dt] 
£(n,r)= -- 3 47reoc r(t) (i - ii(t) · jJ(t)) 

(4.1.1) 

where t is the time in which the particle motion is described and r is the observer time. Namely, when at 
position r(t) with respect to the observer [or as well at position R(t) = x - r(t) in the (o, x, y, z) frame] the 
particle emits a signal which reaches the observer at time T, such that r = t + r( t) / c where r( t) / c is the delay 
necessary for the signal to travel from the emission point to the observer, which also leads by differentiation to 
the well-known differential relation 

1 Also imple:inented in the post-processor zgplot 
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dr/dt = 1- n(t). ft(t) (4.1.2) 

The vectors R(t) and $(t) = ~u (Eq. 2.2.2) that describe the motion are obtained from the ray-tracing 
(Eqs. 2.2.4). The acceleration is calculated from (Eq. 2.2.1) 

djjdt = (q/m) $(t) x b(t) (4.1.3) 

Then, given the observer position X in the fixed frame, it is possible to calculate 

i(t) = X - R(t) and ii(t) = r'(t)/lr(t)I (4.1.4) 

The calculation of n - ! and 1 - ii · ! 
Owing to computer precision the crude computation of n - iJ and 1 - ii · iJ may lead to 

- - ... n - f3 = 0 and - n · f3 = 0 

since the preferred direction of observation is generally almost parallel to iJ (exactly parallel in the sense of 
computer precision), while f3 ~ 1 as soon as particle energies of a few hundred times the rest mass are concerned. 
It is therefore necessary to express n - iJ and 1 - n · iJ in an adequate software form for achieving accurate 
computation. 
The expression for ii is 

ii,= (nx, n~, nz) = (cos '1r cost/>, cos '1r sin t/>, sin w) 

= [1 - 2(sin2 ¢/2 + sin2 '1r /2) + 4 sin2 <P/2 sin2 '1r /2, sin ¢(1 - 2 sin2 '1r /2), sin w] ( 4.1.5) 

where ¢ and '1r are the observation angles, given by 

4> = Atg (ry) and '1r = Atg ( rz ) 
rx Jr';, +r; 

(4.1.6) 

with r= (rx,ry,rz), while iJ can be written under the form 

iJ = (/3x, /3y, /3z) = [ V (/32 - /3; - /3';), /3y, /3z] 

= [ V(l -1/J2 - ,ai - 13;), ,By, .Bz] = (1 - a/2 + a2 /8 - a3 /16 + ... ,,By, f3z) (4.1.7) 

where a = 1 h 2 + /3; + /3~. This leads to 

with 

and 

ex = a/2 - a2 /8 + a3 /16 + ... 

All this provides, on the one hand, 
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( 4.1.8) 

whose components are combinations of terms of the same order of magnitude (ex and ex ,...., 1/'Y2 while ny, /3y, nz 
and /3z,...., lh) and, on the other hand, 

that combines terms of the same order of magnitude (sx,ex,ny/3y and nz/3z,...., lh2), plus sxf3x,...., lh4 • 

The precision of these expressions is directly related to the order at which the series 

(a= lh2 + /3; + /3;) 
is pushed, however the convergence is fast since a,...., lh2 << l. 

4.2 Calculation of the Fourier transform of the electric field 

The Fourier transforms 
FTw[E'(r)] = J &(r)e-iwT dr 

of the u and 'Tr electric field components provide the spectral angular brightness 

ff3P/8¢>8'1!8w = 2r2 IFTw (&(r)) 1
2 /µoc 

They are calculated in a regular way, without using the FFT technic, namely from 

(4.1.9) 

(4.2.1) 

(4.2.2) 

for two reasons. On the one hand, the number of integration steps ds that define the trajectory (Eqs. 2.2.4), 
is fully arbitrary and therefore in general not of order 2n. On the other hand, the integration step defines a 
constant time differential element iltn = ds/ f3c which results in the observer differential time element ilrn, 
which is also the differential element of the Fourier transform, being non-constant, since both are related by 
eq. 4.1.2 in which j3 and it vary as a function of the number n of integration steps. 
Another major point is that ilrn may reach drastically small values in the region of the central peak of the 
electric impulse emitted in a dipole (1 - it(t) · /3(t) ~ 1/2"/2), while the total integrated time 2.:llrn may be 
several orders of magnitude larger. In terms of the physical phenomenon, the total duration of the electric 
field impulse as seen by the observer corresponds to the time delay L:rn that separates photons emitted at 
the entrance of the magnet from photons emitted at the exit, but the significant part of it (in terms of energy 

density) which can be represented by the width 2rc = 
2

(
1 + ~~

2

~
312 2

P of the peak of radiation [12], is a very 

small fraction of E r n. 

The consequence is that, once again in relation with computer precision, the differential element ilrn involved 
in the computation of eq. 4.2.2 cannot be derived from such relation as .6.rn = 'Tn -Tn-1, but instead must be 
stored as such beforehand. 
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5 DESCRIPTION OF THE AVAILABLE PROCEDURES 

5.1 Introduction 

This chapter gives a detailed description of how the Zgoubi procedures work, and their associated keywords. 
It has been split into several sections. Sections 5.2 to 5.5 explain the underlying content and functioning of all 
available keywords. Section 5.6 is dedicated to the description of some general procedures that may be accessed 
by means of special data or flags (such as negative integration steps), or through the available keywords (such 
as multitum tracking with REBELOTE). 

5.2 Definition of an Object 

The description of the object, i.e., initial coordinates of the beam, must be the first element of the input data 
to Zgoubi. 

Several types of automatically generated objects are available, as described in the following pages. 
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MCOBJET: - Monte Carlo Generation of a 6-D Object 

MCOBJET generates a set of up to 200 random initial conditions. It is generally used in conjunction with the 
keyword REBELOTE, which allows generating an arbitrarily high number of illitial conditions. 

The first datum is the reference rigidity (negative value allowed) 

BORO = Po (kG.cm) 
q 

Depending on the value of the next datum, KOBJ, the IMAX (:S 200) particles have their initial random 
conditions Y, T, Z, P, X and D (relative momentum) generated on 3 different types of supports, as described 
below. 
Next come the data 

KY, KT, KZ, KP, KX, KD 

that specify the type of probability density for each one of the 6 coordinates. 
KY, KT, KZ, KP, KX can take the following values: 

l. uniform density, p(x) = 1 if -8x::; x 5 8x, p(x) = 0 elsewhere, 

2. Gaussian density, p(x) = ~e-~, 
8x 211'" 

3. parabolic density, p(x) = 
4
!x (1 - ::2 ) if -8x 5 x :S 8x, p(x) = 0 elsewhere. 

K D can take the following values: 

l. uniform density, p(D) = 1 if -8D 5 D 5 8D, p(D) = 0 elsewhere, 

2. exponential density, p(D) = N0 exp(Co + C 1l + C2l2 + C3l3) with 0::; l 5 1 and -8D :SD :S 8D, 

3. p(D) is determined by a kinematic relation, namely, with T = horizontal angle, D = 8D * T. 

Next come the central value for the random sorting, 

Yo, To, Zo, Po, Xo, Do 

namely, the probability density laws p(x) (x = Y, T, Z, P or X) and p(D) described above apply to the variables 
x - xo ( = Y - Yo, T -To, ... ) and D - Do respectively. Negative value for Do is allowed (see section 5.6.9). 

KOBJ = 1: Random generation of IMAX particles in a hyper-window with widths (i.e., the half-extents 
for uniform or parabolic distributions (KY, KT, ... = 1 or 3) and the r.m.s. width for Gaussian distributions 
(KY, KT, ... = 2)) 

8Y, 8T, 8Z, 8P, 8X, 8D 

Then follow the cut-off values, in units of the r.m.s. widths W, 8T, ... (used only for Gaussian distributions 
KY,KT, ... = 2) 

The last data are th.e parameters 

No, Co, C1, C2, 03 

needed for generation of the D coordinate upon option KD = 2 (unused if KD = 1, 3) and a set of three 
integer seeds for initialization of random sequences, 

IRl, IR2, IR3 (all~ 106
) 

All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (e.g., 
with HISTO and MCDESINT). 
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KOBJ = 2: Random generation of IY * IT*IZ *IP*IX *ID particles (maximum 200) in a hyper-grid. The 
input data are the number of bars in each coordinate 

IY, IT, IZ, IP, IX, ID 

the spacing of the bars 

PY, PT, PZ, PP, PX, PD 

the width of each bar 

8Y, oT, oZ, 8P, 8X, 8D 

the cut-offs, used with Gaussian densities (in units of the r.m.s. widths) 

This is illustrated in Fig. 6. 

The last two sets of data in this option are the parameters 

needed for generation of the D coordinate upon option KD= 2 (unused if KD= 1, 3) and a set of three integer 
seeds for initialization of random sequences, IRl, IR2, and JR3 (all::::::: 106). 

All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (see 
HISTO and MCDESINT). 

KOBJ = 3: Distribution of IMAX particles inside a 6-D ellipsoid defined by the three sets of data (one set 
per 2-D phase-space) 

(3y, 
c: 

Nsy[, N~Y' if Ney< OJ ay, -c:y, 
7t. 

/3z, 
c 

Nsz[, N~z' if Nsz <OJ az, -c:z, 

/3x, 
l 

Nex[, N~x' if Nex <OJ ax, -c:x, 
1r 

where a, (3 are the ellipse parameters and c:/7r the emittance, corresponding to a frontier given, e.g., in the 
1 +a2 · 

(Y,T) plane by f3y Yy2 + 2ayYT+,ByT2 = c:y/7r (idem for the (Z,P) or (X,D) planes). Nsy, Nez and 

Nex are the sorting cut-offs (used only for Gaussian distributions, KY, KT, ... = 2). 
The sorting is uniform in surface {for KY= 1, or KZ = 1 or KX = 1) or Gaussian (KY= 2 or KZ = 2), 
and so on, as described above. A uniform sorting has the ellipse above for support. A Gaussian sorting has the 

(1 + a 2 ) 
ellipse above for r.m.s. frontier, leading to oy = .J {3yc:y /7r, UT = {Jy Y c:y /7r, and similar relations for 

uz,ux. 
If Ns is negative, thus the sorting fills the elliptical ring that extends from JNs I to N~ (rather than the inner 
region determined by the Ne cut-off, as addressed above). 
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Figure 6: Scheme of the input parameters to MCOBJET when KOBJ = 3, 4 
A: A distribution of the Y coordinate 
B: 2-D grid in (Y, Z) space. 
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OBJET: - Generation of an Object 

OBJET is dedicated to the determination of the initial coordinates, in several ways. 

The first datum is the reference rigidity (negative value allowed) 

BORO= Po 
q 

At the object, the beam is defined by a set of particles (maximum 200) with the initial conditions (Y, T, Z, P, 
X, D) where Dis the relative momentum. 
Depending on the value of the next datum KOBJ, these initial conditions may be generated in six diffen;mt 
ways: 

KOBJ = 1: Defines a grid in the Y, T, Z, P, X, D space. One gives the number of points desired, 

IY, IT, IZ, IP, IX, ID 

(maximum 21 in each coordinate: IY:::; 21 .. . ID:::; 21) and the sampling size 

PY, PT, PZ, PP, PX, PD 

Zgoubi then generates IY *IT* IZ *IP* IX* ID (:::; 200) initial conditions with the following coordinates 

0, ±PY, ±2 *PY, ... ' ±IY/2*PY, 
0, ±PT, ±2*PT, ... ' ±IT/2*PT, 
0, ±PZ, ±2*PZ, ... ' ±IZ/2*PZ, 
0, ±PP, ±2*PP, ... ' ±IP/2*PP, 
0, ±PX, ±2*PX, ... , ±IX/2*PX, 
0, ±PD, ±2*PD, ... ., ±ID/2*PD, 

In this option relative momenta will be classified automatically for the purpose of the use of IMAGES for 
momentum analysis. 
The particles are tagged with an index IREP eventually indicating a symmetry with respect to the (X ,Y) 
plane, as explained in option KOBJ = 3. If two trajectories have mid-plane symmetry, only one of them will 
be ray-traced, while the other will be deduced using the mid-plane symmetries. This is done for the purpose 
of saving computing time. It may be incompatible with the use of some procedures (e.g. MCDESINT, which 
involves random processes). 
The last datum is the relative momentum of the problem, 1) : the reference rigidity of the beam is 1)* BORO, 
resulting in the rigidity of a particle of initial condition I* PD, for instance, to be {1J +I* PD) * BORO. 

KOBJ = 2: Next data: IMAX, IDMAX. Initial coordinates are entered explicitly for each trajectory. IMAX 
is the total number of particles (IMAX :::; 200). These may be classified in groups of equal number for each 
value of momentum, in order to fit the requirements of image calculations by IMAGES. IDMAX is the number 
of groups of momenta. The following initial conditions defining a particle are specified for each one of the IMAX 
particles 

Y, T, Z, P, X, D, 'A' 

where D * BORO is the rigidity (negative value allowed) and' A' is a (arbitrary) tagging character. 
The last record IEX (I=l, IMAX) contains IMAX xl (which indicates that the particle will be tracked) or -2 
(indicates that the particle will not be tracked). 
This option KOBJ = 2 may be be useful for the definition of objects including kinematic effects. 
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KOBJ = ±3: Next data: IMAX, IDMAX as explained for KOBJ = 2. 
This option allows the reading of initial conditions from an external input file. This file must be formatted so 
as to fit the following FORTRAN sequence 

OPEN (UNIT= NL, FILE = FNAME, STATUS = 'OLD') 
DO 1 I = 1, IMAX 

READ (NL,100) LET (I), IEX(I), (FO(J,I),J=1,6), (F(J,I),J=1,6), I, IREP(I), 
100 FORMAT (1X, Ai, 1X, I2, 6E16.8, I , 6E16.8, 2I3, I ) 

1 CONTINUE 

where the meaning of the parameters is the following 

LET(I) one-character string (for tagging) 
IEX(I) flag, see KOBJ = 2 
FO(l-6,I) coordinates D, Y, T, Z, P and path length of the particle number 

I, at the origin. D * BORO = rigidity 
F(l-6,I) idem, at the current position. 

IREP is an index which indicates a symmetry with respect to median plane. For instance, if Z(J + 1) = -Z(I), 
then normally IREP(I + 1) = IREP(I). Consequently the coordinates of particle I+ 1 will not be deduced from 
ray-tracing but instead from those of particle I by simple symmetry. This results in gain of computing time. 
If KOBJ = +3, further ray-tracing starts from the current coordinates F(J,I). If KOBJ = -3, further ray­
tracing starts from the initial coordinates FO(J, I). 

KOBJ = ±3 can be used directly for reading files filled by FAISCNL. 
If more than 200 particles are to be read from a file, use IMAX ~ 200 in conjunction with REBELOTE. 

KOBJ = 4: Same as KOBJ = 1 except for the Z symmetry. The initial Zand P conditions are the following 

0, ±PZ, ±2 * PZ, ... , ±(IZ -1) * PZ, 
0, ±PP, ±2*PP, ... , ±(IP-l)*PP, 

This object results in shorter outputs when studying problems with Z symmetry. 

KOBJ = 5: Mostly dedicated to the calculation of first order transfer matrices, in conjunction with MATRIX. 
The input data are the step sizes 

PY, PT, PZ, PP, PX, PD 

The code generates 11 particles 

0, ±PY, ±PT, ±P Z, ±PP, ±PX, ±PD 

These values should be small enough, so that the paraxial ray approximation be valid. 
The last data are the initial coordinates of the reference trajectory [normally (YR, TR, ZR, PR, X R, DR) = 
(0, 0, 0, 0, 0, 1)]. The reference rigidity is V'R * BORO (negative value allowed). 

KOBJ = 6: Mostly dedicated to the calculation of first, second and higher order transfer coefficients, in 
conjunction with MATRIX. The input data are the step sizes 

PY, PT, PZ, PP, PX, PD 

to allow the building up of an object containing 61 particles. The last data are the initial coordinates of the 
reference trajectory [normally (YR, TR, ZR, PR, XR, DR)= (0, 0, 0,0,0, 1)]. The reference rigidity of the beam 
is 1YR * BORO. 
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KOBJ = 7: Object with kinematics 
The data and functioning are the same as for KOBJ = 1, except for the following 

• ID is not used, 

• PD is the kinematic coefficient, such that for particle number I, the initial relative momentum D1 is 
calculated from the initial angle T1 following 

D1 = 'D+PD*T1 

while T1 is in the range 
0, ±PT, ±2 *PT, ... ' ±IT/2*PT 

as stated under KOBJ = 1 
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OBJETA: - Object From Monte Carlo Simulation of Decay Reaction [13] 

This generator simulates the reactions 

and then 

where Mi is the mass of the incoming body; M2 is the mass of the target; Ma is an outgoing body; M4 is the 
rest mass of the decaying body; Ms and Ms are decay products. Example: 

p+ d _a He+'f/ 
,,,_µ++µ-

The first input data are the reference rigidity 

BORO= Po 
q 

an index !BODY which specifies the particle to be ray-traced, namely M3 (!BODY= 1), M5 (!BODY= 2) or 
M6 (!BODY = 3). In this last case, initial conditions for M6 must be generated by a first run of OBJETA with 
!BODY = 2; they are then stored in a buffer array, and restored as initial conditions at the next occurrence of 
OBJETA with !BODY = 3. Note that Zgoubi by default assumes positively charged particles. 

Another index, KOBJ specifies the type of distribution for the initial transverse coordinates Y, Z; namely either 
uniform (KOBJ = 1) or Gaussian (KOBJ = 2). The other three coordinates T, P and Dare deduced from the 
kinematic of the reactions. 

The next data are the number of particles to be generated, IMAX, and the masses involved in the two previous 
reactions. 

Mi, M2, Ma, M4, Ms, Ms 

and the kinetic energy T1 of the incoming body ( M 1). 
Then one gives the central value of the distribution for each coordinate 

Yo, To, Zo, Po, Do 

and the width of the distribution around the central value 

oY, oT, oz, oP, oD 

so that only those particles in the range 

Yo-oY$Y$Yo+oY Do -oD $ D $ Do+oD 

will be retained. The longitudinal initial coordinate is uniformly sorted in the range 

-XL$Xo$XL 

The random sequences involved may be initialized with different values of the two integer seeds IR1 and IR2 
(:::::: 10s). 
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5.3 Declaration of options 

These options allow the control of procedures that affect certain functions of the code. Some options are 
normally declared right after the object definition (e.g. SPNTRK - spin tracking, MCDESINT- in-flight decay), -
the others are normally declared at the end of the data pile (e.g. END - end of a problem, REBELOTE - for 
tracking more than 200 particles, FIT- fitting procedure). 
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BINARY: Binary/Formatted data converter 

This procedure translates field map data files from "BINARY'' to "FORMATTED" - in the FORTRAN sense, 
or the other way. 

The keyword ·is followed, next line, by NF (~ 20), the number of files to be translated. 
Then follow, line per line, the NF names of the files to be translated. 
lff a file name begins with the prefix "B-", it is presumed "binary", and hence converted to "formatted", and 
given the same name after suppression of the prefix "B-''. Conversely, iff the file name does not begin with "B_", 
the file is presumed "formatted" and hence translated to "binary", and is given the same name after addition 
of the prefix "B-" . 
In its present state, the procedure BINARY supports only files with the standard TOSCA magnet code output 
format (see the keyword TOSCA). 

36 



FIN or END : End of Input Data List 

The end of a problem, or of a set of several problems piled up in the data file, should be stated by means of the 
keywords FIN or END. 

Any information following these keywords will be ignored. 
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FIT: Fitting Procedure 

The keyword FIT allows the automatic adjustment of up to 20 variables, for fitting up to 20 constraints. It 
has been realized after existing routines used in the matrix transport code BETA [14]. Any physical parameter 
of any element (i.e. keyword) may be varied. Available constraints are: any of the 6 x 6 coefficients of the 
first order transfer matrix [.RiJl as defined in the keyword MATRIX, and its horizontal (.R11.R22 - .R12.R21) and 
vertical (.Rss.R44 - .R34.R4s) determinants; any of the 6 x 6 x 6 coefficients of the second order array [Ti;k] as 
defined in MATRIX ; any of the 2 x 4 coefficients of the beam matrix as defined by 

(

0"11 0-12 ) 
0-21 0-22 

[o-i;] = 0"33 0"34 

0"43 0"44 

and any trajectory coordinates F(J,I) as defined in OBJET (I= particle number, J =coordinate number= 
1 to 6 for respectively D, Y, T, Z,P or S =path length). 

VARIABLES 

The first input data in FIT are the number of variables NV, and for each one of them, the following parameters 
IR= number of the varied element in the structure 
IP = number of the physical parameter to be varied in this element 
XC = coupling parameter. Normally XC = 0 .. If XC # 0, coupling will occur (see below). 
DV = allowed relative range of variation of the physical parameter IP. 

Numbering of the elements (IR): 

The elements (DIPOLE, QUADRUPO, etc.) are numbered following their sequence in the Zgoubi input data 
file, for the purpose of the FIT procedure. The number of any element just identifies to its position in the data 
sequence. However, a simple way to get IR is to make a preliminary run: Zgoubi will then print the whole 
structure in zgoubi.res with all elements numbered. 

Numbering of the physical parameters (IP): 

In the elements DIPOLE, AIMANT and EBMULT, ELMULT, MULTIPOL, the numbering of the physical 
parameters just follows their sequence, as it is shown here after for DIPOLE: the left column below represents 
the input data, the right one the corresponding numbering to be used for the FIT procedure. 

Input data 
DIPOLE 
NFACE, IC, IL 
!AMAX, IRMAX 
Bo, N, B, G 
AT,ACENT,RM,RMIN,RMAX 

>. '~ 
NC, Co, C1, C2, Cs, C4, C~ shift 
w, 0, .R1, U1, U2, R2 
etc. 
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Numbering for FIT 

1, 2, 3 
4,5 
6, 7, 8, 9 
10, 11, 12, 13, 14 
15,16 
17, 18, 19, 20,21, 22, 23,24 
25, 26, 27, 28,29, 30 
etc. 



For all other keywords, the parameters are numbered in the following way 

KEYWORD 
first line 1, 2, 3, ... 
second line 10, 11, 12, 13, ... 
this is a comment a line of comments is skipped 
next line 20, 21, 22, ... 
and so on... 30, 31, 32, 33, ... 

The examples of QUADRUPO (quadrupole) and TOSCA (Cartesian mesh field map) are given below. 

