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Optical elements versus keywords

This glossary gives a list of keywords suitable for the simulation of the common optical elements. They
are classified in three categories: magnetic, electric and electromagnetic elements.
Field map procedures are also cataloged; in most cases an adequate field map can be used for simulating

these elements.
MAGNETIC ELEMENTS

Decapole

Dipole
Dodecapole
Multipole
Octupole
Quadrupole
Sextupole

Skewed multipoles
Solenoid

Field maps

1-D, cylindrical symmetry
2-D, mid-plane symmetry
2-D, no symmetry

3-D

ELECTRIC ELEMENTS

Decapole

Dipole

Dodecapole

Multipole

Octupole

Quadrupole

R.F. cavity

Sextupole

Skewed multipoles
2-tube (bipotential) lens
3-tube (unipotential) lens

Field maps
1D, cylindrical symmetry

ELECTROMAGNETIC ELEMENTS

Decapole

Dipole
Dodecapole
Multipole
Octupole
Quadrupole
Sextupole

Skewed multipoles
Wien filter

DECAPOLE, MULTIPOL

AIMANT, BEND, DIPOLE, MULTIPOL, QUADISEX
DODECAPO, MULTIPOL

MULTIPOL, QUADISEX, SEXQUAD .

OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD
QUADRUPO, MULTIPOL, SEXQUAD

SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD
MULTIPOL

SOLENOID

BREVOL

CARTEMES, POISSON, TOSCA
MAP2D

TOSCA

ELMULT
ELMULT
ELMULT
ELMULT
ELMULT
ELMULT
CAVITE

ELMULT
ELMULT
EL2TUB

UNIPOT

ELREVOL

EBMULT
EBMULT
EBMULT
EBMULT
EBMULT
EBMULT
EBMULT
EBMULT
SEPARA, WIENFILT



1 INTRODUCTION

The computer code Zgoubi calculates trajectories of charged particles in magnetic and electric fields. At the
origin specially adapted to the definition and adjustment of beam lines and magnetic spectrometers, it has so”
evolved that it allows the study of systems including complex sequences of optical elements such as dipoles,
quadrupoles, arbitrary multipoles and other magnetic or electric devices, and is able as well to handle periodic
structures. Compared to other codes, it presents several peculiarities:

e a numerical method for integrating the Lorentz equation, based on Taylor series, which optimizes com-
puting time and provides high accuracy and strong symplecticity,

e spin tracking, using the same numerical method as for the Lorentz equation,

e calculation of the synchrotron radiation electric field and spectra in arbitrary magnetic fields, from the
ray-tracing outcomes,

e the possibility of using a mesh, which allows ray-tracing from simulated or measured (1-D, 2-D or 3-D)
field maps,

o Monte Carlo procedures: unlimited number of trajectories, in-flight decay, etc.
o a built-in fitting procedure,

e multiturn tracking in circular accelerators including many features proper to machine parameter calcula-
tion and survey, and also the simulation of time-varying power supplies.

The initial version of the Code, dedicated to the ray-tracing in magnetic fields, was developed by D. Garreta
and J.C. Faivre at CEN-Saclay in the early 1970’s. It was perfected for the purpose of studying the four spec-
trometers (SPES I, I, III, IV) at the Laboratoire National Saturne (CEA-Saclay, France), and SPEG at Ganil
(Caen, France). It is now in use in several national and foreign laboratories.

The first manual was in French [1]. Since then many improvements have been implemented. In order to
facilitate access to the program an English version of the manual was written at TRIUMF with the assistance
of J. Doornbos. P. Stewart prepared the manuscript for publication [2]

An updating was necessary for accompanying the third version of the code which featured spin tracking and
ray-tracing in combined electric and magnetic fields; this was done with the help of D. Bunel for the preparation
of the document and lead to the third release [3].

Lately, provisions were introduced for the computation of synchrotron radiation electromagnetic impulse and
spectra. In the mean time, several new optical elements were added, such as electro-magnetic and other elec-
trostatic lenses. Used since several years for special studies in periodic machines (e.g., SATURNE at Saclay,
COSY at Julich, LEP and LHC at Cern), Zgoubi has also benefited from extensive development of storage
ring related features.

The graphic interface to Zgoubi (Part D) has also undergone concomitent extended developments which
make it a performant tool for post-processing Zgoubi outputs.

These recent developments of Zgoubi [1, 2, 3, and the present version of the guide] have strongly benefited of
the environment of the Groupe Théorie, Laboratoire National SATURNE, CEA /DSM-Saclay.

This manual is intended only to describe the details of the most recent version of Zgoubi, which is far from
being a “finished product”.



2 NUMERICAL CALCULATION OF MOTION AND FIELDS

2.1 Zgoubi Frame

The reference frame of Zgoubi is presented in Fig 1. Its origin is in the median plane on a reference curve
which coincides with the optical axis of optical elements.

2.2 Integration of Lorentz Equation

The Lorentz equation, which governs the motion of a particle of charge g, mass m and velocity ' in electric and
magnetic fields € and b, is written

d(md)

= (E+Tx b) (2.2.1)

Figure 1: Reference frame and coordinates (Y, T, Z, P) in Zgoubi.
OX: in the plane of the reference curve in the direction of motion,
OY: in the plane of the reference curve, normal to OX,
OZ: orthogonal to the (X,Y) plane,
W projection of the velocity, 7, in the (X,Y) plane,
T = angle between W and the X-axis,
P = angle between W and 7.

Taking

, ds=wvdt, @' =—, m¥=mvi=qBpi (2.2.2)



where Bp is the rigidity of the particle, this equation can be rewritten

+aXb (2.2.3)

e oy

(Bp)@+ Bpi' =

From position ﬁ(Mo) and unit velocity ¥(Mp) at point Mo, position R(Ml) and unit velocity #(M;) at point
M; following a displacement As, are given by Taylor expansions (Fig. 2)

R i =/ A —1in ASS
R(M,) = R(Mo) + i(Mo) As + (Mo) — .+ 7" (M, )
A (2.2.4)
s
@ M) = @(Mo) + @'(Mo) As + "”(Mo) 2° + A 2"(Mo )
The rigidity at M; is obtained in the same way from
As?
(Be)(M1) = (Bp)(Mo) + (Bp) (Mo)As + ...+ (Bp) " (Mo) - (2.2.5)

The derivatives @) = %n‘—s-qi and (Bp)™ = %3_,0_)_ involved in these expressions are calculated as described in

the next sections. For the sake of computing speed, three distinct software procedures are involved, depending
on whether € or b is zero, or € and b are both non-zero.

Reference

Figure 2: Position and velocity of a particle in the reference frame.

2.2.1 Integration in magnetic fields

-

- b
Admitting that &= 0, and noting B = By’ eq. (2.2.3) reduces to

' =dx B
dri

The successive derivatives @™ = T of 4 needed in the Taylor expansions (Eqs. 2.2.4) are calculated by

differentiating @’ = @ X B

10



@"=4'XxB+@x B’
—

’L-l:,”= —oIIXB+2-oIXBI+,L—I:xB/I

@ =g" xB+33"x B +32' xB" +ax B" (2.2.6)
a’ — q" « B‘+4-'/// % B +6"” % E”+4’&" x E”’+ﬁx B’////
m —
where B(™ = d B.
ds” . 5
8B OB 8B
From dB = X dX + % dY + 37 —dZ = Z X, dXz, and by successive differentiation, we get
- BB
! _
Bi= BX
- 8B
Il /
-~ BX.0%; Z
= B
m __ II

BT = & DX:0X ;90X st + 32 8X aX E X, (2.2.7)
_ 8B 8B

nn = .y , .
B Z  X:0K;0K,0%; AT 6 Z OX;0X;0X; + I

ag mn

1 17
+4Zaxax +3Zaxa REAPAY

From the knowledge of #(Mo) and B(Mp) at point My of the trajectory, we calculate alternately the derivatives
of @(Mpo) and B(My), by means of Egs. (2.2.6) and (2.2.7), and inject it in Eq. (2.2.4) to get R(M;) and #(M;).

2.2.2 Integration in electric fields [4]

Admitting that 5 =0, eq. (2.2.3) reduces to

(Bp)'@+ Bpit’ = (2.2.8)

[V K1Y

which, by successive differentiations, gives the recursive relations

-

(Bp)'@ + Bpi' = 5
1

' &
(Bp)'i@ +2(Bp)'id’' + Bpii" = (—) e+—-

) e+2< ) "'+(%) e (2.2.9)

"IIII

le-—*

(BP HI,&'_!_ 3(BP)II*I+3(BP)I"‘II+B = (
(Bp) IIII +4(‘§”p)lﬂ-'l+6(Bp)/l"/I +4(Bp)/ II/
() ers(@) eeed) e

v v v 'U

-

dr .
that provide the derivatives d_s:_ needed in the Taylor expansions (2.2.4)

11



=/ __ 1_ 7] (Bp), -
u = (v) E By i
-1 __ l ' o _]-_ il ___ (Bp)l;o/ (BP)” -
' = (v) E+ - E’|Bp -2 Bp 7 By
" ’ " "
" = (1) E+2 (_1_ )l B, += Elll (BP) 12'"—3('3'0) al - (Bp) @
v v B Bp Bp (22.10)
=111 1 " 1 " il i 1 Al
a"==) E+4+3(=) E'|g,+3{~- E lBo+{=) E" |Bp
v v v v
(Bp) m (BP)”,_-'// (Bp)"” Py (BP) "
4 Bp U 6 By u —4 Bp 7 Bp U

- g 1 d~e _—
where £ = —, and ™ |B, denotes differentiation at constant Bp: E™ | Bp= B_pzs—: These derivatives of

the electric field are obtained from the total derivative

. OF OF OF
dE = -é-)?dX+;97dY+-ﬁdZ (2.2.11)
by successive differentiations

- BE

’
E'= BX .
= 8E OE

i (2.2.12)

,I— ——— . 3 —
E"= - a)ciax-““"+ . 3X;

—

*E oF
m g . - I R - l./
"= Z BX, aX ax, et ZJ ax0x, W4T E ax,

These eq. (2.2.10), as well as the calculation of the rigidity, following eq. (2.2.5), involve derivatives (Bp)(™ =

4" (Bp) , which are obtained in the following way. Considering that

ds™
dp*> _dp® . dp dp
2= e = =7 2.2.13
it~ @ " @ &’ (2.213)
B W L :
with i g(E+ T x b) (eq. 2.2.1), we obtain
(2.2.14)

d - ™ -— -t
Ep=q@+vxb) F=g&p
dt

since (7 x b) - 7 = 0. Normalizing as previously with # = pii = qBpi and ds = vdt, and by successive

differentiations, eq. (2.2.14) leads to the (Bp)™

12



(Bp)"' = (%)l(é'-ﬂ) + .11; @-ay
(Bp)!" = (%)H (&-@) +2 (%),(égﬂ);_}_%(a_m,, (2.2.15)

(Bp)"" = (%) ! (& a)+3 (%)” @ @) +3 (%)I @ @) + % @ )"

aM(E-4)
S

Jan can be related to the derivatives of the kinetic energy W by

Note that the derivatives (€ - @)™ =

dW = % -ddt = g€’ - Udt which leads to

FHW dME-9)

dsnt1 =49 ds™ (2216)
1
o ()
Finally, the derivatives { ~ ] = ds: involved in egs (2.2.10,2.2.15) are obtained from p = %thcz ,
by successive differentiations, that give the recursive relations
1\ _ 1 Wtmd
v/ ¢ ¢Bp
(1)’_ 1 (@ 1(Bp)
v)] ¢ Bp v B
X ; g s (2.2.17)

(1)” 1 Eay _, (1) (Be) _1(Bp)"

v 2 Bp v/ Bp v Bp
" _1@Ea)"_ 3 (})" (Bo) 4 (1 "(Bp)” 1 (Bp)”
v/ & Bp v Bp v Bp v Bp

2.2.83 Integration in combined electric and magnetic fields

When both & and b are non-zero, the complete eq. (2.2:3) must be considered. Successive differentiations give
the following recursive relations

]

+ZxXb
=1/ 1 I-» 1 = = BV
+Bpu = ; €+ ; e-l-('qu)
" 4
(Bp)'"i + 3(Bp)"@’ + 3(Bp)'@" + Bpii" = ( ) €+2 (%) e+ (%) &+ @x By (2.2.18)

(Bp) Illla+4(_§f))lll,&'l + 6(13;:)"11‘" +4(€p)'ﬂlll Y Bpa"" =
(i) 243 (1) & +3 (%) &+ _];é»lll+ (@ x l')')m
v

(Bp)'i+ Bpii' =

~ el

(Bp)'@+2(Bp)'d

S|

v

v
. o AN . .
that provide the derivatives T needed in the Taylor expansions (2.2.4)
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= __ 1 v 53 (BP)’ -
u—(v> E+ (@ x B) Bpu
—n 1\ 1\ =, o BN (BP), oy (BP)":.
A —('u> E+ - E’ |gp +(@x B') |g, =2 Bpu-— Bp 7
~ 11! 1 - 1 I"/ 1 il o\ (BP), n (BP)” / (BP)I”
=(~-] E+2|-} E = 74 - a” - T 7
@ = () B+2(3) B lay 428" 1a, +(@x By Ia, 320 a7 o g (B0) T 0210
1 " 1 " 1 1 o
= __ [ 2 7 -t nl A 14 2\ B
= (v) E+3(U) E' s +3(2)E IBp+(v) E™ |,
5 Bp) B (B (Bp)""
Zx BY" __4( 2" 6 =1 2 o
+ (@ x B)" |Bp By 7 By " —4 B, 4 By T
where E = _E_’ B= L, and ™ | Bp denotes differehtiation at constant Bp
Bp Bp
— 1 dne = 1 o
E(”‘) —_ 77 (n) = —(i (n). .2.20
|Bp Bp s and (¥ x B)\™ |g, B, (@ x b) (2.2.20)

These derivatives E™) and B™ of the electric and magnetic fields are calculated from the vector fields

E(X,Y,Z), B(X,Y, Z) and their derivati LD gHi+iB llowi 2.2.7) and (2.2.12
(X,Y,Z), B(X,Y, Z) and their derivatives XIS and BX.iaYa'azk’fo owing egs. (2.2.7) and (2.2.12).

2.3 Calculation of B and its Derivatives

Zgoubi calculates B (X,Y, Z) and its derivatives in several different ways, depending on whether field maps or
analytic representations of optical elements are used. The five basic means are the following.

2.3.1 Extrapolation from a 1-D axial field map [4]

A cylindrically symmetric field (e.g., using BREVOL) can be described by an axial 1-D field map of its longitu-
dinal component Bx (X,r =0) (r = (Y24 Z2)!/2), while the radial component on axis B,(X,r = 0) is assumed
to be zero. Bx (X, r = 0) is obtained at any point along the X-axis by a polynomial interpolation from the map
mesh (see section 2.4.1). Then the field components Bx (X, r), B.(X,r) at the position of the particle, (X,r)

&
are obtained from Taylor expansions to the fifth order in r (hence, up to the fifth order derivative —8%(— (X,0)),
assuming cylindrical symmetry

r2 3’Bx r* &*Bx
Bx(X,r) = Bx(X,0) - 55 (X,0)+ x5 (X,0) (23.1)
r Bx r P By r® 8Bx e
B.(X,r)= a (X,0)+ T (X,0) - 381 9X5 (X,0)

By differentiation with respect to X and r, up to the second order, these expressions provide the derivatives of
B(X,r). Finally a conversion from the (X,r) coordinates to the (X,Y, Z) Cartesian coordinates of Zgoubi is

i+i+k 3
g8 + needed in the egs. (2.2.7).

performed, thus providing the expressions BXBYI57E

2.3.2 Extrapolation from Median Plane Fields

In the median plane, Bz (X,Y,0), and its derivatives with respect to X or Y, may be calculated from analytical
models (e.g. in Venus magnet - VENUS, and sharp edge multipoles SEXQUAD and QUADISEX) or numerically
by polynomial interpolation from 2-D field maps (e.g. CARTEMES, TOSCA).

Median plane antisymmetry is assumed, which results in
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Bx(X,Y,0)=0

By(X,Y,0)=0

Bx(X,Y,Z) = —Bx(X,Y,~2) (2.3.2)
By(X,Y,Z) = ~By(X,Y,-Z)

Bz(X,Y,Z)=Bz(X,Y,-2Z)

Together with Maxwell’s equations, this results out of the median plane in the following Taylor expansions, for
the three components of B (here, B stands for Bz (X,Y,0))

408 _7°(%B  &B
Bx(X.Y,20) =25z - % (axs + axaw)
,0B_Z°( &B B
Br(X Y2 =Zzp - (m*" 5173‘) (23.3)
8B 8B\ 74 (8B . 8B B
BZ(X’Y’Z)=B_7(6X2 +m> _<ax4+2ax2aw+ay4)

which are then differentiated one by one with respect to X, Y, or Z, up to second or fourth order (depending
on optical element or IORDRE option, see section 2.4.2) so as to get the expressions involved in eq. (2.2.7).

2.3.3 Extrapolation from arbitrary 2-D Field Maps

2-D field maps that give the three components Bx (X,Y, Z), By(X,Y,Z) and Bz(X,Y, Zp) at each node
(X,Y) of a Zy Z-elevation map may be used. B and its derivatives at any point (X,Y,Z) are calculated

by polynomial interpolation followed by Taylor expansions in Z, without any hypothesis of symmetries (see
section 2.4.3 and keyword MAP2D).

2.3.4 Interpolation in 3-D Field Maps [5]
In 3-D field maps B and its derivatives up to the second order with respect to X, Y, or Z are calculated by
means of a second order polynomial interpolation, from a 3-D 3 x 3x 3-point grid (see section 2.4.4).

2.3.5 3-D Analytical Models of Fields

In analytical optical elements (such as QUADRUPO, MULTIPOL, SEXTUPOL, EBMULT, etc.) the three

components of B and their derivatives with respect to X, Y or Z are derived at any step along trajectories
from the analytical expression of the scalar potential V(X,Y, Z) starting, for instance, with

51% ov av
OBx &%V  8Bx _ v ete e
X ~— 98X2' 9Y ~ 8X8Y’ :
Multipoles
FrithB, x YZ

The scalar potential used for the calculation of the derivatives TR (z+ 7+ k = 0to4) for the

magnetic and electromagnetic multipoles with 2n poles (namely, QUADRUPO (n = 2) to DODECAPO (n = 6),
MULTIPOL (n =1 to 6), EBMULT (n =1 to 6)) is [6]

n_sin mzr_ yr-mzm
Vo(X.Y.Z) = (n)? (E( GPI(X)(Y? + )zz)q> (Z ( 2) ) (2.3.5)

= 42¢!(n + q)! fopar ml(n —m)!

where G(X) is the longitudinal gradient, defined at the entrance or exit of the optical element by

15



Go Bo
0

C=iremrmr “ R

(2.3.6)
and s is the distance to the EFB.

Skewed multipoles

Any multipole component n can be rotated independently by an angle A, around the X-axis. If so, the
calculation of the field and derivatives in the rotated axis (X, Yg, Zg) is done in two steps. First, they are
calculated at the rotated position X,YR, Zg), in the (X,Y, Z) frame, as derived from the expression (2.3.5)
above. Second, B and its derivatives at (X,YRr, Zg) in the (X,Y, Z) frame are transformed to the rotated
(X, YR, Zp) frame by a rotation of the same angle A,. A skewed 2n-pole component is thus obtained by taking
Ap, =m/2n.