Input data 
MULTIPOL 
IL 
XL, Ro, B 
XE,AE 
NOE, Co, Ci, 02, Ga, 04, Gs 
Xs, :As, 82, 8a, 84, 8s, 86 
NOS, Co, 01, 02, Ga, 04, Gs 
XPAS 
KPO~XCE, YCE,ALE 

TOSCA 
IC, IL 
BNORM 
TIT 
IX, IY, IZ 
FNAME 
ID, A, B, C [A', B', C', etc if ID;:::: 2] 
IO RD RE 
XPAS 
KPOS,XCE, YCE,ALE 

Coupled variables (XO) 

Numbering for FIT 

1 
10, 11, 12 
20, 21 
30,31, 32, 33,34,35, 36 
40,41 
50,51, 52,53, 54,55, 56 
60 
70, 71, 72, 73 

1,2 
10 
This is text 
20, 21 
This is text 
30, 31, 32, 33 [34, 35, 36, etc if ID;:::: 2] 
40 
50 
60,61,62,63 

Coupling a variable parameter to any other parameter in the structure is possible. This is done by giving 
XO a value of the form r ·pp where the integer part r is the number of the coupled element in the structure 
(equivalent to IR, see above), and the decimal part pp is the number of its parameter of concern (equivalent to 
IP, see above) (if the parameter number is in the range 1, ... ,9, then pp must take the form Op). For example, 
XO= 20 · 01 is a request for coupling with the parameter number 1 of element number 20 of the structure, 
while XO= 20 · 10 is a request for coupling with the parameter number 10 of element 20. 

An element of the structure which is coupled (by means of XO =!=- 0) to a variable declared in the data list 
of the FIT keyword, needs not appear as one of the NV variables in that data list (this would be redundant 
information). 

XC can be either positive or negative. If XO > 0, then the coupled parameter will be given the same value 
as the variable parameter (for example, symmetric quadrupoles of a symmetric triplet will be given the same 
field). If XO< 0, then the coupled parameter will be given a variation opposite to that of the variable, so that 
the sum of the two parameters stays constant (for example, an optical element can be shifted while preserving 
the length of the structure, by coupling together its upstream and downstream drift spaces). 

Variation range (DV) 

For a parameter IP of initial value p, the FIT procedure is allowed to explore the range p(l ± DV). 
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CONSTRAINTS 

The next input data in FIT are the number of constraints, NC, and for each one of them the following paramete~. 

IC = type of the constraint (see table below). 
I, J = constraint (i.e. Rtj, or determinants; 1ij k; Uij; trajectory and 

coordinate numbers) 
IR = number of the element in the Zgoubi input data file, right after 

which the constraint applies 
v = desired value of the constraint 
w = weight of the constraint (smaller W for higher weight) 

Type of Parameters defining the constraint 
constraint 

IC I J Constraint 

Beam matrix 0 1-4 1-4 U[J 

First order 1 - 6 1 - 6 RIJ 
transfer 1 7 any Horizontal determinant 

coefficients 8 any Vertical determinant 

Second order 2 1 - 6 11 - 66 Tr,j,k 
transfer (j = [J/10],k = J - lO[J/10]) 

coefficients 

Trajectory 3 1- IMAX 1 - 6 F(J,I) 
coordinate 

Table 1: This table shows the constraints available, depending on the values of 
IC, I and J. []denotes the integer part. When IC= 3, I designates 
the particle number and J the coordinate number (i.e., D, Y, T, Z, P 
or X). 

The coefficients u11 (u33) = horizontal (vertical) dimension of the beam, and u22(u44) = horizontal (vertical) 
divergence of the beam are calculated by means of the procedures described in IMAGE. 
The fitting of the [uij] matrix coefficients supposes the tracking of a relevant population of particles within an 
adequate emittance. 

The coefficients Rtj and Tijk are calculated following the procedures described in MATRIX, option IFOC = 0. 
The fitting of the [Rtj] matrix coefficients or determinants supposes the tracking of particles having initial coor­
dinates sampled as described in MATRIX (these particles are normally defined with OBJET, KOBJ = 5 or 6). 
The same is true for the Tijk second order coefficients (Initial coordinates normally defined with OBJET, 
KOBJ = 6). 

OBJECT DEFINITION 

Use OBJET, KOBJ = 5 for constraint type IC= 0 and IC= 1, and KOBJ =6 for IC= 2. 
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For constraint type IC= 3, the object is normally defined with keyword OBJET. If KOBJ =j:. 1, any of the 1 
to IMAX trajectories can be constrained. If KOBJ = 2, only the first seven trajectories can be constrained. 

THE FITTING PROCEDURE [14} 

The procedure is a direct sequential minimization of the quadratic sum of all errors (i.e., differences between 
desired and actual values of the NC constraints), each normalized by its specified weight W (the smaller W, 
the stronger the constraint). 
The step sizes for the variation of the physical parameters depend on their initial values, and cannot be accessed 
by the user. At each iteration, the optimum value of the step size, as well as the optimum direction of variation, 
is determined for each one of the NV variables. Then follows an iterative global variation of all NV variables, 
until the minimization fails which results in a next iteration on the optimization of the step sizes. 
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GASCAT: Gas Scattering 

Modification of particle momentum and velocity vector, performed at each integration step, under the effect of 
scattering by residual gas. -
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MCDESINT: Monte Carlo Simulation of In-Flight Decay (15] 

As soon as MCDESINT appears in a structure (normally, after OBJET or after CIBLE), in-flight decay simu­
lation starts. It must be preceded by PARTICUL for the definition of mass M1 and COM lifetime T1. 
The two-body decay simulated is 

The decay is isotropic in the center of mass. 1 is the incoming particle, with mass M1, momentump1 = "YiM1/31c 

(relative momentum Di= p: BdRo with BORO =reference rigidity, see OBJET), and position Y1, Z1 in the 

Zgoubi frame. 2 and 3 are decay products with respective masses and momenta M2, Ma and p2 = "Y2M2/32c, 
Pa = "YaMaf3ac. 
The decay length s1 of particle 1 is related to its center of mass lifetime T1 by 

St= CT! J"'f? -1 

The path length s up to the decay point is then calculated from a random number 0 < R1 s 1 by using the 
exponential decay formula 

s = -s1 lr:iR1 

After decay, particle 2 will be ray-:traced with assumed positive charge, while particle 3 is abandoned. Its 
scattering angles in the center of mass ()* and </> are generated from two other random numbers 0 < R2 s 1 and 
O<Raslby 

O* = 27r(R2 - 0.5) 

</> = 27rRa 

( -7r < ()* s 7r) 

(O<</>s27r) 

</> is a relativistic invariant, and () in the laboratory frame (Fig. 7) is given by 

() 
1 sin()* 

tan = - -=----
"Yl /3i + cos ()* 

/32 
where, /32 and momentum P2 are given by 

* M{+Mi-M§ 
"Y2 = 2M1 

/32 = ( 1 _ ~2 r12 

"'12 = "Yl"Y2 (1 + /31/32 cos()*) 

P2 = M2V"Y'#.- l 

Finally, () and </> are transformed into the angles T2 and P2 in the Zgoubi frame, and the relative momentum 

takes the value D2 = P: BdRo (where BORO is the reference rigidity, see OBJET), while the starting position 

of M2 is Y2 = Y1 and Z2 = Z1. 

The decay simulation by Zgoubi obeys the following procedures. In optical elements and field maps, after each 
integration step XPAS, the actual path length of the particle, F(6,J), is compared to its limit path length s. 

If s is passed, then the particle is considered as having decayed at F(6, I) - X~AS, at a position obtained 

by a linear translation from the position at F(6, I). [Presumably, the smaller XPAS, the smaller the error on 
position and angles at the decay point). 
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Figure 7: At position M(X1, Yi, Z1), particle I decays into 2 and 3; Zgoubi then calculates the 
trajectory of 2, while 3 is abandoned. 
e and <P are the scattering angles of particle 2 relative to the direction of the incoming 
particle I; they transform to T2 and P2 in Zgoubi frame. 

In ESL and GHANGREF, F(6,1) is compared to sat the end of the element. If the decay occurs inside the 
element, the particle is considered as having decayed at its actual limit path length s, and its coordinates at s 
are recalculated by translation. 

The limit path length of all particles (I= I, IMAX) is stored in the array FDES(6, I), for further statistical 
purposes. For the same purpose (e.g., use of HISTO), any particle of type 2 (resulting from decay of I) will 
be tagged with an S standing for "secondary". When a particle decays, its coordinates D, Y, T, Z, Pat the 
decay point are stored in FDES(J,I), J =I, 5. 
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NOTE on negative drifts: 
The use of negative drifts with MCDESINT is allowed and correct. For instance, negative drifts may occur in 
a structure for some of the particles when using CHANGREF (due to the Z-axis rotation or negative XCE), 
or when using DRIFT with XL< 0. Provision has been made to take it into account during the MCDESINT 
procedure, as follows. 
If, due to a negative drift, a secondary particle reaches back the decay spot of the primary particle from which 
it originated, then that primary particle is regenerated with its original coordinates at that spot. Then the 
secondary particle is abandoned while ray-tracing resumes in a regular way for the primary particle which is 
again susceptible of decay at the same time-of-flight. This procedure is made possible by prior storage of the 
coordinates of the primary particles (in array FDES( J, I)) each time a decay occurs. 
Negative steps (XPAS< 0) in optical elements are not compatible with MCDESINT. 
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ORDRE: Higher Order Taylor Expansions in lenses 

The position Rand velocity i1 of a particle are obtained from Taylor expansions as described in eq. (2.2.4). By 
default, these expansions go to the fourth order derivative of a, 

... _, ... ...(4) dss 
Ri = Ro + uods + ... + u0 - 1 5. 
_, ... _, 1 ds2 ::-(4) ds4 

u1 =uo+uo-21 + ... +uo -, . 4. 

which corresponds to third order derivatives of B, since (eq. (2.2.6)) 

.;;C4
> =at x .B + 3ui' x .8 1 +3i1{ x .8 11 +i11 x .8"' 

and to the third order derivatives of E (eq. (2.2.10)). However the B"' or E111 term may be zero in second 
order type optical elements, for instance in a sharp edge quadrupole. Also, in several elements, not more than 
the first and second order derivatives of the fields are used. 

The purpose of ORDRE, option JO = 5, is to allow expansions ~f R and u up to the term 71(5) for the following 
optical elements 

QUADRUPO, SEXTUPOL, OCTUPOLE, DECAPOLE, DODECAPO, MULTIPOL, ELMULT, EBMULT 

The use of ORDRE with JO= 4 is equivalent to the default functioning. 

NOTE: see also the option IORDRE in field map declarations (DIPOLE, TOSCA, etc.). 
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P ARTICUL: Particle Characteristics 

PARTICUL allows the definition of several characteristics of the particles (mass, charge, gyromagnetic factor 
and life-time in the center of mass), that are needed in several procedures, as follows 

MCDESINT 
SPNTRK 
SYNRAD 
Electric and Electro-Magnetic elements 

mass, COM life-time 
mass, gyromagnetic factor 
charge 
mass, charge 

The declaration of PARTICUL must precede these keywords. 
Note that, in the case of electric or electro-magnetic optical elements, the mass and charge are needed in order 
to compute the particle velocity v, as involved in eq. 2.2.3. 
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REBELO TE: Jump To the Beginning of Zgoubi Input Data File 

As soon as REBELOTE is encountered in the input data file, the code execution jumps back to the beginning 
of the data file to start a new run, and so on up to NPASS times. When the following random procedures 
are used: MCOBJET, OBJETA, MCDESINT, SPNTRK (KSO = 5), their random seeds are not reset, and 
therefore independent statistics will add up. REBELOTE is dedicated either to Monte Carlo calculations 
when more than 200 particles are to be tracked (due to IMAX-~ 200, see MCOBJET), or to the tracking in 
circular machines (e.g. Synchrotron accelerators). The option index K is then used to either generate new 
initial coordinates (K = 0 see section 5.6.7), when using MCOBJET or any othqr generator of random initial 
coordinates, or in order that the final coordinates at the last run be taken as the initial coordinates of the next 
(K = 99 - see section 5.6.4). 

Monte Carlo simulations: normally K = 0. NPASS runs through the same structure will follow, resulting 
in the calculation of (1 + NPASS) *IMAX trajectories. 

Circular machines: normally K = 99. NPASS turns in the same structure will follow, resulting in the tracking 
of IMAX particles over 1 + NPASS turns (Note: for the simulation of accelerators and synchrotron motion, see 
SCALING). 

Output prints over NPASS runs might result in a prohibitively big file. They may be inhibited by means of the 
option KWRIT= 0. 

REBELOTE provides statistical calculations. and related informations on particle decay (MCDESINT), spin 
tracking (SPNTRK), stopped particles ( CHAMBR, COLLIMA). 
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RESET: Reset Counters and Flags 

Piling up problems in Zgoubi input data file is allowed, with normally no particular precaution, except that 
each new problem must begin with a new object definition (with MGOBJET, OBJET, etc.). Nevertheless,­
when calling upon certain keywords, flags, counters or integrating procedures are involved. It may therefore be 
necessary to reset them. This is the purpose of RESET which normally appears right after the object definition 
and causes each problem to be treated as a new and independent one. 

The keywords or procedures of concern and the effect of RESET are the following 

GHAMBR 
GOLLIMA 
HIS TO 
INTEG 

MGDESINT 
SCALING 
SPNTRK 

NOUT = number of stopped particles = O; GHAMBR option switched off 
NOUT = number of stopped particles = 0 
Histograms are emptied · 
NRJ = number of particles out of range = 0 (INTEG is the numerical integration 
subroutine; NRJ is incremented when a particle goes out of a field map) 
Decay in flight option switched off 
Scaling options disabled 
Spin tracking option switched off 
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SCALING: Time Scaling of Power Supplies and R.F. Cavity 

SCALING acts as a function generator dedicated to varying the field of optical elements, or the frequency in 
CA VITE. It is normally intended to be declared right after the object definition, and used· in conjunction with 
REBELOTE, for the simulation of multiturn tracking with acceleration cycles. 

SCALING acts on families of elements, a family being designated by a specific name, cataloged as such in 
the Program, and which coincides with the keyword of the corresponding element. For instance, declaring 
MULTIPOL as to be varied will result in the same timing law being applied to all MULTIPOL's declared in the 
Zgoubi optical structure data file. Subsets can be selected by labeling keywords in the data file (section 5.6.3) 
and adding the corresponding label(s) in the SCALING declarations. The family name of concern, as well as 
the field versus timing scaling law of that family (or frequency versus timing in the case of CA VITE) are given 
as input data to the keyword SCALING. Up to 10 families can be declared as subject to a scaling law; a scaling 
law can be made of up to 10 successive timings; between two successive timings, the variation law is linear. 

An example of data formatting is given in the following 

SCALING 
14 
QUADRUPO QF 
2 
18131.E-3 
1 
MULTIPOL QD 
2 
18131.E-3 
1 
BEND 
2 
18131.E-3 
1 
CAVITE 
2 
11.22 
11200 

24176.E-3 
6379 

24176.E-3 
6379 

24176.E-3 
6379 

1.33352 
6379 

- Scaling 
Active. 4 families of elements are concerned 
- Quadrupoles labeled 'QF' (field at pole tip= B 0 ) 

2 timings 
B increases (linearly) from 18131E-3*Bo ~o 24176E-3*Bo 
from turn 1 to turn 6379 
- Multipoles labeled 'QD' (field of multipole component i at pole tip= Bio) 

Bi increases from 18131E-3*Bio to 24176E-3*Bio 
from turn 1 to turn 6379 
- All BEND's (Bending magnets) 

Same scaling 

- Accelerating cavity (reference frequency= f RFo) 

The synchronous rigidity (Bp)s increases from (Bp) 80 

to 1.22 *(.fJpk and to 1.33352 (Bp)s
0 

from turn 1 to 1200 and to 6379 

The timing is in unit ofturns. In this example, TIMING= 1 to 6379 (turns). Therefore, at turn number N, B 
and Bi are updated in the following way. Let SCALE( TIMING= N) be the updating scale factor 

and then 

The cavity R.F. is calculated by 

SCALE(N) = 18.131
24

·
176

-
18

·
131

(N -1) 
1+6379-1 

B(N) = SCALE(N)B0 

Bi(N) = SCALE(N)Bio 

he q(Bp)s 
fRF = £ (q2(Bp)~ + (Mc2)2)1/2 

where the rigidity is updated in the following way. Let (Bp)
80 

be the initial rigidity (namely, (Bp)s
0 

= BORO 
as defined in the keyword OBJET for instance). Then, at turn number N, 
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if 1<N<1200SCALE(N) = 1 + 1.
22

- l (N -1) 
- - . 1 + 1200 - 1 

if 1200 < N < 6379 SCALE(N) = 1.22 1.
33352 

- 1.
22 

(N - 1200) - - + 1 + 6379 - 1200 

and then, 

(Bp)s(N) = SCALE(N). (Bp)so 

from which value the calculations of fRF(N) follow. 

Families amenable to scaling are, AIMANT, BEND, CAVITE, DECAPOLE, DIPOLE, DODECAPO, MULTI­
POL, OCTUPOLE, POISSON, QUADISEX, QUADRUPO, SEXQUAD, SEXTUPOL, SOLENOID, TOSCA, 
UNDULATOR. 
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SPNTRK: Spin '!racking 

The keyword SPNTRK permits switching on the spin tracking option. It also permits the attribution of an 
initial spin component to each one of the IMAX particles of the beam, following a distribution that depends 
on the option index KSO. It must be preceded by PARTICUL for the definition of the mass and gyromagnetic 
factor. 

KSO = 1 (respectively 2, 3): the IMAX particles of the beam are given a longitudinal (1,0,0) spin component 
(respectively transverse horizontal (0,1,0), vertical (0,0,1)). · 

KSO = 4: initial spin components are entered explicitly for each one of the IMAX particles of the beani. 

KSO = 5: random generation of IMAX initial spin conditions as described in Fig. 8. Given a mean polarization 
axis (S) defined by its angles To and Po, and a corie of angle A with respect to this axis, the IMAX spins are 
sorted randomly in a Gaussian distribution 

and within a cylindrical uniform distribution around the (S) axis. Examples of simple distributions available 
by this mean are given in Fig. 9. 

z 

Figure 8: Spin distribution as obtained with option KSO = 5. 
The spins are distributed within an annular strip oA (standard deviation) at an angle A 
with respect to the axis of mean polarization (S) defined by To and Po. 

52 



(A) z (B) 

y 

x 

Figure 9: Examples of the use of KSO =5. 
A: Gaussian distribution around a mean vertical polarization axis, obtained with 
To = arbitrary, Po = 7r /2, A = 0 and oA =/= 0. 
B: Isotropic distribution in the median plane, obtained with Po = ±7r /2, A = 7r /2, 
and oA=O. 
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SYNRAD: Synchrotron Radiation 

The keyword SYNRAD enables (or disables) the calculation of synchrotron radiation (SR) electric field and 
brightness. It must be preceded by PARTICUL for the definition of the charge. 

SYNRAD is supposed to appear a first time at the location where SR calculations should start, with the first 
data KSR set to 1. It results in on-line storage of the electric field vector and other relevant quantities in 
zgoubi.sre , as step by step integration proceeds. The observer position (XO, YO, ZO) is specified next to 
KSR. 

Data stored in zgoubi.sre: 
(ELx, ELy, ELz): electric field vector l (eq. 4.1.1) 

( btx, bty, btz) = iJ = ~ x particle velocity 
.... c . 

(gx,gy,gz) = °:J: =particle acceleration (eq. 4.1.3) 

b.-r =observer time increment (eq. 4.1.2) 
t' = T - r(t')/ c = retarded (particle) time 
(rtx,rty,rtz): R(t), particle to observer vector (eq. 4.1.4) 
(x,y,z) =particle coordinates 
ds = step size in the magnet (fig. 2) 
NS = step number 
I = particle number 
LET(!)= tagging letter 
JEX(!) = stop flag (see section 5.6.8) 

SYNRAD is supposed .to appear a second time at .the location where SR calculations should stop, with KSR 
set to 2. It results in the output of the angular brightness J~2 &3 P / 8¢ 81/; 8v (after eq. 4.2.2) following Fourier 
transform of the electric field (eq. 4.2.2). The spectral range of interest and frequency sampling: v1, v2, N, is 
specified next to KSR. 

Note that KSR = 0 f~llowed by a dummy line of data allows temporary inhibition of SR procedures. 
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FERMILAB-TM-2010 

5.4 Optical Elements and related numerical procedures 

AIMANT: Generation of a Dipole Magnet 2-D Map 

The keyword AIMANT provides an automatic generation of a dipole median plane field map in polar coordinates: 
A more recent and improved version will be found in DIPOLE. The extent of the map is defined by the following 
parameters, as shown in Figs. lOA and lOB. 

AT total angular aperture 
RM mean radius used for the positioning of field boundaries 
RMIN, RMAX minimum and maximum radial boundaries of the map 

The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape 
and position of which are determined by the following parameters. 

AGENT arbitrary angle, used for the positioning of the EFB's. 
w azimuth of an EFB with respect to A CENT 
e angle of a boundary with respect to its azimuth (wedge angle) 
Ri, R2 radius of curvature of an EFB 
U1, U2 extent of the linear part of the EFB. 

At any node of the map mesh, the value of the Z component of the field is calculated as 

( (
R - RM) ( R - RM) 

2 
• ( R - RM )

3
) 

Bz = :F *Bo * 1 + N * RM + B * RM + G * RM (5.4.1) 

where N, B and G are respectively the first, second and third order field indices and :F is the fringe field 
coefficient, while the X and Y components of the field are assumed to be zero on the map mesh. 

Calculation of the Fringe Field Coefficient 

With each EFB a realistic extent of the fringe field, >.., is associated (Figs. lOA and lOB), and a fringe field 
coefficient F is calculated. In the following>.. stands for either AE (Entrance), >..s (Exit) or AL (Lateral EFB). 
If a node of the map mesh is at a distance of the EFB larger than >.., then F = 0 outside the field map and 
:F = 1 inside. If a node is inside the fringe field zone, then F is calculated as follows. 
Two options are available, for the calculation of F, depending on the value of e. 
If e ~ 0, Fis a second order type fringe field (Fig. 11) given by 

(5.4.2) 

where s is the distance to the EFB, and 

(5.4.3) 

This simple model allows a rapid calculation of the fringe field, but may lead to erratic behavior of the field 
when extrapolating out of the median plane, due to the discontinuity of a? B / ds2 at s = ±e and s = ±>... For 
more accuracy it is better to use the next option. 
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Figure 10: A: Parameters used to define the field map and geometric boundaries. 
B: Parameters used to define the field map and fringe fields. 
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If e = -1, Fis an exponential type fringe field (Fig. 11) given by (16] 

F= 1 
1 +expP(s) 

(5.4.4J 

where s is the distance to the EFB, and 

(5.4.5) 

The values of the coefficients Co to Cs should be such that the derivatives of Bz with respect to s be negligible 
at s = ±.A, so as not to perturb the extrapolation of Bout of the median plane (this restriction no longer holds 
in the improved version DIPOLE). 
It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter SHIFT. s is then 
changed to s- SHIFT in the previous equation. This allows small variations of the total magnetic length. 
Let FE (respectively Fs, FL) be the fringe field coefficient attached to the entrance (respectively exit, lateral) 
EFB following eqs. above. At any node of the map mesh, the resulting value of the fringe field coefficient 
(eq. 5.4.1) is (Fig. 12) 

(FL= 1 if no lateral EFB is requested). 

The Mesh of the Field Map 

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial 
step is given by 

and the angular step by 

oR = RMAX - RMIN 
IRMAX-1 

AT 
MJ = !AMAX - 1 

where, RMIN and RMAX are the lower and upper radial limits of the field map, and AT is its total angular 
aperture (Fig. lOB). IRMAX and !AMAX are the total number of nodes in the radial and angular directions. 

Simulating Field Defects and Shims 

Once the initial map is calculated, it is possible to modify it by means of the parameter NBS, so as to simulate 
field defects or shims. 

If NBS = -2, the map is globally modified by a perturbation proportional to R- Ro, where Ro is an arbitrary 
radius, with an amplitude D..B z /Bo, so that B z at the nodes of the mesh is replaced by 

( 
D..Bz R-Ro ) 

Bz* l+~ RMAX-RMIN 

If NBS= -1, the perturbation is proportional to(} - Bo, and Bz is replaced by 

B (
l D..Bz 0 - Oo) 

Z* +Bo AT 
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Figure 11: Second order type fringe field (leftt plot) and exponential type fringe field (right plot) .. 

EFB1 EFB2 

Figure 12: Effective value of :F for overlapping fringe fields F1 and F2 centered at 01 and 02. 
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If NBS 2::: 1, then NBS shims are introduced at positions Ri; R2
, ei ; e2 (Fig. 13) [17] 

The initial field map is modified by shims with second order profiles given by 

0= (-r+~) /3~: 
where X is shown in Fig. 13, p = Ri ; R2 

is the central radius, a and 'Y are the angular limits of the shim, f3 
and µ are parameters. 
At each shim, the value of Bz at any node of the initial map is replaced by 

Bz * ( 1 +Fe* FR* !:l!z) 
where Fe = 0 or FR = 0 outside the shim, and Fe = 1 and FR = 1 inside. 

Extrapolation Off Median Plane 

The vector field B and its derivatives in the median plane are calculated by means of a second or fourth 
order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE=2, 25 or 4, 
see section 2.4.2). The transformation from polar to Cartesian coordinates is performed following eqs. (2.4.9 
or 2.4.10). Extrapolation off median phase is then performed by means of Taylor expansions following the 
procedure described in section 2.3.2. 

(R1 + R2) d (81+02) Figure 13: A second order profile shim. The shim is centered at 
2 

an 
2 

. 
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AUTOREF: Automatic transformation to a new reference frame 

AUTOREF positions the new reference frame following 3 options: 

If I= 1, AUTOREF is equivalent to 

CHANGREF[XCE = 0, YCE = Y(l),ALE = T(l)] 

so that the new reference frame is at the exit of the last element, with particle 1 at the origin with its horizontal 
angle set to T = 0. 

If I= 2, it is equivalent to 

CHANGREF[XW, YW, T(l)] 

so that the new reference frame is at the position ( XW, YW) of the waist (calculated automatically in the same 
way as for IMAGE) of the three rays number 1, 4 and 5 (compatible for instance with OBJET, KOBJ = 5, 6 
together with the use of MATRIX) while T(l) is set to zero. 

If I = 3, it is equivalent to 

CHANGREF[XW, YW, T(Il)] 

so that the new reference frame is at the position (XW, YW) of the waist (calculated automatically in the same 
way as for IMAGE) of the three rays number 11, 12 and 13 specified as data, while T(l) is set to zero. 
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BEND: Bending magnet 

BEND is one of the several keywords available for the simulation of dipole magnets. It presents the interest 
of easy handling, and is well adapted to the simulation of regular dipoles such as sector magnets with wedge 
angles. 
The first input data are the magnet length XL and the field B 0 , such that in absence of fringe field the deviation 
()verifies XL= 2B~~o sin(8/2) (BORO =reference rigidity, defined in OBJET). 
Then follows the description of the entrance and exit EFB's and fringe fields. The model is the same as for 
DIPOLE. The wedge angles WE (entrance) and Ws (exit) are defined with respect to the sector magnet, with 
the signs described in Fig. 14. Within a distance ±XE(±Xs) on both sides of the entrance (exit) EFB, the 
fringe field model is used; elsewhere, the field is supposed to be uniform. 
If ).E (resp. >.s) is zero sharp edge field model is assumed at entrance (resp. exit) of the magnet and XE (resp. 
Xs) is set to zero. In this case, the wedge angle vertical first order focusing effect (if BI is non zero) is simulated 
at magnet entrance and exit by a kick P2 = P1 - Z1 tan(€/ p) applied to each particle (P1, P2 are the vertical 
angles upstream and downstream the EFB, Z1 the vertical particle position at the EFB, p the local horizontal 
bending radius and€ the wedge angle experienced by the particle;€ depends on the horizontal angle T). 
Magnet (mis-)alignement is assured by KPOS, with special features allowing some degrees of automatism useful 
for periodic structures (section 5.6.5). 
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EFB 

Exit 
EFB 
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\~ ~/ 

\ I _.• 1 : 11 
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\~ I I 
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/ I 

, I 

I 
I 
I 
I 

' I '•I 
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Figure 14: Geometry and parameters in BEND. 
XL= length, B 0 =field, () = deviation. 
The particular case of parallel face bend 
is illustrated here, obtained by setting 
WE= Ws = 8/2. 
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BREVOL: 1-D Uniform Mesh Magnetic Field Map 

BREVOL reads a 1-D axial field map from a storage data file, whose content must fit the following FORTRAN 
reading sequence 

OPEN (UNIT= NL, FILE = FNAME, STA'IUS = 'OLD' [,FORM='UNFORMATI'ED']) 
DO 1 I = 1, IX 

IF (BINARY) THEN 
READ(NL) X(I), BX(I) 

ELSE 
READ(NL,•) X(I), BX(I) 

END IF 
1 CONTINUE 

where IX is the number of nodes along the (symmetry) X-axis, X(I) their coordinates, and BX(!) the values 
of the X component of the field. BX is normalized with BNORM prior to ray-tracing. For binary files, FNAME 
must begin with 'B- ','BINARY' will then be set to '.TRUE.'. 

X-cylindrical symmetry 1s assumed, resulting in BY and BZ taken to be zero on axis. B(X, Y, Z) and its 
derivatives along a particle trajectory are calculated by means of a 5-point polynomial fit followed by second 
order off-axis Taylor series extrapolation (see sections 2.3.1, 2.4.1). 

Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of 
the flag ID and coefficients A, B, C, etc. 
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CARTEMES: 2-D Cartesian Mesh Magnetic Field Map With Mid-Plane Symmetry 

OARTEMES was originally dedicated to the reading and processing of the measured median plane field maps 
of the QDD spectrometer SPES2 at Saclay. However, it can be used for the reading of any other 2-D median 
plane maps, provided that the format of the field data storage file fits the following FORTRAN sequence 

OPEN (UNIT= NL, FILE= FNAME, STATIJS = 'OLD' [,FORM='UNFORMATIED']) 
IF (BINARY) THEN 

READ(NL) (Y(J), J=1, JY) 
ELSE 

READ(NL,FMT='(10F8.2)') (Y(J), J=1, JY) 
END IF 
DO 1 I=1, IX 

IF (BINARY) THEN 
READ(NL) X(I), (BMES(I,J), J=1, JY) 

ELSE 
READ(NL,FMT='(10F8.1)') X(I), (BMES(I,J), J=1, JY) 

. END IF 

1 CONTINUE 

where, IX .and JY are the number of longitudinal and transverse nodes of the uniform mesh, and X(I), Y(J) 
their coordinates. FNAME is the file containing the field data. For binary files, FNAME must begin with 'B_ ', 
'BINARY' will then be set to '.TRUE.'. 

The measured field BMES is normalized with BNORM, 

B(I, J) = BMES(I, J) x BNORM 

The vector field, B, and its derivatives out of the median plane are calculated by means of a second or fourth 
order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE = 2, 25 or 4, see 
section 2.4.2). 

Entrance and/or exit integration boundaries can be defined with the flag ID, as follows (Fig. 15). 

If ID = 1: the integration in the field is stopped on a boundary with equation A' X + B'Y + O' = 0, and then 
the trajectories are extrapolated linearly onto the exit end of the map. 

If ID = -1: an entrance boundary is defined, with equation A' X + B'Y + O' = 0, up to which trajectories are 
first extrapolated linearly from the map entrance end, prior to being integrated in the field. 

If ID :2: 2: one entrance boundary, and ID - 1 exit boundaries are defined, as above. The integration in the 
field stops on the last (ID - 1) exit boundary. No extrapolation onto the map exit end is performed in this 
case. 

63 



- .... __ .. _ 

~ 
I.a.. c.. 
WO: 

• •, • f f T 

lX,YI 
mo sh 

LIL 
z wi---­
a: :C: I := 1-1 .z LI.. 
taJ 0, 

I 
I 

y i \ 

'--------------------------·-·-·-·- -

Figure 15: OXY is the coordinate system of the mesh. Integration boundaries may be defined, using ID =J:. 0: 
particle coordinates are extrapolated linearly from the entrance face of the map, onto the boundary A' X + 
B'Y + C' = O; after ray-tracing inside the map and stopping on the boundary AX+ BY+ C = 0, coordinates 
are extrapolated linearly onto the exit face of the map if ID = 2, or stopped on the last (ID - 1) boundary if 
ID>2. 
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CA VITE: Accelerating Cavity 

GAVITE provides an analytical simulation of a (zero length) accelerating cavity; it can be used in conjunction 
with keywords REBELOTE and SCALING for the simulation of multiturn tracking with synchrotron accel-­
eration (see section 5.6.7). It must be preceded by PARTIGUL for the definition of mass M and charge q. 

If IOPT = 0: GAVITE is switched off. 

If IOPT = 1: GA VITE simulates the R. F. cavity of a synchrotron accelerator. Normally the keyword GA VITE 
appears at the end of the optical structure (the periodic motion over IT = 1, NP ASS + 1 turns is simulated 
by means of the keyword REBELOTE, option K = 99 and the R.F. and magnetic fields timings by means of 
SCALING - see section 5.6.7). The synchrotron motion of any of the IMAX particles of a beam is obtained 
by solving the following mapping 

where 
</> 
w 
£ 

f. 
f3sc 
f3c 
v 
q 

= 
= 
= 

= 
= 
= 
= 
= 

R.F. phase; ¢2 - ¢1 = variation of</> between two traversals 
kinetic energy; W2 - W1 = energy gain at a traversal of GA VITE 
length of the synchronous closed orbit (to be calculated by prior ray-tracing, 
see the bottom NOTE) 
orbit length of the particle between two traversals 
velocity of the (virtual) synchronous particle 
velocity of the particle 
peak R.F. voltage 
particle electric charge. 

The R.F. frequency fRF is a multiple of the synchronous revolution frequency, and is obtab:~ed from the input 
data, following 

where 

he q(Bp)s 
fRF = £ (q2(Bp)~ + (Mc)2)1/2 

h = harmonic number of the R.F 
M = mass of the particle 
c = velocity of light. 

The current rigidity (Bp) 8 of the synchronous particle is obtained from the timing law specified by means of 
SCALING following (Bp)s = BORO · SGALE(TIMING) (see SCALING for the meaning and calculation of the 
scale factor SGALE(TIMING)). If SCALING is not used, (Bp) 8 is assumed to keep the constant value BORO 
given in the object description (see OBJET for instance). 
The velocity f3c of a particle is calculated from its current rigidity 

/3 = q(Bp) 
y'q2(Bp)2 + (Mc)2 

The velocity f3sc of the synchronous particle is obtained in the same way from 

~ _ q(Bp)s 
s - y'q2(BpH + (Mc)2 

The kinetic energies and rigidities involved in these formulae are related by 
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q(Bp) = y'W(W +2Mc2) 

Finally, the initial conditions for the mapping, at the first turn, are the following 

- For the (virtual) synchronous particle 

¢1 = rPs = synchronous phase 

(Bp)is =BORO 

- For any of the I= 1, IMAX particles of the beam 

rPll = rPs = synchronous phase 

(Bp)ll = BORO *DI 

where the quantities BORO and DI are given in the object description. 

Calculation of the coordinates 

Let PI = [P.h + p}r +Ph] 
112 

be the momentum of particle I at the exit of the cavity, while 

Pio= [Pi-10 +Pho+ ph
0

] 
112 

is its momentum at the entrance. The kick in momentum is assumed to be fully 
longitudinal, resulting in the following relations between the coordinates at the entrance (denoted by the index 
zero) and at the exit 

[ 2 (p2 2 .)] 1 /2 
PXI = PI- Io -PXIo . 

PYI =PY Io, and PZI = PZio (longitudinal kick) 
XI = X10 , Yr = Y10 and Zr = Z10 (zero length cavity) 

and for the angles (see Fig. 1) 

TI = Atg (;:;) } 

Pr= Atg ( CPh :~h )112 ) 

(damping of the transverse motion) 

If IOPT = 2: the same simulation of a synchrotron R.F. cavity, as for IOPT = 1, is performed, except that 
the keyword SCALING (family CAVITE) is not taken into account in this option: the increase in kinetic energy 
at each traversal, for the synchronous particle, is 

-6.Ws = qV sin¢s 

where the synchronous phase rPs is given in the input data. From this, the calculation of the law (Bp) 8 and the 
R.F. frequency !RF follows, according to the formulae given in IOPT = l. 

If IOPT = 3: acceleration without synchrotron motion. Any particle will be given a kick 

-6.W = qV sin¢s 

where V and rPs are input data. 

NOTE: Calculation of the closed orbit. 
Due to the fringe fields, the horizontal closed orbit may not coincide with the ideal axis of the optical elements. 
One way to calculate it at the beginning of the structure (i.e. where the initial particle coordinates have to 
be defined) is to ray-trace a single particle over a significantly high number of turns, starting with the initial 
condition (Yo = To = Zo =Po = 0), and so as to obtain a statistically well-defined phase-space ellipse. The 
initial conditions of the closed orbit then correspond to the coordinates Ye and Tc of the center of this ellipse. 
Next, ray-tracing over one turn a particle starting with the initial condition (Ye, Tc, Zo =Po= 0) will provide 
the length .C (namely, the F(6, 1) coordinate) ofthe closed orbit. 
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CHAMBR: Long Transverse Aperture Limitation 

CHAMBR causes the identification, counting and stopping of particles that reach the transverse limits of the 
vacuum chamber. The chamber can be either rectangular (IFORM = 1) or elliptic (!FORM= 2). The chamber 
is centered at YO, ZC and has transverse dimensions ±YL and ±ZL such that any particle will be stopped if 
its coordinates Y, Z verify 

(Y - YC)2 ;::: YL2 or (Z - ZC)2 ;::: ZL2 if !FORM= 1 

(Y - YC)2 (Z - ZC)2 > 1 if IFORM = 2 
YL2 + ZL2 -

The conditions introduced with CHAMBR are valid along the optical structure until the next occurrence of the 
keyword CHAMBR. Then, if IL= 1 the aperture is possibly modified by introducing new values of YC, ZC, 
YL and ZL, or, if IL= 2 the chamber ends and information is printed concerning those particles that have 
been stopped. 

The testing is done in magnets at each integration step, between the EFB's. For instance, in QUADRUPO 
there will be no testing from -XE to 0 and from XL to XL+ Xs, but only from 0 to XL; in DIPOLE, there 
is no testing as long as the ENTRANCE EFB is not reached, and testing is stopped as soon as the EXIT or 
LATERAL EFB's are passed. 

In polar coordinate magnets, Y stands for the radial coordinate (e.g. with.DIPOLE, see Figs. 3C and 10). 
Therefore, centering CHAMBR at YO= RM simulates a chamber curved with radius RM, and having a radial 
acceptance RM± Y L. The testing is done in ESL (DRIFT) at the beginning and the end, and only for positive 
drifts. There is no testing in CHANGREF. 

When a particle is stopped, its index IEX (see OBJET and section 5.6.8) is set to the value -4, and its actual 
path length is stored in the array SORT for eventual further statistical purposes. 
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CHANGREF: Thansformation to a New Reference Frame 

CHANGREF transports the particles to a new reference frame. It can be used anywhere in a structure. The 
new coordinates of the particles Y2, T2, Z2 and P2 and the path length 82 are deduced from the old ones Yi, 
T1, Z1, P1 and 81 by 

T2=T1-ALE 

y
2 

= (Y1 - YCE)cosT1 + XOEsinT1 
cosT2 

DL2 = (XOE- Y2 sinALE)2 +(YOE- Y1 + Y2cosALE)2 

Z2 = Z1 + DLtgP1 
DL 

82=81+--
cosP1 

where, XOE and YOE are shifts in the horizontal plane along,respectively, X- and Y-axis, and ALE is a 
rotation around the Z-axis. DL is given the sign of XOE - Y2 sin(ALE). This keyword may for instance be 
used for positioning optical elements, or for setting a reference frame at the entrance or exit of field maps. 
Effects of CHANGREF on spin tracking, particle decay and gas-scattering are taken into account (but not on 
synchrotron radiation). 

Y1 
Z1 
51 

y 
Y2 
zz 
52 

·-1 
_ _i;....==::~--...Jf'-) 

Figure 16: Scheme of the CHANGREF procedure. 
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CIBLE or TARGET: Generate a Secondary Beam From Target Interaction 

The reaction is 1 + 2 ~ 3 + 4 with the following parameters 

Laboratory momentum Pl = 0 p2 p3 p4 
Rest mass M1 M2 M3 M4 
Total energy in laboratory M 1 c2 W2 W3 W4 

The geometry of the interaction is shown in Fig. 17. 

The angular sampling at the exit of the target consists of the NT coordinates 0, ±TS, ±2*TS ... ±(NT-l)*TS/2 
in the median plane, and the NP coordinates 0, ±PS, ±2 *PS ... ±(NP - 1) * PS/2 in the vertical plane. 

The position of B downstream is deduced from that of A upstream by a transformation equivalent to two 
transformations using CHANGREF, namely 

CHANGREF(XOE =YOE= 0, ALE= /3) 

followed by 

CHANGREF(XOE =YOE= 0, ALE=() - /3). 

Particle 4 is abandoned, while particle 3 continues. The energy loss Q is related to the variable mass M4 by 

and dQ= -dM4 

The momentum sampling of particle 3 is derived from conservation of energy and momentum, according to 

M1c2 + W2 = W3 + W4 

P~ = P~ + P5 - 2p2p3 cos(() - T) 

Figure 17: Scheme of the principles of CIBLE (TARGET) 
A, T = position, angle of incoming particle 2 in the entrance reference frame 
P = position of the interaction 
B, T = position, angle of the secondary particle in the exit reference frame 
() = angle between entrance and exit frames 
j3 = tilt angle of the target 
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COLLIMA: Collimator 

OOLLIMA acts as a mathematical aperture of zero length. It causes the identification, counting and stopping 
of particles that reach the transverse limits of the aperture, which can be either rectangular (IFORM = 1) or 
elliptic (IFORM = 2). The collimator is centered at YO, ZO and has transverse dimensions ±Y L and ±ZL 
such that any particle will be stopped if its coordinates Y, Z verify 

(Y - YC) 2 ?: YL2 or (Z - ZC) 2 ?: ZL2 

(Y - YC) 2 (Z - ZC)2 > l 
YL2 + ZL2 -

if IFORM = 1 

if IFORM = 2 

When a particle is stopped, its index IEX (see OBJET and section 5.6.8) is set to the value -4, and its actual 
path length is stored in the array SORT for eventual further statistical purposes (e.g. with HISTO). 
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DECAPOLE: Decapole Magnet (Fig. 18) 

The meaning of parameters for DECAPOLE is the same as for QUADRUPO. 
In fringe field regions the magnetic field B(X, Y, Z) and its derivatives up to fourth order are derived from the 
scalar potential approximated to the 5th order in Y and Z 

V(X, Y,Z) = V(X, Y,Z) = G (Y4 Z - 2y2z3 + ~
5

) 
. hG Bo 

wit o = R6 
Outside fringe field regions, or everywhere in sharp edge decapole (>.E = >.s = 0) , B(X, Y, Z) in the magnet is 
given by 

Bx =0 

By= 4Go(Y2 -Z2 )YZ 

Bz = Go(Y4 
- 6Y2 Z2 + Z4

) 

z ·' ('\ 

I 
I 

I 

y 

·-·· ···--····---' 

Figure 18: Decapole magnet 

71 



DIPOLE: Generation of a Dipole Magnet 2-D Map 

DIPOLE is a recent, simpler and improved version of AIMANT. 

The keyword DIPOLE provides an automatic generation of a dipole field map in polar coordinates. The extent 
of the map is defined by the following parameters, as shown in Figs. lOA and lOB. 

AT 
RM 
RMIN,RMAX 

total angular aperture 
mean radius used for the positioning of field boundaries 
minimum and maximum radii 

The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape 
and position of which are determined by the following parameters. 

AGENT arbitrary inner angle, used for EFB's positioning 
azimuth of an EFB with respect to A CENT 
angle of an EFB with respect to its azimuth (wedge angle) 
radius of curvature of an EFB 
extent of the linear part of an EFB. 

At any node of the map mesh, the value of the field is calculated as 

( (
R-RM) (R-RM)

2 
(R-RM)

3

) B=:F*Bo* l+N* RM +B* RM +G* RM (5.4.6) 

where N, B and G are respectively the first, second and third order field indices and :F is the fringe field 
coefficient, while the X and Y components of the field are assumed to be zero on the mesh plane. 