2.4 Calculation of B from Field Maps
2.4.1 1-D Axial Map, with Cylindrical Symmetry

Let B; be the value of the longitudinal component Bx (X, r = 0) of the field B, at a node i of the uniform
mesh, which defines a 1-D field map along the symmetry X-axis, while B.(X,r = 0) is assumed to be zero
(r = (Y2 + Z?)!/2). The field component Bx (X, = 0) is calculated by a polynomial interpolation of the fifth
degree in X, using a 5 points grid centered at the node of the 1-D map which is closest to the actual coordinate
X of the particle.

The interpolation polynomial is

B(X,0) = Ap+ A1 X + A2 X? + As X% + Ay X* + As X5 (2.4.1)

and the coefficients A; are calculated by expressions that minimize the quadratic sum
S=Y (B(X,0)~B;)’ (2.4.2)

Namely, the source code contains the explicit analytical expressions of the coefficients A; solutions of the normal
equations 8S/04; = 0.

The derivatives ?XB;;(X ,0) at the actual position X, as involved in egs. (2.3.1), are then obtained by differen-
tiation of the polynomial (2.4.1), giving

gj'% (X,0) = A; + 245X + 343 X% + 44, X® + 54:X*

8B

337 (X:0) =245+ 64X + 1244X% 4+ 2045 X3

(2.4.3)

&°B

2.4.2 2-D Median Plane Map, with Median Plane Antisymmetry

Let B;; be the value of Bz(X,Y,0) at the nodes of a mesh which defines a 2-D field map in the (X,Y") plane
while Bx(X,Y,0) and By (X,Y,0) are assumed to be zero. Such a map may have been built or measured in
either Cartesian or polar coordinates. Whene\:er polar coordinates are used, a change to Cartesian coordinates
(described below) provides the expression of B and its derivatives as involved in eq. (2.2.7).
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Zgoubi provides three types of polynomial interpolation from the mesh (option IORDRE); namely, a second
order interpolation, with either a 9- or a 25-point grid, or a fourth order interpolation with a 25-point grid

(Fig. 3). )
If the 2-D field map is built up from a simulation, the grid simply aims at interpolating the field at a given point
from its 9 or 25 neighbors. If the map results from measurements, the grid also smoothes field measurement
fluctuations.

The mesh may be defined in Cartesian coordinates, (Figs. 3A and 3B) or in polar coordinates (Fig. 3C).

The interpolation grid is centered on the node which is closest to the projection in the (X,Y") plane of the actual
point of the trajectory.

The interpolation polynomial is

B(X, Y,0) = Ago + Ao X + AarY + A20X2 + A XY + A02Y2 (2.4.4)
in second order, or
B(X,Y,0) =Aoo + A10X + Ao1Y + A2 X% + A1 XY + AgpY?

+ A30X3 + A21X2Y + A12XY2 + A03Y3 (2.4.5)
+ Ao Xt + A31 X3Y + A2 X2Y? 4 A1 XY3 + ApsYV?

in fourth order. The coefficients A;; are calculated by expressions that minimize, with respect to A;;, the
quadratic sum

S=Y (B(X,Y,0) - By;)? (2.4.6)

The source code contains the explicit analytical expressions of the coefficients A;; solutions of the normal
equations 85/94;; = 0.
The A;; may then be identified with the derivatives of B(X,Y,0) at the central node of the grid

§+iB -
A= —— 0,0,0) (2.4.7)

The derivatives of B(X,Y,0) with respect to X and Y, at the actual point (X, Y, 0) are obtained by differentiation
of the interpolation polynomial, which gives (e.g. from (2.4.4) in the case of second order interpolation)

oB
3% (X,Y,0) = Ajg + 2A20X + A11Y

8B
57 (X Y,0) = Ao1 + AuX +240Y (2.4.8)

etc.

This allows stepping to the calculation of B'(X ,Y,Z) and its derivatives as described in subsection 2.3.2
(eq. 2.3.3).

The special case of polar maps

It is necessary to change from polar to Cartesian coordinates. This is done as follows.
In second order calculations the correspondence is
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OB 16B

X = R
8B _oE
a8y ~ 8R
0B _16°B 108
8X2 " R28a2 " ROR
B _18B 18B
ag(aY - R2 8adR RZ? 8o :
B _&B (2.4.9)
ay? OR2
8B _ 3 B 20B
8x3 T R26a8R  R® b
#B__-20B 108 1B
8X28Y ~ R38a? R2OR ' ROR?
#B _20B 2 B
8X8Y2 ~ R38a R206adR
B _,
Y3 -

In fourth order calculations the relations are the same up to second order, and then

B 1 3B 3 &°B 2 OB

X2 TR0 R IR B a
#B _1 &B 29B_10B 19B

8X28Y  R208020R R® 82 R26R ' R OR?
8B _1 &B 28B 2 &B

8Xay? R 8aOR?2 ' R® 6a R? 8adR

B B

Y3 OR3

&B _1&B 8&B 6 B 38B 3 0B

X7 R ok RE2 R 9:°0R TR ORZ R OR (2.4.10)
B __1_643_3_83B+_§_63B__§_BZB+_6_§

8X33Y  R3 8028R R% 9a®  R?2 8aBR?2 RS2 8adR ' R4 8«

B _1%B_ 4 OB 2 ¥B 208 1 8B  105B

8X22Y2 ~ R4 8902 R® 0a’8R R2OR? ' R2 OR  R? 8a28R? " R OR®
8B _l343__3’_333+i‘923_£5’43

8X8Y® ~ R 8aBR® R? 0adR? ' R® 8aOR R? 8a*

¥B _ 9B

Y4 ~ OR%

NOTE: If a particle goes beyond the limits of the field map, the field and its derivatives will be extrapolated by
means of the same calculations, from the border grid which is the closest to the actual position of the particle.
Its flag IEX is given the value —1 (see section 5.6.8).
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Figure 3: Mesh in the (X,Y) plane in Cartesian coordinates. The grid is cen-
tered
on the node which is closest to the actual position of the particle.
A: 9-point interpolation grid.
B: 25-point interpolation grid.
C: Mesh in the (X, Y) plane in polar coordinates.

2.4.3 Arbitrary 2-D Map, no Symmetries

The map is supposed to describe the field B(Bx, By, Bz) in the (X, Y) plane at elevation Zy. It prdvides the
components Bx ;;, By,:;, Bz,i; at each node (z,5) of a 2-D mesh.

The value of B and its derivatives at the projection (X,Y, Zo) of the actual position (X,Y, Z) of a particle is
obtained by means of a polynomial interpolation from a 3 x 3 points grid centered at the node (%, ) which is
closest to-the position (X,Y)

Bi(X,Y, Zo) = Agp + A1o X + Ao1Y + ApX? + A XY + AgY? (2.4.11)

where By stands for any of the three components By, By or Bz. Differentiating then gives the derivatives
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o5,

oX
828,
XV (X,Y,Zp) = Ay

(X,Y,Z) = A1o +2420X + AnY
(2.4.12)

ete.

Then follows the procedure of extrapolation from (X,Y, Z) to the actual position (X,Y,Z), as described in
section 2.3.3 . ‘

No special symmetries are assumed, which allows the treatment of any type of magnet.

2.4.4 Calculation of B from a 3-D Field Map

The vector field E(X ,Y,Z) and its derivatives necessary for the calculation of position and velocity of the
particle are now defined by means of a 3-D field map, through second order polynomial interpolation

By(X,Y,Z) = Aooo + A100X + Ao10Y + Ao01Z + A200X? + AozoY 2 + A02Z> + A110XY + A101XZ + Ao11Y Z

(2.4.13)
B, stands for any of the three components, Bx, By or Bz. By differentiation of By one gets
8B
6_X£ = A100 + 2A200X + A110Y + A101Z
(2.4.14)
&8 _ g4
axz = 24200

and so on for first and second order derivatives with respect to X, Y or Z.

The interpolation involves a 3 x 3 x 3-point parallelipipedic grid (Fig. 4), the origin of which is positioned at
the node of the 3-D field map which is closest to the actual position of the particle.

Let ijk be the value of the — measured or computed — magnetic field at each one of the 27 nodes of the 3-D
grid (B stands for Bx, By or Bz), and By(X,Y, Z) be the value at a position (X,Y, Z) with respect to the
central node of the 3-D grid. Thus, any coefficient A; of the polynomial expansion of By is obtained by means

of expressions that minimize, with respect to A;, the sum

S=Y(BuX.Y,Z) - BY)” (2.4.15)
ijk

where the indices ¢, j and k take the values -1, 0 or +1 so as to sweep the 3-D grid. The source code contains
the explicit analytical expressions of the coefficients A, solutions of the normal equations 8S/8A;;, = 0.
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Figure 4: A 3-D 27-point grid is used for interpolation of B and its derivatives
up to second order. The central node of the grid (i =7 =k =0) is
at the closest vicinity of the actual position of the particle.

2.5 Calculation of E and its derivatives

Zgoubi calculates E(X ,Y, Z) and its derivatives in several different ways, depending on whether field maps or
analytical representations of optical elements are used. The three basic means are the following [7].

2.5.1 Extrapolation from a 1-D axial field map

A cylindrically symmetric field can be described by an axial 1-D field map of its longitudinal component
Z?)1/2), while the radial component E.(X,r = 0) is assumed to be zero (e.g. in
ELREVOL). Ex(X,r = 0) is obtained at any point along the X-axis by a polynomial interpolation from the
map mesh (see section 2.4.1). Then the field components Ex(X,r), E.(X,r) at the position of the particle,
(X r) are obtained from Taylor expansions to the fifth order in r (hence up to the fifth order derivative

Ex(X,r = 0) (r = (Y2+

8X5 (X 0)), assuming cylindrical symmetry

r2 3Ex r 64EX
EX(X,T)'— EX(XaO)—Z aXz (X O)+ 64 aX4
_ rdOEx 8 PEx
EX,r)=—53x X0+ 5o (X0~

(X, 0)

r® 8Ex
384 X5

(X,0)




By differentiation with respect to X and r, up to the second order, these expressions provide the derivatives of
E(X,r). Finally a conversion from the (X r) coordinates to the (X,Y, Z) Cartesian coordinates of Zgoubi is

Gititk
E 7 Needed in the egs. (2.2.12).

performed, thus providing the expressions X BYIo5E

2.5.2 Extrapolation from analytically defined axial fields

This procedure assumes cylindrical symmetry with respect to the X-axis. The longitudinal field component
Ex(X,r =0) (r = (Y2 + Z?)1/2), along this axis are derived from differentiation of an adequate model of the
electric potential V(X) (e.g. in EL2TUB, UNIPOT). The longitudinal and radial field components Ex(X,r),
S Ex d FYIE,
OXiord . 9Xiori
in 7 assuming cylindrical symmetry (see eq. (2.5.1)), and then transformed to the (X,Y, Z) Cartesian frame of

SHitkE )
W needed in €q. (2.2.12).

are obtained by Taylor expansions to the fifth order

E,(X,r) and their derivatives off-axis

Zgoubi in order to provide the derivatives

2.5.3 3-D Analytical models of fields

In analytical elements (e.g. WIENFILT, ELMULT, EBMULT), the three components of E, namely Ex, Ey, Ez,
and their derivatives with respect to X, Y or Z are derived at any step along trajectories, from the analytical
expressions of field models that give B(X,Y, Z).

Multipoles and skewed multipoles

A right electric multipole is considered to have the same effect as the equivalent skewed magnetic multipole.
Therefore, the calculation of the right electric or electromagnetic multipoles (ELMULT, EBMULT) uses the
same eq. (2.3.5) together with the rotated process described in section 2.3.5. The same method is used, for
rotating arbitrary multipole components around the X-axis, whatever the angle of rotation.

2.6 Calculation of E from field maps
1-D axial map, with cylindrical symmetry
The only type of field map treated in the actual version is the 1-D axial map, with cylindrical symmetry. The

same procedure as for the case of magnetic fields is involved (see section 2.4.1).

3 SPIN TRACKING [8]

The depolarization of a particle beam travelling in a . magnetic field B takes its origin in the spin precession
undergone by each particle. This motion of the spin Sis governed by the Thomas-BMT first order differential
equation [9]

d q — —
—_— 2 3.1
% ’ymS x (3.1)
where
8= (1+1G)k+6a -k (32)

g, m, v and G are respectlvely the charge, rest mass, Lorentz relativistic factor, and anomalous magnetic

moment of the particle. b 4 is the component of b which is parallel to the velocity ¥ of the partlcle

These equations are normalized by mtroducmg the same notation as previously. Let b —Il b | and v =|-7||;
d§ 14§

ds = vdt is the differential path, T = Bp is the rigidity of the particle; §/ = b is the derivative of

the spin with respect to the path.
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. — b —
Introducing also B = B, and By = By and
- ﬁ - -~ ’
&= B_p =(1+vG)B+G(1-~)By (3.3)

eq. (3.1) can be re-written in a normalized way

§'=8xa (3.4)

This equation is then solved in the same way as the reduced Lorentz equation (2.2.3). From the values of the
magnetic factor J(Mp) and the spin S(Mp) of the particle at position My of its trajectory, the spin §(M1) at
position M;, following a displacement ds (fig. 2), is given by the Taylor expansion

= = ds d2s ds®? 43S ds®  d4S ds*
S(My) = S(M, — (Mp)ds + — (Mp)— + — —_—t — —_ .
(M) = S(Mo) + ds( 0)ds+—= (Mo) 5+ 73 (Mo) o + 7 (Mo) 1 (3.5)
e am TS o , .
The derivatives S0 = Tom of S at My are obtained by differentiating eq. (3.4)
S” = S" X &
§"=8"xad+8xd
G 5 x 3428 x T +§x T (36)
S,‘/m — S;’m X ‘3_*_35,’1/ X (-3/_}_3‘5'7'1 X d;'”+§x aom
where the derivatives ™) are obtained from eq. (3.3).
The last point cousists in getting B y and its derivatives. This can be done in the following way. Let 4 = % be
the normalized velocity of the particle, then,
B)=(B-wa
5 =(B'-a+B-a"ya+ (B -a)a’ 57
51 = (B"-a+2B'-@'+B-a")a+2B' -a+B-a"a'+ (B -a)a" '
etc.

The quantities z, B and their n-th derivatives as involved in these equations are picked up from egs. (2.2.6,
2.2.7).
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4 SYNCHROTRON RADIATION [10]

The ray-tracing procedures’ provide the ingredients necessary for the determination of the electric field radiated
by the particle subject to acceleration, as shown in Fig. 5.

Observer

0 X

Figure 5: A scheme of the reference frame-in Zgoubi together with the vectors entering in the
definition of the electric field radiated by the accelerated particle:
(z,y): horizontal plane; z: vertical axis.
E(t) = particle position in the fixed frame (O, z,y, 2);
X (time-independent) = position of the observer in the (O, z,y, 2) frame;
Ft)=X - ﬁ(t) = position of the particle with respect to the observer;
7(t) = (normalized) direction of observation = 7(¢)/|7(t)[;
G = normalized velocity vector of the particle tle=(1/ c)dR/dt.

4.1 Calculation of the electric field (%, 7)

The expression for £(7, 7) as seen by the observer in the long distance approximation is [11]

g ) x [(ﬁ'(t) - [a’(t)) x dﬁ/dt]

L T (-7 -fw)

(4.1.1)

where ¢ is the time in which the particle motion is described and 7 is the observer time. Namely, when at
position 7(£) with respect to the observer [or as well at position R(t) = X — 7(t) in the (O, z,y, z) frame] the
particle emits a signal which reaches the observer at time 7, such that 7 =t 4 r(t)/c where r(t)/c is the delay
necessary for the signal to travel from the emission point to the observer, which also leads by differentiation to
the well-known differential relation

1 Also implemented in the post-processor zgplot
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dr/dt =1 — 7(t) - B(t) (4.1.2)

The vectors fi(t) and fB(t) = 24 (Eq. 2.2.2) that describe the motion are obtained from the ray-tracing
(Eqgs. 2.2.4). The acceleration is calculated from (Eq. 2.2.1)

df/dt = (g/m) B(t) x b() (4.1.3)
Then, given the observer position X in the fixed frame, it is possible to calculate
#(t) = X — R() and #i(t) = 7(2)/I7(0) (4.1.4)

The calculation of 7 — 5 and 1 -7 - §

Owing to computer precision the crude computation of 7 — ﬁ and 1 —#- ﬁ may lead to
A-f=0and —7-F=0

since the preferred direction of observation is generally almost parallel to ﬁ (exactly parallel in the sense of
computer precision), while 8 & 1 as soon as particle energies of a few hundred times the rest mass are concerned.
It is therefore necessary to express 7 — ﬁ and 1 — 77 - ﬁ in an adequate software form for achieving accurate
computation.

The expression for 7 is

= {ng, Ny, n,) = (cos ¥ cos ¢, cos ¥ sin @, sin ¥)
= [1 — 2(sin® ¢/2 + sin® ¥/2) + 4sin® ¢/2sin® ¥/2,sin (1 — 2sin® ¥/2),sin ]  (4.1.5)

3

where ¢ and ¥ are the observation angles, given by

T
¢ = Atg (r—”> and ¥ = Atg | —— (4.1.6)
Tz \JT2 7l

with 7= (rg,7y,72), While £ can be written under the form

B=(BesBys ) = [/ (8 — B — B2, By )
- [\/(1 ~1/72 -8~ ﬁg),ﬁy,ﬁ,] =(1—a/24a%/8—d3/16+ .., B, B:) (4.1.7)

where a = 1/~ + B2 + 2. This leads to

fig=1—ezand fr=1—¢;
with
£z = 2(sin® ¢/2 + sin® ¥/2) — 4sin’ ¢/2sin® ¥/2
and
€r=0a/2—a?/8+a%/16+ ...

All this provides, on the one hand,
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i~ F = (e +&,ny = By, = B:) ' (4.1.8)

whose components are combinations of terms of the same order of magnitude (¢, and &, ~ 1/42 while Ny, By, Nz
and 8, ~ 1/+) and, on the other hand,

-

1-7-B=¢z+8& —nyBy — 1.0, — €z (4.1.9)

that combines terms of the same order of magnitude (e5,&z, 7y By and 1,8, ~ 1/42), plus €., ~ 1/7*.
The precision of these expressions is directly related to the order at which the series

fr=a/2—a?/8+a%/16+ ... (a=1/'yz+,33+,33)

is pushed, however the convergence is fast since a ~ 1/9% << 1.

4.2 Calculation of the Fourier transform of the electric field

The Fourier transforms
FT,[E(T)] = /S(T)e’i“”'d'r

of the o and = electric field components provide the spectral angular brightness
8 P/8¢ 8Y 8w = 2r2 |FT,, (E(7)) |* / oc (4.2.1)

They are calculated in a regular way, without using the FFT technic, namely from

FT, [E(r)] & Y E(ra) e™ Am, ) (4.2.2)

for two reasons. On the one hand, the number of integration steps ds that define the trajectory (Eqgs. 2.2.4),
is fully arbitrary and therefore in general not of order 2*. On the other hand, the integration step defines a
constant time differential element At,, = ds/Bc which results in the observer differential time element A7,
which is also the d_i'fferential element of the Fourier transform, being non-constant, since both are related by
eq. 4.1.2 in which § and 7 vary as a function of the number n of integration steps.

Another major point is that A7, may reach drastically small values in the region of the central peak of the
electric impulse emitted in a dipole (1 — 7(t) - B(t) — 1/2¢2), while the total integrated time ¥ A7, may be
several orders of magnitude larger. In terms of the physical phenomenon, the total duration of the electric
field impulse as seen by the observer corresponds to the time delay > 7, that separates photons emitted at
the entrance of the magnet from photons emitted at the exit, but the significant part of it (in terms of energy

2(1+7*¢*)*"2 2

3vec
small fraction of 3 7,.
The consequence is that, once again in relation with computer precision, the differential element A7, involved
in the computation of eq. 4.2.2 cannot be derived from such relation as A7, = 7, — 7h—1, but instead must be
stored as such beforehand.

of the peak of radiation [12], is a very

density) which can be represented by the width 27, =
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5 DESCRIPTION OF THE AVAILABLE PROCEDURES

5.1 Introduction

This chapter gives a detailed description of how the Zgoubi procedures work, and their associated keywords.
It has been split into several sections. Sections 5.2 to 5.5 explain the underlying content and functioning of all
available keywords. Section 5.6 is dedicated to the description of some general procedures that may be accessed
by means of special data or flags (such as negative integration steps), or through the available keywords (such
as multiturn tracking with REBELOTE).

5.2 Definition of an Object

The description of the object, i.e., initial coordinates of the beam, must be the first element of the input data
to Zgoubi.

Several types of antomatically generated objects are available, as described in the following pages.
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MCOBJET: - Monte Carlo Generation of a 6-D Object

MCOBJET generates a set of up to 200 random initial conditions. It is generally used in conjunction with the
keyword REBELOTE, which allows generating an arbitrarily high number of initial conditions.

The first datum is the reference rigidity (negative value allowed)

BORO = %‘1 (kG.cm)

Depending on the value of the next datum, KOBJ, the IMAX (< 200) particles have their initial random
conditions Y, T, Z, P, X and D (relative momentum) generated on 3 different types of supports, as descnbed
below.
Next come the data

KY, KT, KZ, KP, KX, KD

that specify the type of probability density for each one of the 6 coordinates.
KY, KT, KZ, KP, KX can take the following values:

1. uniform density, p(z) =1 if —éz < z < dz, p(z) = 0 elsewhere,

2

1 =z
2. Gaussian density, = e 2827,
¥ p() éz/2m
2
3. parabolic density, p(z) = %( 1- Xz.;i) if —0z < z < éz, p(z) = 0 elsewhere.

K D can take the following values:
1. uniform density, p(D) =1 if =6D < D < 6D, p(D) = 0 elsewhere,
2. exponential density, p(D) = Npexp(Co + Cil 4 Cal? + C3!®) with 0 <1< 1 and —6D < D < 6D,
3. p(D) is determined by a kinematic relation, namely, with T' = horizontal angle, D = éD T
Next come the central value for the random sorting,
Yo, To, Zo, Po, Xo, Do

namely, the probability density laws p(z) (z =Y, T, Z, P or X) and p(D) described above apply to the variables
z—x20 (=Y -Yo, T —To, ...) and D — Dy respectively. Negative value for Dy is allowed (see section 5.6.9).

KOBJ = 1: Random generation of IMAX particles in a hyper-window with widths (i.e., the half-extents
for uniform or parabolic distributions (KY, KT,... = 1 or 3) and the r.m.s. width for Gaussian distributions
(KY,KT,...=2))

8§Y, 6T, oz, 6P, 46X, éD

Then follow the cut-off values, in units of the r.m.s. widths 8Y, 6T, ... (used only for Gaussian distributions
KY,KT,..=2) _
Nsy, Nsr, Nsz, Nsp, Nsx, Nsp

The last data are the parameters

NO, CO, Cl, 021 03

needed for generation of the D coordinate upon option KD = 2 (unused if KD = 1, 3) and a set of three
integer seeds for initialization of random sequences,

IR1, IR2, IR3 (all ~10°)

All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (e.g.,
with HISTO and MCDESINT).
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KOBJ = 2: Random generation of IY * IT x [Z x IP * I X » I D particles (maximum 2/00) in a hyper-grid. The
input data are the number of bars in each coordinate

Iy, IT, I1Z, IP, IX, ID
the spacing of the bars
PY, PT, PZ, PP, PX, PD
the width of each bar
Y, oT, ¢6Z, 6P, 6X, 6D
the cut-offs, used with Gaussian densities {in units of the r.m.s. widths)

Nsy, Nsr, Nsz, Nsp, Nsx, Nsp

This is illustrated in Fig. 6.

The last two sets of data in this option are the parameters

No, Co, Ci, C3, Cs

needed for generation of the D coordinate upon option KD= 2 (unused if KD= 1, 3) and a set of three integer
seeds for initialization of random sequences, TR1, IR2, and IR3 (all ~ 108),

All particles generated by MCOBJET are tagged with a (non-S) character, for further statistic purposes (see
HISTO and MCDESINT).

KOBJ = 3: Distribution of IMAX particles inside a 6-D ellipsoid defined by the three sets of data (one set
per 2-D phase-space)

=y .
ay, ﬁY7 ESYa NSY [7 Ns,y, if NEY < O]

az, Bz, —ez, Ne[, NI, if Noy <0
ax, 6X7 ;€X’ Né‘x[7 N5,X7 if Nsx <O]

where o, 8 are the ellipse parameters and /7 the emittance, corresponding to a frontier given, e.g., in the
2 _
(Y, T} plane by H'Talf_y2 + 2ayYT + ByT? = ey /n (idem for the (Z, P) or (X, D) planes). Ne,, N., and

Y
N, are the sorting cut-offs (used only for Gaussian distributions, KY, KT, ... = 2).
The sorting is uniform in surface (for KY =1, or KZ =1 or KX = 1) or Gaussian (KY = 2 or KZ = 2),
and so on, as described above. A uniform sorting has the ellipse above for support. A Gaussian sorting has the

2
ellipse above for r.m.s. frontier, leading to oy = /fyey/w, o = _(l_-l_—_a_y_)

By
az E] UX' .
If N. is negative, thus the sorting fills the elliptical ring that extends from |N;| to N/ (rather than the inner
region determined by the N, cut-off, as addressed above).

ey /m, and similar relations for
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Figure 6: Scheme of the input parameters to MCOBJET when KOBJ = 3, 4
A: A distribution of the Y coordinate
B: 2-D grid in (Y, Z) space.
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OBJET: - Generation of an Object

OBJET is dedicated to the determination of the initial coordinates, in several ways.

The first datum is the reference rigidity (negative value allowed)
BORO = Eq‘l

At the object, the beam is defined by a set of particles (maximum 200) with the initial conditions (Y, T, Z, P,
X, D) where D is the relative momentum.

Depending on the value of the next datum KOBJ, these initial conditions may be generated in six different
ways: '

KOBJ = 1: Defines agridinthe Y, T, Z, P, X, D space. One gives the number of points desired,

Iy, IT, IZ, IP, IX, ID
(maximum 21 in each coordinate: IY < 21...ID < 21) and the sampling size
PY, PT, PZ, PP, PX, PD

Zgoubi then generates IY * IT « IZ x IP * IX = ID (< 200} initial conditions with the following coordinates

0, +PY, +2+PY, ..., +IY/2%PY,
0, X=PT, +£2xPT, , xIT/2%PT,
0, +PZ, +2+PZ, ..., +IZ/2%PZ,
0, PP, £2xPP, ..., xIP/2xPP,
0, £PX, £2xPX, , £IX/2xPX,
0, £PD, +2%PD, , *ID/2%xPD,

In this option relative momenta will be classified automatically for the purpose of the use of IMAGES for
momentum analysis.

The particles are tagged with an index IREP eventually indicating a symmetry with respect to the (X,Y)
plane, as explained in option KOBJ = 3. If two trajectories have mid-plane symmetry, only one of them will
be ray-traced, while the other will be deduced using the mid-plane symmetries. This is done for the purpose
of saving computing time. It may be incompatible with the use of some procedures (e.g. MCDESINT, which
involves random processes).

The last datum is the relative momentum of the problem, D : the reference rigidity of the beam is D+ BORO,
resulting in the rigidity of a particle of initial condition I = PD, for instance, to be {D + I * PD) * BORO.

KOBJ = 2: Next data: IMAX, IDMAX. Initial coordinates are entered explicitly for each trajectory. IMAX
is the total number of particles (IMAX < 200). These may be classified in groups of equal number for each
value of momenturm, in order to fit the requirements of image calculations by IMAGES. IDMAX is the number
of groups of momenta. The following initial conditions defining a particle are specified for each one of the IMAX
particles

Y’ T7 Za P’ X’ D: /A’

where D * BORO is the rigidity (negative value allowed) and ‘A’ is a {(arbitrary) tagging character.

The last record IEX (I=1, IMAX) contains IMAX x1 (which indicates that the particle will be tracked) or -2
(indicates that the particle will not be tracked).

This option KOBJ = 2 may be be useful for the definition of objects including kinematic effects.
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KOBJ = £3: Next data: IMAX, IDMAX as explained for KOBJ = 2.
This option allows the reading of initial conditions from an external input file. This file must be formatted so
as to fit the following FORTRAN sequence

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD?)
DD 11I~=1, IMAX

READ (NL,100) LET (I), IEX(I), (¥0(J,I),J=1,6), (F(J,I),J=1,6), I, IREP(D),
100 FORMAT (1X, A1, 1X, I2, 6E16.8, / , 6E16.8, 2I3, /)

1 CONTINUE

where the meaning of the parameters is the following

LET(I) : one-character string (for tagging)

IEX(I) : flag, see KOBJ = 2

FO(1-6,I) : coordinates D, Y, T, Z, P and path length of the particle number
I, at the origin. D * BORO = rigidity

F(1-6,I) : idem, at the current position.

IREP is an index which indicates a symmetry with respect to median plane. For instance, if Z(I +1) = —Z(I),
then normally IREP(I +1) = IREP(I). Consequently the coordinates of particle I +1 will not be deduced from
ray-tracing but instead from those of particle I by simple symmetry. This results in gain of computing time.
If KOBJ = +3, further ray-tracing starts from the current coordinates F'(J,I). If KOBJ = -3, further ray-
tracing starts from the initial coordinates FO(J, I). .

KOBJ = =3 can be used directly for reading files filled by FAISCNL.
If more than 200 particles are to be read from a file, use IMAX < 200 in conjunction with REBELOTE.

KOBJ = 4: Same as KOBJ = 1 except for the Z symmetry. The initial Z and P conditions are the following

0, £PZ, +2+PZ, ..., +(IZ-1)xPZ,
0, +PP, +2+PP, ..., +(IP—1)*PP,

This object results in shorter outputs when studying problems with Z symmetry.

KOBJ = 5: Mostly dedicated to the calculation of first order transfer matrices, in conjunction with MATRIX.
The input data are the step sizes

pPY, PT, PZ, PP, PX, PD
The code generates 11 particles
0, xPY, +PT, +PZ, +£PP, +PX, £PD

These values should be small enough, so that the baraxial ray approximation be valid.
The last data are the initial coordinates of the reference trajectory [normally (YR,TR,ZR,PR,XR,DR) =
(0,0,0,0,0,1)]. The reference rigidity is DR * BORO (negative value allowed).

KOBJ = 6: Mostly dedicated to the calculation of first, second and higher order transfer coefficients, in
copjunction with MATRIX. The input data are the step sizes
pPY, PT, PZ, PP, PX, PD

to allow the building up of an object containing 61 particles. The last data are the initial coordinates of the
reference trajectory [normally (YR,TR,ZR,PR,XR, DR) = (0,0,0,0,0, 1)]. The reference rigidity of the beam
is DR * BORO.
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KOBJ = 7: Object with kinematics _
The data and functioning are the same as for KOBJ = 1, except for the following

e ID is not used,

- o PD is the kinematic coefficient, such that for particle number I, the initial relative momentum Dj is
calculated from the initial angle T7 following

Dr=D+PDxTy

while 17 is in the range
0, +PT, x2xPT, ..., XIT/2+PT -

as stated under KOBJ =1
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OBJETA: - Object From Monte Carlo Simulation of Decay Reaction [13]

This generator simulates the reactions

My + My — Mz + M,
and then
My — Ms + M
where M, is the mass of the incoming body; M, is the mass of the target; M3 is an outgoing body; My is the

rest mass of the decaying body; Mz and Mg are decay products. Example:

p+d —3 He+ 7
n—p"+u
The first input data are the reference rigidity
BORO = %

an index IBODY which specifies the particle to be ray-traced, namely M3 (IBODY = 1}, M5 (IBODY = 2) or
M6 (IBODY = 3). In this last case, initial conditions for M6 must be generated by a first run of OBJETA with
IBODY = 2; they are then stored in a buffer array, and restored as initial conditions at the next occurrence of
OBJETA with IBODY = 3. Note that Zgoubi by default assumes positively charged particles.

Another index, KOBJ specifies the type of distribution for the initial transverse coordinates Y, Z; namely either
uniform (KOBJ = 1) or Gaussian (KOBJ = 2). The other three coordinates T', P and D are deduced from the
kinematic of the reactions.

The next data are the number of particles to be generated, IMAX, and the masses involved in the two previous
reactions.

Ml’ M27 M3’ M47 M5: M6

and the kinetic energy T of the incoming body (M;).
Then one gives the central value of the distribution for each coordinate

Yo, To, Zo, Fo, Do
and the width of the distribution around the central value
8y, 6T, 6Z, 6P, 6D
so that only those particles in the range
Yo—-0Y Y <Y +4dY Dy —8D<D<LDy+6D
will be retained. The longitudinal initial coordinate is uniformly sorted in the range

-XL < Xo<XL

The random sequences involved may be initialized with different values of the two integer seeds IR; and IR»
(=~ 10%).
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5.3 Declaration of options

These options allow the control of procedures that affect certain functions of the code. Some options are
normally declared right after the object definition (e.g. SPNTRK - spin tracking, MCDESINT - in-flight decay),-
the others are normally declared at the end of the data pile (e.g. END - end of a problem, REBELOTE - for

tracking more than 200 particles, FIT - fitting procedure).
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BINARY: Binary/Formatted data converter

This procedure translates field map data files from “BINARY” to “FORMATTED” - in the FORTRAN sense,
or the other way. : -

The keyword ‘is followed, next line, by NF (< 20), the number of files to be translated.

Then follow, line per line, the NF names of the files to be translated.

Iff a file name begins with the prefix “B_”, it is presumed “binary”, and hence converted to “formatted”, and
given the same name after suppression of the prefix “B.”. Conversely, iff the file name does not begin with “B_",
the file is presumed “formatted” and hence translated to “binary”, and is given the same name after addition
of the prefix “B.”.

In its present state, the procedure BINARY supports only files with the standard TOSCA magnet code output
-format (see the keyword TOSCA).
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FIN or END : End of Input Data List

The end of a problem, or of a set of several problems piled up in the data file, should be stated by means of the
keywords FIN or END. .

Any information following these keywords will be ignored.
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FIT: Fitting Procedure

The keyword FIT allows the automatic adjustment of up to 20 variables, for fitting up to 20 constraints. It
has been realized after existing routines used in the matrix transport code BETA [14]. Any physical parameter
of any element (i.e. keyword) may be varied. Available constraints are: any of the 6 x 6 coefficients of the
first order transfer matrix [R;;] as defined in the keyword MATRIX, and its horizontal (R11Ro2 — R12R21) and
vertical (RasR4s — R34R43) determinants; any of the 6 x 6 x 6 coefficients of the second order array [T;;x] as
defined in MATRIX ; any of the 2 x 4 coefficients of the beam matrix as defined by

g11 012
021 022
loyy] =
033 034
043 044

and any trajectory coordinates F(J,I) as defined in OBJET (I = particle number, J = coordinate number =
1 to 6 for respectively D, Y, T, Z,P or S =path length).

VARIABLES
The first input data in FIT are the number of variables NV, and for each one of them, the following parameters
IR = number of the varied element in the structure
IP = number of the physical parameter to be varied in this element
XC = coupling parameter. Normally XC = 0. If XC # 0, coupling will occur (see below).
DV = allowed relative range of variation of the physical parameter IP.

Numbering of the elements (IR):

The elements (DIPOLE, QUADRUPO, etc.) are numbered following their sequence in the Zgoubi input data
file, for the purpose of the FIT procedure. The number of any element just identifies to its position in the data
sequence. However, a simple way to get IR is to make a preliminary run: Zgoubi will then print the whole
structure in zgoubi.res with all elements numbered.

Numbering of the physical parameters (IP):

In the elements DIPOLE, AIMANT and EBMULT, ELMULT, MULTIPOL, the numbering of the physical
parameters just follows their sequence, as it is shown here after for DIPOLE: the left column below represents
the input data, the right one the corresponding numbering to be used for the FIT procedure.

Input data Numbering for FIT
DIPOLE

NFACE, IC, IL 1,2,3

IAMAX, IRMAX 4,5

By, N,B,G 6,7,8,9

AT, ACENT, RM, RMIN, RMAX 10,11,12, 13, 14

AL€ A 15,16

NC, Cy, Cy, Ca, Cs, C4, Cs shift 17, 18, 19, 20, 21, 22, 23, 24
w, 0, Ry, Uy, Uz, Ry ‘ 25, 26, 27, 28, 29, 30

etc. ete.
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For all other keywords, the parameters are numbered in the following way

KEYWORD

first line 1,2, 3,..

second line 10, 11, 12, 13,...

this is a comment a line of comments is skipped
next line 20, 21, 22,...

and so on... 30, 31, 32, 33,...

The examples of QUADRUPO (quadrupole) and TOSCA (Cartesian mesh field map) are given below.

Input data Numbering for FIT
MULTIPOL

IL 1

XL, Ry, B 10, 11, 12

Xg, AE 20, 21

NCE, Gy, Cy, Ca, C3, Cy, Cs 30, 31, 32, 33, 34, 35, 36
Xs, As, S2, Ss, S4, S5, Se 40, 41

NCS, Cy, C4, Cs, Cs, Cy, Cs 50, 51, 52, 53, 54, 55, 56
XPAS 60

KPOS, XCE, YCE, ALE 70,71, 72,73

TOSCA

IC, IL 1,2

BNORM 10

TIT This is text

IX, IY,IZ 20, 21

FNAME This is text

ID, A,B,C[A",B,C' etcif ID > 2] 30,31, 32, 33 [34, 35, 36, etc if ID > 2]
IORDRE 40

XPAS 50

KPOS, XCE, YCE, ALE 60,61,62,63

Coupled variables (XC)

Coupling a variable parameter to any other parameter in the structure is possible. This is done by giving
XC a value of the form r - pp where the integer part r is the number of the coupled element in the structure
(equivalent to IR, see above), and the decimal part pp is the number of its parameter of concern (equivalent to
IP, see above) (if the parameter number is in the range 1,...,9, then pp must take the form Op). For example,
XC = 20-01 is a request for coupling with the parameter number 1 of element number 20 of the structure,
while XC = 20 - 10 is a request for coupling with the parameter number 10 of element 20.

An element of the structure which is coupled (by means of XC # 0) to a variable declared in the data list
of the FIT keyword, needs not appear as one of the NV variables in that data list (this would be redundant

information).

XC can be either positive or negative. If XC > 0, then the coupled parameter will be given the same value
as the variable parameter (for example, symmetric quadrupoles of a symmetric triplet will be given the same
field). If XC < 0, then the coupled parameter will be given a variation opposite to that of the variable, so that
the sum of the two parameters stays constant (for example, an optical element can be shifted while preserving
the length of the structure, by coupling together its upstream and downstream drift spaces).

Variation range (DV)
For a parameter IP of initial value p, the FIT procedure is allowed to explore the range p(1 £ DV).
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CONSTRAINTS

The next input data in FIT are the number of constraints, NC, and for each one of them the following parameters.