Calculation of the Fringe Field Coefficient 

With each EFB a realistic extent of the fringe field, >.. (normally equal to the gap size), is associated and a fringe 
field coefficient F is calculated. In the following>.. stands for either AE (Entrance), >..s (Exit) or AL (Lateral 
EFB). 

F is an exponential type fringe field (Fig. 11) given by [16] 

F= 1 
1 +expP(s) 

where s is the distance to the EFB, and 

P(s) =Co+ C1 (1:) + C2 (1:) 2 

+ C3 (1:)3 + C4 (1:)4 +Cs (1:)5 
It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter SHIFT. s is then 
changed to s-SHIFT in the previous equation. This allows small variations of the total magnetic length. 

Let FE (respectively Fs, FL) be the fringe field coefficient attached to the entrance (respectively exit, lateral) 
EFB. At any node of the map mesh, the resulting value of the fringe field coefficient ( eq. 5.4.6) is 

(FL = 1 if no lateral EFB is requested). 

The Mesh of the Field Map 

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial 
step is given by 
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and the angular step by 

oR= RMAX-RMIN 
IRMAX-1 

AT 
oB= IAMAX-1 

where, RMIN and RMAX are the lower and upper radial limits of the field map, and AT is its total angular 
aperture (Fig. lOB). IRMAX and IAMAX are the total number of nodes in the radial and angular directions. 

Simulating Field Defects and Shims 

Once the initial map is calculated, it is possible to modify it by means of the parameter NBS, so as to simulate 
field defects or shims. 

If NBS = -2, the map is globally modified by a perturbation proportional to R - Ro, where Ro is an arbitrary 
radius, with an amplitude l:lB z /Bo, so that B z at the nodes of the mesh is replaced by 

( 
/:lBz R-Ro ) 

Bz * l + J3;- RMAX - RMIN 

If NBS= -1, the perturbation is proportional to 0 - Bo, and Bz is replaced by 

B (l /:lBz B - Bo) 
Z* +Bo AT 

If NBS 2:: 1, then NBS shims are introduced at positions Ri ; R2
, Bi ; B2 (Fig. 13) [17) 

The initial field map is modified by shims with second order profiles given by 

0= (-r+;) /3~: 
where X is shown in Fig. 11, p = Ri ; R2 is the central radius, a and 'Y are the angular limits of the shim, f3 
and µ are parameters. 
At each shim, the value of Bz at any node of the initial map is replaced by 

Bz* (l+FB*FR*/:l!z) 

where FO = 0 or FR = 0 outside the shim, and FB = 1 and FR = 1 inside. 

Extrapolation Off Median Plane 

The vector field B and its derivatives in the median plane are calculated by means of a second or fourth 
order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE=2, 25 or 4, 
see section 2.4.2). The transformation from polar to Cartesian coordinates is performed following eqs (2.4.9 
or 2.4.10). Extrapolation off median plane is then performed by means of Taylor expansions, following the 
procedure described in section 2.3.2. 
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DODECAPO: Dodecapole Magnet (Fig. 19) 

The meaning of parameters for DODECAPO is the same as for QUADRUPO. 
In fringe field regions the magnetic field B(X, Y, Z) and its derivatives up to fourth order are derived from the 
scalar potential approximated to the 6th order in Y and Z 

V(X, Y,Z) = V(X, Y,Z) = G ( Y4 
-

1
3°y2z 2 + z4

) YZ 

. h G Bo 
wit o= Rg 

Outside fringe field regions, or everywhere in sharp edge dodecapole (>.E = >.s = 0) , B(X, Y, Z) in the magnet 
is given by 

Bx =0 

By= Go(5Y4 -10Y2z2 + Z4 )Z 

Bz = Go(Y4 -10Y2Z2 +5Z4 )Y 

z .t. 
J.\ 

I 
I 

I 

Figure 19: Dodecapole magnet 
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DRIFT or ESL: Field-Free Drift Space 

DRIFT( or ESL) allows the introduction of a drift space with length XL with positive or negative sign, anywhere 
in a structure. The associated equations of motion are (Fig. 20) 

z 

Y2 = Y1 + XL * tgT 
XL 

Z2 = Z1 + -T·tgP 
cos 

XL 
SAR2 = SAR1 + T p cos *cos 

Figure 20: Transfer of particles in a drift space. 
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EBMULT: Electromagnetic Multipole 

EBMULT simulates an electromagnetic multipole, by addition of electric (E) and magnetic (B) multipole com-
·+ ·+k -

ponents (dipole to dodecapole). E and its derivatives 
0
;;yj:z1c are derived from the general expression 

of the multipole scalar potential (eq. 2.3.5), followed by a 2: rotation (n = pole order), as described in sec­
tion 2.5.3 (see also ELMULT). Band its derivatives are derived from the same general potential, as described 
in section 2.3.5 (see also MULTIPOL). 
The entrance and exit fringe fields of the E and B components are treated separately, in the same way as 
described under ELMULT and MULTIPOL, for each one of these two fields. Wedge angle correction is applied 
in sharp edge field model if Bl is non zero, as in MULTIPOL. Any of the E or B multipole field component 
can be rotated independently of the others. 
Use PARTICUL for the definition of the particle mass and charge. 

7 
I 

Eleclrode 

---------------· -· ··---··----~ 

Figure 21: An example of E, B multipole: the achromatic quadrupole [18] 
(known for its allowing null second order chromatic aberration). 
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EL2TUB: Two-tube electrostatic lens 

The lens is cylindrically symmetric about the X-axis. 
The length and potential of the first (resp. second) electrode are Xl and Vl (X2 and V2). The distance between 
the two electrodes is D, and their inner radius is ~ (Fig. 22). X-axis cylindrical symmetry is assumed. The 
model of electric potential along the axis is [20] 

if D=O 

if D#O 

(x =distance from half-way between the electrodes; w = 1.318; th= hyperbolic tangent; ch= hyperbolic cosine) 
from which the field E(X, Y, Z) and its derivatives are derived following the procedure described in section 2.5.2 

(note that they don't depend on the constant term [Vi; V2
] which disappears when differentiating). 

Use PARTIOUL for the definition of the particle mass and charge. 

-~ 

X1 D X2 

Figure 22: Two-electrode cylindrical electric lens. 
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ELMULT: Electric Multipole 

The simulation of an electric multipolar field ME proceeds by addition of the dipolar (El) to dodecapolar (E6) 
components, and of their derivatives up to fourth order, following -

ME= El +E2+E3+E4+E5+E6 

aME a.EI aff,2 aE3 aE4 aE5 aE6 
ax = ax + ax + ax + ax + ax + ax 

a2ME a2E51 a2 E52 a2E3 a2E4 a2E5 a2E6 
axaz = axaz + axaz + axaz + axaz + axaz + axaz 

etc. 

The independent components El to E6 and their derivatives up to the second order are calculated by differen­
tiating the general multipole potential (2.3.5) 

- I 2 ( 
00 

- qQ(2q)(X)(Y2 + z2)q) ( n sin(m~ )Yn-mzm) 
Vn(X, Y,Z) - (n.) L) 1) '( )' l: '( _ )' 

q=O 4qq. n+q. m=O m. n m. 

where G(X) is the longitudinal gradient (see QUADRUPO) but including a 2':. rotation about the X-axis, so 
that the so defined right electric multipole of order n, and of strength [18, 19] 

1 "f </Jn 
Kn = 2 "12 - 1 Rl) 

(<Pn =potential at the electrode, Ro= radius at pole tip, "I= relativistic Lorentz factor of the particle) has the 
same focusing effect than the right magnetic multipole of order n and strength 

K _ Bn 
n - K[j-1Bp 

(Bn =field at pole tip, Bp =particle rigidity, see MULTIPOL). 

Such ;:, rotation of the multipole components is obtained following the procedure described in section 2.5.3. 

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone XE 
at entrance and Xs at exit, as for QUADRUPO, and by the extent >..eat entrance, >..sat exit. The fringe field 
extents for the dipole component are AE and >..s. The fringe field for the quadrupolar (sextupolar, octupolar, 
decapolar, dodecapolar) component is given by a coefficient E2 (E3, E4, E5, E6) at entrance, and 82 (83, 84, 
85, 86) at exit, such that the extent is AE * E2 (>..E * E3, >..E * E4, AE * E5, AE * E6) at entrance and >..s * 82 
(>..s * 83, >..s * 84, >..s * 85, >..s *

0

86) at exit. 

If AE = 0 (>..s = 0) the multipole lens is considered to have a sharp edge field at entrance (exit), and then, 
XE( Xs) is forced to zero (for the mere purpose of saving computing time). 

If Ei = 0 (Si= 0) , the entrance (exit) fringe field for multipole component i is considered as a sharp edge field. 

Overlapping of fringe fields inside the element is treated separately for each component, in the way described 
in QUADRUPO. 
Moreover, any multipole component Ei can be rotated independently by an angle Rx. around the longitudinal 
X-axis, for the simulation of positioning defects, as well as skewed lenses. 
Use PARTIGUL for the definition of the particle mass and charge. 
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Figure 23: An electric multipole combining quadrupole (E2) and 
octupole (E4) component [19] 
(EI = E3 = E5 = E6 = o). 
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ELREVOL: 1-D Uniform Mesh Electric Field Map 

ELREVOL reads a 1-D axial field map from a storage data file, whose content must fit the following FORTRAN 
reading sequence 

OPEN (UNIT= NL, FILE= FNAME, STATUS= 'OLD' [,FORM='UNFORMATI'ED']) 
DO 1 I=l, IX 

IF (BINARY) ,THEN 
READ(NL) X(I), EX(I) 

ELSE 
READ(NL,*) X(I), EX(I) 

END IF 
1 CONTINUE 

where IX is the number of nodes along the (symmetry) X-axis, X(I) their coordinates, and EX(I) the values 
of the X component of the field. EX is normalized with ENO RM prior to ray-tracing. 

X-cylindrical symmetry is assumed, resulting in EY and EZ taken to be zero on axis. E(X, Y, Z) and its 
derivatives along a particle trajectory are calculated by means of a 5-points polynomial fit followed by second 
order off-axis Taylor series extrapolation (see sections 2.5.1 and 2.6). 

Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of 
the flag ID and coefficients A, B, C, A', B', C'. 

Use PARTICUL for the definition of the particle mass and charge. 
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MAP2D: 2-D Cartesian Uniform Mesh Magnetic Field Map - no symmetry [21] 

MAP2D reads a 2-D field map that provides the three components Bx, By, B z of the magnetic field at the 
nodes of a 2-D Cartesian uniform mesh. No particular symmetry is assumed, which allows the treatment of any­
type of field (e.g. dipole field out of median plane, solenoidal field). These data should be filed with a format 
that fits the following FORTRAN reading sequence involved in Zgoubi 

OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATI'ED']) 
DO 1 J=l,JY 

DO 1 I=l,IX 
IF (BINARY) THEN 

READ(NL) Y(J), ZO, X(I), BY(I,J), BZ(I,J), BX(I,J) 
ELSE 

READ(NL,100) Y(J), ZO, X(I), BY(I,J), BZ(I,J), BX(I,J) 
100 FORMAT (lX, 6E11.2) 

END IF 
1 CONTINUE 

where IX ( JY) is the number of longitudinal (transverse) nodes of the 2-D uniform mesh, Zo is the Z-elevation 
of the map. For binary files, FNAME must begin with 'B- ', 'BINARY' will then be set to '.TRUE.'. The field 
B = (Bx, By, Bz) is next normalized with BNORM, prior to ray-tracing. 

At each step of the trajectory of a particle, the field and its derivatives are calculated by a polynomial inter­
polation followed by a Z extrapolation (see sections 2.3.3, 2.4.3). Entrance and/or exit integration boundaries 
may be defined, in the same way as for CARTEMES. 
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MULTIPOL: Magnetic Multipole 

The simulation of a multipolar field M by MULTIPOL proceeds by addition of the dipolar (Bl), quadrupo­
lar (B2), sextupolar (B3), octupolar (B4) decapolar (B5) and dodecapolar (B6) components, and of their 
derivatives up to fourth order. For instance, 

.M = .81 + .B2 + .B3 + B4 + B5 + B6 
a.M a.Bi a.82 a.83 a.84 a.85 a.86 
ax = ax + ax + ax + ax + ax + ax 

a2 .M a2.B1 a2.B2 a2.B3 a2.B4 a2.B5 a2.B6 
axaz = axaz + axaz + axaz + axaz + axaz + axaz 

etc. 

The independent components Bl, B2, B3, B4, B5, B6 and their derivatives up to the fourth order are calculated 
as described under QUADRUPO, SEXTUPOL, OCTUPOLE, DECAPOLE and DODECAPO keywords (see 
section 2.3.5). 

The entrance and exit fringe fields are tr~ated separately. They are characterized by the integration zone XE 
at entrance and Xs at exit, as for QUADRUPO, and by the extent >..E at entrance, >..s at exit. The fringe field 
extents for the dipole component are >..E and >..s. The fringe field for the (sextupolar, octupolar, decapolar, 
dodecapolar) component is given by a coefficient E2 (E3, E4, E5, E6) at entrance, and 82 (83, 84, 85, 86) at 
exit, such that the extent is AE * E2 (>..E * E3, >..E * E4, AE * E5, AE * E6) at entrance and >..s * 82 (>..s * 83, 
>..s * 84, >..s * 85, >..s * 86) at exit. 

If AE = 0 (>..s = 0) the multipole lens is considered to have a sharp edge field at entrance (exit), and then, 
XE(Xs) is forced to zero (for the mere purpose of saving computing time). If Ei = 0 (Si= 0), the entrance 
(exit) fringe field for multipole component i is considered as a sharp edge field. In sharp edge filed model, the 
wedge angle vertical first order focusing effect (if Bl is non zero) is simulated at magnet entrance and exit by 
a kick P2 = P 1 - Z1 tan( e/ p) applied to each particle (P1, P2 are the vertical angles upstream and downstream 
the EFB, Z1 the vertical particle position at the EFB, p the local horizontal bending radius and e the wedge 
angle experienced by the particle ; e depends on the horizontal angle T). 

Overlapping of fringe fields inside the magnet is treated separately for each component, in the way described in 
QUADRUPO. 

Any multipole component Bi can be rotated independently by an angle Rx, around the longitudinal X-axis, 
for the simulation of positioning defects, as well as skewed lenses. 

Magnet (mis-)alignement is assured by KPOS, with special features allowing some degrees of automatism useful 
for periodic structures (section 5.6.5). 
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OCTUPOLE: Octupole magnet (Fig. 24} 

The meaning of parameters for OCTUPOLE is the same as for QUADRUPO. In fringe field regions the magnetic 
field B(X, Y, Z) and its derivatives up to fourth order are derived from the scalar potential approximated ta 
the 8-th order in Y and Z 

( 
~ a~ ) V(X, Y, Z) = G - 20 (Y2 + z2) + 960 (Y2 + z2)2 (Y3 z - y z3) 

. h G Bo wit 0 = 3 
Ro 

Outside fringe field regions, or everywhere in sharp edge dodecapole (>.E = >.s = 0) , B(X, Y, Z) in the magnet 
is given by 

Bx=O 

By = Go(3Y2 Z - Z3) 

Bz = Go(Y3 - 3Y Z 2
) 

7 .t. ,,, 
I 
I 

I 
I 

y 

----~=--

-------·----·-·-·---··· 

Figure 24: Octupole magnet 
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POISSON: Read field data from POISSON output 

This keyword allows reading a field profile B(X) from a POISSON output. Let FNAME be the name of this 
output file (normally, FNAME = outpoi.lis); the data are read following the FORTRAN statements hereunder 

I= 0 
11 CONTINUE 
I = I + 1 

READ(LUN,101,ERR=10,END=10) K, K, K, R, X(I), R, R, B(I) 
101 FORMAT(I1, I3, I4, E15.6, 2F11.5, 2F12.3) 

GOTO 11 
10 CONTINUE 

where X(I) is the longitudinal coordinate, and B(I) is the Z component of the field at a node (I) of the mesh. 
K's and R's are dummy variables appearing in the POISSON output file outpoi.lis but not used here. 

From this field profile, a 2-D median plane map is built up, with a rectangular and uniform mesh; mid-plane 
symmetry is assumed. The field at each node (Xi, Y;) of the map is B(Xi), independent of Y; (i.e., the 
distribution is uniform in the Y direction). 

For the rest, POISSON works in a way similar to CARTEMES. 
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POLARMES: 2-D Polar Mesh Field Map 

Similar to CARTEMES, apart from the polar mesh frame: IX is the number of angular nodes, JY the number 
ofradial nodes; X(I) and Y(J) are respectively the angle and radius of a node (these parameters are similar to 
those entering in the definition of the map in DIPOLE). 

85 



PS170: Simulation of a Round Shape Dipole Magnet 

PS170 is dedicated to a 'rough' simulation of CERN's PS170 dipole. 

The field Bo is constant inside the magnet, and zero outside. The pole is a circle of radius "Ro, centered on X 
axis. The output coordinates are generated at the distance XL from the entrance (Fig. 25) . 

PS''!O 

........ ~ x 
-->..:::..._.----1---_:.... .• --

' .'\,, 

1 XL 

' I 8=0' 
'I 

Figure 25: Scheme of the PSI 70 magnet simulation. 
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QUADISEX, SEXQUAD: Sharp Edge Magnetic Multipoles 

SEXQUAD defines in a simple way a sharp edge field with quadrupolar, sextupolar and octupolar components. 
QUADISEX adds a dipole component. The length of the element is XL. The vertical component B =­
Bz(X, Y, Z = 0) of the field and its derivatives in median plane are calculated at each step from the following 
expressions 

( 
N B 2 G 3) 

B=Bo u+ RoY+ R5y + R5y 

8B (N B G 2 ) 8Y =Bo Ro +2R5Y+3R5y 

8
2
B ( B G ) ay2 = Bo 2 R5 +6 Rg y 

a3B G 
8Y3 = 6Bo R5 

and then extrapolated out of the median plane by Taylor expansion in Z (see section 2.3.2). 

With option SEXQUAD, U = 0, while with QUADISEX, U = 1. 
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QUADRUPO: Quadrupole Magnet (Fig. 26) 

The length of the magnet XL is the distance between the effective field boundaries (EFB). The field at the pole 
tip Ro is Bo. -
The extent of the entrance (exit) fringe field is characterized by AE(>..s). The distance of ray-tracing on both 
sides of the EFB's, in the field fall off regions, will be± XE at the entrance, and± Xs at the exit (Fig. 27), 
by prior and further automatic changes of frame. 
In the fringe field regions [-XE, XE] and [-Xs, Xs] on both sides of the EFB's, B(X, Y, Z) and its derivatives 
up to fourth order are calculated at each step of the trajectory from the analytical expressions of the three 
components Bx, By, Bz obtained by differentiation of the scalar potential (see section 2.3.5) approximated to 
the 8th order in Y and Z. 

( 
G" G '"' G 111111 ) 

V(X, Y, Z) = G -12 (Y2 + z2) + 384 (Y2 + z2)2 - 23040 (Y2 + z2)3 YZ 

(G' = dG/dX, G" = d2G/dX2
, ••• ) 

where G is the gradient on axis [16]: 

and, 

G(s) - Go 
- 1 + expP(s) 

Bo 
with Go= -

Ro 

P(s) =Co+ C1 (~) + C2 (~)2 + C3 (~)3 + C4 (~)4 +Cs (~)5 P(s) =Co+ C1 (~) + C2 (~) 
where, sis the distance to the field boundary and>.. stands for AE or As (normally, A~ 2 *Ro). 
When fringe fields overlap inside the magnet (XL::::; XE+ Xs), the gradient G is expressed as 

where, GE is the entrance gradient and Gs is the exit gradient. 
If AE = 0 (.As= 0), the field at entrance (exit) is considered as sharp edged, and then XE(Xs) is forced to zero 
(for the mere purpose of saving computing time). 
Outside of the fringe field regions (or everywhere when AE = >..s = 0) B(X, Y, Z) in the magnet is given by 

Bx=O 
By= GoZ 

Bz=GoY 
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Figure 26: Quadrupole magnet 
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Figure 27: Scheme of the longitudinal field gradient G(X). 
(OX) is the longitudinal axis of the reference frame (0, X, Y, Z) of 
Zgoubi. The length of the element is XL, but trajectories are ray­
traced from -XE to XL+ Xs, by means of prior and further auto­
matic changes of frame. 
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SEP ARA: Wien filter - analytic simulation 

SEP ARA provides an analytic simulation of an electrostatic separator. Input data are the length L of the 
element, the electric field E and the magnetic field B. The mass m and charge q of the particles are entered by 
means of the keyword PARTlOUL. 

The subroutines involved in this simulation solve the following system of three equations with three unknown 
variables S, Y, Z (while X = L), that describe the cycloidal motion of a particle in E, ii static fields (Fig. 28). 

X=-Rcos -+€ --+-(
wS ) aS 01 
,Be w,Be w 

Y = Rsm - + € - - - - +Yo . (wS ) a 02 
,Be w2 w 

Z = Ssin(Po) + Zo 

where, S is the path length in the separator, a = - Ec2 , w = - Bc2 , 0 1 = .8 sin( To) cos( Po) and 02 ~ 
'Y m1 

,Becos(To) cos(Po) are initial conditions. e =velocity of light, ,Be= velocity of the particle,/= (1- ,82)-t and 
tan€ = ( 02 + ;; ) / G 1. Yo, To, Zo, Po are the initial coordinates of the particle in the Zgoubi reference frame. 
Here ,Be and 'Y are assumed constant, which is true as long as the change of momentum due to the electric field 
remains negligible all along the separator. 

The index IA in the input data allows switching to inactive element (thus equivalent to ESL), horizontal or 
vertical separator. Normally, E, B and the value of .Bw for wanted particles are related by 

z 

Figure 28: Horizontal separation between a wanted particle, (W), and an unwanted particle, 
(U). (W) undergoes a linear motion while (U) undergoes a cycloidal motion. 
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SEXTUPOL: Sextupole Magnet (Fig. 29) 

The meaning of parameters for SEXTUPOL is the same as for QUADRUPO. 

In fringe field regions the magnetic field B(X, Y, Z) and its derivatives up to fourth order are derived from the­
scalar potential approximated to 7th order in Y and Z 

( 
G" G 

1111 
) ( z3 ) V(X, Y,Z) = G -16 (Y2 + z2) + 640 (Y2 + z2)2 y2z - 3 

. Bo 
with Go= 2 

Ro 

Outside fringe field regions, or everywhere in sharp edge sextupole (>.E = >.s = 0), B(X, Y, Z) in the magnet is 
given by 

Bx=O 
By= 2GoYZ 

Bz = Go(Y2 
- Z 2

) 

Figure 29: Sextupole magnet 
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SOLENOID: Solenoid {Fig. 30) 

The solenoidal magnet has an effective length XL, a mean radius Ro and an asymptotic field Bo = µoN I 
(NJ= number of Ampere-Turns, µ0 = 41l'"!0-7). 