IC = type of the constraint (see table below).
I,J = constraint (i.e. R;;, or determinants; Tj;i; 035 trajectory and
coordinate numbers)
IR = number of the element in the Zgoubi input data file, right after
which the constraint applies
|4 = desired value of the constraint
W = weight of the constraint (smaller W for higher weight)
Type of Parameters defining the constraint
constraint
IC I J Constraint
Beam matrix | 0 1-4 1-4 orJ
First order 1-6 1-6 Ryy
transfer 1 7 any - Horizontal determinant
coefficients 8 any Vertical determinant
Second order | 2 1-6 11- 66 Tr %
transfer (4 = [J/10],k=J —10[J/10])
coefficients
Trajectory 3 |1-IMAX | 1-6 F(J,I)
coordinate

Table 1: This table shows the constraints available, depending on the values of
IC, I and J. [] denotes the integer part. When IC = 3, I designates
the particle number and J the coordinate number (i.e., D, Y, T, Z, P
or X).

The coefficients o11(033) = horizontal (vertical) dimension of the beam, and o22(044) = horizontal (vertical)
divergence of the beam are calculated by means of the procedures described in IMAGE.

The fitting of the [0;;] matrix coefficients supposes the tracking of a relevant population of particles within an
adequate emittance.

The coefficients R;; and T};x, are calculated following the procedures described in MATRIX, option IFOC = 0.
The fitting of the [R;;] matrix coefficients or determinants supposes the tracking of particles having initial coor-
dinates sampled as described in MATRIX (these particles are normally defined with OBJET, KOBJ = 5 or 6).
The same is true for the T;;; second order coefficients (Initial coordinates normally defined with OBJET,
KOBJ = 6).

OBJECT DEFINITION

Use OBJET, KOBJ = 5 for constraint type IC =0 and IC = 1, and KOBJ =6 for IC = 2.
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For constraint type JC = 3, the object is normally defined with keyword OBJET. If KOBJ # 1, any of the 1
to IMAX trajectories can be constrained. If KOBJ = 2, only the first seven trajectories can be constrained.

THE FITTING PROCEDURE [14]

The procedure is a direct sequential minimization of the quadratic sum of all errors (i.e., differences between
desired and actual values of the NC constraints), each normalized by its specified weight W (the smaller W,
the stronger the constraint).

The step sizes for the variation of the physical parameters depend on their initial values, and cannot be accessed
by the user. At each iteration, the optimum value of the step size, as well as the optimum direction of variation,
is determined for each one of the NV variables. Then follows an iterative global variation of all NV varlables
until the minimization fails which results in a next iteration on the optimization of the step sizes.
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GASCAT: Gas Scattering

Modification of particle momentum and velocity vector, performed at each integration step, under the effect of
scattering by residual gas. i
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MCDESINT: Monte Carlo Simulation of In-Flight Decay [15]

As soon as MCDESINT appears in a structure (normally, after OBJET or after CIBLE), in-flight decay simu-
lation starts. It must be preceded by PARTICUL for the definition of mass M; and COM lifetime 71. -
The two-body decay simulated is

1—24+3
The decay is isotropic in the centelr of mass. 1 is the incoming particle, with mass M3, momentum p; = 1 M 5c
%m with BORO = reference rigidity, see OBJET), and position Y7, Z; in the
Zgoubi frame. 2 and 3 are decay products with respective masses and momenta My, M3 and pz = v Msfs¢,

p3s = s Msfsc.
The decay length s; of particle 1 is related to its center of mass lifetime 71 by

s1=cr\/7? -1

The path length s up to the decay point is then calculated from a random number 0 < E; < 1 by using the
exponential decay formula

(relative momentum D; =

s = —s1fnR;

After decay, particle 2 will be ray-traced with assumed positive charge, while particle 3 is abandoned. Its
scattering angles in the center of mass 0* and ¢ are generated from two other random numbers 0 < Rs < 1 and
0<R3<1lby

6* = 2n(Ry — 0.5) (=7 < 0" <)
¢ =2wR3 (0< ¢ < 27)

¢ is a relativistic invariant, and 6 in the laboratory frame (Fig. 7) is given by

in O*
tan 8 = _1_ sin @

n —ﬁ—l— + cos 8*

B3

where, 83 and momentum p; are given by

. _ M+ M3 — M3
T2 = 2M1

. 1\ 12
Bz = 1—?

Y2 = 717 (1 + B185 cos 8%)

p2 = May/73 ~ 1

Finally, 8 and ¢ are transformed into the angles T> and P in the Zgoubi frame, and the relative momentum

qz BORO OlR o (where BORO is the reference rigidity, see OBJET), while the starting position
of Myis Yo =Y; and Zs = Z;.

takes the value Dy = P2

The decay simulation by Zgoubi obeys the following procedures. In optical elements and field maps, after each

integration step XPAS, the actual path length of the particle, F(6,1), is compared to its limit path length s.

If s is passed, then the particle is considered as having decayed at F(6,I) — -)-C-—P{E, at a position obtained

by a linear translation from the position at F'(6,I). [Presumably, the smaller XPAS, the smaller the error on
position and angles at the decay point].
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Figure 7: At position M(X1,Y1, Z1), particle 1 decays into 2 and 3; Zgoubi then calculates the
trajectory of 2, while 3 is abandoned.
@ and ¢ are the scattering angles of particle 2 relative to the direction of the incoming
particle 1; they transform to T3 and P» in Zgoubi frame.

In ESL and CHANGREF, F(6,]) is compared to s at the end of the element. If the decay occurs inside the
element, the particle is considered as having decayed at its actual limit path length s, and its coordinates at s
are recalculated by translation.

The limit path length of all particles (I = 1, IMAX) is stored in the array FDES(6, I), for further statistical
purposes. For the same purpose (e.g., use of HISTO), any particle of type 2 (resulting from decay of 1) will
be tagged with an S standing for “secondary”. When a particle decays, its coordinates D, Y, T, Z, P at the
decay point are stored in FDES(J,I), J =1, 5.
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NOTE on negative drifts: ,

The use of negative drifts with MCDESINT is allowed and correct. For instance, negative drifts may occur in
a structure for some of the particles when using CHANGREF (due to the Z-axis rotation or negative XCE),
or when using DRIFT with XL < 0. Provision has been made to take it into account during the MCDESINT
procedure, as follows.

If, due to a negative drift, a secondary particle reaches back the decay spot of the primary particle from which
it originated, then that primary particle is regenerated with its original coordinates at that spot. Then the
secondary particle is abandoned while ray-tracing resumes in a regular way for the primary particle which is
again susceptible of decay at the same time-of-flight. This procedure is made possible by prior storage of the
coordinates of the primary particles (in array FDES(J, I)) each time a decay occurs.

Negative steps (XPAS< 0) in optical elements are not compatible with MCDESINT.
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ORDRE: Higher Order Taylor Expansions in lenses

The position & and velocity @ of a particle are obtained from Taylor expansions as described in eq. (2.2.4). By
default, these expansions go to the fourth order derivative of %,

—

R, 2 ds®

Ro + diods + ... + @ 5

ds? ds*
o +ily S + ...+ T

Uy
which corresponds to third order derivatives of B, since (eq. (2.2.6))

@0 =a" x B+3a x B' +3@! x B" + @, x B"

and to the third order derivatives of E (eq. (2.2.10)). However the B” or E" term may be zero in second
order type optical elements, for instance in a sharp edge quadrupole. Also, in several elements, not more than
the first and second order derivatives of the fields are used.

The purpose of ORDRE, option IO = 5, is to allow expansions of R and @ up to the term #(®) for the following
optical elements

QUADRUPO, SEXTUPOL, OCTUPOLE, DECAPOLE, DODECAPO, MULTIPOL, ELMULT, EBMULT
The use of ORDRE with IO = 4 is equivalent to the default functioning.

NOTE: see also the option IORDRE in field map declarations (DIPOLE, TOSCA, etc.).
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PARTICUL: Particle Characteristics

PARTICUL allows the definition of several characteristics of the particles (mass, charge, gyromagnetic factor
and life-time in the center of mass), that are needed in several procedures, as follows -

MCDESINT : mass, COM life-time
SPNTRK . mass, gyromagnetic factor
SYNRAD : charge

Electric and Electro-Magnetic elements : mass, charge

The declaration of PARTICUL must precede these keywords.
Note that, in the case of electric or electro-magnetic optical elements, the mass and charge are needed in order
to compute the particle velocity v, as involved in eq. 2.2.3.
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REBELOTE: Jump To the Beginning of Zgoubi Input Data File

As soon as REBELOTE is encountered in the input data file, the code execution jumps back to the beginning
of the data file to start a new run, and so on up to NPASS times. When the following random procedures
are used: MCOBJET, OBJETA, MCDESINT, SPNTRK (KSO = 5), their random seeds are not reset, and
therefore independent statistics will add up. REBELOTE is dedicated either to Monte Carlo calculations
when more than 200 particles are to be tracked (due to IMAX < 200, see MCOBJET), or to the tracking in
circular machines (e.g. Synchrotron accelerators). The option index K is then used to either generate new
initial coordinates (K = 0 see section 5.6.7), when using MCOBJET or any other generator of random initial
coordinates, or in order that the final coordinates at the last run be taken as the initial coordinates of the next
(K = 99 — see section 5.6.4).

Monte Carlo simulations: normally K’ = 0. NPASS runs through the same structure will follow, resulting
in the calculation of (1 + NPASS) x IMAX trajectories.

Circular machines: normally K = 99. NPASS turns in the same structure will follow, resulting in the tracking
of IMAX particles over 1 + NPASS turns (Note: for the simulation of accelerators and synchrotron motion, see
SCALING).

Output prints over NPASS runs might result in a prohibitively big file. They may be inhibited by means of the
option KWRIT=0.

REBELOTE provides statistical calculations-and related informations on particle decay (MCDESINT), spin
tracking (SPNTRK), stopped particles (CHAMBR, COLLIMA).
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RESET: Reset Counters and Flags

Piling up problems in Zgoubi input data file is allowed, with normally no particular precaution, except that
each new problem must begin with a new object definition (with MCOBJET, OBJET, etc.). Nevertheless,
when calling upon certain keywords, flags, counters or integrating procedures are involved. It may therefore be
necessary to reset them. This is the purpose of RESET which normally appears right after the object definition
and causes each problem to be treated as a new and independent one.

The keywords or procedures of concern and the effect of RESET are the following

CHAMBR : NOUT = number of stopped particles = 0; CHAMBR option switched off

COLLIMA : NOUT = number of stopped particles = 0

HISTO : Histograms are emptied ’ :

INTEG : NRJ = number of particles out of range = 0 (INTEG is the numerical integration
subroutine; NR.J is incremented when a particle goes out of a field map)

MCDESINT : Decay in flight option switched off

SCALING : Scaling options disabled

SPNTRK  : Spin tracking option switched off
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SCALING: Time Scaling of Power Supplies and R.F. Cavity

SCALING acts as a function generator dedicated to varying the field of optical elements, or the frequency in
CAVITE. It is normally intended to be declared right after the object definition, and used in conjunction with
REBELOTE, for the simulation of multiturn tracking with acceleration cycles.

SCALING acts on families of elements, a family being designated by a specific name, cataloged as such in
the Program, and which coincides with the keyword of the corresponding element. For instance, declaring
MULTIPOL as to be varied will result in the same timing law being applied to all MULTIPOL’s declared in the
Zgoubi optical structure data file. Subsets can be selected by labeling keywords in the data file (section 5.6.3)
and adding the corresponding label(s) in the SCALING declarations. The family name of concern, as well as
the field versus timing scaling law of that family (or frequency versus timing in the case of CAVITE) are given
as input data to the keyword SCALING. Up to 10 families can be declared as subject to a scaling law; a scaling
law can be made of up to 10 successive timings; between two successive timings, the variation law is linear.

An example of data formatting is given in the following

. SCALING - Scaling
14 Active. 4 families of elements are concerned
QUADRUPO QF - Quadrupoles labeled 'QF’ (field at pole tip = B,)
2 2 timings
18131.E-3 24176.E-3 B increases (linearly) from 18131E-3%B, to 24176E-3+B,
1 6379 from turn 1 to turn 6379
MULTIPOL QD - Multipoles labeled ’QD’ (field of multipole component i at pole tip= B;o)
2
18131.E-3 24176.E-3  B; increases from 18131E-3xB;o to 24176E-3xB;0
1 ' 6379 from turn 1 to turn 6379
BEND - All BEND’s (Bending magnets)
2 .
18131.E-3 24176 E-3  Same scaling
1 6379
CAVITE - Accelerating cavity (reference frequency=frr,)
2
11.22 1.33352 The synchronous rigidity (Bp), increases from (Bp)s,
11200 6379 to 1.22 #(Bp)s, and to 1.33352 (Bp)s,

from turn 1 to 1200 and to 6379

The timing is in unit of turns. In this example, TIMING = 1 to 6379 (turns). Therefore, at turn number N, B
and B; are updated in the following way. Let SCALE(TIMING = N) be the updating scale factor

24.176 — 18.131

SCALE(N) = 18.181 o

(N-1)

and then

B(N) = SCALE(N)B,
Bi(N) = SCALE(N)B;o

The cavity R.F. is calculated by

f _he 9(Bp)s
REZ L @Bz + (MA))I2

where the rigidity is updated in the following way. Let (Bp),, be the initial rigidity (namely, (Bp)s, = BORO
as defined in the keyword OBJET for instance). Then, at turn number N,
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1.22 -1
A . (N -
1412001 ( 1)

1.33352—-1.22
146379 — 1200

if 1 < N <1200 SCALE(N) =1+

if 1200 < N < 6379 SCALE(N) = 1.22+ (N = 1200)

and then,
(Bp)s(N) = SCALE(N) - (Bp)s,
from which value the calculations of frp(NN) follow.

Families amenable to scaling are, AIMANT, BEND, CAVITE, DECAPOLE, DIPOLE, DODECAPO, MULTI-
POL, OCTUPOLE, POISSON, QUADISEX, QUADRUPO, SEXQUAD, SEXTUPOL, SOLENOID, TOSCA,
UNDULATOR.
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SPNTRK: Spin Tracking

The keyword SPNTRK permits switching on the spin tracking option. It also permits the attribution of an
initial spin component to each one of the IMAX particles of the beam, following a distribution that depends
on the option index KSO. It must be preceded by PARTICUL for the definition of the mass and gyromagnetic
factor. '

KSO =1 (respectively 2, 3): the IMAX particles of the beam are given a longitudinal (1,0,0) spin component
(respectively transverse horizontal (0,1,0), vertical (0,0,1)).

KSO = 4: initial spin components are entered explicitly for each one of the IMAX particles of the beam.

KSO = 5: random generation of IMAX initial spin conditions as described in Fig. 8. Given a mean polarization
axis (S) defined by its angles Tp and Fp, and a cone of angle A with respect to this axis, the IMAX spins are
sorted randomly in a Gaussian distribution

—a)p?
o) =ep |-Gk ] poavar

and within a cylindrical uniform distribution around the (S) axis. Examples of simple distributions available
by this mean are given in Fig. 9.

Figure 8: Spin distribution as obtained with option KSO = 5.
The spins are distributed within an annular strip §A (standard deviation) at an angle A
with respect to the axis of mean polarization (S) defined by Tp and Fo.
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0A

Figure 9: Examples of the use of KSO =5.
A: Gaussian distribution around a mean vertical polarization axis, obtained with
To = arbitrary, Py = 7/2, A=0 and §A # 0.
B: Isotropic distribution in the median plane, obtained with Py = +n/2, A = 7/2,
and dA =0.
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SYNRAD: Synchrotron Radiation

The keyword SYNRAD enables (or disables) the calculation of synchrotron radiation (SR) electric field and
brightness. It must be preceded by PARTICUL for the definition of the charge.

SYNRAD is supposed to appear a first titne at the location where SR calculations should start, with the first
data KSR set to 1. It results in on-line storage of the electric field vector and other relevant quantities in
zgoubi.sre , as step by step integration proceeds. The observer position (XO, YO, ZO) is specified next to
KSR.

Data stored in zgoubi.sre:
(ELz, ELy, ELz): electric field vector £ (eq. 4.1.1)

(btz, bty, btz) = = %x particle velocity

(9z,9y,92) = % = particle acceleration (eq. 4.1.3)

AT = observer time increment (eq. 4.1.2)

t' =7 — r(¥')/c = retarded (particle) time

(rtz,rty,rtz) : R(t), particle to observer vector (eq. 4.1.4)
(z,y,2) = particle coordinates

ds = step size in the magnet (fig. 2)

NS = step number

I = particle number

LET(I) = tagging letter

IEX(I) = stop flag (see section 5.6.8)

SYNRAD is supposed to appear a second time at the location where SR calculations should stop, with KSR
set to 2. It results in the output of the angular brightness f:l 2 32 P/0¢g A Oy (after eq. 4.2.2) following Fourier
transform of the electric field (eq. 4.2.2). The spectral range of interest and frequency sampling : vy, 12, N, is
specified next to KSR. :

Note that KSR = 0 followed by a dummy line of data allows temporary inhibition of SR procedures.
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5.4 Optical Elements and related numerical procedures
AIMANT: Generation of a Dipole Magnet 2-D Map

The keyword AIMANT provides an automatic generation of a dipole median plane field map in polar coordinates.
A more recent and improved version will be found in DIPOLE. The extent of the map is defined by the following
parameters, as shown in Figs. 10A and 10B.

AT : total angular aperture

RM : mean radius used for the positioning of field boundaries

RMIN, RMAX : minimum and maximum radial boundaries of the map

The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape
and position of which are determined by the following parameters. ’ :
ACENT : arbitrary angle, used for the positioning of the EFB’s.
w : azimuth of an EFB with respect to ACENT
@ : angle of a boundary with respect to its azimuth (wedge angle)
Ry, Ry : radius of curvature of an EFB
U;, Uy : extent of the linear part of the EFB.

At any node of the map mesh, the value of the Z component of the field is calculated as

R~RM R-RM\?> _, (R-RM\?

where N, B and G are respectively the first, second and third order field indices and F is the fringe field
coefficient, while the X and Y components of the field are assumed to be zero on the map mesh.

Calculation of the Fringe Field Coefficient

With each EFB a realistic extent of the fringe field, A, is associated (Figs. 10A and 10B), and a fringe field
coefficient F is calculated. In the following A stands for either Ag (Entrance), A\s (Exit) or A;, (Lateral EFB).
If a node of the map mesh is at a distance of the EFB larger than A, then I’ = 0 outside the field map and
F =1 inside. If a node is inside the fringe field zone, then F' is calculated as follows.

Two options are available, for the calculation of F', depending on the value of &.

If £>0, F is a second order type fringe field (Fig. 11) given by

Ry
F=%(>\>\2 55)2 ifE<s< A
1 (A=) (5.4.2)
= if —A<s< =
F=1 5 W g2 if —A<s< ¢
where s is the distance to the EFB, and
F=ii 2 io<s<e
BERENY; =8=
v 1 s . (5.4.3)
=§_)\_+f 1f—§SSSO

This simple model allows a rapid calculation of the fringe field, but may lead to erratic behavior of the field
when extrapolating out of the median plane, due to the discontinuity of d2B/ds? at s = ¢ and s = +\. For
more accuracy it is better to use the next option.



Figure 10: A: Parameters used to define the field map and geometric boundaries.
B: Parameters used to define the field map and fringe fields.
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If £ = —1, F is an exponential type fringe field (Fig. 11) given by [16]

F= W{P(s) (5.4.4)
where s is the distance to the EFB, and
P(s)=Co+Ci (3) +Ca (%)2 +C (§)3 +Cy (;\3-)4 +Cs (%)5 (5.4.5)

The values of the coefficients Co to C5 should be such that the derivatives of Bz with respect to s be negligible
at s = £, 50 as not to perturb the extrapolation of B out of the median plane (this restriction no longer holds
in the improved version DIPOLE).

It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter SHIFT. s is then
changed to s— SHIFT in the previous equation. This allows small variations of the total magnetic length.

Let Fg (respectively Fg, Fr) be the fringe field coefficient attached to the entrance (respectively exit, lateral)
EFB following eqs. above. At any node of the map mesh, the resulting value of the fringe field coefficient
(eq. 5.4.1) is (Fig. 12)

F=FgxFgx Fp

(FL =1 if no lateral EFB is requested).

The Mesh of the Field Map

The magnetic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial
step is given by

SR = RMAX - RMIN
~ IRMAX -1
and the angular step by
AT
%= TAMAX —1

where, RMIN and RMAX are the lower and upper radial limits of the field map, and AT is its total angular
aperture (Fig. 10B). IRMAX and JAMAX are the total number of nodes in the radial and angular directions.
Simulating Field Defects and Shims

Once the initial map is calculated, it is possible to modify it by means of the parameter NBS, so as to simulate

field defects or shims.

If NBS = -2, the map is globally modified by a perturbation proportional to R — Ry, where Ry is an arbitrary
radius, with an amplitude ABz/By, so that Bz at the nodes of the mesh is replaced by

ABgz R— Ry
By RMAX — RMIN
If NBS = —1, the perturbation is proportional to § — 65, and Bz is replaced by

ABz 0—6
By AT

Bz*(l-!—

Bz*(1+
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Figure 11: Second order type fringe field (leftt plot) and exponential type fringe field (right plot)..

Figure 12: Effective value of F for overlapping fringe fields F; and F; centered at O and O,.
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If NBS > 1, then NBS shims are introduced at positions R ; R , 2 ;02

The initial field map is modified by shims with second order profiles given by

o X?
6= +_) X
(7 7 ﬂpz

is the central radius, o and v are the angular limits of the shim, 8

(Fig. 13) [17]

Ri+ R»
2

where X is shown in Fig. 13, p =

and p are parameters.
At each shim, the value of Bz at any node of the initial map is replaced by

ABg
By
where F'§ = 0 or FR = 0 outside the shim, and F¢ =1 and FR = 1 inside.

Bz x (1+F0*FR*

Extrapolation Off Median Plane

The vector field B and its derivatives in the median plane are calculated by means of a second or fourth
order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE=2, 25 or 4,
see section 2.4.2). The transformation from polar to Cartesian coordinates is performed following egs. (2.4.9
or 2.4.10). Extrapolation off median phase is then performed by means of Taylor expansions following the
procedure described in section 2.3.2.

(Ry -;-Rz) and (61 ;—92)

Figure 13: A second order profile shim. The shim is centered at
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AUTOREF: Automatic transformation to a new reference frame

AUTOREF positions the new reference frame following 3 options:
If I=1, AUTOREF is equivalent to

CHANGREF[XCE = 0,YCE = Y(1), ALE = T(1)]

so that the new reference frame is at the exit of the last element, with particle 1 at the origin with its horizontal
angle set to T = 0.

If I =2, it is equivalent to

CHANGREF[XW,YW,T(1)]

so that the new reference frame is at the position (XW, Y W) of the waist (calculated automatically in the same
way as for IMAGE) of the three rays number 1, 4 and 5 (compatible for instance with OBJET, KOBJ = 5, 6
together with the use of MATRIX) while T'(1) is set to zero.

If I =3, it is equivalent to

CHANGREF[XW,YW, T(I1)]

so that the new reference frame is at the position (XW,Y W) of the waist (calculated automatically in the same
way as for IMAGE) of the three rays number I1, I2 and I3 specified as data, while T'(1) is set to zero.
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BEND: Bending magnet

BEND is one of the several keywords available for the simulation of dipole magnets. It presents the interest
of easy handling, and is well adapted to the simulation of regular dipoles such as sector magnets with wedge
angles.

The first input data are the magnet length XL and the field B,, such that in absence of fringe field the deviation
0 verifies XL = 21—3-%12—0 sin(6/2) (BORO = reference rigidity, defined in OBJET).

Then follows the description of the entrance and exit EFB’s and fringe fields. The model is the same as for
DIPOLE. The wedge angles Wg (entrance) and Wy (exit) are defined with respect to the sector magnet, with
the signs described in Fig. 14. Within a distance +Xg(+Xg) on both sides of the entrance (exit) EFB, the
fringe field model is used; elsewhere, the field is supposed to be uniform.

If Ag (resp. Ag) is zero sharp edge field model is assumed at entrance (resp. exit) of the magnet and Xg (resp.
X5) is set to zero. In this case, the wedge angle vertical first order focusing effect (if Blisnon zero) is simulated
at magnet entrance and exit by a kick P, = P; — Z; tan(e/p) applied to each particle (P, P, are the vertical
angles upstream and downstream the EFB, Z; the vertical particle position at the EFB, p the local horizontal
bending radius and ¢ the wedge angle experienced by the particle ; € depends on the horizontal angle T).
Magnet (mis-)alignement is assured by KPOS, with special features allowing some degrees of automatism useful
for periodic structures (section 5.6.5).

Entrance Exit
EFB EFB
W>0 ; W>0
N .-' ,-‘: ...'. ot —— ’

S : 1 I: N '
3 ~— n o B
7 Y
[ 5 ' ] . /
ty P H 1 € 3
HEY 1 ’ '
N : 1 ’ !
1 \ J 1
i ¥ : N / H
Ve v XL 0 !

: ’ /

PrASE ' ! e
- ! 1 H TN
L ' H H ' ~~
- - : ] : ¢ -~
1 i )
ST Yoo
,"——:4—-—: | '
. X X b - . v
B 7 X X

Figure 14: Geometry and parameters in BEND.
XL = length, B, = field, § = deviation.
The particular case of parallel face bend
is illustrated here, obtained by setting
Wg=Wg=10/2.
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BREVOL: 1-D Uniform Mesh Magnetic Field Map

BREVOL reads a 1-D axial field map from a storage data file, whose content must fit the following FORTRAN
reading sequence )

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
D01I=1,IX
IF (BINARY) THEN
READ(NL) X(I), BX(I)
ELSE
READ(NL,*) X(I), BX(I)
ENDIF
1 CONTINUE

where IX is the number of nodes along the (symmetry) X-axis, X(I) their coordinates, and BX(I) the values
of the X component of the field. BX is normalized with BNORM prior to ray-tracing. For binary files, FNAME
must begin with ‘B_ ", ‘BINARY’ will then be set to . TRUE.’.

X-cylindrical symmetry is assumed, resulting in BY and BZ taken to be zero on axis. E(X ,Y,Z) and its
derivatives along a particle trajectory are calculated by means of a 5-point polynomial fit followed by second
order off-axis Taylor series extrapolation (see sections 2.3.1, 2.4.1).

Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of
the flag ID and coefficients A, B, C, etc.

62



CARTEMES: 2-D Cartesian Mesh Magnetic Field Map With Mid-Plane Symmetry

CARTEMES was originally dedicated to the reading and processing of the measured median plane field maps
of the QDD spectrometer SPES2 at Saclay. However, it can be used for the reading of any other 2-D median
plane maps, provided that the format of the field data storage file fits the following FORTRAN sequence

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
IF (BINARY) THEN
READ(NL) (Y(J), J=1, JY)
ELSE
READ (NL,FMT=’ (10F8.2) ) (Y(J), J=1, JY)
ENDIF
DO 1 I=1, IX
IF (BINARY) THEN
READ(NL) X(I), (BMES(I,D), J=1, JY)
ELSE
READ (NL ,FMT=" (10F8.1) >) X(I), (BMES(I,J), J=1, JY)
' ENDIF :
1 CONTINUE

where, IX and JY are the number of longitudinal and transverse nodes of the uniform mesh, and X(I), Y(J)
their coordinates. FNAME is the file containing the field data. For binary files, FNAME must begin with ‘B_’,
‘BINARY’ will then be set to *. TRUE.".

The measured field BMES is normalized with BNORM,

B(I,J) = BMES(I, J) x BNORM

The vector field, B, and its derivatives out of the median plane are calculated by means of a second or fourth
order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE = 2, 25 or 4, see
section 2.4.2).

Entrance and/or exit integration boundaries can be defined with the flag ID, as follows (Fig. 15).
If ID = 1: the integration in the field is stopped on a boundary with equation A’X + B’Y 4+ C’ =0, and then

the trajectories are extrapolated linearly onto the exit end of the map.

If ID = —1: an entrance boundary is defined, with equation A’X + B’Y 4+ C’ = 0, up to which trajectories are
first extrapolated linearly from the map entrance end, prior to being integrated in the field.

If ID > 2: one entrance boundary, and ID — 1 exit boundaries are defined, as above. The integration in the
field stops on the last (JD — 1) exit boundary. No extrapolation onto the map exit end is performed in this
case.
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Figure 15: OXY is the coordinate system of the mesh. Integration boundaries may be defined, using ID # 0:
particle coordinates are extrapolated linearly from the entrance face of the map, onto the boundary A’X +
B’Y + C’ = 0; after ray-tracing inside the map and stopping on the boundary AX + BY + C = 0, coordinates
are extrapolated linearly onto the exit face of the map if ID = 2, or stopped on the last (/D — 1) boundary if

ID > 2.
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CAVITE: Accelerating Cavity

CAVITE provides an analytical simulation of a (zero length) accelerating cavity; it can be used in conjunction
with keywords REBELOTE and SCALING for the simulation of multiturn tracking with synchrotron accel-
eration (see section 5.6.7). It must be preceded by PARTICUL for the definition of mass M and charge q.

If IOPT = 0: CAVITE is switched off.

If IOPT = 1: CAVITE simulates the R.F. cavity of a synchrotron accelerator. Normally the keyword CAVITE
appears at the end of the optical structure (the periodic motion over IT = 1, NPASS + 1 turns is simulated
by means of the keyword REBELOTE, option K = 99 and the R.F. and magnetic fields timings by means of
SCALING — see section 5.6.7). The synchrotron motion of any of the IMAX particles of a beam is obtained

by solving the following mapping
Z L
{ ¢2 — ¢1 =27 frP (E — ﬁsC>

Wy = Wi = qV sing,

where

¢ = R.F.phase; ¢35 — ¢; = variation of ¢ between two traversals

W = kinetic energy; Wy — Wi = energy gain at a traversal of CAVITE

L = length of the synchronous closed orbit (to be calculated by prior ray-tracing,
see the bottom NOTE)

¢ = orbit length of the particle between two traversals

Bsc = velocity of the (virtual) synchronous particle

Bec = velocity of the particle :

vV = peak R.F. voltage

g = particle electric charge.

The R.F. frequency frr is a multiple of the synchronous revolution frequency, and is obtained from the input
data, following

FEZ L (@(Bo)? + (Mc)p)ir

where
harmonic number of the R.F

mass of the particle
velocity of light.

h
M

[

The current rigidity (Bp)s of the synchronous particle is obtained from the timing law specified by means of
SCALING following (Bp)s = BORO - SCALE(TIMING) (see SCALING for the meaning and calculation of the
scale factor SCALE(TIMING)). If SCALING is not used, (Bp), is assumed to keep the constant value BORO
given in the object description (see OBJET for instance).

The velocity B¢ of a particle is calculated from its current rigidity

_ 4(Bp)
V@ (Bp)? + (Mc)?
The velocity Bsc of the synchronous particle is obtained in the same way from
Bs = 9(Bp)s
V@¥(Bp)? + (Mc)?

The kinetic energies and rigidities involved in these formulae are related by
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q(Bp) = vW(W +2Mc?)

Finally, the initial conditions for the mapping, at the first turn, are the following

- For the (virtual) synchronous particle

¢1 = ¢s = synchronous phase
(Bp)1s = BORO

- For any of the I = 1, IMAX particles of the beam

é11 = ¢s = synchronous phase
(Bp)1r = BORO % D;

where the quantities BORO and Dj are given in the object description.

Calculation of the coordinates

Let pr = [p%k; +p¥; + %] /2 be the momentum of particle I at the exit of the cavity, while

o1, = [P%1, +2%1, + P51, "/ is its momentum at the entrance. The kick in momentum is assumed to be fully
longitudinal, resulting in the foliowing relations between the coordinates at the entrance (denoted by the index
zero) and at the exit
px1 = [p} — (0}, —2%s,)]"”
pyI =pyI,, and pzr=pzr, (longitudinal kick)
Xr=X1,, Y=Y, and Zr=2Z;, (zero length cavity)

and for the angles (see Fig. 1)

DbXI

Pzp )
Pr=Atg | ————=
! g ((Pgu + p3p)/?

If TOPT = 2 : the same simulation of a synchrotron R.F. cavity, as for IOPT = 1, is performed, except that
the keyword SCALING (family CAVITE) is not taken into account in this option : the increase in kinetic energy
at each traversal, for the synchronous particle, is

(damping of the transverse motion)

AW, = qV sin ¢

where the synchronous phase ¢, is given in the input data. From this, the calculation of the law (Bp), and the
R.F. frequency frr follows, according to the formulae given in IOPT = 1.

If IOPT = 3: acceleration without synchrotron motion. Any particle will be given a kick

AW =qV sing,
where V and ¢s are input data.

NOTE: Calculation of the closed orbit.

Due to the fringe fields, the horizontal closed orbit may not coincide with the ideal axis of the optical elements.
One way to calculate it at the beginning of the structure (i.e. where the initial particle coordinates have to
be defined) is to ray-trace a single particle over a significantly high number of turns, starting with the initial
condition (Yo = Tp = Zo = Py = 0), and so as to obtain a statistically well-defined phase-space ellipse. The
initial conditions of the closed orbit then correspond to the coordinates Y. and T, of the center of this ellipse.
Next, ray-tracing over one turn a particle starting with the initial condition (Y, T, Zo = Po = 0) will provide
the length £ (namely, the F(6,1) coordinate) of the closed orbit.
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CHAMBR: Long Transverse Aperture Limitation

CHAMBR causes the identification, counting and stopping of particles that reach the transverse limits of the
vacuum chamber. The chamber can be either rectangular (IFORM = 1) or elliptic (IFORM = 2). The chamber
is centered at YC, ZC and has transverse dimensions £Y L and £ZL such that any particle will be stopped if
its coordinates Y, Z verify

Y - YC)2 >YIL?or (Z-2ZC)*>ZL? if IFORM =1
(Y -YO)? + (Z - ZC)?
YL? ZL?
The conditions introduced with CHAMBR are valid along the optical structure until the next occurrence of the

keyword CHAMBR. Then, if IL = 1 the aperture is possibly modified by introducing new values of YC, ZC,
YL and ZL, or, if IL = 2 the chamber ends and information is printed concerning those particles that have

been stopped.

>1 if IFORM =2

The testing is done in magnets at each integration step, between the EFB’s. For instance, in QUADRUPO
there will be no testing from —Xg to 0 and from XL to XL + X, but only from 0 to XL; in DIPOLE, there
is no testing as long as the ENTRANCE EFB is not reached, and testing is stopped as soon as the EXIT or
LATERAL EFB’s are passed.

In polar coordinate magnets, Y stands for the radial coordinate (e.g. With'DIPOLE, see Figs. 3C and 10).
Therefore, centering CHAMBR at YC = RM simulates a chamber curved with radius RM, and having a radijal
acceptance RM =Y L. The testing is done in ESL (DRIFT) at the beginning and the end, and only for positive
drifts. There is no testing in CHANGREF.

When a particle is stopped, its index IEX (see OBJET and section 5.6.8) is set to the value -4, and its actual
path length is stored in the array SORT for eventual further statistical purposes.
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CHANGREF: Transformation to a New Reference Frame

CHANGREF transports the particles to a new reference frame. It can be used anywhere in a structure. The
new coordinates of the particles Ys, T5, Z; and P, and the path length S5 are deduced from the old ones Y7,
Tl, Zl, P1 and S1 by '

T, =T, — ALE
(Y1 —YCE)cosT; + XCEsinTy
cosTh
DI? = (XCE —Y,sin ALE)? + (YCE - Y; + Yacos ALE)?
Zy = Zy + DLtghPy
DL
cos Py

Y, =

So =851+
P=P

where, XCE and YCE are shifts in the horizontal plane along,respectively, X- and Y-axis, and ALE is a
rotation around the Z-axis. DL is given the sign of XCFE — Yssin(ALE). This keyword may for instance be
used for positioning optical elements, or for setting a reference frame at the entrance or exit of field maps.
Effects of CHANGREF on spin tracking, particle decay and gas-scattering are taken into account (but not on
synchrotron radiation).

Y2 B
¥ Y 2
57
/- |
P a("}-‘c\"e . i \s‘\:;a x

gld Frame !

Figure 16: Scheme of the CHANGREF procedure.
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CIBLE or TARGET: Generate a Secondary Beam From Target Interaction

The reaction is 1 4+ 2 — 3 + 4 with the following parameters

Laboratory momentum p1=0 ps ps s
Rest mass M 1 M2 M3 M4
Total energy in laboratory Mic? W, W; Wy

The geometry of the interaction is shown in Fig. 17.

The angular sampling at the exit of the target consists of the NT coordinates 0, £T'S, £2+T'S... £(NT-1)«TS/2
in the median plane, and the NP coordinates 0, +PS, £2 « PS... (NP — 1) * PS/2 in the vertical plane.

The position of B downstream is deduced from that of A upstream by a transformation equivalent to two
transformations using CHANGREF, namely

CHANGREF(XCE=YCE =0, ALE =p)
followed by
CHANGREF(XCE=YCE =0, ALE=0-p).
Particle 4 is abandoned, while particle 3 continues. The energy loss @ is related to the variable mass M, by
Q=M + My — (Ms+ M,) and dQ= —dM;

The momentum sampling of particle 3 is derived from conservation of energy and momentum, according to

M102 +Wo =W3 + W,
P; = p3 + p3 — 2paps cos(f — T)

Figure 17: Scheme of the principles of CIBLE (TARGET)
A, T = position, angle of incoming particle 2 in the entrance reference frame
P = position of the interaction
B, T = position, angle of the secondary particle in the exit reference frame
@ = angle between entrance and exit frames
B = tilt angle of the target
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COLLIMA: Collimator

COLLIMA acts as a mathematical aperture of zero length. It causes the identification, counting and stopping
of particles that reach the transverse limits of the aperture, which can be either rectangular (IFORM = 1) or
elliptic (IFORM = 2). The collimator is centered at YC, ZC and has transverse dimensions £Y L and +ZL
such that any particle will be stopped if its coordinates Y, Z verify

(Y-YC?>YIL?or (Z-2C)?>ZI? if IFORM =1

(Y -YC)? + (Z-2C)?

YL? ZL? 4

When a particle is stopped, its index IEX (see OBJET and section 5.6.8) is set to the value -4, and its actual
path length is stored in the array SORT for eventual further statistical purposes (e.g. with HISTO).

21 if IFORM =2
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DECAPOLE: Decapole Magnet (Fig. 18)

The meaning of parameters for DECAPOLE is the same as for QUADRUPO.
In fringe field regions the magnetic field B(X,Y, Z) and its derivatives up to fourth order are derived from the
scalar potential approximated to the Sth order in Y and Z

5
VXY, 2)=V(X,Y,Z)=G (Y“Z —-2Y?73 ¢+ gs.)

Outside fringe field regions, or everywhere in sharp edge decapole (Ag = Ag =0} , B (X,Y, Z) in the magnet is
given by

Bx =0
By =4Go(Y?-2%)Y Z
Bz = Go(Y* —6Y?Z% + Z%)

Figure 18: Decapole magnet
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DIPOLE: Generation of a Dipole Magnet 2-D Map
DIPOLE is a recent, simpler and improved version of AIMANT.