The distance of ray-tracing beyond the effective length XL, is XE at the entrance, and Xs at the exit (Fig. 30). 

The field B(X, r), r = (Y2 + Z2 ) 112 , and its derivatives up to the second order with respect to X, Y or Z are 
obtained after the method proposed in ref. [22], that involves the three complete elliptic integrals K, E and Il. 
These are calculated with the algorithm proposed in the same reference. Their derivatives are calculated by 
means of recursive relations [23). 

This analytical model for the solenoidal field allows simulating an extended range of coil geometry provided 
that the coil thickness is small enough compared to the mean radius Ro. 

----1--
-Yr 

' 

I x~ 

Figure 30: Solenoidal magnet. 
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TOSCA: 2-D or 3-D Cartesian Uniform Mesh Field Map 

TOSCA is dedicated to the reading and treatment of 2-D or 3-D Cartesian mesh field maps as delivered by the 
TOSCA. magnet computer code standard output. 

The total number of field data files to be read is given by the parameter IZ that appears in the data list 
following the keyword. Each file contains the field components Bx, By, B z on an (X, Y) mesh at a given Z · 
coordinate. IZ = 1 for 2-D maps, and in this case Bx and By are assumed to be zero. For 3-D maps with 
mid-plane symmetry, IZ should be greater than 1, and thus, the first data file, whose name follows in the data 
list, contains the median plane field (assuming Z = 0 and Bx = By = 0), while the next files contain the 
next maps in increasing Z order. For 3-D maps without mid-plane symmetry assumption, IZ should be odd 
and negative, and thus, the total number of maps (whose names follow in the data list) is IIZI, while the map 
number [JZ/2] + 1 is the Z = 0 one. 

The field map data files should be formatted following the FORTRAN reading sequence below. 

DO 1 K = 1, KZ 
OPEN (UNIT= NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMAlTED']) 
DO 1 J = 1, JY 

DO 1 I = 1, IX 
IF (BINARY) THEN 

READ(NL) Y(J), Z(K), X(I), BY(I,J,K), BZ(I,J,K), BX(I,J,K) 
ELSE 

READ(NL,100) Y(J), Z(K), X(I), BY(I,J,K), BZ(I,J,K), BX(I,J,K) 
100 FORMAT(1X,6E11.2) 

END IF 
1 CONTINUE 

where, IX (JY, KZ) is the number of longitudinal (transverse, vertical) nodes of the 3-D uniform mesh. For 
binary files, FNAME must begin with 'B_ ','BINARY' will then be '.TRUE.'. 

The field B = (Bx,By,Bz) is normalized by means of BNORMin a similar way as in CARTEMES. 

At each step of the trajectory of a particle inside the map, the field and its derivatives are calculated by means 
of a second order polynomial fit with a 3 x 3 x 3-point parallelipipedic grid, as described in section 2.4.4. 

Entrance and/or exit integration boundaries between which the trajectories are integrated in the field may be 
defined, in the same way as in CARTEMES. 
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TRANSMAT: Matrix Transfer 

TRANSMAT performs a matrix transfer of the particle coordinates in the following way 

xi = I: R;jxJ +I: Ti.JkxJ x2 
j j,k 

where, Xi stands for any of the current coordinates Y, T, Z, P, path length and dispersion, and Xf stands for 
any of the initial coordinates. [R;j] ([Ti.Jk]) is the first order (second order) transfer matrix as usually involved 
in second order beam optics [14]. Second order transfer is optional. The length of the element represented by 
the matrix may be introduced for the purpose of path length updating. Note: MATRIX delivers [R;j] and 

[Ti.jk] matrices in a format suitable for straightforward use with TRANSMAT. 
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TRAROT: 'Iranslation-Rotation 

This procedure transports particles into a new frame by translation and rotation. Effect on spin tracking, 
particle decay and gas-scattering are taken into account (but not on synchrotron radiation). 
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UNIPOT: Unipotential Electrostatic Lens 

The lens is cylindrically symmetric about the X-axis. 

The length of the first (resp. second, third) electrode is Xl (resp. X2, X3). The distance between the electrodes 
is D. The potentials are Vl and V2. The inner radius is Ro (Fig. 31). The model of electric potential along 
the axis is [24] . 

_ V2-Vl [ w(x+~2 +D) w(x+~2 ) w(x-~2 -D) w(x-~2 )] 
V(x) - 2wD .ench Ro ch Ro + .ench Ro ch Ro 

(x =distance from the center of the central electrode; w = 1,318; ch= hyperbolic cosine), from which the field 
E(X, Y, Z) and its derivatives are deduced following the procedure described in section 2.5.2. 
Use PARTICUL for the definition of the particle mass and charge 

V1 Vi 

J X3 

Figure 31: Three-electrode cylindrical unipotential lens. 
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VENUS: Simulation of a Rectangular Dipole Magnet 

VENUS is dedicated to a 'rough' simulation of Satume Laboratory's VENUS dipole. The field Bo is constant 
inside the magnet, with longitudinal extent XL and transverse extent ±Y L; outside these limits, Bo = 0-
(Fig. 32). 

VEN VS 

Y I 
B=O · 

+YI.. ..- .;;-..=.___-t 
......... - -- I 
~----~---.. 

... _ -....... . ...... . 

-YL--~ 
B;:;:;Q ......,: 

I 

x 
XL 

Figure 32: Scheme of VENUS rectangular dipole. 
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WIENFILT: Wien Filter 

WIENFILT simulates a Wien Filter, with transverse and orthogonal electric and magnetic fields Ey, Bz or 
Ez, By (Fig. 28). It must be preceded by PARTIOUL for the definition of the particle mass and charge. -

The length XL of the element is the distance between its entrance and exit EFB's. The electric and magnetic 
field intensities Eo and Bo in the central, uniform field region, normally verify the relation 

Eo 
Bo=---

f3wc 

for the selection of " wanted" particles of velocity f3wc. Ray-tracing in field fall-off regions extends over a 
distance XE (Xs) beyond the entrance (exit) EFB by means of prior and further automatic changes of frame. 
Four sets of coefficients A., Co - Cs allow the description of the entrance and exit fringe fields outside the uniform 
field region, following the model [16] 

F= 1 
1 + exp(P(s)) 

where P(s) is of the term 

P(s) =Go+ 01 (~) + C2 (~)2 +Cs (~)3 + C4 (~)4 +Cs(~) s 

and s is the distance to the EFB. When fringe fields overlap inside the element (i.e. XL .:5 XE + Xs), the field 
fall-off is expressed as 

F= FE+Fs-1 

where FE(Fs) is the value of the coefficient respective to the entrance (exit) EFB. 
If AE = 0 (A.s = 0) for either the electric or magnetic component, then both are considered as sharp edge 
fields and XE(Xs) is forced to zero (for the purpose of saving computing time). In this case, the magnetic 
wedge angle vertical first order focusing effect is simulated at entrance and exit by a kick P2 ·= Pi -Z1 tan(€/ p) 
applied to each particle (P1, P2 are the vertical angles upstream and downstream the EFB, Z1 the vertical 
particle position at the EFB, p the local horizontal bending radius and € the wedge angle experienced by the 
particle ; € depends on the horizontal angle T). This is not done f~r the electric field, however it is advised not 
to use a sharp edge electric dipole model since this entails non symplectic mapping, and in particular precludes 
focusing effects of the non zero longitudinal electric field component. 

98 



YMY: Reverse Signs of Y and Z Axis 

YMY performs a 180° rotation of particle coordinates with respect to the X-axis, as shown in Fig. 33. This is 
done by means of a change of sign of Y and Z axes, and therefore coordinates, as follows 

Y2 =-YI, T2 =-Tl, Z2 = -Zl and P2 =-PI 

(Bo>O} {B.,<0) 

0 ® 

~ 
DIPOLE 

Cl POLE 

Figure 33: The use of Y MY in a sequence of two identical dipoles of opposite signs. 
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5.5 Output Procedures 

These procedures are dedicated to the printing of particle coordinates, histograms, spin coordinates, etc. They 
may be called for at any spot in the data pile. 
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CLORB: Beam Centroid Path; Closed Orbit 

CLORB computes the beam centroid path, from average value of particle coordinates as observed at LABEL'ed 
keywords. 

In conjunction with REBELOTE, this procedure computes the closed orbit in the periodic structure delimited 
with REBELOTE, by the same means. 

The LABEL list of concern constitutes the information contained in the data record that follows the keyword 
CLORB. 
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FAISCEAU, FAISCNL, FAISCNLA: Print/Store Particle Coordinates 

FAISGEAU can be introduced anywhere in a structure. It produces a print of initial and actual coordinates of 
the particles at the location where it stands, together with their tagging indices and letters, following the same 
format as for FAISGNL (except for SORT(l) which is not printed) . 

FAISGNL has a similar effect, except that the information is stored in a dedicated file FNAME (standard 
name is FNAME = 'zgoubi.fai' for post-processing with zgplot). This file may further on be read by means of 
OBJET, option KOBJ = 3, or used for other purposes such as graphics (see Part D of the Guide). The data 
written to that file are formatted and ordered according to the FORTRAN sequence below 

OPEN (UNIT= NL, FILE = FNAME, STA'l1JS = 'NE'W') 
DO 1 1=1, IMAX 

WRITE(NL,100) LET(l),IEX(I),(FO(J,I),J=1,6),(F(J,I),J=1,6),l(l),IREP(l),SORT(I),DUM,DUM,RET(I), DPR(I), IPASS 
100 FORMAT(1l, A1, 11, 12, lP, 6E16.8, /, 6E16.8, 213, /,11, 5E16.8, 16) 

1 CONTINUE 

The meaning of these parameters is the following (see the keyword OBJET) 

LET(!) 
JEX, I, IREP(I) 
FO(l -6,I) 
F(l -6,J) 
SORT( I) 

DUM 
RET(I), DP R(I) 

!PASS 

one-character string, for tagging particle number I 
flag, particle number, index 
coordinates D, Y, T, Z, P and path length at the origin of the structure 
idem, at the current position 
path length at which the particle has eventually been stopped 
(see GHAMBR or GOLLIMA) 
dummy 
synchrotron phase space coordinates; RET =phase (radian), 
DPR =momentum dispersion (MeV/c) (see CAVITE). 
turn number (see REBELOTE) 

FAISGNLA has an effect similar to FAISGNL, with two more features. On the first data line, FNAME may 
be followed by a series of up to 10 LABEL's proper to the elements of the data file at the exit of which the 
print should occur; if there is no label, the print occurs by default at the location of FAISGNLA; if there 
are labels the print occurs right downstream the optical element wearing those labels (and no longer at the 
FAISGNLA location). The next data line gives a parameter IP: printing will occur every IP other pass, if 
using REBELOTE with NPASS 2::: IP -1. For instance the data list 

FAISCNLA 
zgoubi.fai 
12 

HPCKUP VPCKUP 

will result in output prints into zgoubi.fai, every 12 other pass, each time elements of the zgoubi.dat data list 
labeled either HPGKUP or VPCKUP are encountered. 
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FOCALE, IMAGE[S]: Coordinates and Beam Dimension, Localization and Size of Horizontal 
Waist 

FOCALE calculates the dimensions of the beam and its mean transverse position, at a longitudinal distance 
XL from the position corresponding to the keyword FOCALE. 

IMAGE computes the location and size of the closest horizontal waist. 

IMAGES has the same effect as IMAGE, but, in addition, for a non-monochromatic beam it calculates as many 
waists as there are distinct momenta in the beam, provided that the object has been defined with a classification 
of momenta (see OBJET, KOBJ = 1, 2 for instance). 

Optionally, for each of these three procedures, Zgoubi can list a trace of the coordinates in the X, Y and in 
the Y, Z planes. 

The following quantities are calculated for the N particles of the beam (IMAGE, FOCALE) or of each group 
of momenta (IMAGES) 

• Longitudinal position: 

FOCALE: X = XL 

IMAGE{S]: X = 
:r;;:l J:'i * tgTi - ( :r;;:l J:'i * :r;;:l tgTi) IN 

:r;;:l tg2Ti - ( :r;;:l tgTi) 
2 

IN 

where Y1 and T1 are the coordinates of the first particle of the beam (IMAGE, FOCALE) or the first 
particle of each group of momenta (IMAGES). 

• Transverse position of the center of mass of the waist (IMAGE[S]) or of the beam (FOCALE), with respect 
to the reference trajectory 

1 N 1 N 
YM = - ~(J:'i +XtgTi)-Y = - ~y Mi N{;;f_ N{;;f_ 

• FWHM of the image (IMAGE{S]) or of the beam (FOCALE), and total width, respectively, W and WT 

1 

W = 2.35 (~ t Y Ml - Y M
2

) 

2 

•=1 

WT= max(Y Mi) - min(Y Mi) 

FOCALEZ, IMAGE[S]Z: Coordinates and Beam Dimensions, Localization and Size of Vertical 
Waist 

Similar to FOCALE and IMAGE[SJ, but the calculations are performed with respect to the vertical coordinates 
Zi and Pi, in place of J:'i and Ti. 
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HISTO: 1-D Histogram 

Any of the coordinates used in Zgoubi may be histogrammed, namely initial Yo, To, Zo, Po, So, Do or actual 
Y, T, Z, P, S, D particle coordinates ( S = path length ; D may change in decay process simulation with 

MCDESINT, or when ray-tracing in E fields), and also spin coordinates and modulus Bx, Sy, Bz and llsll· 
HISTO can be used in conjunction with MCDESINT, for statistics on the decay process, by means of TYP. 
TYP is a one-character variable. If it is set equal to 'S', only secondary particles will be histogrammed. If it is 
set equal to 'P', then only primary particles will be histogrammed. For no discrimination between S-econdary 
and P-rimary particles, TYP = 'Q' must be used. 

The dimensions of the histogram (number of lines and columns) may be modified. It can be normalized With 
NORM= 1, to avoid saturation. 

Histograms are indexed with the parameter NH. This allows making independent histograms of the same 
coordinate at several spots in a structure. This is also useful when piling up problems in an input data file (see 
also RESET). NH is in the range 1-5. 

If REBELOTE is used, the statistics on the l+NPASS runs in the structure will add up. 

IMAGE[S][Z]: Localization and size of Vertical Waist 

See FOCALE[Z]. 
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MATRIX: Calculation of Transfer Coefficients 

MATRIX causes the calculation of the transfer coefficients of the structure, at the spot where it is introduced 
in the structure, or at the closest horizontal focus. In this last case the position of the focus is calculated­
automatically in the same way as the position of the waist in IMAGE. Depending on option IFOC, MATRIX 
also delivers the Twiss matrix and tune numbers in the hypothesis of a periodic structure. 

Depending on the value of option IORD, different procedures follow 

• If IORD = 0, MATRIX is inhibited (equivalent to FAISCEAU, whatever IFOC). 

• If IORD = 1, the first order transfer matrix [R.;j] is calculated, from a third. order expansion of the 
coordinates, for instance 

y+ = ( ~) To + ( ~) T6 + ( ~) T~ 
y- = - ( ~) To + ( ~) TJ - ( ~) TJ 

which gives, neglecting third order terms 

(y) y+ _ y-
Rll = To = 2To 

• If IORD = 2, fifth order Taylor expansions are used for the calculation of the first order transfer matrix 
[R.;j] and the second order matrix ['.lij1c]· Other higher order coefficients are also calculated. 

The next option, IFOC, acts as follows 

• If IFOC = 0, the transfer coefficients are calculated at the position of MATRIX, and with respect to particle 
1 taken as a reference (for instance, y+ and r+ above are defined for particle I as y+ = Y+(J) - Y(l), 
and r+ = T+(J) -T(l)). 

• If IFOC = 1, the transfer coefficients are calculated at the horizontal focus which is the closest to MATRIX 
(determined automatically), while the reference direction is that of particle 1 (for instance, y+ is defined 
for particle Fasy+= Y+(J) - Yrocus, and r+ is defined as r+ = T+(J) -T(l)). 

• If IFOC = 2, no change of reference frame is performed: the coordinates refer to the current frame. 
Namely, y+ = Y+(I), r+ = T+(J), etc. 

• If IFOC = 10 + NPeriod, MATRIX calculates the transfer coefficients of the structure, assuming that 
it is NPeriod-periodic, and deduces the corresponding Twiss matrix and tune numbers. No change of 
reference is performed for this calculation. 

The object nec~ary for the calculation of [R.;j] with IORD = 1 may be generated automatically by means 
of OBJET with option KOBJ = 5. When using IORD = 2, the object may be generated automatically with 
OBJET and KOBJ = 6. 
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PLOTDATA: Coordinate Output for PLOTDATA Graphic Software (25) 

To be documented. 
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SPNPRNL, SPNPRNLA, SPNPRT: Print/Store Particle Spin Coordinates 

SPNPRNL has the same effect as SPNPRT (see below), except that the information is stored in a dedicated 
file FNAME (standard is FNAME = 'zgoubi.spn' for post-processing with zgplot). The data are formatted 
and ordered according to the FORTRAN sequence below 

OPEN (UNIT= NL, FILE = FNAME, STATIJS = 'NEW') 
DO 1 I=1, IMAX 

WRITE (NL,100) LET(I), IEX(I), (Sl(J,l)J=1,4), (SF(J,l),J=1,4), GAMMA, I 
100 FORMAT(1X, A1, 12, 1P, BE15.7, /, E15.7, 213, I6) 
1 CONTINUE 

The meaning of these parameters is the following 

LET(l),IEX(I) 
Sl(l-4,I) 
SF(l-4,I) 
GAMMA 
I 
IMAX 
!PASS 

tagging character and flag (see OBJET) 
spin components BX, SY, SZ and modulus, at the origin 
idem, at the current position 
Lorentz relativistic factor 
particle number 
total number of particles ray-traced (see OBJET) 
turn number (see REBELOTE) 

SPNPRNLA has an effect similar to SPNPRNL, with one more feature. The line next to FNAME gives a 
parameter IP printing will occur every IP other pass, when using REBELOTE with NPASS 2::: IP - 1. 

SPNPRT can be introduced anywhere in a structure. It produces a listing (into zgoubi.res) of the initial and 
actual coordinates and modulus of the spin of the IMAX particles, at the location where it stands, together 
with their Lorentz factor 'Y, following the format detailed above. The mean values of the spin components are 
also printed. 
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5.6 Complementary Features 

5.6.1 Backward Ray-tracing 

For the purpose of parameterization for instance, it may be interesting to ray-trace backward from the image 
toward the object. This can be performed by first reversing the position of optical elements in the structure, 
and then reversing the integration step sign in all the optical elements. 

An illustration of this feature is given in the following Figure 34. 

QUADRUPOLE 

drift 20em drift SOcm 

point object 

<AJ 
QUADRUPOLE 

spread drift 50cm 
object 1---i>-------r 

spracd 
image 

point 
image 

Figure 34: A. Regular forward ray-tracing, from object to image. 
B. Same structure, with backward ray-tracing from image to object: 
negative integration step XPAS is used in the quadrupole. 

5.6.2 Checking Fields and Trajectories in Magnets 

In all magnetic elements, an option index IL is available. It is normally set to 0 and in this case has no effect. 
IL = 1 causes a print in zgoubi.res of particle coordinates and field along trajectories in the magnet. In the 
meantime, a calculation and summation of the values of V · B, V x B and V'2B at all integration steps is 
performed, which allows a check of the behavior of B in field maps (all these derivatives should normally be 
zero). 
IL= 2 causes a print of particle coordinates and other informations in zgoubi.plt which can further be processed 
with zgplot2• 

When dealing with maps (e.g., CARTEMES, ELREVOL ), another option index IC is available. It is·normally 
set to 0 and in this case has no effect. 
IC= 1 causes a print of the field map in zgoubi.res. 
IC= 2 will cause a print of field maps in zgoubi.map which can further be processed with zgplot2 . 

5.6.3 Labeling keywords 

Keywords in Zgoubi data file zgoubi.dat can be LABEL'ed, for the purpose of the execution of such procedures 
as CLORB, FAISCNL[A] , SCALING. 
Each keyword accepts two LABEL's, of which the first one is used for the above mentioned purpose. 

2See Part D of the Guide. 
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5.6.4 Multiturn tracking in circular machines 

Multiturn tracking in circular machines can be performed by means of the keyword REBELOTE, put at the 
end of the optical structure with its argument NPASS+l being the number of turns to be performed. In order 
that the IMAX particles of the beam start a new turn with the coordinates they have reached at the end of the 
previous one, the option K = 99 has to be specified in REBELOTE. 

Synchrotron acceleration can be simulated, following the procedure below 

- CAVITE appears at the end of the structure (before REBELOTE), with option IOPT= 1 

- the R.F. frequency of the cavity is given a timing law by means of SCALING, family CAVlTE 

- the magnets are given the same timing law Bp(T), (where T = 1 to NPASS+l is the turn number) by 
means of SCALING. 

Eventually some families of magnets may be given a law which does not follow Bp(T), for the simulation of 
special processes (e.g. fast crossing of spin resonances with independent families of quadrupoles). 

5.6.5 Positioning of Magnets and field maps 

The last record in most magnets and field maps is the positioning flag KPOS, followed by the parameterss 
XCE, YOE for translation and ALE for rotation. The positioning works in two different ways, depending on 
whether they are defined in Cartesian (X, Y, Z) coordinates (e.g., QUADRUPO, TOSCA), or polar (R, 0, Z) 
coordinates (DIPOLE). 

Cartesian Coordinates: 

If KPOS = 1, the X-axis of the element coincides with the X-axis of the incoming reference. 
If KPOS = 2, the shifts XCE and YOE, and the tilt angle ALE are taken into account, for the positioning of 
the element with respect to the incoming reference, as shown in Fig. 35. KPOS = 2 can also be used to simulate 
a misalignment. The effect is equivalent to a CHANGREF transformation placed right upstream the magnet, 
followed by the reverse transformation right downstream. 
KPOS = 3 option is available for some magnets (e.g., BEND, MULTIPOL); it positions automatically the 
magnet in the following way, convenient for periodic structures. It is effective only if a non zero dipole component 
B 1 is present; entrance and exit frames are shifted by YOE (XCE is not used) and tilted w.r.t. the magnet by 
an angle 

• either ALE/2 if ALE:;fO 
•or by half the deviation 0/2 such that L = 2B<Jff0 sin(02) if ALE=O (L =magnet length, BORO =refer-

ence rigidity as defined in OBJET). This is equivalent to the sequence CHANGREF(0,0,-0/2), CHANGREF(O, YCE,O) 
right upstream the magnet, followed by CHANGREF(O,-YCE,-0/2). 