The keyword DIPOLE provides an automatic generation of a dipole field map in polar coordinates. The extent
of the map is defined by the following parameters, as shown in Figs. 10A and 10B.

AT : total angular aperture
RM : mean radius used for the positioning of field boundaries
RMIN, RMAX : minimum and maximum radii

The 2 or 3 effective field boundaries (EFB) inside the map are defined from geometric boundaries, the shape
and position of which are determined by the following parameters.

ACENT : arbitrary inner angle, used for EFB’s positioning

w : azimuth of an EFB with respect to ACENT

a : angle of an EFB with respect to its azimuth (wedge angle)
Ry, R» : radius of curvature of an EFB

Uy, Uy : extent of the linear part of an EFB.

At any node of the map mesh, the value of the field is calculated as
R—RM R—RM\? R—RM\?
= L - - 5.4.6
B .F*Bo*<l+N*( B )+B*< M )+G’*( 3] )) ( )
where N, B and G are respectively the first, second and third order field indices and F is the fringe field
coefficient, while the X and Y components of the field are assumed to be zero on the mesh plane.

Calculation of the Fringe Field Coefficient

With each EFB a realistic extent of the fringe field, A (normally equal to the gap size), is associated and a fringe
field coefficient F is calculated. In the following A stands for either Ag (Entrance), Asg (Exit) or Ay (Lateral
EFB).

F is an exponential type fringe field (Fig. 11) given by [16]

1
F= 1 +exp P(s)
where s is the distance to the EFB, and

o= (3)+ (§) rer (v () s ()

It is also possible to simulate a shift of the EFB, by giving a non zero value to the parameter SHIFT. s is then
changed to s—SHIFT in the previous equation. This allows small variations of the total magnetic length.

Let Fg (respectively. Fs, F1) be the fringe field coefficient attached to the entrance (respectively exit, lateral)
EFB. At any node of the map mesh, the resulting value of the fringe field coefficient (eq. 5.4.6) is

F =FgxFgxFy,

(Fr =1 if no lateral EFB is requested).

The Mesh of the Field Map

The magnetyic field is calculated at the nodes of a mesh with polar coordinates, in the median plane. The radial
step is given by
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_ RMAX - RMIN

R = IRMAX -1
and the angular step by
AT
66 = IAMAX -1

where, RMIN and RMAX are the lower and upper radial limits of the field map, and AT is its total angular
aperture (Fig. 10B). IRMAX and JAMAX are the total number of nodes in the radial and angular directions.

Simulating Field Defects and Shims

Once the initial map is calculated, it isipossible to modify it by means of the parameter NBS, so as to simulate
field defects or shims.

If NBS = -2, the map is globally modified by a perturbation proportional to R — Ry, where Ry is an arbitrary
radius, with an amplitude ABz/By, so that Bz at the nodes of the mesh is replaced by

ABz R—-Ry
By RMAX - RMIN

If NBS = —1, the perturbation is proportional to 8 ~ fly, and Bz is replaced by

ABz 0 —6q
Bz*<1+ B, _AT)

If NBS > 1, then NBS shims are introduced at positions R, ;RZ, 2 ;62 (Fig. 13) [17]

The initial field map is modified by shims with second order profiles given by
o X2
o= v+ _) x
(7 I g P

is the central radius, @ and ~ are the angular limits of the shim, 8

Bz*(l-{—

R
where X is shown in Fig. 11, p = Rl; 2

and p are parameters.
At each shim, the value of Bz at any node of the initial map is replaced by

Bz*(1+F€*FR*ABZ)
By

where F8 =0 or 'R = 0 outside the shim, and FFd =1 and FR = 1 inside.

Extrapolation Off Median Plane

The vector field B and its derivatives in the median plane are calculated by means of a second or fourth
order polynomial interpolation, depending on the value of the parameter IORDRE (IORDRE=2, 25 or 4,
see section 2.4.2). The transformation from polar to Cartesian coordinates is performed following eqs (2.4.9
or 2.4.10). Extrapolation off median plane is then performed by means of Taylor expansions, following the
procedure described in section 2.3.2.
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DODECAPO: Dodecapole Magnet (Fig. 19)

The meaning of parameters for DODECA_PO is the same as for QUADRUPO.
In fringe field regions the magnetic field B(X,Y, Z) and its derivatives up to fourth order are derived from the
scalar potential approximated to the 6th order in Y and Z

V(X,Y,Z2)=V(X,Y,Z)=G (Y“ - 13-,9}’222 + Z“) YZ

Outside fringe field regions, or everywhere in sharp edge dodecapole (Ag = As =0) , §(X ,Y, Z) in the magnet
is given by

Bx =0
By = Go(5Y* —10Y%2% + Z%)Z
Bz = Go(Y* —10Y%22 4+ 52%)Y

Figure 19: Dodecapole magnet
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DRIFT or ESL: Field-Free Drift Space

DRIFT(or ESL) allows the introduction of a drift space with length X L with positive or negative sign, anywhere
in a structure. The associated equations of motion are (Fig. 20)

Yo=Y+ XL xtgT

XL
Z2 = Z1 =+ mtgp
SAR; = SAR; + XL

cosT % cos P

Figure 20: Transfer of particles in a drift space.
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EBMULT: Electromagnetic Multipole

EBMULT simulates an electromagnetic multipole, by addition of electric (E ) and magnetic (B) multipole com-
Gtk -
AXigYIidzZk
of the multipole scalar potential (eq. 2.3.5), followed by a 5= rotation (n = pole order), as described in sec-
tion 2.5.3 (see also ELMULT). B and its derivatives are derived from the same general potential, as described
in section 2.3.5 (see also MULTIPOL).
The entrance and exit fringe fields of the E and B components are treated separately, in the same way as
described under ELMULT and MULTIPOL, for each one of these two fields. Wedge angle correction is applied
in sharp edge field model if B1 is non zero, as in MULTIPOL. Any of the E or B multipole field component
can be rotated independently of the others. ’
Use PARTICUL for the definition of the particle mass and charge.

ponents (dipole to dodecapole). E and its derivatives are derived from the general expression

Electrode

/Magnehc pole

Figure 21: An example of E, B multipole: the achromatic quadrupole [18]
(known for its allowing null second order chromatic aberration).
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EL2TUB: Two-tube electrostatic lens

The lens is cylindrically symmetric about the X-axis.
The length and potential of the first (resp. second) electrode are X1 and V1 (X2 and V2). The distance between

the two electrodes is D, and their inner radius is Ry (Fig. 22). X-axis cylindrical symmetry is assumed. The
model of electric potential along the axis is [20]

V(X)=%;%th%[+%—@] if D=0
(:hwﬁ-i-—l2
V(X)=V2;V123Dén x’f°D[+Vl';Vz] if D+ 0
chw o

(z = distance from half~way between the electrodes; w = 1.318; th = hyperbolic tangent; ch = hyperbolic cosine)
from which the field E(X,Y, Z) ‘and its derivatives are derived following the procedure described in section 2.5.2

VitVe which disappears when differentiating).

(note that they don’t depend on the constant term
Use PARTICUL for the definition of the particle mass and charge.

X1 D X2

«——>ie o

Figure 22: Two-electrode cylindrical electric lens.
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ELMULT: Electric Multipole

The simulation of an electric multipolar field Mg proceeds by addition of the dipolar (El) to dodecapolar (E6)
components, and of their derivatives up to fourth order, following

Mp=FEl+E2+E3+EA+ E5+ E6
Mg _ OF1 N 8E2 N OE3 N OE4 N 8E5 N oEs6
9X ~ 8X ' 8X ' oX ' X ' 8X ' 8X
#Mg _ 9E1 n 82E2 N o?E3 N &2 E4 N &?E5 N »E6
0X0zZ ~ 0X0Z ' 9X8Z ' 8XdZ ' 9X0Z ' 9XdZ ' 0XoZ
etc.

The independent components E1 to E6 and their derivatives up to the second order are calculated by differen-
tiating the general multipole potential (2.3.5)

G(2q) X)WY?2 + Z2)2 n sm(m yyr-—mzm
o (s (5. e

gq=0 m=0

where G(X) is the longitudinal gradient (see QUADRUPO) but including a Z- rotation about the X-axis, so
that the so defined right electric multipole of order n, and of strength {18, 19]

_Ll_ v on
"T242-1R?

(¢n = potential at the electrode, Rg = radius at pole tip, v = relativistic Lorentz factor of the particle) has the
same focusing effect than the right magnetic multipole of order » and strength

B,
R3~'Bp
(B, = field at pole tip, Bp = particle rigidity, see MULTIPOL).

Such % rotation of the multipole components is obtained following the procedure described in section 2.5.3.

K, =

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone Xg
at entrance and Xg at exit, as for QUADRUPO, and by the extent Ap at entrance, Ag at exit. The fringe field
extents for the dipole component are Ag and Ag. The fringe field for the quadrupolar (sextupolar, octupolar,
decapolar, dodecapolar) component is given by a coefficient E2 (E3, E4, E5, E6) at entrance, and S2 (S3, 54,
S5, 86) at exit, such that the extent is Ag * E2 (Ag * E3, Ag * E4, Ag « E5, Ag » E6) at entrance and Ag x 52
(As % S3, As * S4, Ag * S5, As * S6) at exit.

If Ag = 0 (A\g = 0) the multipole lens is considered to have a sharp edge field at entrance (exit), and then,
XEg(Xs) is forced to zero (for the mere purpose of saving computing time).

If E; =0 (S; =0) , the entrance (exit) fringe field for multipole component 7 is considered as a sharp edge field.

Overlapping of fringe fields inside the element is treated separately for each component, in the way described
in QUADRUPO.

Moreover, any multipole component E; can be rotated independently by an angle Ry, around the longitudinal
X-axis, for the simulation of positioning defects, as well as skewed lenses.

Use PARTICUL for the definition of the particle mass and charge.
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Figure 23: An electric multipole combining quadrupole (E2) and
octupole (£4) component [19]
(E1=FE3=FE5=FE6=0).
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ELREVOL: 1-D Uniform Mesh Electric Field Map

ELREVOL reads a 1-D axial field map from a storage data file, whose content must fit the following FORTRAN
reading sequence -

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
DO 1 I=1, IX
IF (BINARY) THEN
READ(NL) X(I), EX(I)
ELSE
READ(NL,*) X(I), EX(I)
ENDIF
1 CONTINUE

where IX is the number of nodes along the (symmetry) X-axis, X () their coordinates, and EX(I) the values
of the X component of the field. EX is normalized with ENORM prior to ray-tracing.

X-cylindrical symmetry is assumed, resulting in £Y and EZ taken to be zero on axis. E-'(X ,Y,Z) and its
derivatives along a particle trajectory are calculated by means of a 5-points polynomial fit followed by second

order off-axis Taylor series extrapolation (see sections 2.5.1 and 2.6).

Entrance and/or exit integration boundaries may be defined in the same way as in CARTEMES by means of
the flag ID and coefficients A, B, C, A', B/, C".

Use PARTICUL for the definition of the particle mass and charge.
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MAP2D: 2-D Cartesian Uniform Mesh Magnetic Field Map - no symmetry [21]

MAP2D reads a 2-D field map that provides the three components By, By, Bz of the magnetic field at the
nodes of a 2-D Cartesian uniform mesh. No particular symmetry is assumed, which allows the treatment of any-
type of field (e.g. dipole field out of median plane, solenoidal field). These data should be filed with a format
that fits the following FORTRAN reading sequence involved in Zgoubi

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
D0 1 J=1,JY
Do 1 I=1,IX
IF (BINARY) THEN
READ(NL) Y(J), z0, X(I), BY(I,J), BZ(I,D), BX(I,))

ELSE
READ(NL, 100) Y(J), Zo, X(I), BY(I,J), BZ(I,J), BX(I,J)
100 FORMAT (1X, 6E11.2)
ENDIF
1 CONTINUE

where IX (JY) is the number of longitudinal (transverse) nodes of the 2-D uniform mesh, Z, is the Z-elevation
of the map. For binary files, FNAME must begin with ‘B_’, ‘BINARY’ will then be set to . TRUE.". The field
B= (Bx, By, Bz) is next normalized with BNORM, prior to ray-tracing.

At each step of the trajectory of a particle, the field and its derivatives are calculated by a polynomial inter-

polation followed by a Z extrapolation (see sections 2.3.3, 2.4.3). Entrance and/or exit integration boundaries
may be defined, in the same way as for CARTEMES.
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MULTIPOL: Magnetic Multipole

The simulation of a multipolar field M by MULTIPOL proceeds by addition of the dipolar (51), quadrupo-
lar (B2), sextupolar (B3), octupolar (B4) decapolar (B5) and dodecapolar (B6) components, and of their
derivatives up to fourth order. For instance,

M =B1+ B2+ B3+ B4+ B5+ Bé
oM 0B1 0B2 0B3 0B4 0Bs5 0FB6
53X X Tax Tax Tax Tax Tax
8°M 9Bl B2 B3 &B4 N 8°B5 N 8286
oX07 ~ 5x0z T oxoz T ox6z T 9xoz T X6z T 9xoZ
ete.

The independent components B 1, §2, §3, §4, §5, B6 and their derivatives up to the fourth order are calculated
as described under QUADRUPO, SEXTUPOL, OCTUPOLE, DECAPOLE and DODECAPO keywords (see
section 2.3.5).

The entrance and exit fringe fields are treated separately. They are characterized by the integration zone Xg
at entrance and X at exit, as for QUADRUPO, and by the extent Az at entrance, Ag at exit. The fringe field
extents for the dipole component are Ag and As. The fringe field for the (sextupolar, octupolar, decapolar,
dodecapolar) component is given by a coefficient E2 (E3, F4, E5, E6) at entrance, and S2 (S3, S4, S5, S6) at
exit, such that the extent is Ag * E2 (\g * E3, Ag * E4, Ag » E5, \g * E6) at entrance and Ag * S2 (Ag * S3,
As x84, Ag % S5, Ag * S6) at exit.

If \g = 0 (\g = 0) the multipole lens is considered to have a sharp edge field at entrance (exit), and then,
XEg(Xs) is forced to zero (for the mere purpose of saving computing time). If E; = 0 (S; = 0), the entrance
(exit) fringe field for multipole component 7 is considered as a sharp edge field. In sharp edge filed model, the
wedge angle vertical first order focusing effect (if Bl is non zero) is simulated at magnet entrance and exit by
a kick Py = Py — Z; tan(e/p) applied to each particle (P;, P are the vertical angles upstream and downstream
the EFB, Z; the vertical particle position at the EFB, p the local horizontal bending radius and € the wedge
angle experienced by the particle ; ¢ depends on the horizontal angle T).

Overlapping of fringe fields inside the magnet is treated separately for each component, in the way described in
QUADRUPO.

Any multipole component B, can be rotated independently by an angle Ry, around the longitudinal X-axis,
for the simulation of positioning defects, as well as skewed lenses.

Magnet (mis-)alignement is assured by KPOS, with special features allowing some degrees of automatism useful
for periodic structures (section 5.6.5).

82



OCTUPOLE: Octupole magnet (Fig. 24)

The meaning of parameters for OCTUPOLE is the same as for QUADRUPO. In fringe field regions the magnetic
field B(X,Y, Z) and its derivatives up to fourth order are derived from the scalar potential approximated te
the 8-th order in Y and Z

GII GIIII
V(X,Y,Z) = (G -5 (Y24 2%+ 560 (Y24 22)2> Y3z -Y 2z
. By
with Gg = -R—g

Outside fringe field regions, or everywhere in sharp edge dodecapole (Ag = Ag =0) , E(X ,Y,Z) in the magnet
is given by

Bx =0
By = G'o(3Y2Z - Z3)
Bz = GQ(Y3 -3YZ?%

I S

Figure 24: Octupole magnet
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POISSON: Read field data from POISSON output

This keyword allows reading a field profile B(X) from a POISSON output. Let FNAME be the name of this
output file (normally, FNAME = outpoi.lis); the data are read following the FORTRAN statements hereunder

I=0

11 CONTINUE

I=I+1

READ(LUN, 101,ERR=10,END=10) K, K, X, R, X(I), R, R, B(D)
101 FORMAT(I1, I3, I4, E15.6, 2F11.5, 2F12.3)
GOTD 11

10 CONTINVE
where X(I) is the longitudinal coordinate, and B(I) is the Z component of the field at a node (I) of the mesh.
K’s and R’s are dummy variables appearing in the POISSON output file outpoi.lis but not used here.
From this field profile, a 2-D median plane map is built up, with a rectangular and uniform mesh; mid-plane
symmetry is assumed. The field at each node (X;,Y;) of the map is B(X;), independent of Y; (i.e., the

distribution is uniform in the Y direction).

For the rest, POISSON works in a way similar to CARTEMES.
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POLARMES: 2-D Polar Mesh Field Map

Similar to CARTEMES, apart from the polar mesh frame: I X is the number of angular nodes, JY the number
of radial nodes; X(I) and Y(J) are respectively the angle and radius of a node (these parameters are similar to
those entering in the definition of the map in DIPOLE). :
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PS170: Simulation of a Round Shape Dipole Magnet
PS170 is dedicated to a ‘rough’ simulation of CERN’s PS170 dipole.

The field By is constant inside the magnet, and zero outside. The pole is a circle of radius Rp, centered on X
axis. The output coordinates are generated at the distance XL from the entrance (Fig. 25).

Figure 25: Scheme of the PS170 magnet simulation.
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QUADISEX, SEXQUAD: Sharp Edge Magnetic Multipoles

SEXQUAD defines in a simple way a sharp edge field with quadrupolar, sextupolar and octupolar components.
QUADISEX adds a dipole component. The length of the element is XL. The vertical component B =
Bz(X,Y,Z = 0) of the field and its derivatives in median plane are calculated at each step from the following

expressions

B=Bo( Y+£% —Y3)
g—g=3 (go Ion+3GY2>
75 (o)

and then extrapolated out of the median plane by Taylor expansion in Z (see section 2.3.2).

With option SEXQUAD, U = 0, while with QUADISEX, U = 1.
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QUADRUPO: Quadrupole Magnet (Fig. 26)

The length of the magnet XL is the distance between the effective field boundaries (EFB). The field at the pole
tip Ry is By.

The extent of the entrance (exit) fringe field is characterized by Ag(Ag). The distance of ray-tracing on both
sides of the EFB’s, in the field fall off regions, will be + Xg at the entrance, and + Xg at the exit (Fig. 27),
by prior and further automatic changes of frame.

In the fringe field regions [-Xg, Xg| and [-Xs, Xs] on both sides of the EFB’s, B (X,Y, Z) and its derivatives
up to fourth order are calculated at each step of the trajectory from the analytical expressions of the three
components Bx, By, Bz obtained by differentiation of the scalar potential (see section 2.3.5) approximated to
the 8th order in Y and Z.

G nn nimn

2 2\2
384 ¥+ 257~ 23040
(G' =dG/dX, @' =d*G/dX?,..)