Polar Coordinates 

If KPOS = 1, the element is positioned automatically in such a way that a particle entering with zero initial 
coordinates and 1 +DP= Bp/BORO relative momentum will reach position (RM,. At) in the element with 
T = 0 angle with respect to the moving frame in the polar coordinates system of the element (Fig. 36; see 
DIPOLE and POLARMES). 
If KPOS = 2, the map is positioned in such a way that the incoming particle will enter it at radius RE with 
.angle TE. The reference frame of Zgoubi is positioned in a similar way with respect to the map, at the exit 
face, by means of the two parameters RS (radius) and TS (angle) (see Fig. lOA.). 

5.6.6 Coded integration step 

In several optical elements {e.g., all multipoles, BEND) the integration step (in general noted XPAS) can be 
coded under the form XPAS = b.fffElO in order to allow two different step sizes in the uniform part of the filed 
(the magnet body) and in the field fall-off regions. b is an arbitrary integer and fff is a 3-digit integer; they 
give the number of steps respectively in the body and fringe field regions. For instance 120.012E10 requests 120 
steps in the body and 12 in the fringe field regions. The maximum allowed value for fff is 999 steps. 
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Figure 35: Positioning of a Cartesian coordinate optical element when KPOS= 2. 

Figure 36: Positioning of a polar field map when KPOS= 1. 

110 



5.6. 7 Ray-tracing of an arbitrarily large number of particles 

Monte Carlo multiparticle simulations involving an arbitrary number of particles can be performed by means 
of REBELOTE, put at the end of the optical structure, with its argument NPASS being the number of passes 
through REBELOTE, and (NPASS+l) *IMAX the number of particles to be ray-traced. In order that new 
initial conditions (D, Y, T, Z, P, X) be generated at each pass, K = 0 has to be specified in REBELOTE. 
Statistics on coordinates, spins, and other histograms can be performed by means of such procedures as HISTO, 
SPNTRK, etc. that stack the information from pass to pass. 

5.6.8 Stopped particles: the JEX flag 

As described in OBJET, each particle I= 1, IMAX is attached a value IEX(I) of the IEX flag. Normally, 
IEX(I) = l. Under certain circumstances, IEX may take negative values, as follows 

- 1 : the trajectory happened to wander outside the limits of a field map 

- 2 : too many integration steps in a field map 

- 3 : deviation happened to exceed ~ in an optical element 

- 4: stopped in chamber walls (by the procedures CHAMBR, COLLIMA) 

- 5 : too many iterations in subroutine DEPLA 

Only in the case I EX = -1 will the particle not be stopped. 

5.6.9 Negative rigidity 

Zgoubi can handle negative rigidities Bp = p/q. This is equivalent to considering either particles of negative 
charges (q < 0), or counter going particles (p < 0), or virtually reversed fields (w.r.t. the field sign that shows 
in the optical element data list). 
Negative rigidities may be specified in terms of BORO < 0 or D = Bp/BORO < 0 when defining the initial 
coordinates with OBJET and MCOBJET. 
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AIM ANT 
AUTO REF 
BEND 
BINARY 
BREVOL 
CARTEMES 
CAVITE 
CHAMBR 
CHANG REF 
CIBLE 
CLO RB 
COLLIMA 
DECAPOLE 
DIPOLE 
DODECAPO 
DRIFT 
EBMULT 
EL2TUB 
ELMULT 
ELREVOL 
END 
ESL 
FAISCEAU 
FAISCNL 
FAISCNLA 
FIN 
FIT 
FOCALE 
FOCALEZ 
GAS CAT 
HIS TO 
IMAGE 
IMAGES 
IMAGESZ 
IMAGEZ 
MAP2D 
MATRIX 
MCDESINT 
MCOBJET 
MULTIPOL 
OBJET 
OBJETA 
OCTUPOLE 
ORD RE 
PARTICUL 
PLOTDATA 
POISSON 
POLARMES 
PS170 
QUADISEX 
QUADRUPO 

Glossary of keywords 

Generation of a dipole magnet 2-D map ........................................ 121 
Automatic transformation to a new reference frame ............................ 125 
Bending magnet ............................................................... 126 
BINARY /FORMATTED data converter ....................................... 127 
1-D uniform mesh magnetic field map .......................................... 128 
2-D cartesial'l; uniform mesh magnetic field map ................................ 129 
Accelerating cavity ............................................................ 131 
Long transverse aperture limitation ............................................ 132 
Transformation to a new reference frame ....................................... 133 
Generate a secondary beam from target interaction ............................ 134 
Beam Centroid Path; Closed Orbit ............................................. 135 
Collimator ..................................................................... 136 
Decapole magnet .............................................................. 137 
Generation of a dipole magnet 2-D map ........................................ 138 
Dodecapole magnet ............................................................ 140 
Field free drift space ........................................................... 141 
Electro-magnetic multipole .................................................... 142 
Two-tubes electrostatic lense ................................................... 144 
Electric multipole .............................................................. 145 
1-D uniform mesh electric field map ............................................ 146 
End of input data list; see FIN ................................................ 148 
Field free drift space ........................................................... 141 
Print particle coordinates ..... : ................................................ 147 
Store particle coordinates into file FNAME .................................... 147 
Store coordinates every IP other pass at labelled elements ..................... 147 
End of input data list .......................................................... 148 
Fitting procedure ............................................................... 149 
Particle coordinates and horizontal beam dimension at distance XL ............ 150 
Particle coordinates and vertical beam dimension at distance XL .............. 150 
Gas scattering ................................................................. 151 
1-D histogram ................................................................. 152 
Localization and size horizontal waist .......................................... 153 
Localization and size of horizontal waists ....................................... 153 
Localization and size of vertical waists ......................................... 153 
Localization and size of vertical waist .......................................... 153 
2-D cartesian uniform mesh magnetic field map without symmetry ............. 154 
Calculation of transfer coefficients .............................................. 155 
Monte-Carlo simulation of in-flight decay ...................................... 156 
Monte-Carlo generation of a 3-D object ........................................ 157 
Magnetic multipole ............................................................ 160 
Generation of an object ........................................................ 161 
Object from Monte-Carlo simulation of decay reaction ......................... 163 
Octupole magnet .............................................................. 164 
Higher order Taylor expansions in lenses ....................................... 165 
Particle characteristics ......................................................... 166 
Intermediate outputs for the PLOTDATA computer graphic software .......... 167 
Read field data from POISSON output ........................................ 168 
2-D polar mesh field map ...................................................... 169 
Simulation of a round shape dipole magnet .................................... 170 
Sharp edge magnetic multipoles ................................................ 171 
Quadrupole magnet ............................................................ 172 
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REBELOTE 
RESET 
SCALING 
SEP ARA 
SEXQUAD 
SEXTUPOL 
SOLENOID 
SPNPRNL 
SPNPRNLA 
SP NP RT 
SPNTRK 
SYNRAD 
TARGET 
TOSCA 
TRANS MAT 
TRAROT 
UNIPOT 
VENUS 
WIENFILT 
YMY 

Jump to the beginning of Zgoubi input data file ................................ 17 4 
Reset counters and flags ....................................................... 175 
Time scaling of power supplies and R.F. . ................... : .................. 176 
Wien Filter - analytic simulation ............................................... 177 
Sharp edge magnetic multipole ................................................. 178 
Sextupole magnet .............................................................. 179 
Solenoid ....................................................................... 180 
Store spin coordinates into file FNAME ........................................ 181 
Store spin coordinates every II' other pass ..................................... 181 
Print spin coordinates ......................................................... 181 
Spin tracking .................................................................. 182 
Synchrotron radiation .......................................................... 183 
Generate a secondary beam from target interaction; see CIBLE ............... 134 
2-D and 3-D cartesian uniform mesh field map ................................. 184 
Matrix transfer ................................................................ 185 
Translation-Rotation of the reference frame .................................... 186 
Unipotential electrostatic lense ................................................. 187 
Simulation of a rectangular dipole magnet ..................................... 188 
Wien filter ..................................................................... 189 
Reverse signs of Y and Z axes .................................................. 190 
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Optical elements versus keywords 

This glossary gives a list of keywords suitable for the simulation of the common optical elements. They 
are classified in three categories: magnetic, electric and electromagnetic elements. 

Field map procedures are also cataloged; in most cases an adequate field map can be used for simulating 
these elements. 

MAGNETIC ELEMENTS 

Decapole 
Dipole 
Dodecapole 
Multipole 
Octupole 
Quadrupole 
Sextupole 
Skewed multipoles 
Solenoid 

Field maps 

1-D, cylindrical symmetry 
2-D, mid-plane symmetry 
2-D, no symmetry 
3-D 

ELECTRIC ELEMENTS 

Decapole 
Dipole 
Dodecapole 
Multipole 
Octupole 
Quadrupole 
R.F. cavity 
Sextupole 
Skewed multipoles 
2-tube (bipotential) lense 
3-tube ( unipotential) lense 

Field maps 

10, cylindrical symmetry 

ELECTROMAGNETIC ELEMENTS 

Decapole 
Dipole 
Dodecapole 
Multipole 
Octupole 
Quadrupole 
Sextupole 
Skewed multipoles 
Wien filter 

DECAPOLE, MULTIPOL 
AIMANT, BEND, DIPOLE, MULTIPOL, QUADISEX 
DODECAPO, MULTIPOL 
MULTIPOL, QUADISEX, SEXQUAD . 
OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD 
QUADRUPO, MULTIPOL, SEXQUAD 
SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD 
MULTIPOL 
SOLENOID 

BREVOL 
CARTEMES, POISSON, TOSCA 
MAP2D 
TOSCA 

ELMULT 
ELMULT 
ELMULT 
EL MU LT 
ELMULT 
ELMULT 
CAVITE 
ELMULT 
ELMULT 
EL2TUB 
UNIPOT 

ELREVOL 

EBMULT 
EBMULT 
EBMULT 
EB MU LT 
EB MU LT 
EB MU LT 
EBMULT 
EBMULT 
SEPARA, WIENFILT 
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INTRODUCTION 

Here after is given a detailed description of input data formatting and units. All available keywords appear in 
alphabetical order. 

Keywords are read from the input data file by an unformatted FORTRAN READ statement. They may . 
therefore need be enclosed between quotes (e.g., 'DIPOLE'). 

Text string data such as comments or file names, are read by formatted READ statements. Therefore no quotes 
are needed. Numerical variables and indices are read by unformatted READ. It may therefore be necessary 
that integer variables be assigned an integer value. 

In the following tables 

• the first column states the input numerical variables, indices and text strings, 

• the second column gives brief explanations, 

• the third column gives the units or ranges of the input variables and indices, 

• the fourth column indicates whether the inputs are integers (I), reals (E) or text strings (A). For example, 
'I, 3*E' means that one integer followed by 3 reals must be entered. 'A80' means that a text string of 
maximum 80 characters must be entered. 
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AIM ANT Generation of a dipole magnet 2-D map 

Bz = :FBo ( 1 - N ( R·i/ir) + B ( RR_Fff )2 + G ( RR_Eff )3) 

NFACE, IC, IL Number of field boundaries 2-3, 0-2, 0-2 3*1 
IC= 1, 2: print field map 
IL= 1, 2: print field and coordinates on trajectories 

IAMAX, IRMAX Azimuthal and radial number of nodes of the mesh ~ 400, ~ 200 2*1 

Bo, N, B, G Field and field indices kG, 3* 4*E 
no dim. 

AT, AGENT, RM, Mesh parameters: total angle of the map; azimuth for 2*deg, 3*cm 5*E 
RMIN, RMAX positioning of EFB's; mean radius; minimum and 

maximum radii 

ENTRANCE FIELD BOUNDARY 

.A,e Fringe field extent; index for fringe field as follows: cm, (cm) 2*E 
if e ;:::: 0: second order type fringe field with 
linear variation over e 
if e = -1: exponential type fringe field: 
F = (1 + exp(P(s)))-1 

P(s) =Co+ C1(X) + C2(f)2 + ... + Cs(f )s 

NC, Co - Cs, shift NC= 1 +order of P(s); Co to Cs: see above; 0-6, 6* I, 7*E 
EFB shift (ineffective if e;:::: 0) no dim., cm 

w+, 0, Ri, U1, U2, R2 Azimuth of entrance EFB with respect to AGENT; 2*deg, 4*cm 6*E 
wedge angle of EFB; radii and linear 
extents of EFB (use I U1,2 I= oo when Ri,2 = oo) 

(Note: .A= 0, w+ = ACENT and(}= 0 for sharp edge) 

EXIT FIELD BOUNDARY 
(See ENTRANCE FIELD BOUNDARY) 

>., e cm, (cm) 2*E 
Fringe field parameters 

NC, Co - Cs, shift 0-6, 6* 1, 7*E 
no dim., cm 

w-, 0, Ri, Ui, U2, R2 Positioning and shape of the exit EFB 2*deg, 4*cm 6*E 

(Note: >. = 0, w- =-AT+ACENT and 0 = 0 for 
sham edge) 
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if NFACE = 3 LATERAL FIELD BOUNDARY 
(See ENTRANCE FIELD BOUNDARY) 
Next 3 records only if NFACE = 3 

.A;E cm, (cm) 2*E 
Fringe field parameters 

NC, Co - Cs, shift 0-6, 6* I, 7*E 
no dim., cm 

w-, B, Ri, U1, U2, R2, Positioning and shape of the lateral EFB; 2*deg, 5cm 7*E 
RM3 RM3 is the radial position on azimut AGENT 

NBS Option index for perturbations to the field map normallyO I 

if NBS= 0 Normal value. No other record required 

if NBS= -2 The map is modified as follows: 

Ro, D.B/Bo B transforms to B * ( 1 + i~ RMA~--RAM 1 N) cm, n.o dim. 2*E 

if NBS= -1 the map is modified as follows: 

Bo, D.B/Bo B transforms to B * ( 1 + AB 9- 9o) Bo AT deg, no dim. 2*E 

if NBS~ 1 Introduction of NBS shims 

For I= 1, NBS The following 2 records must be repeated NBS times 
l 
Ri, R2, 81, 82, .A Radial and angular limits of the shim; .A is unused 2*cm, 2*deg, cm 5*E 

'Y, a:, µ, {3 geometrical parameters of the shim 2*deg, 4*E 
2*no dim. 

IO RD RE Interpolation polynomial order: 2, 4 or 25 I 
2 =second order, 9-point grid 

25 =second order, 25-point grid 
4 =fourth order, 25-point grid 

XPAS Integration step cm E 

KPOS Positioning of the map, normally 2. Two options: 1-2 I 

ifKPOS = 2 Positioning as follows: 
RE, TE, RS, TS Radius and angle of reference, respectively, cm, rad, cm, rad 4*E 

at entrance and exit of the map. 

ifKPOS = 1 Automatic positioning of the map, by means of 
DP reference relative momentum no dim. E 
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\ 

EXIT FACE 

\ OF"THE tlMP 

(A) 

END FACE 

OFTI-E MAP 
(8) 

A: Parameters used to define the field map and geometric boundaries. 
B: Parameters used to define the field map and fringe fields. 
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F 

EFB 

F- S2 

-A 

Second order type fringe field. 

I 
EFB 

(shift/= 0) 

-"J.. 

F 

EFB 
(shift= 0) 

~ 
Shift 

Exponential type fringe field. 
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AUTOREF Automatic transformation to a new reference frame 

1 

if 1=3 
11, 12, 13 

1: Equivalent to CHANGREF (XCE = 0, YOE= Y(l), ALE= T(l)) 1-2 

2: Equivalent to CHANGREF (XW, YW, T(l)), with (XW, YW) 
being the position of the intersection (waist) of particles 1, 4 and 5 
(useful with MATRIX, for automatic positionning of the first order focus) 

3: Equivalent to CHANGREF (XW, YW, T(ll)), with (XW, YW) 
being the position of the intersection (waist) of particles 11, 12 and 13 
(for instance: 11 =central trajectory, 12 and 13 = paraxial trajectories 
that intersect at the first order focus) 

Next record only if 1 = 3 
Three particle numbers 
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BEND Bending magnet 

IL IL= 1, 2: print field and coordinates 0-2 I 
along trajectories (otherwise IL = 0) 

XL, YL, Bo Length; unused; field cm, unused, kG 3*E 

Entrance face: 
XE, AE, WE Integration zone extent; fringe field cm, cm, rad 3*E 

extent (normally ~ gap height); wedge angle 

N, Co-Cs Unused; fringe field coefficients: B(s) = BoF(s), unused, 6*no I, 6*E 
with F(s) = (1 + exp(P(s))-1 and P(s) = ~=O Ci(s(>.)i dim. 

Exit face: 
Xs, >.s, Ws See entrance face cm, cm, rad 3*E 

N, Co-Cs unused, 6*no I, 6*E 
dim. 

XPAS Integration step cm E 

KPOS, XCE, KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad I, 3*E 
YCE,ALE. shifts, tilt (unused if KPOS=l) 

KPOS = 3: 
entrance and exit frames are shifted by YCE 
and tilted w.r.t. magnet by an angle 
• either ALE/2 if ALE:rfO 
• or half the deviation if ALE=O 

Geometry and parameters in BEND: 
XL = length, B 0 = field, () = deviation. 
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BINARY 

NF 

The next NF lines: 
FNAME 

Binary /Formatted data converter 

Number of files to convert 

Name of the file to be translated 
(begin with "B_" iff binary) 
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BREVOL 

IC,IL 

BNORM 

TIT 

IX 

FNAME1 

ID,A,B,C 
[A' B' C' , , 
B",etc., if ID:?'.: 2] 

IO RD RE 

XPAS 

KPOS, XCE, 
YOE, ALE 

1-D uniform mesh magnetic field map 
X-axis cylindrical symmetry is assumed 

IC= 1, 2: print the map 
IL = 1: print field and coordinates along trajectories 

N 1. · ffi · desired field orma izat1on coe c1ent: field read 

Title 

Number of longitudinal nodes of the map 

Filename (e.g., solenoid.map) 

Integration boundary. Ineffective when ID = 0. 
ID= -1, 1or:?'.:2: as for CARTEMES 

unused 

Integration step 

KPOS=l: element aligned, 2: misaligned; 
shifts, tilt (unused if KPOS=l) 

0-2, 0-2 

no dim. 

~ 400 

:?'.: -1, 2*no dim., 
cm [,2*no dim., 
cm, etc.] 

2, 4 or 25 

cm 

1-2, 2*cm, rad 

1 FNAME contains the field data. These must be formatted according to the following FORTRAN sequence: 

OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED']) 
DO 1I=1, IX 
IF (BINARY) THEN 

READ(NL) X(I), BX(I) 
ELSE 

READ(NL,*) X(I), BX(I) 
ENDIF 

CONTINUE 

where X(l) and BX(!) are the longitudinal coordinate and field component at node (I) of the mesh. Binary file names 
FNAME must begin with B_. 'Binary' will then automatically be set to '.TRUE.' 
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CARTEMES 2-D Cartesian uniform mesh magnetic field map 
mid-plane symmetry is assumed 

IC, IL IC = 1, 2: print the map 0-2, 0-2 
IL= 1, 2: print field and coordinates along trajectories 

BNORM Normalization coefficient: desired field no dim. field read 

TIT Title 

IX,JY Number of longitudinal (IX) and transverse (JY) :::; 400, :::; 200 
nodes of the map 

FNAME1 Filename (e.g., spes2.map) 

ID,A,B,C Integration boundary. Normally ID= 0. 2: -l,2*no dim., 
[A' B' C' A" 

' ' ' ' 
ID = -1: integration in the map begins at cm [,2*no dim., 

B",etc., if ID 2: 2] entrance boundary defined by AX +BY + C = 0. cm, etc.] 
ID = 1: integration in the map is stopped 
at exit boundary defined by AX +BY + C = 0. 
ID 2: 2: entrance (A, B, C) and up to ID - 1 exit 
(A' B' C' A" B" etc) boundaries ' ' ' ' ' . 

IO RD RE Interpolation polynomial order 2, 4 or 25 
(see DIPOLE) 

XPAS Integration step cm 

KPOS, XGE, KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad 
YGE,ALE shifts, tilt (unused if KPOS=l) 

1 FNAME contains the field data. These must be formatted according to the following FORTRAN sequence: 

OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' (,FORM='UNFORMATTED')) 
IF (BINARY) THEN 

READ(NL) (Y(J), J=l, JY) 
ELSE 

READ(NL,100) (Y(J), J=l, JY) 
ENDIF 

100 FORMAT(lO F8.2) 
DO 1 l=l,IX 

IF (BINARY) THEN 
READ(NL) X(I), (BMES(I,J), J=l, JY) 

ELSE 
READ(NL,101) X(I), (BMES(I,J), J=l, JY) 

101 FORMAT(lO F8.2) 
ENDIF 

1 CONTINUE 

2*I 

E 

ABO 

2*I 

ABO 

I, 3*E 
[3*E,etc.] 

I 

E 

I, 3*E 

where X (I) and Y ( J) are the longitudinal and transverse coordinates and BMES is the Z field component at a node (I, J) 
of the mesh. For binary files, FNAME must begin with B_.'Binary' will then automatically be set to '.TRUE.' 
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~ Q. 
WO: 
LJE z LJ,__ __ 

Cl: :CI := 1-1 
z~ 
liJ c::::J, 

I 
I 

y /\ 

,___ _______________________ ,_·-·-·- -

OXY is the coordinate system of the mesh. Integration zone limits may be defined, using ID =I 0: particle 
coordinates are extrapolated linearly from the entrance face of the map, into the plane A' X + B'Y + C' = O; 
after ray-tracing inside the map and stopping on the integration boundary AX+ BY+ C = 0, coordinates are 
extrapolated linearly to the exit face of the map. 
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CAVITE1 Accelerating cavity 
l:i W = q V sin(27rhf !:it + 'Ps) 

IOPT Option 0-3 I 

IflOPT=O Element inactive 

x,x unused 

lfIOPT=12 f RP follows the timing law given by SCALING 

£,h Reference closed orbit length; harmonic number m, no dim. 2*E 

v,x R.F. peak voltage; unused V, unused 2*E 

IfIOPT=2 fRP follows ~Ws = qVsin<Ps 
£,R Reference closed orbit length; harmonic number m, no dim. 2*E 

V,<Ps R.F. peak voltage; synchronous phase V, rad 2*E 

IfIOPT=3 No synchrotron motion: l:iW = qV sin<Ps 

x,x unused; unused 2*unused 2*E 

V, <Ps R.F. peak voltage; synchronous phase V, rad 2*E 

1 Use PARTICUL to declare mass and charge. 
2For ramping the R.F. frequency following Bp(t), use SCALING, with family CAVITE. 
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CHAMBR Long transverse aperture limitation1 

I A 0: element inactive 
1: redefinition of the aperture 
2: stop testing and reset counters, print 
information on stopped particles. 