V(X,Y,Z)=(G———-(Y2+Z2)+ — (Y2 + ))YZ

where G is the gradient on axis [16]:

Go BO

and,

P(s) CO+CI( )+Cz()‘) +Cs(-§-)3+04(§)4+05 (;)SP(S)=C()+C'1 ('-;">+Cz (;)

where, s is the distance to the field boundary and X stands for Ag or Ag (normally, A ~ 2 x Ryp).
When fringe fields overlap inside the magnet (XL < Xg + Xg), the gradient G is expressed as

G=Gg+Gsz-1

where, Gg is the entrance gradient and G is the exit gradient.

If A\g = 0 (A\g = 0), the field at entrance (exit) is considered as sharp edged, and then Xg(Xp) is forced to zero
(for the mere purpose of saving computing time).

Outside of the fringe field regions (or everywhere when Ag = Ag = 0) E(X ,Y,Z) in the magnet is given by

Bx =0
By =GoZ
Bz = GgY

88



Entrance Exit
EFB 6 X EFB
i _J L :
A |
/o N\
/o PN
A | A
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Xe 0 i i T

‘xE’xEI 'xsfo;

XL

Figure 27: Scheme of the longitudinal field gradient G(X).
(OX) is the longitudinal axis of the reference frame (0,X,Y, Z) of
Zgoubi. The length of the element is XL, but trajectories are ray-
traced from —Xg to XL + Xg, by means of prior and further auto-
matic changes of frame.
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SEPARA: Wien filter - analytic simulation

SEPARA provides an analytic simulation of an electrostatic separator. Input data are the length L of the
element, the electric field E and the magnetic field B. The mass m and charge ¢ of the particles are entered by
means of the keyword PARTICUL.

The subroutines involved in this simulation solve the following system of three equations with three unknown
variables S, Y, Z (while X = L), that describe the cycloidal motion of a particle in E, B static fields (Fig. 28).

X=—Rcos(—w—s-+e) __f‘f__'_ﬂ

Be whe  w
Y = Rsin £+e —i—g+Yb
Be w2 w
Z = SSin(Po) + Zy
. . Ec? B¢ . '
where, S is the path length in the separator, o = ——’;- , W= ——n;:y—’ C; = Bsin(Tp)cos(Po) and Cy =

Becos(Tp) cos(Pp) are initial conditions. ¢ = velocity of light, Bc = velocity of the particle, v = (1 — ﬂz)‘% and
tane = (Cy + 2)/Cy. Yo, To, Zo, Po are the initial coordinates of the particle in the Zgoubi reference frame.
Here Bc and v are assumed constant, which is true as long as the change of momentum due to the electric field
remains negligible all along the separator.

The index IA in the input data allows switching to inactive element (thus equivalent to ESL), horizontal or
vertical separator. Normally, E, B and the value of Sw for wanted particles are related by

(%)
)
| 4
()
Y
| o

Figure 28: Horizontal separation between a wanted particle, (W), and an unwanted particle,
(U). (W) undergoes a linear motion while (U) undergoes a cycloidal motion.
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SEXTUPOL: Sextupole Magnet (Fig. 29)
The meaning of parameters for SEXTUPOL is the same as for QUADRUPO.

In fringe field regions the magnetic field B(X,Y, Z) and its derivatives up to fourth order are derived from the
scalar potential approximated to 7th order in Y and Z

G// 9 2 " 9 9\2 o Z3
V(X,Y,Z)= (G——1—6-(Y + 2%+ 5 (V+2%) ) (Y z—?)
. By
with GO_R_g

Outside fringe field regions, or everywhere in sharp edge sextupole (Ag = Ag = 0), B (X,Y, Z) in the magnet is
given by

Bx =0
By =2GyY Z
Bz = Go(Y? - Z?)

Figure 29: Sextupole magnet
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SOLENOID: Solenoid (Fig. 30)

The solenoidal magnet has an effective length X L, a mean radius Ry and an asymptotic field By = puoNT
(NI = number of Ampere-Turns, po = 4710~7).

The distance of ray-tracing beyond the effective length XL, is Xg at the entrance, and X at the exit (Fig. 30).

The field B(X,r), r = (Y2 + Z2)1/2, and its derivatives up to the second order with respect to X, Y or Z are
obtained after the method proposed in ref. [22], that involves the three complete elliptic integrals X, E and II.
These are calculated with the algorithm proposed in the same reference. Their derivatives are calculated by
means of recursive relations [23].

This analytical model for the solenoidal field allows simulating an extended range of coil geometry provided
that the coil thickness is small enough compared to the mean radius Rp.

————

XL Xs

| a

Figure 30: Solenoidal magnet.

92



TOSCA: 2-D or 3-D Cartesian Uniform Mesh Field Map

TOSCA is dedicated to the reading and treatment of 2-D or 3-D Cartesian mesh field maps as delivered by the
TOSCA magnet computer code standard output.

The total number of field data files to be read is given by the parameter IZ that appears in the data list
following the keyword. Each file contains the field components Bx, By, Bz on an (X, Y) mesh at a given Z
coordinate. IZ = 1 for 2-D maps, and in this case Bx and By are assumed to be zero. For 3-D maps with
mid-plane symmetry, IZ should be greater than 1, and thus, the first data file, whose name follows in the data
list, contains the median plane field (assuming Z = 0 and Bx = By = 0), while the next files contain the
next maps in increasing Z order. For 3-D maps without mid-plane symmetry assumption, IZ should be odd
and negative, and thus, the total number of maps (whose names follow in the data list) is |IZ], while the map
number [IZ/2] +1 is the Z = 0 one.

The field map data files should be formatted following the FORTRAN reading sequence below.

DO 1 K=1, KZ
OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM=’UNFORMATTED’])
Do 1 J=1, JY
Do 1I=1, IX
IF (BINARY) THEN
READ(NL) Y(J), Z(X), X(I), BY(I,J,X), BZ(1,J,K), BX(Z,3,K)
ELSE
READ(NL,100) Y(J), Z(K), X(I), BY(I,J,K), BZ(I,J,K), BX(I,J,K)
100 FORMAT (1X,6E11.2)
ENDIF
1 CONTINUE

where, IX (JY, KZ) is the number of longitudinal (transverse, vertical) nodes of the 3-D uniform mesh. For
binary files, FNAME must begin with ‘B.’, ‘BINARY’ will then be ‘. TRUE.".

The field B = (Bx, By, Bz) is normalized by means of BNORMin a similar way as in CARTEMES.

At each step of the trajectory of a particle inside the map, the field and its derivatives are calculated by fneans
of a second order polynomial fit with a 3 x 3 X 3-point parallelipipedic grid, as described in section 2.4.4.

Entrance and/or exit integration boundaries between which the trajectories are integrated in the field may be
defined, in the same way as in CARTEMES.
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TRANSMAT: Matrix Transfer

TRANSMAT performs a matrix transfer of the particle coordinates in the following way
X;=) RyXJ+> TinX)X]
3 gk
where, X; stands for any of the current coordinates Y, T, Z, P, path length and dispersion, and X? stands for
any of the initial coordinates. [R;;] ([Ti;x]) is the first order (second order) transfer matrix as usually involved

in second order beam optics [14]. Second order transfer is optional. The length of the element represented by
the matrix may be introduced for the purpose of path length updating. Note : MATRIX delivers [R;;] and

[T:;] matrices in a format suitable for straightforward use with TRANSMAT.
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TRAROT: Translation-Rotation

This procedure transports particles into a new frame by translation and rotation. Effect on spin tracking,
particle decay and gas-scattering are taken into account (but not on synchrotron radiation). -
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UNIPOT: Unipotential Electrostatic Lens

The lens is cylindrically symmetric about the X-axis.

The length of the first (resp. second, third) electrode is X1 (resp. X2, X3). The distance between the electrodes
is D. The potentials are V1 and V2. The inner radius is Ry (Fig. 31). The model of electric potential along
the axis is [24]

- X2 X2 _ X2 _ _ X2
V2-V1 Enchw (a:+ 5 +D) chw(z+ 5 ) +£nchw(x 3 D) chw(:r 5

Vie)=—5p Ro Ro Ro Ro

(z = distance from the center of the central electrode; w = 1,318; ch = hyperbolic cosine), from which the field
E(X,Y,Z) and its derivatives are deduced following the procedure described in section 2.5.2.
Use PARTICUL for the definition of the particle mass and charge

Figure 31: Three-electrode cylindrical unipotential lens.
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VENUS: Simulation of a Rectangular Dipole Magnet

VENUS is dedicated to a ‘rough’ simulation of Saturne Laboratory’s VENUS dipole. The field By is constant

inside the magnet, with longitudinal extent XL and transverse extent +Y L; outside these limits, By = 0-
(Fig. 32).

Y I
B=0
(ff S——
+Y..’//'_. ]
- - T
B-3, X
0: TN XL
‘I~ . \\
\\
S
L
~
-YL G
B=C \l
VENUS |

Figure 32: Scheme of VENUS rectangular dipole.

97



WIENFILT: Wien Filter

WIENFILT simulates a Wien Filter, with transverse and orthogonal electric and magnetic fields Ey, Bz or
Egz, By (Fig. 28). It must be preceded by PARTICUL for the definition of the particle mass and charge.

The length XL of the element is the distance between its entrance and exit EFB’s. The electric and magnetic
field intensities Ey and By in the central, uniform field region, normally verify the relation

Ey

Bwe

for the selection of “ wanted” particles of velocity Swec. Ray-tracing in field fall-off regions extends over a
distance Xg (Xg) beyond the entrance (exit) EFB by means of prior and further automatic changes of frame.
Four sets of coefficients A, Co — Cs allow the description of the entrance and exit fringe fields outside the uniform
field region, following the model [16]

Bo=-—

1
~ 1+ exp(P(s))

where P(s) is of the term

s s\2 s\3 s\4 s\3
P =G+ (3)+G(3) +0(3) +a(3) +&(5)
and s is the distance to the EFB. When fringe fields overlap inside the element (i.e. XL < Xg+ X5), the field
fall-off is expressed as

F=Fg+Fs—-1

where Fg(Fys) is the value of the coefficient respective to the entrance (exit) EFB.

If \g = 0 (As = 0) for either the electric or magnetic component, then both are considered as sharp edge
fields and Xg(Xg) is forced to zero (for the purpose of saving computing time). In this case, the magnetic
wedge angle vertical first order focusing effect is simulated at entrance and exit by a kick P» = P; — Z; tan(e/p)
applied to each particle (P, P; are the vertical angles upstream and downstream the EFB, Z; the vertical
particle position at the EFB, p the local horizontal bending radius and € the wedge angle expenenced by the
particle ; € depends on the horizontal angle T). This is not done for the electric field, however it is advised not
to use a sharp edge electric dipole model since this entails non symplectic mapping, and in particular precludes
focusing effects of the non zero longitudinal electric field component.
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YMY: Reverse Signs of Y and Z Axis

YMY performs a 180° rotation of particle coordinates with respect to the X-axis, as shown in Fig. 33. This is
done by means of a change of sign of Y and Z axes, and therefore coordinates, as follows

Y2=-Y1, T2=-T1, Z2=-Z1 and P2=-Pl

Figure 33: The use of Y MY in a sequence of two identical dipoles of opposite signs.
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5.5 Owutput Procedures

These procedures are dedicated to the printing of particle coordinates, histograms, spin coordinates, etc. They
may be called for at any spot in the data pile. -
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CLORB: Beam Centroid Path; Closed Orbit

CLORB computes the beam centroid path, from average value of particle coordinates as observed at LABEL’ed
keywords. -

In conjunction with REBELOTE, this procedure computes the closed orbit in the periodic structure delimited
with REBELOTE, by the same means.

The LABEL list of concern constitutes the information contained in the data record that follows the keyword
CLORB.
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FAISCEAU, FAISCNL, FAISCNLA: Print/Store Particle Coordinates

FAISCEAU can be introduced anywhere in a structure. It produces a print of initial and actual coordinates of
the particles at the location where it stands, together with their tagging indices and letters, following the same
format as for FAISCNL (except for SORT(I) which is not printed) .

FAISCNL has a similar effect, except that the information is stored in a dedicated file FNAME (standard
name is FNAME = ‘zgoubi.fai’ for post-processing with zgplot). This file may further on be read by means of
OBJET, option KOBJ = 3, or used for other purposes such as graphics (see Part D of the Guide). The data
written to that file are formatted and ordered according to the FORTRAN sequence below

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘NEW’)
DO 1 I=1, IMAX
WRITE (NL,100) LET(I),IEX(I),(F0(J,I),J=1,6),(F(J,I),J=1,6),I(I),IREP(I),SORT(I),DUM,DUM,RET(I), DPR(I), IPASS
100 FORMAT(1X, A1, iX, I2, 1P, 6E16.8, /, 6E16.8, 2I3, /,1X, 5E16.8, I6)
1 CONTINUE

The meaning of these parameters is the following (see the keyword OBJET)

LET(I) : one-character string, for tagging particle number I
IEX, I, IREP(I) : flag, particle number, index
FO(1-6,I) : coordinates D, Y, T, Z, P and path length at the origin of the structure
F(1-6,I) : idem, at the current position
SORT(I) : path length at which the particle has eventually been stopped
(see CHAMBR or COLLIMA)
DUM : dummy

RET(I), DPR(I) : synchrotron phase space coordinates; RET =phase (radian),
DPR = momentum dispersion (MeV/c) (see CAVITE).
IPASS : turn number (see REBELOTE)

FAISCNLA has an effect similar to FAISCNL, with two more features. On the first data line, FNAME may
be followed by a series of up to 10 LABEL’s proper to the elements of the data file at the exit of which the
print should occur; if there is no label, the print occurs by default at the location of FAISCNLA; if there
are labels the print occurs right downstream the optical element wearing those labels (and no longer at the
FAISCNLA location). The next data line gives a parameter IP: printing will occur every IP other pass, if
using REBELOTE with NPASS > IP — 1. For instance the data list

FAISCNLA
zgoubi.fai HPCKUP VPCKUP
12

will result in output prints into zgoubi.fai, every 12 other pass, each time elements of the zgoubi.dat data list
labeled either HPCKUP or VPCKUP are encountered.
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FOCALE, IMAGEIS]: Coordinates and Beam Dimension, Localization and Size of Horizontal
Waist

FOCALE calculates the dimensions of the beam and its mean transverse position, at a longitudinal distance
XL from the position corresponding to the keyword FOCALE.

IMAGE computes the location and size of the closest horizontal waist.

IMAGES has the same effect as IMAGE, but, in addition, for a non-monochromatic beam it calculates as many
waists as there are distinct momenta in the beam, provided that the object has been defined with a classification
of momenta (see OBJET, KOBJ = 1, 2 for instance).

Optionally, for each of these three procedures, Zgoubi can list a trace of the coordinates in the X, Y and in
the Y, Z planes.

The following quantities are calculated for the N particles of the beam (IMAGE, FOCALE) or of each group
of momenta (IMAGES)

¢ Longitudinal position:
FOCALE: X=XL
Ti YextgTi = (I, Y e B, t9T3) /N
SN 16T~ (T, o) /N
Y=Y+X=tgh

IMAGE[S]: X = —

where Y7 and T} are the coordinates of the first particle of the beam (IMAGE, FOCALE) or the first
particle of each group of momenta (IMAGES).

e Transverse position of the center of mass of the waist (IMAGE|S]) or of the beam (FOCALE), with respect
to the reference trajectory

N : N
1 1
YM—YV,— E (}’,;—i—thT,;)-—Y—ﬁiilYMi

g=1

o FWHM of the image (IMAGE|S]) or of the beam (FOCALE), and total width, respectively, W and WT

N 2
— l 2 _ 2
W_2.35(N;YM,. YM)

WT = max(Y M;) — min(Y M;)

FOCALEZ, IMAGE[S]Z: Coordinates and Beam Dimensions, Localization and Size of Vertical
Waist

Similar to FOCALE and IMAGE[S], but the calculations are performed with respect to the vertical coordinates
Z; and P;, in place of Y; and T;.
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HISTO: 1-D Histogram

Any of the coordinates used in Zgoubi may be histogrammed, namely initial Yo, To, Zo, Po, So, Do or actual
Y, T, Z, P, S, D particle coordinates (S = path length ; D may change in decay process simulation with

MCDESINT, or when ray-tracing in E fields), and also spin coordinates and modulus Sx, Sy, Sz and "§ ”

HISTO can be used in conjunction with MCDESINT, for statistics on the decay process, by means of TYP.
TYP is a one-character variable. If it is set equal to ‘S’, only secondary particles will be histogrammed. If it is
set equal to ‘P, then only primary particles will be histogrammed. For no discrimination between S-econdary
and P-rimary particles, TYP = ‘Q’ must be used.

The dimensions of the histogram (number of lines and columns) may be modified. It can be normalized with
NORM = 1, to avoid saturation.

Histograms are indexed with the parameter NH. This allows making independent histograms of the same
coordinate at several spots in a structure. This is also useful when piling up problems in an input data file (see
also RESET). NH is in the range 1-5.

If REBELOTE is used, the statistics on the 1+NPASS runs in the structure will add up.

IMAGE[S][Z]: Localization and size of Vertical Waist
See FOCALE([Z].
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MATRIX: Calculation of Transfer Coefficients

MATRIX causes the calculation of the transfer coefficients of the structure, at the spot where it is introduced
in the structure, or at the closest horizontal focus. In this last case the position of the focus is calculated-
automatically in the same way as the position of the waist in IMAGE. Depending on option IFOC, MATRIX
also delivers the T'wiss matrix and tune numbers in the hypothesis of a periodic structure.

Depending on the value of option IORD, different procedures follow

e If JORD = 0, MATRIX is inhibited (equivalent to FAISCEAU, whatever IFOC).

e If JORD = 1, the first order transfer matrix [R;;] is calculated, from a third. order expansion of the
coordinates, for instance

which gives, neglecting third order terms

poo (Y)Y -Y-
N=\T/ " 2T

o If IORD = 2, fifth order Taylor expansions are used for the calculation of the first order transfer matrix
[Ri;] and the second order matrix [T;;x]. Other higher order coefficients are also calculated.

The next option, IFOC, acts as follows

e If JFOC = 0, the transfer coefficients are calculated at the position of MATRIX, and with respect to particle
1 taken as a reference (for instance, Y and T above are defined for particle I as Y+ =Y +(I) - Y (1),
and T+ = T*(I) - T(1)).

o If IFOC = 1, the transfer coefficients are calculated at the horizontal focus which is the closest to MATRIX
(determined automatically), while the reference direction is that of particle 1 (for instance, Yt is defined
for particle I'as Yt = Y (I) — Yjocus, and T is defined as T+ = T*(I) - T(1)).

e If [JFOC = 2, no change of reference frame is performed: the coordinates refer to the current frame.
Namely, Y+ =Y+(I), Tt =T* (1), etc.

o If IFOC = 10 + NPeriod, MATRIX calculates the transfer coefficients of the structure, assuming that
it is NPeriod-periodic, and deduces the corresponding Twiss matrix and tune numbers. No change of
reference is performed for this calculation.

The object necessary for the calculation of [R;j] with JORD = 1 may be generated automatically by means
of OBJET with option KOBJ = 5. When using IORD = 2, the object may be generated automatically with
OBJET and KOBJ = 6.
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PLOTDATA: Coordinate Output for PLOTDATA Graphic Software [25]

To be documented.
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SPNPRNL, SPNPRNLA, SPNPRT: Print/Store Particle Spin Coordinates

SPNPRNL has the same effect as SPNPRT (see below), except that the information is stored in a dedicated
file FNAME (standard is FNAME = ‘zgoubi.spn’ for post-processing with zgplot). The data are formatted
and ordered according to the FORTRAN sequence below

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘NEW’)
DO 1 I=1, IMAX
WRITE (NL,100) LET(I), IEX(I), (SI(J,I)J=1,4), (SF(J,I),J=1,4), GAMMA, I
100 FORMAT(1X, A1, I2, 1P, 8E15.7, /, E15.7, 213, I6)
1 CONTINUE

The meaning of these parameters is the following

LET(I),JEX(I) : tagging character and flag (see OBJET)

SI(1-4,I) : spin components SX, SY, SZ and modulus, at the origin
SF(1-4,I) : idem, at the current position

GAMMA : Lorentz relativistic factor

I : particle number

IMAX : total number of particles ray-traced (see OBJET)

IPASS : turn number (see REBELOTE)

SPNPRNLA has an effect similar to SPNPRNL, with one more feature. The line next to FNAME gives a
parameter JP printing will occur every IP other pass, when using REBELOTE with NPASS > IP — 1.