IFORM, YL2 , ZL, YC, ZC Taken into account only if IA= 1. 
IFORM = 1: rectangular chamber; horizontal 
(vertical) dimension ±YL (±ZL); 
centered at YC, ZC. 
IFORM = 2: elliptical chamber; horizontal 
(vertical) axis ±YL(±ZL); 
centered at YC, ZC. 

1 Any particle out of limits is stopped. 

0-2 I 

1-2, 4*cm I, 4*E 

2When used with an optical element defined in polar coordinates (e.g. DIPOLE) Y L is the radius and Y 0 stands for the mean 
radius (normally, YO~ RM). 
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CHANG REF 

XCE, YCE, ALE 

'Iransformation to a new reference frame 

Longitudinal and transverse shifts, 
followed by Z-axis rotation 

2*cm, deg 

Y1 
Z1 
51 

y 
Y2 
Z2 
52 

-1 
~--i--=:;;;..----11'-l 

Scheme of the CHANGREF procedure. 
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CIBLE, TARGET Generate a secondary beam from target interaction 

Mi, M2, Ma, Q Target, incident and scattered particle masses; 5*MeV 2*deg 
~· T2, B, /3 

NT,NP 

TS, PS, DT 

BORO 

Q of the reaction; incident particle kinetic 
energy; scattering angle; angle of the target 

Number of samples in T and P coordinates 
after CIBLE 

Sample step sizes; tilt angle 3*mrad 

New reference rigidity after CIBLE kG.cm 

Scheme of the principles of CIBLE (TARGET) 

A, T = position, angle of incoming particle 2 in the entrance reference frame 
P = position of the interaction 
B, T =position, angle of the secondary particle in the exit reference frame 
(J = angle between entrance and exit frames 
/3 = tilt angle of the target 

134 

7*E 

2*1 

3*E 

E 



CLO RB Beam Centroid Path; Closed Orbit 

N 0: inactive 
~ 1: total number of LABEL's ~o I 
at which beam centroid is to be recorded 

For I= 1, N A list of N records follows 

LABEL's N labels at which beam centroid is to be recorded strings N*A8 
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COLLIMA 

IA 

IFORM, YL, ZL, 
YO,ZO 

Collimator1 

0: element inactive 
1: element active 
2: element active and print information on stopped 
particles 

Record taken into account only if I A = 1 - 2 
IFORM = 1: rectangular collimator; horizontal 
(vertical) dimension ±Y L (±ZL ); 
centered at YO, ZO. 
IFORM = 2: elliptical collimator; horizontal 
(vertical) axis ±YL (±ZL); 
centered at YO, ZO. 

1 Any particie out of limits is stopped. 
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DECAPOLE Decapole magnet 

IL IL= 1, 2: print field and coordinates along trajectories 0-2 I 

XL, Ro, Bo Length; radius and field at pole tip 2*cm, kG 3*E 

Entrance face: 
XE,AE Integration zone extent; fringe field 2*cm 2*E 

extent (~ 2Ro, AE = 0 for sharp edge) 

NCE, Co-Cs NCE =unused unused, I, 6*E 
Co - Cs = Fringe field coefficients such that 6*no dim. 
G(s) = Go/(1 + expP(s)), with Go= Bo/R6 
and P(s) = I:~=OCi(s/>.)i · 

Xs,>.s Exit face: see entrance face 2*cm 2*E 
NCS, Co-Cs 0-6, 6*no dim. I, 6*E 

XPAS Integration step cm E 

KPOS, XCE, KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad I, 3*E 
YCE,ALE shifts, tilt (unused if KPOS=l) 

z 

y 

·-··-~ 
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DIPOLE Generation of a dipole magnet 2-D map 

Bz =FB0 (1- N( Riff) +B (RJi~M) 2 
+G (R~)3) 

NFACE, JC, IL Number of field boundaries 2-3, 0-2, 0-2 3*1 
IC = 1, 2: print field map 
IL= 1, 2: print field and coordinates on trajectories 

IAMAX, IRMAX Azimuthal and radial number of nodes of the mesh :5 400' :5 200 2*1 

Bo,N,B,G Field and field indices kG, 3* 4*E 
no dim. 

AT, AGENT, RM, Mesh parameters: total angle of the map; azimuth for 2*deg, 3*cm 5*E 
RMIN, .RMAX positioning of EFB's; mean radius; minimum and 

maximum radii 

ENTRANCE FIELD BOUNDARY 

>., e Fringe field extent (normally equal to gap size); cm, unused 2*E 
unused 
Exponential type fringe field: 
F = (1 +exp(P(s)))-1 

P(s) =Co+ C1(f) + C2(f)2 + ... + Cs(f)s 

NC, Co - Cs, shift unused; Co to Cs: see above; 0-6, 6* I,7*E 
EFB shift no dim., cm 

w+, 0, Ri, U1, U2, R2 Azimuth of entrance EFB with respect to AGENT; 2*deg, 4*cm 6*E 
wedge angle of EFB; radii and linear 
extents of EFB (use I U1,2 I= oo when Ri,2 = oo) 

(Note : >. = 0, w+ = A CENT and e = 0 for sharp edge) 

EXIT FIELD BOUNDARY 
(See ENTRANCE FIELD BOUNDARY) 

>.,~ Fringe field parameters cm, unused 2*E 
NC, Co - Cs, shift 0-6, 6*no 1, 7*E 

dim., cm 

w-, 0, R1, U1, U2, R2 Positioning and shape of the exit EFB 2*deg, 4*cm 6*E 

(Note: >. = 0, w- =-AT+ AGENT and()= 0 for 
sharp edge) 
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if NFACE = 3 

NC, Co - Cs, shift 

w-, B, Ri, U1, U2, R2, 
RM3 

NBS 

if NBS= 0 

if NBS= -2 

Ro,D..B/Bo 

if NBS= -1 

Oo, D..B/Bo 

if NBS ;?. 1 

For I= 1, NBS 

Ri, R2, 01, 02, ,\ 

/, a, µ, f3 

IO RD RE 

XPAS 

KPOS 

ifKPOS = 2 
RE, TE, RS, TS 

ifKPOS = 1 
DP 

LATERAL FIELD BOUNDARY 
(See ENTRANCE FIELD BOUNDARY) 
Next 3 records only if NFACE = 3 

Fringe field parameters 

Positioning and shape of the lateral EFB; 
RM3 is the radial position on azimut AGENT 

Option index for perturbations to the field map 

Normal value. No other record required 

The map is modified as follows: 

. ( AB R ~ ) B transforms to B * 1 + Fo RM A£-- M 1 N 

The map is modified as follows: 

B transforms to B * ( 1 + 11J! 9A_~0 ) 

Introduction of NBS shims 

The following 2 records must· be repeated NBS times 

Radial and angular limits of the shim; ,\ is unused 

Geometrical p~ameters of the shim 

Interpolation polynomial order: 
2 =second order, 9-point grid 

25 =second order, 25-point grid 
4 =fourth order, 25-point grid 

Integration step 

Positioning of the map, normally 2. Two options: 

Positioning as follows: 
Radius and angle of reference, respectively, 
at entrance and exit of the map 

Automatic positioning of the map, by means of 
reference relative momentum 
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cm, unused 2*E 

0-6, 6* I,7*E 
no dim., cm 
2*deg, 5cm 7*E 

normally 0 I 

cm, no dim. 2*E 

deg,no dim. 2*E 

2*cm, 2*deg, cm 5*E 

2*deg, 4*E 
2*no dim. 

2, 4 or 25 

cm E 

1-2 I 

cm, rad, cm, rad 4*E 

no dim. E 



DODECAPO Dodecapole magnet 

IL IL = 1, 2: print field and coordinates along trajectories 0-2 I 

XL, Ro, Bo Length; radius and field at pole tip 2*cm, kG 3*E 

Entrance face: 
XE,AE Integration zone extent; fringe field 2*cm 2*E 

extent (;S 2Ro, AE = 0 for sharp edge) 

NCE, Co-Gs NCE =unused unused, I, 6*E 
Go - Cs = Fringe field coefficients such that 6*no dim. 
G(s) = Go/(1 +expP(s)), with Go= Bo/R3 

s . 
and P(s) = Ei=O Ci(s/:>..r 

Xs, :>..s Exit face: see entrance face 2*cm 2*E 
NCS, Co-Gs 0-6, 6*no dim. I, 6*E 

XPAS Integration step cm E 

KPOS, XCE, KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad I, 3*E 
YCE,ALE shifts, tilt (unused if KPOS=l) 

y 

----~~ 

! 

······-·j 
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DRIFT, ESL Field-free drift space 

XL length 

z 

cm E 
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EBMULT1 Electro-magnetic Multipole 

IL IL= 1, 2: print field and coordinates along 0-2 
trajectories 

I 

Electric poles 
XL, Ro, Ei, E2, Eg, ... , E10 Length of element; radius at pole tip; 

field at pole tip for dipole, quadrupole, 
sextupole, octupole, decapole and 
dodecapole electric components 

Entrance face 
XE, >.E, Ei, Eg, E4, Es, Es Integration zone; fringe field extent; 

dipole fringe field extent = >.E; 
quadrupole fringe field extent = >.E * E2; 
sextupole fringe field extent = >.E * Ea; 
octupole fringe field extent = >.E * E4; 
decapole fringe field extent = >.E *Es; 
dodecapole fringe field extent = >.E * Es 
(for any component: sharp edge if field 
extent is zero) 

NCE,Co-Cs same as QUADRUPO 

Exit face 
Integration zone; as for entrance 

NOS, Co-Cs 

Ri, R2, Ra, ... ,Rio Skew angles of electric field components 

Magnetic poles 
XL, Ro, Bi, B2, Bg, ... ,Bio Length of element; radius at pole tip; 

field at pole tip for dipole, quadrupole, 
sextupole, octupole, decapole and 
dodecapole magnetic components 

Entrance face 
XE, >.E, E2, Eg, E4, Es, Es Integration zone; fringe field extent; 

dipole fringe field extent = >.E; 
quadrupole fringe field extent = >.E * E2; 
sextupole fringe field extent = >.E *Ea; 
octupole fringe field extent = >.E * E4; 
decapole fringe field extent= >..E *Es; 
dodecapole fringe field extent = >..E * Es 
(for any component: sharp edge if field 
extent is zero) 

NCE,Co-Cs same as QUADRUPO 

1 Use PARTICUL to declare mass and charge. 
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2*cm, lO*kG 12*E 

2*cm, 5*no dim. 7*E 

0-6, 6*no dim. l,6*E 

2*cm, 4 *no dim. 7*E 

0-6, 6*no dim. I, 6*E 

lO*rad lO*E 

2*cm, lO*kG 12*E 

2*cm, 5*no dim. 7*E 

0-6, 6*no dim. l,6*E 



Exit face 
Xs, >..s, 82, 83, 84, 8s, 8s Integration zone; as for entrance 2*cm, 4 *no dim. 

NCS, Co-Cs 

R1, R2, R3, ... ,Rio 

XPAS 

KPOS, XCE, 
YCE,ALE 

0-6, 6*no dim. 

Skew angles of magnetic field components lO*rad 

Integration step cm 

KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad 
shifts, tilt (unused if KPOS=l) 

7 
i'~ I 

I 
i Electrode 
I 

I 

i02 
I 

I .... -, I -.... ~ .,r l ',.. 
/• n 

' '"' ./ I ~O/ \ 
ct>' . . Y.~". i / ·. 

---~~: t --¥---- __ ()--0~---X~ 
\n-2· / /' ! ~-- .: ,)) , k $." . ' / .,,.. ,, . ..-- -· ·--,,._ ,/ . 

/[T;! '1 / . 

.. .... . : ~ ,. ... cD __ . 
1cJ:>~ 

/ 

7*E 

I, 6*E 

lO*E 

E 

I, 3*E 

-----------------· -· ---··· ··------' 
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EL2TUB1 Two-tubes electrostatic lens 

IL IL= 1, 2: print field and coordinates 0-2 I 
along trajectories 

Xi, D, X2, Ro Length of first tube; distance between tubes; 3*m 4*E 
length of second tube; radius 

Vi, Vi Potentials 2*V 2*E 

XPAS Integration step cm E 

KPOS, XCE, KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, I, 3*E 
YCE,ALE shifts, tilt (unused if KPOS=l) rad 

X1 D X2 
~ - -

1 Use PARTICUL to declare mass and charge. 
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ELMULT1 Electric Multipole 

IL IL= 1, 2: print field and coordinates along 0-2 
trajectories 

XL, Ro, Ei, E2, E3, ... , E10 Length of element; radius at pole tip; 
field at pole tip for dipole, quadrupole, 
sextupole, octupole, decapole and 
dodecapole components 

Entrance face 

2*cm, lO*kG 

I 

12*E 

XE, AE, ~.Es, E4, Es, Es Integration zone; fringe field extent; 
dipole fringe field extent = AE; 
quadrupole fringe field extent = AE * ~; 
sextupole fringe field extent= AE * E3; 
octupole fringe field extent = AE * E4; 
decapole fringe field extent= AE *Es; 
dodecapole fringe field extent = AE * Es 
(sharp edge if field extent is zero) 

2*cm, 5*no dim. 7*E 

NCE, Co-Cs same as QUADRUPO 0-6, 6*no dim. I, 6*E 

Exit face 
Integration zone; as for entrance 2*cm, 4 *no dim. 7*E 

NOS, Co-Cs 

XPAS 

KPOS, XOE, 
YCE,ALE 

0-6, 6*no dim. 

Skew angles of field components lO*rad 

Integration step cm 

KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad 
shifts, tilt (unused if KPOS=l) 

AZ 
\ ¢ !,. i + <l>~ / 

\ 

. 
..... _ , \ . Ir. , 

' ' I . l"\O/ , \ I . 
' "-. ' ' ' / -

.......... ' \\/ ' ,........ -.......... _~_ .... ~--· x ----r------- _/:,~,~ .......... ------+--> 
,......... I \"' --....... ,........- , I . --....... 

I CJ) 2 

- / . ''' -' I I \ -
/ ' ' ' , I , \ , 

. I . 

\ 

-¢2 

l Use PARTICUL to declare mass and charge. 
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ELREVOL1 1-D uniform mesh electric field map 
X-axis cylindrical symmetry is assumed 

IC,IL IC= 1, 2: print the map 0-2, 0-2 
IL= 1, 2: print field and coordinates along trajectories 

ENO RM Normalization coefficient: desired field no dim. field read 

TIT Title 

IX Number of longitudinal nodes of the map ::; 400 

FNAME2 Filename (e.g., elens.map) 

ID,A,B,C Integration boundary. Ineffective when ID = 0. ;::: -1, 2*no dim., 
[A' B' C' , , ID= -1, 1 or 2:: 2: as for CARTEMES cm [,2*no dim., 
B" ,etc., if ID 2:: 2] cm, etc.] 

IO RD RE unused 2, 4 or 25 

XPAS Integration step cm 

KPOS, XCE, KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad 
YCE,ALE shifts, tilt (unused if KPOS=l) 

1 Use PARTICUL to declare mass and charge. 
2 FNAME contains the field data. These must be formatted according to the following FORTRAN sequence: 

OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED']) 
DO 1I=1, IX 

IF (BINARY) THEN 
READ(NL) X(I), EX(I) 

ELSE 
READ(NL,*) X(I), EX(I) 

END IF 
1 CONTINUE 

where X(J) and EX(I) are the longitudinal coordinate and field component at node (I) of the mesh. 
Binary file names FNAME must begin with B_. 'Binary' will then automatically be set to '.TRUE.' 
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I,3*E 
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FAISCEAU 

FAISCNL 

FNAME1•2 

FAISCNLA 

FNAME1 

[, LABEL(s)] 

IP 

Print particle coordinates 

Print particle coordinates at the location where the 
keyword is introduced in the structure. 

Store particle coordinates in file FNAME 

Name of storage file (e.g. zgoubi.fai). 

Store coordinates every IP other pass [,at labeled elements] 

Name of storage file (e.g. zgoubi.fai) [; label(s) of the element(s) 
at the exit of which the store occurs (10 labels maximum)]. 

Store every IP other pass (when using REBELOTE 
with NPASS ~IP - l). 

1 FNAME contains the particle coordinates and other informations. These are stored following the FORTRAN 
sequence below. 

OPEN (UNIT = NL, FILE = FNAME) 
DO 1I=1, IMAX 

WRITE (NL, 100) LET(I),IEX(I),(FO(J,I), J=l,6),(F(J,1),J=l,6),DUM,IDUM,I,IREP(I), 

A80 

ABO 
[, lO*AlO] 

I 

i. SORT(I),DUM,DUM,DUM,DUM,PH(l),DP(I),DUM,DUM,DUM,BORO,IPASS,DMY,HMS,KLEY,LABEL,NOEL-1 
100 FORMAT (IX, Al, IX, 12, IP, 6E16.8, 

/, 3E24.16, 
/, 3E24.16, EI6.8, 
/, 11, 213, 7E16.8, 
/, 7EI6.8, 11, 213, 
/, 7E16.8, 
/, 4E16.8, 16, IX, A9, IX, AS, IX, A8, IX, AlO, 15) 

1 CONTINUE 

The signification of these parameters is given as follows 

OUM, IDUM: dummies 
From LET(I) to IREP(I): see OBJET 
SORT(I): path length of particles stopped by walls ( CHAMBR, OOLLIMA) 
PH(I), DP(I): phase and momentum kick at traversal of OAVITE 
BORO: reference rigidity (see OBJET) 
DMY, HMS: date, time 
KLEY, LABEL, NOEL-1: last encountered keyword, its LABEL and position 

2 These data can in turn be read directly from the file FNAME by means of OBJET, KOBJ = 3. 
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FIN, END End of input data list 

Any information following these keywords will be ignored 
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FIT Fitting procedure 

NV Number of physical parameters to be varied ~ 20 

For I= 1, NV repeat NV times the following sequence 

IR, IP, XC, DV Number of the element in the structure; ~ 200, ~ 99, 
number of the physical parameter in the element; ± 200.99, 
coupling switch (off= O); allowed± range of variation relative 
of the parameter. 

NC Number of constraints ~ 20 

For I= 1, NC repeat NC times the following sequence 

IC, I, J, IR, V 1 , WV IC, I and J define the type of constraint 0-3, 1-200, 
(see table below); number of the element current unit 1 , 

at the exit of which the constraint applies; no dim. 
value; weight of the constraint (the lower the stronger). 

Type of Parameters defining the constraint 
constraint 

IC I J Constraint 

Beam matrix2 0 1 - 4 1 - 4 O'[J 

First order 1 - 6 1 - 6 RIJ 
transfer 1 7 any Horizontal determinant 

coefficients2 8 any Vertical determinant 

Second order 2 1 - 6 11 - 66 Tr,j,k 
transfer (j = [J/10],k= J - lO[J/lO]) 

coe:fficients3 

Trajectory 3 1- IMAX 1- 65 F(J,I) 
coordinate4 

1 The unit of V is that specified in the corresponding keyword. 
21t is advised to use OBJET and KOBJ = 5, for the definition of the initial coordinates. 
3 1t is advised to use OBJET and KOBJ = 6, for the definition of the initial coordinates. 
4For use normally with object definition by OBJET. Thus, I= trajectory number= 1 to IMAX if KOBJ ::;!: 2; 

I = trajectory number = 1 to 7 if KOBJ = 2. 
s J =coordinate number= 1 to 6 for respectively D, Y, T, Z, P or X. 
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FOCALE Particle coordinates and horizontal beam dimension at distance XL 

XL Distance from the position of the keyword cm E 

FOCALEZ Particle coordinates and vertical beam dimension at distance XL 

XL Distance from the position of the keyword cm E 
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GASCAT Gas Scattering 

KGA Off/On sw.itch 

AI, DEN Atomic number; density 

0, 1 
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HIS TO 

J, Xmin, Xmax, 
NBK, NH 

NBL, KAR, 
NORM, TYP 

1-D histogram 

J = type of coordinate to be histogramed; 
the following are available: 
• current coordinates: 

l(D), 2{Y), 3(T), 4(Z), 5(P), 6(8), 
• initial coordinates: 

ll(Do), 12(Yo), 13(To), 14(Zo), 15(Po), 16(80), 
•spin: 

2l(Sx), 22(Sy), 23(Sz), 24( < S > ); 
Xmin, Xmax =limits of the histogram, in units 
of the coordinate of concern; NBK = number of 
channels; NH = number of the histogram (for 
independency of histogranis of the same coordinate) 

Number of lines (=vertical amplitude); 
alphanumeric character; normalization if 
NORM = 1, otherwise NORM = O; TYP = 'P': 
primary particles are histogramed, or 'S': 
secondary, or Q: all particles - for use 
with MCDESINT 
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1-24, 2* 
current units, 
< 120, 1-5 

-
I, 2*E, 2*1 

normally 10-40, I, Al, I, Al 
char., 1-2, P-S-Q 



IMAGE 

IMAGES 

IMAGESZ 

IMAGEZ 

Localization and size of horizontal waist 

Localization and size of horizontal waists 

For each momentum group, as classified by 
means of OBJET, KOBJ = 1, 2 or 4 

Localization and size of vertical waists 

For each momentum group, as classified by 
means of OBJET, KOBJ = 1, 2 or 4 

Localization and size of vertical waist 
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MAP2D 2-D Cartesian uniform mesh magnetic field map 
no symmetry 

IG,IL IC= 1, 2: print the field map 0-2, 0-2 2*1 
IL = 1, 2: print field and coordinates along 
trajectories 

BNORM Normalization coefficient: desired field no dim. E field read 

TIT Title ABO 

IX,JY Number of longitudinal and transverse :::; 400,:::; 200 2*1 
nodes of the mesh 

FNAME1 File name (e.g., magnet.map) A80 

ID,A,B,G Integration boundary. Ineffective when ID = 0. ;::::: -1, 2*no dim., l,3*E 
[A' B' G' , ' ID= -1, 1 or;::::: 2: as for GARTEMES cm [,2*no dim., [,3*E,etc.] 
B",etc., if ID;::::: 2] cm, etc.] 

IO RD RE Interpolation polynomial order 2, 25 I 
See DIPOLE 

XPAS Integration step cm E 

KPOS, XGE, KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad I, 3*E 
YCE,ALE shifts, tilt (unused if KPOS=l) 

1 FNAME contains the field map data. These must be formatted according to the following FORTRAN read sequence {that nor­
mally fits TOSCA code OUTPUTS): 

OPEN {UNIT = NL, FILE = FNAME, STATUS = 'OLD') 
DO 1J=1, JY 

DO 1 I='l, IX 
IF (BINARY) THEN 

READ(NL) Y(J), X(I), BY(I,J), BZ{I,J), BX{I,J) 
ELSE 

READ(NL,100) Y(J), X(I), BY(I,J), BZ{I,J), BX{I,J) 
100 FORMAT (IX, 6Ell.2) 

ENDIF 
CONTINUE 

where X (I), Y ( J), Z, are the longitudinal, horizontal and vertical coordinates, and BX, BY, B Z are the components of the 
field at a node (I, J,K) of the map. 

For binary files, FNAME must begin with B_; 'Binary' will then automatically be set to '.TRUE.' 
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MATRIX 

IORD, IFOC 

Calculation of transfer coefficients 

Options: 
IORD = 0: Same effect as FAISCEAU 
1: First order transfer matrix 
2: First order transfer matrix Rt3, second 
order array Tijk, and higher order transfer 
coefficients 

IFOC = 0: matrix at actual position, 
reference = particle # 1 
1: matrix at the closest first order horizontal focus, 
reference = particle # 1 
10 + NPER: same as IFOC = 0, and also calculates 
the twiss parameters and tune numbers 
(assuming that the DATA file describes one period of a 
NPER-period structure). 
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MCDESINT1 

M2,M3 

JI, 12,13 

Monte-Carlo simulation of in-flight decay 
Ml~ M2+ M3 

Masses of the two decay products 

Seeds for random number generators 

Y1 
I I I 

-;;k: 
/ 

1 ' / ~1l / T ......... -
/ 12 ......... 

2*MeV/c2 2*E 

3*~ 106 3*1 

y 

Particle 1 decays into 2 and 3; Zgoubi then calculates trajectory of 2, while 3 is abandoned. (} and </> are the 
scattering angles of particle 2 relative to the direction of the incoming particle 1. They transform to T2 and P2 
in Zgoubi frame. 

1 MCDESINT must be preceded by PARTICUL, for the definition of the mass and lifetime of the incoming particle Ml. 
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MCOBJET Monte Carlo generation of a 3-D object 

BORO Reference rigidity 

KOBJ Type of support of the random distribution 
KOBJ = 1: window 
KOBJ = 2: grid 
KOBJ = 3: phase-space ellipses 

IMAX Number of particles to be generated 

KY, KT, KZ, KP, Type of probability density 
KX, KD1 

Yo, To, Zo, Po, Mean value of coordinates (Do= Bp/BORO) 
Xo, Do 

ifKOBJ = 1 Generation in a window 

8¥, 8T, 8Z, 8P, Distribution widths, depending on KY, KT etc. 1 

8X, 8D 

N8Y, N8T, N8z, N8P, Sorting cut-offs (used only f~r Gaussian density) 
N8x, Nm 

No, Co, C1, C2, Cs Parameters involved in calculation of P(D) 
(unused if KD = 1) 

JRl, JR2, IR3 Random sequence seeds 

1Let x =Y,T,Z,P or X. KY, KT, KZ, KP and KX can take the values 

1: uniform, p(x) = 1 if -8x $ x $ 8x 

2: Gaussian, p(x) = exp(-x2 /28x2)/8x../21r 

3: parabolic, p(x) = 3(1 - x 2 /8x2 )/48x if -8x $ x $ 8x 

K D can take the values 

1: uniform, p(D) = l if -8D $ x $ 8D 

2: exponential, p(D) =No exp(Oo +Gil+ 0212 + 0313) if -8D $ x $ 8D 

3: kinematic, D = 8D * T 
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kG.cm E 

1-3 I 

:$ 200 I 

6*(1-3) 6*1 

m, rad, m, 6*E 
rad, m, no dim. 

m, rad, m, 5*E 
rad, m, no dim. 

units of oy, <7T, 6*E 
etc. 

no dim. 5*E 

3*!:::'. 106 3*1 



If KOBJ = 2 Generation on a grid 

IY, IT, IZ, IP, Number of bars of the grid 
IX,ID 

PY, PT, PZ, PP, Distances between bars 
PX,PD 

OY, 8T, 8Z, 8P, Width of the bars ( ±) if uniform, 
8X,8D Sigma value if Gaussian distribution 

Noy, NoT, Noz, Nop, Sorting cut-offs (used only for Gaussian density) 
Nox, Nov 

No, Co, Ci, C2, Ca Parameters involved in calculation of P(D) 
(unused if KOBJ = 3) 

IRl, IR2, IR3 Random sequence seeds 

ifKOBJ = 3 Generation in a phase-space ellipse1 

ay, {3y, ey /7r, Nt1'.y Ellipse parameters and normalized 
[, N~.y if Nt1'•y < 0]2 emittance, Y-T phase-space; cut-off 

az, f3z, ez/7r, Nt1'•z Ellipse parameters and normalized 
[, N~•z if Nt1'ez < 0]2 emittance, Z-P phase-space; cut-off 

ax, f3x, ex/7r, Nu.x Ellipse parameters and normalized 
[, N~•x if Nl1'•x < 0] 2 emittance, X-D phase-space; cut-off 

IRI, IR2, IR3 Random sequence seeds 

1Siinilar possibilities, non-random, are offered with OBJET, KOBJ=8 
2Sorting within the ellipse frontier 

1 +cr2 
~Y2 +2ayYT+/3yT2 = ey 

/3y 11" 

if N"•y > 0, or within the ring 

[ IN"•y 1, N~.y I 
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6*1 

m, rad, m 6*E 
rad, m, no dim. 

ibidem 6*E 

units of oy, UT ,etc. 6*E 

no dim. 5*E 

3*:::'.106 3*1 

no dim., m/rad, 3*E, I 
m.rad, units of 
u(ey) 

no dim., m/rad, 3*E, I 
m.rad, units of 
u(ez) 

no dim., m/rad, 3*E, I 
m.rad, units of [,I) 
u(ex) 

3*:::'.106 3*1 



eithe~ 
uniform bo• 
'f KOJB-j 

0 

IY=5 bars 

or 
gausslcr bar 

ir KOJB-4-

y 

Scheme of the input parameters to MCOBJET when KOBJ = 3, 4 

A: A distribution of the Y coordinate 
B: 2-D grid in (Y, Z) space. 

159 



MULTIPOL Magnetic Multipole 

IL IL= 1, 2: print field and coordinates along 0-2 
trajectories 

I 

Length of element; radius at pole tip; 
field at pole tip for dipole, quadrupole, 
sextupole, octupole, decapole and 
dodecapole components 

Entrance face 
XE, AE, E2, Ea, E4, Es, Es Integration zone; fringe field extent; 

dipole fringe field extent = >.E; 
quadrupole fringe field extent= AE * E2; 
sextupole fringe field extent = AE * Ea; 
octupole fringe field extent= AE * E4; 
decapole fringe field extent = AE *Es; 
dodecapole fringe field extent = AE * Es 
(sharp edge if field extent is zero) 

NOE, Co-Cs same as QUADRUPO 

Exit face 
Integration zone; as for entrance 

NOS, Co-Cs 

2*cm,10*kG 12*E 

2*cm,5*no dim. 7*E 

0-6, 6* 
no dim. 

I, 6*E 

2*cm, 4 *no dim. 7*E 

0-6, *no dim. I, 6*E 

Skew angles of field components lO*rad IO*E 

XPAS 

KPOS, XOE, 
YOE, ALE 

Integration step cm E 

KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad I, 3*E 
shifts, tilt (unused if KPOS=l) 
for QUADRUPO. 
KPOS = 3: effective only if B1 # 0: 
entrance and exit frames are shifted by YCE 
and tilted w.r.t. magnet by an angle 
• either ALE/2 if ALE#-0 
• or half the deviation if ALE=O 
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OBJET Generation of an object 

BORO Reference rigidity kG.cm 

KOBJ Option index 1-6 

ifKOBJ = 1 Generation of a symmetric object 

IY, IT, IZ, IP, Ray-Tracing assumes mid-plane symmetry 
IX,ID Total number of points in ±Y, ±T, ±Z, ±P, ±X IY*IT*IZ*IP* 

and ±D coordinates (IY:::;; 20, ... ,ID:::;; 20) *IX*ID :::;; 200 

PY, PT, PZ, PP, Step size in Y, T, Z, P, X and momentum cm, mrad, cm, 
PX,PD (PD= 8Bp/BORO) mrad, cm, 

no dim. 

v Reference relative momentum Bp/BORO no dim. 

if KOBJ = 2 All the initial coordinates must be entered explicitly 

IMAX,IDMAX total number of particles ; number of distinct momenta IMAX:::;; 200 
(if IDMAX > 1, group particles of same momentum) 

For I = 1, IMAX Repeat IMAX times the following line 

Y,T,Z,P,X, Coordinates and tagging character of the cm, mrad, cm, 
D,LET IMAX particles (D = Bp/BORO ) mrad, cm, 

no dim., char. 

IEX(I = 1, IMAX) IMAX times 1 or -2. If JEX(!)= 1, trajectory 1 or -2 
number I is calculated. If JEX(!) = -2, it 
is not calculated 

IfKOBJ=3 Reads coordinates from a storage file 

IMAX,IDMAX Total number of particles and distinct momenta :::;; 200' :::;; 20 
(For more than 200 particles stored in FNAME, 
use 'REBELOTE') 

FNAME1 File name (e.g., zgoubi.rays) 

1 FNAME contains the particle coordinates. These must be formatted according to the following 
FORTRAN sequence 

OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD') 
DO 1 I = 1, IMAX 

READ (NL,100) LET (I), IEX(I), (FO(J,I),J=l,6), (F(J,I),J=l,6), I, IREP(I) 
100 FORMAT (IX, Al, lX, 12, 6El6.8, / , 6E16.8, 213 / ) 
1 CONTINUE 

with the following meaning for output variables: 

E 

I 

6*1 

6*E 
E 

2*1 

6*E, Al 

IMAX* I 

2*1 

A80 

LET: tagging letter; IEX: flag; FO(l-6,1), initial coordinates of particle number I: relative momentum, horizontal and ver­
tical coordinates, path length ; F(l-6,I), current coordinates of particle number I; IREP:flag. 
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IfKOBJ = 4 Generation of a non symmetric object 

IY, IT, IZ, IP, Total number of points in ±Y, ±T, +z, +P, IY*IT*IZ*IP 6*1 
IX,ID ±X and ±D coordinates (IY ::; 20, ... ,I D::; 20) *IX*ID ::; 200 

PY, PT, PZ, PP, Step sizes in Y, T, Z, P X and D. cm, mrad, cm, mrad, 6 *E 
PX,PD cm, no dim. 

'D Reference relative momentum Bp/BORO no dim. E 

If KOBJ = 5 Generation of 11 particles, 
for the calculation of first order transfer 
coefficients with MATRIX 

PY, PT, PZ, PP, Step sizes in Y, T, Z, P, X and D cm, mrad, cm, mrad, 6*E 
PX,PD cm, no dim. 

YR, TR, ZR, PR, Reference trajectory; cm, mrad, cm, mrad, 
XR,DR DR=Bp/BORO cm, no dim. 6*E 

If KOBJ = 6 Generation of 61 particles 
for the calculation of first and higher order 
transfer coefficients with MATRIX 

PY, PT, PZ, PP, Step sizes in Y, T, Z, P, X and D cm, mrad, cm, mrad 6*E 
PX,PD cm, no dim. 

YR, TR, ZR, PR, Reference trajectory; cm, mrad, cm, mrad, 
XR,DR DR=Bp/BORO cm, no dim. 6*E 

IfKOBJ = 7 Object with kinematics 

IY, IT, IZ, IP, Number of points in ±Y, ±T,±Z, ±P, IY*IT*IZ*IZ*IX* 6*1 
IX,ID ±X; ID is not used IP::; 200 

PY, PT, PZ, PP, Step sizes in Y, T, Z, P and X; cm, mrad, cm, mrad, 6*E 
PX,PD PD = kinematic coefficient, such that cm, mrad-1 

D(T) = 'D + PD* T 

'D Bp/BORO no dim. E 

IfKOBJ = 8 Generation of phase-space coordinates on a 6-D ellipsoid 1 

IY, IZ, IX Number of samples in each 2-D phase-space 3*1 

Yo, To, Zo, Po, Central values (Do= Bp/BORO) m, rad, m, rad, 6*E 
Xo, Do m, no dim. 

ay, (3y, cy/7r ellipse parameters and emittances no dim., m/rad, 3*E 
az,(3z,c-z/7r (see MCOBJET, KOBJ=3) m.rad 
ax, f3x, c-x/7r 

1Silnilar possibilities, random, are offered with MCOBJET, KOBJ=3 
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OBJETA Object from Monte Carlo simulation of decay reaction 

Ml+M2 ~ M3+M4 and M4 ~ M5+M6 

BORO Reference rigidity kG.cm E 

IBODY, KOBJ Body to be tracked: M3(IBODY = 1), M5(IBODY = 2) 1-3,1-2 2*1 
M6(IBODY = 3); type of distribution for Yo and Zo: 
uniform (KOBJ = 1) or Gaussian (KOBJ = 2) 

IMAX Number of particles to be generated (use ~ 200 I 
'REBELOTE' for more) 

M1-Ms Rest masses of the bodies 5*GeV/c2 5*E 

Ti Kinetic energy of incident body GeV E. 

Yo, To, Zo, Po, Do Only those particles in the range cm, mrad, cm, 5*E 
Yo-&Y~Y~Yo+&Y mrad, no dim. 

Do - &D ~ D ~ Do + &D 
will be retained 

&Y, &T, &Z, &P, &D cm, mrad, cm, 5*E 
mrad, no dim. 

XL Half length of object: -XL~ Xo ~XL cm E 
(uniform random distribution) 

!RI, IR2 Random sequence seeds 2*:::= 06 2*1 
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OCTUPOLE Octupole Magnet 

IL IL = 1, 2: print field and coordinates along trajectories 0-2 I 

XL, Ro, Bo Length; radius and field at pole tip of the element 2*cm, kG 3*E 

Entrance face: 
XE,AE Integration zone; 2*cm 2*E 

Fringe field extent (>.E = 0 for sharp edge) 

NCE, Co-Cs NCE =unused any, 6*no dim. I,.6*E 
Co - Cs = fringe field coefficients 
such that: G(s) = Go/(l +exp P(s)), with Go= Bo/ R~ 

s . 
and P(s) = Li=O Ci(s/>.Y 

Exit face: 
Xs, >.s Parameters for the exit fringe field; see entrance 2*cm 2*E 

NCS, Co -Cs 0-6, 6*no dim. I, 6*E 

XPAS Integration step cm E 

KPOS,XCE, KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad I, 3*E 
YCE,ALE shifts, tilt (unused if KPOS=l) 

7 .+. 
1.1 

I 
I 

I 
' 

y 

----~;.. 

-· -·-· ----------·--·---·-

Octupole magnet 
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ORD RE 

IO 

Higher order Taylor expansions in lenss 

IO= 4: expansions of Rand a up to aC4) (default option) 4 or 5 

IO = 5: expansions of R and u up to UC5) 

This option applies to QUADRUPO, SEXTUPOL, OCTUPOLE, 
DECAPOLE, DODECAPO, MULTIPOL, EBMULT and ELMULT. 
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PARTICUL Particle Characteristics 

M, Q, G, r, X Mass; charge; gyromagnetic factor; 
COM life-time; unusued 

MeV/c?, C, nodim.,s 5*E 

NOTE : Only the parameters of concern need their value be specified (for instance M, Q for electric lenss); 
others can be set to zero. 
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PLOTDATA Coordinate Output for PLOTDATA Graphic Software [25] 

To be documented. 
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POISSON 

IC,IL 

BNORM 

TIT 

IX,IY 

FNAME1 

Read field data from POISSON output 

IC= 1, 2: print the field map 
IL= 1, 2: print field and coordinates along trajectories 

N 1. t" ffi · t desired field orma iza ion coe c1en : field read 

Title 

Number of longitudinal and transverse nodes 
of the uniform mesh 

Filename (normally, outpoi.lis) 

ID, A, B, C Integration boundary. Ineffective when ID= 0. 
[A', B', C' ID= -1, 1 or 2:: 2: as for CARTEMES 
B" ,etc., if ID 2:: 2] 

IO RD RE 

XPAS 

KPOS, XCE, 
YCE,ALE 

Interpolation polynomial order 
as for DIPOLE 

Integration step 

KPOS=l: element aligned, 2: misaligned; 
shifts, tilt (unused if KPOS=l) 

1 FNAME contains the field map data. These must be formatted according to the following FORTRAN 
read sequence: 

1=0 
11 CONTINUE 

I= l+l 
READ(LUN,101,ERR=99,END=10) K, K, K, R, X{I), R, R, B{I) 

101 FORMAT{ll, 13, 14, E15.6, 2Fll.5, 2F12.3) 
GOTO II 

10 CONTINUE 

0-2, 0-2 

no dim. 

::; 400' ::; 200 

2:: -1, 2*no dim., 
cm [,2*no dim., 
cm, etc.] 

2, 4 or 25 

cm 

1-2, 2*cm, rad 

where X (I) is the longitudinal coordinate, and B(I) is the Z component of the field at a node {I) of the mesh. 
K's and R's are variables appearing in the POISSON output file outpoi.lis, not used here. 
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2*1 

E 

ABO 

2*1 

A80 

I,3*E 
[,3*E,etc.] 

I 

E 

I, 3*E 



POLARMES 2-D polar mesh magnetic field map 
mid-plane symmetry is assumed 

IC, IL IC= 1, 2: print the map 0-2, 0-2 
IL = 1, 2: print field and coordinates along trajectories 

BNORM Normalization coefficient: desired field no dim. field read 

TIT Title 

IX, JY Number of angular (IX) and radial (JY) ::; 400' ::; 200 
nodes of the map 

FNAME1 Filename (e.g., spes2.map) 

ID,A,B,C Integration boundary. Ineffective when ID = 0. 2::: -1, 2*no dim., 
[A' B' C' 

' ' 
ID= -1, 1 or;::: 2: as for CARTEMES cm [,2*no dim., 

B",etc., if ID;::: 2] cm, etc.] 

IO RD RE Interpolation polynomial order 2, 4 or 25 
(see DIPOLE) 

XPAS Integration step cm 

KPOS as for DIPOLE. Normally 2. 1-2 
IfKPOS = 2 
RE, TE, RS, TS cm, rad, cm, rad 
IfKPOS = 1 
DP no dim. 

1 FNAME contains the field data. These must be formatted according to the following FORTRAN sequence: 

OPEN (UNIT = NL, FILE = FNAME, STATUS = 'OLD' [,FORM='UNFORMATTED')) 
IF (BINARY) THEN 

READ(NL) (Y(J), J=l, JY) 
ELSE 

READ(NL,100) (Y(J), J=l, JY) 
ENDIF 

100 FORMAT(io FS.2) 
DO 1I=1,IX 

IF (BINARY) THEN 
READ (NL) X(I), (BMES(I,J), J=l, JY) 

ELSE 
READ(NL,101) X(I), (BMES(I,J), J=l, JY) 

101 FORMAT(lO FS.1) 
ENDIF 

CONTINUE 

2*1 

E 

ASO 

2*I 

ASO 

I,3*E 
[,3*E,etc.] 

I 

E 

I 

4*E 

E 

where X(J) and Y(J) are the longitudinal and transverse coordinates and BMES is the Z field component at a node (I, J) 
of the mesh. For binary files, FNAME must begin with B_ . 'Binary' will then automatically be set to '.TRUE.' 
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PS170 

IL 

XL, Ro, Bo 

XPAS 

KPOS, XCE, 
YCE,ALE 

Simulation of a round shape dipole 

IL= 1, 2: print field and coordinates along trajectories 

Length of the element, radius of the circular 
dipole, field 

Integration step 

KPOS=l: element aligned, 2: misaligned; 
shifts, tilt (unused if KPOS=l) 

ps·'7o 

' ' 
" I B=:J' 

'-! 

Scheme of the PSl 70 magnet simulation. 
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0-2 I 

2*cm, kG 3*E 

cm E 

1-2, 2*cm, rad I, 3*E 



QUADISEX Sharp edge magnetic multipoles 

Bz lz=o=Bo (i+ ~Y+~Y2 +~Y3) 

IL IL= 1, 2: print field and coordinates along trajectories 0-2 I 

XL, Ro, Bo Length of the element; normalization distance; field 

N, EBl, EB2, EGl, EG2 Coefficients for the calculation of B. 
if Y > 0: B = EBl and G = EGl; 
if Y < 0: B = EB2 and G = EG2. 

XPAS 

KPOS, XCE, 
YCE, ALE 

Integration step 

KPOS=l: element aligned, 2: misaligned; 
shifts, tilt (unused if KPOS=l) 
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2*cm, kG 3*E 

5*no dim. 5*E 

cm E 

1-2, 2*cm, rad I, 3*E 



QUADRUPO Quadrupole Magnet 

IL IL= 1, 2: print field and coordinates along trajectories 0-2 I 

XL, Ro,Bo Length; radius and field at pole tip 2*cm, kG 3*E 

Entrance face: 
XE, AE Integration zone extent; fringe field 2*cm 2*E 

extent (:::: 2Ro, AE = 0 for sharp edge) 

NCE,Co-Cs NCE =unused any, 6*no dim. I,.6*E 
Co - Cs= Fringe field coefficients such that 
G(s) = Go/(1 +expP(s)), with Go= Bo/Ro 

Es . and P(s) = i=O Oi(s/">..)i 

Exit face 
Xs, "As See entrance face 2*cm 2*E 
NCS, Co-Os 0-6, 6*no dim. I, 6*E 

XPAS Integration step cm E 

KPOS, XCE, KPOS=l: element aligned, 2: misaligned; 1-2, 2*cm, rad I, 3*E 
YCE, ALE shifts, tilt (unused if KPOS=l) 
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