SPNPRT can be introduced anywhere in a structure. It produces a listing (into zgoubi.res) of the initial and
actual coordinates and modulus of the spin of the IMAX particles, at the location where it stands, together
with their Lorentz factor -y, following the format detailed above. The mean values of the spin components are

also printed.
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5.6 Complementary Features
5.6.1 Backward Ray-tracing

For the purpose of parameterization for instance, it may be interesting to ray-trace backward from the image
toward the object. This can be performed by first reversing the position of optical elements in the structure,
and then reversing the integration step sign in all the optical elements. '

An illustration of this feature is given in the following Figure 34.

QUADRUPOLE
drift 20em ' drift S0cm spraad
———— — image
i - | — — e
_______ __f__._).-———'*‘_—‘
point cbjeet
A
B QUADRUPOLE

spread drift S0cm point

object > e ] drift 20cm fmage

Figure 34: A. Regular forward ray-tracing, from object to image.
' B. Same structure, with backward ray-tracing from image to object:
negative integration step XPAS is used in the quadrupole.

5.6.2 Checking Fields and Trajectories in Magnets

In all magnetic elements, an option index IL is available. It is normally set to 0 and in this case has no effect.
IL =1 causes a print in zgoubi.res of particle coordinates and field along trajectories in the magnet. In the
meantime, a calculation and summation of the valugﬁ of V- ]§, V x B and V2B at all integration steps is
performed, which allows a check of the behavior of B in field maps (all these derivatives should normally be
zero).

IL = 2 causes a print of particle coordinates and other informations in zgoubi.plt which can further be processed
with zgplot?2.

When dealing with maps (e.g., CARTEMES, ELREVOL ), another option index IC is available. It is'normally
set to 0 and in this case has no effect.

IC =1 causes a print of the field map in zgoubi.res.

IC =2 will cause a print of field maps in zgoubi.map which can further be processed with zgplot?.

5.6.3 Labeling keywords

Keywords in Zgoubi data file zgoubi.dat can be LABEL’ed, for the purpose of the execution of such procedures
as CLORB, FAISCNL[A] , SCALING.
Each keyword accepts two LABEL’s, of which the first one is used for the above mentioned purpose.

28ee Part D of the Guide.
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5.6.4 Multiturn tracking in circular machines

Multiturn tracking in circular machines can be performed by means of the keyword REBELOTE, put at the
end of the optical structure with its argument NPASS+1 being the number of turns to be performed. In order
that the IMAX particles of the beam start a new turn with the coordinates they have reached at the end of the
previous one, the option K = 99 has to be specified in REBELOTE.

Synchrotron acceleration can be simulated, following the procedure below
- CAVITE appears at the end of the structure (before REBELOTE), with option IOPT= 1

- the R.F. frequency of the cavity is given a timing law by means of SCALING, family CAVITE

- the magnets are given the same timing law Bp(T), (where T = 1 to NPASS+1 is the turn number) by
means of SCALING.

Eventually some families of magnets may be given a law which does not follow Bp(T'), for the simulation of
special processes (e.g. fast crossing of spin resonances with independent families of quadrupoles).

5.6.5 Positioning of Magnets and field maps

The last record in most magnets and field maps is the positioning flag KPOS, followed by the parameterss
XCE, YCE for translation and ALE for rotation. The positioning works in two different ways, depending on
whether they are defined in Cartesian (X,Y, Z) coordinates (e.g., QUADRUPO, TOSCA), or polar (R, 8, Z)
coordinates (DIPOLE).

Cartesian Coordinates:

If KPOS = 1, the X-axis of the element coincides with the X-axis of the incoming reference.
If KPOS = 2, the shifts XCE and YCE, and the tilt angle ALE are taken into account, for the positioning of
the element with respect to the incoming reference, as shown in Fig. 35. KPOS = 2 can also be used to simulate
a misalignment. The effect is equivalent to a CHANGREF transformation placed right upstream the magnet,
followed by the reverse transformation right downstream.
KPOS = 3 option is available for some magnets (e.g., BEND, MULTIPOL); it positions automatically the
magnet in the following way, convenient for periodic structures. It is effective only if a non zero dipole component
B, is present; entrance and exit frames are shifted by YCE (XCE is not used) and tilted w.r.t. the magnet by
an angle

e either ALE/2 if ALEs£0

e or by half the deviation 6/2 such that L = 25%3- sin(62) if ALE=0 (L = magnet length, BORO = refer-
ence rigidity as defined in OBJET). This is equivalent to the sequence CHANGREF(0,0,-0/2), CHANGREF(0,YCE,0)

right upstream the magnet, followed by CHAN GREF(0,-YCE,-6/2).

Polar Coordinates

If KPOS = 1, the element is positioned automatically in such a way that a particle entering with zero initial
coordinates and 1 + DP = Bp/BORO relative momentum will reach position (RM, 4L) in the element with
T = 0 angle with respect to the moving frame in the polar coordinates system of the element (Fig. 36; see
DIPOLE and POLARMES).

If KPOS = 2, the map is positioned in such a way that the incoming particle will enter it at radius RE with
angle TE. The reference frame of Zgoubi is positioned in a similar way with respect to the map, at the exit
face, by means of the two parameters RS (radius) and T'S (angle) (see Fig. 10A.).

5.6.6 Coded integration step

In several optical elements {e.g., all multipoles, BEND) the integration step (in general noted XPAS) can be
coded under the form XPAS = b.fifE10 in order to allow two different step sizes in the uniform part of the filed
(the magnet body) and in the field fall-off regions. b is an arbitrary integer and fif is a 3-digit integer; they
give the number of steps respectively in the body and fringe field regions. For instance 120.012E10 requests 120
steps in the body and 12 in the fringe field regions. The maximum allowed value for fIf is 999 steps.
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P e

Figure 35: Posit'ion'mg of a Cartesian coordinate optical element when KPOS= 2.

Figure 36: Positioning of a polar field map when KPOS= 1.
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5.6.7 Ray-tracing of an arbitrarily large number of particles

Monte Carlo multiparticle simulations involving an arbitrary number of particles can be performed by means
of REBELOTE, put at the end of the optical structure, with its argument NPASS being the number of passes
through REBELOTE, and (NPASS+1) * IMAX the number of particles to be ray-traced. In order that new
initial conditions (D, Y, T, Z, P, X) be generated at each pass, K = 0 has to be specified in REBELOTE.
Statistics on coordinates, spins, and other histograms can be performed by means of such procedures as HISTO,
SPNTRK, etc. that stack the information from pass to pass.

5.6.8 Stopped particles: the IEX flag

As described in OBJET, each particle I = 1, IMAX is attached a value JTEX(I) of the IEX flag. Normally,
IEX(I) = 1. Under certain circumstances, IEX may take negative values, as follows

- 1 : the trajectory happened to wander outside the limits of a field map
- 2 : too many integration steps in a field map
- 3 : deviation happened.to exceed g in an optical element
- 4 : stopped in chamber walls (by the procedures CHAMBR, COLLIMA)
- 5 : too many iterations in subroutine DEPLA

Only in the case JEX = —1 will the particle not be stopped.

5.6.9 Negative rigidity

Zgoubi can handle negative rigidities Bp = p/q. This is equivalent to considering either particles of negative
charges (g < 0), or counter going particles (p < 0), or virtually reversed fields (w.r.t. the field sign that shows

in the optical element data list).
Negative rigidities may be specified in terms of BORO < 0 or D = Bp/BORO < 0 when defining the initial
coordinates with OBJET and MCOBJET.
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PART B

Keywords and input data formatting



ATMANT
AUTOREF
BEND
BINARY
BREVOL
CARTEMES
CAVITE
CHAMBR
CHANGREF
CIBLE
CLORB
COLLIMA
DECAPOLE
DIPOLE
DODECAPO
DRIFT
EBMULT
EL2TUB
ELMULT
ELREVOL
END

ESL
FAISCEAU
FAISCNL
FAISCNLA
FIN

FIT
FOCALE
FOCALEZ
GASCAT
HISTO
IMAGE
IMAGES
IMAGESZ
IMAGEZ
MAP2D
MATRIX
MCDESINT
MCOBJET
MULTIPOL
OBJET
OBJETA
OCTUPOLE
ORDRE
PARTICUL
PLOTDATA
POISSON
POLARMES
PS170
QUADISEX
QUADRUPO

Glossary of keywords

Generation of a dipole magnet 2-Dmap ............cooiiiiiiiiiiiiiiii. 121
Automatic transformation to a new reference frame ............................ 125
Bending magnet ....... ... i 126
BINARY/FORMATTED data CONVErter ...............cccveeeeeerununinnnennns. 127
1-D uniform mesh magneticfield map ..................o i 128
2-D cartesian uniform mesh magnetic fieldmap .................... ... 129
Accelerating cavity ....... ... e 131
Long transverse aperture limitation .................... ... i, 132
Transformation to a new reference frame ....................cooiiiiiiiiiaL, 133
Generate a secondary beam from target interaction ............................ 134
Beam Centroid Path; Closed Orbit .........c.ovviiiiiiiiiii i 135
L0701 30T o) N 136
Decapole magnet ....... ..ottt e 137
Generation of a dipole magnet 2-Dmap ............ ..ot 138
Dodecapole magnet ... ........oooiiiiiii i i e et 140
Field free drift Space ..........coioiiiii i e 141
Electro-magnetic multipole ......... ... ... e, 142
Two-tubes electrostatic lense .......... ... o i 144
Electric multipole . ... ... 145
1-D uniform mesh electric field map ............ ... . i 146
End of input data list ;see FIN ... ... i 148
Field free drift space ........ ..o e 141
Print particle coordinates ..... ... ... i e 147
Store particle coordinates into file FNAME ..............c.coiiiiiiiiiiiiian. 147
Store coordinates every IP other pass at labelled elements ..................... 147
End of input data list ............. B 148
Fitting procedure ............oooiiiiiiiiiiii e 149
Particle coordinates and horizontal beam dimension at distance XL ............ 150
Particle coordinates and vertical beam dimension at distance XL .............. 150
Gasscattering .......................... e 151
1-D hiStogram .. ..o e e e 152
Localization and size horizontal waist ................ ... i, 153
Localization and size of horizontal waists ........... .. ..o, 153
Localization and size of vertical waists ............ ... i, 153
Localization and size of vertical waist .................. . i 153
2-D cartesian uniform mesh magnetic field map without symmetry ............. 154
Calculation of transfer coefficients ...............co i, 155
Monte-Carlo simulation of in-flight decay .........................o.oo 156
Monte-Carlo generation of a 3-D object ..........cooiiiiiiiiiiiiiiiinnnn .. 157
Magnetic multipole ....... ... . 160
Generation of an object ........ ... e 161
Object from Monte-Carlo simulation of decay reaction ......................... 163
Octupole magnet ....... ... . i 164
Higher order Taylor expansions in lenses ............ ... ... ...t 165
Particle characteristics ........ovuuieiiie i e e e 166
Intermediate outputs for the PLOTDATA computer graphic software .......... 167
Read field data from POISSON output ........c.coviiirvnrnveinernnenennennnnnn 168
2-D polarmesh field map ...... ..o i 169
Simulation of a round shape dipole magnet ............. ... ... i, 170
Sharp edge magnetic multipoles ....... ... ... .. 171
Quadrupole mMAagnet ....... ...ttt e e 172



REBELOTE
RESET
SCALING
SEPARA
SEXQUAD
SEXTUPOL
SOLENOID
SPNPRNL
SPNPRNLA
SPNPRT
SPNTRK
SYNRAD
TARGET
TOSCA
TRANSMAT
TRAROT
UNIPOT
VENUS
WIENFILT
YMY

Jump to the beginning of Zgoubi input data file ........... e, 174
Reset counters and flags ...l e e 175
Time scaling of power supplies and R.F. .................... e 176
Wien Filter - analytic simulation ............ ... i 177
Sharp edge magneticmultipole .......... ... ... i 178
Sextupole magnet .. ... i et 179
13 5 1T L A 180
Store spin coordinates into file FNAME .............coiiiiiiiiiiiiiieneannnn. 181
Store spin coordinates every IP other pass .......c..cocoiiiiiiiiiiienienennnn.. 181
Print spin coordinates .........cooeviniiiiiiiiii it i i e 181
IS 03 (109 =Y 5 T N 182
Symchrotron radiation ........ ...ttt e 183
Generate a secondary beam from target interaction ;see CIBLE ............... 134
2-D and 3-D cartesian uniform mesh field map .............. ...l 184
Matrix transfer . ... .o e 185
Translation-Rotation of the reference frame .............. ...t 186
Unipotential electrostatic lense ........... ...ttt 187
Simulation of a rectangular dipole magnet ............. ...t 188
Waen e .. e 189
Reversesigns of Yand Z axes ........ooiiiiiiiiii it 190
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Optical elements versus keywords

This glossary gives a list of keywords suitable for the simulation of the common optical elements. They
are classified in three categories: magnetic, electric and electromagnetic elements.
Field map procedures are also cataloged; in most cases an adequate field map can be used for simulating

these elements.

MAGNETIC ELEMENTS

Decapole

Dipole
Dodecapole
Mualtipole
Octupole
Quadrupole
Sextupole

Skewed multipoles
Solenoid

Field maps

1-D, cylindrical symmetry
2-D, mid-plane symmetry
2-D, no symmetry

3-D

ELECTRIC ELEMENTS

Decapole

Dipole

Dodecapole

Multipole

Octupole

Quadrupole

R.F. cavity

Sextupole

Skewed multipoles
2-tube (bipotential) lense
3-tube (unipotential) lense

Field maps
1D, cylindrical symmetry

ELECTROMAGNETIC ELEMENTS

Decapole

Dipole
Dodecapole
Multipole
Octupole
Quadrupole
Sextupole

Skewed multipoles
Wien filter

DECAPOLE, MULTIPOL

AIMANT, BEND, DIPOLE, MULTIPOL, QUADISEX
DODECAPO, MULTIPOL

MULTIPOL, QUADISEX, SEXQUAD -

OCTUPOLE, MULTIPOL, QUADISEX, SEXQUAD
QUADRUPO, MULTIPOL, SEXQUAD

SEXTUPOL, MULTIPOL, QUADISEX, SEXQUAD
MULTIPOL

SOLENOID

BREVOL

CARTEMES, POISSON, TOSCA
MAP2D

TOSCA

ELMULT
ELMULT
ELMULT
ELMULT
ELMULT
ELMULT
CAVITE

ELMULT
ELMULT
EL2TUB

UNIPOT

ELREVOL

EBMULT
EBMULT
EBMULT
EBMULT
EBMULT
EBMULT
EBMULT
EBMULT
SEPARA, WIENFILT
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INTRODUCTION

Here after is given a detailed description of input data formatting and units. All available keywords appear in
alphabetical order.

Keywords are read from the input data file by an unformatted FORTRAN READ statement. They may
therefore need be enclosed between quotes (e.g., ‘DIPOLE’).

Text string data such as comments or file names, are read by formatted READ statements. Therefore no quotes
are needed. Numerical variables and indices are read by unformatted READ. It may therefore be necessary
that integer variables be assigned an integer value.

In the following tables
e the first column states the input numerical variables, indices and text strings,
o the second column gives brief explanations,
o the third column gives the units or ranges of the input variables and indices,

o the fourth column indicates whether the inputs are integers (I), reals (E) or text strings (A). For example,
‘], 3*E’ means that one integer followed by 3 reals must be entered. ‘A80° means that a text string of
maximum 80 characters must be entered.
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ATMANT

NFACE, IC, IL

IAMAX, IRMAX

By, N, B, G

AT, ACENT, RM,
RMIN, RMAX

A€

NC, Co et 05, shift

w+: 07 R17 U17 U27 RZ

A€

NC, Cy — Cs, shift

W, 9: Rlv UI’ UZ, RZ

Generation of a dipole magnet 2-D map

Bz = FBo (1— N (BzRM) 1 B (BpRM)? 4 ¢ (BpRM)°

Number of field boundaries
IC =1,2: print field map
IL =1,2: print field and coordinates on trajectories

Azimuthal and radial number of nodes of the mesh

Field and field indices

Mesh parameters: total angle of the map; azimuth for
positioning of EFB’s; mean radius; minimum and
maximum radii

ENTRANCE FIELD BOUNDARY

Fringe field extent; index for fringe field as follows:
if £ > 0: second order type fringe field with

linear variation over £

if £ = —1: exponential type fringe field:

F = (1+exp(P(s))™"

P(s) =Co+ Cl(%) =+ Cz(%)z +...4 Cs(%)s

NC = 1 + order of P(s); Cp to Cs: see above;
EFB shift (ineffective if £ > 0)

Azimuth of entrance EFB with respect to ACENT;
wedge angle of EFB; radii and linear

extents of EFB (use | Uy 3 [= 0o when Ry 3 = o)

(Note : A=0, wt = ACENT and 6 =0 for sharp edge)
EXIT FIELD BOUNDARY

(See ENTRANCE FIELD BOUNDARY)

Fringe field parameters

Positioning and shape of the exit EFB

(Note : A=0, w~ =-AT+ACENT and 6 = 0 for
sharp edge)
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2-3,0-2,0-2

<400, £200

kG, 3*
no dim.

2*deg, 3*ecm

cm, (cm)

0-6, 6*
no dim., cm

2*deg, 4*cm

cm, (cm)

0-6, 6*
no dim., cm

2*%deg, 4*cm

3*1

2*]

4*E

5*E

2*E

I, 7*E

6*E

2*E

1, 7*E

6*E



if NFACE = 3

A€
NC, Co — Cs, shift

wo, 0, R17 Ul; U27 RZ,
RM3

NBS

if NBS =0

if NBS = -2
Ry, AB/By

if NBS = -1

6o, AB/By

if NBS > 1
ForI = 1, NBS
Zkl, Ry, 64, 63, A

Y @, i, B

IORDRE

XPAS
KPOS

if KPOS = 2
RE, TE, RS, TS

if KPOS = 1
DpP

LATERAL FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)
Next 3 records only if NFACE = 3

Fringe field parameters

Positioning and shape of the lateral EFB;
RM3 is the radial position on azimut ACENT

Option index for perturbations to the field map
Normal value. No other record required

The map is modified as follows:

B transforms to B x (1 + %?-R—Aﬁgm)
the map is modified as follows:

B transforms to B * (1 + -%?—9—;—%“)

Introduction of NBS shims

The following 2 records must be repeated NBS times

Radial and angular limits of the shim; A is unused
geometrical parameters of the shim

Interpolation polynomial order:

2 = second order, 9-point grid

25 = second order, 25-point grid

4 = fourth order, 25-point grid

Integration step

Positioning of the map, normally 2. Two options:
Positioning as follows:

Radius and angle of reference, respectively,

at entrance and exit of the map.

Automatic positioning of the map, by means of
reference relative momentum
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cm, (cm)

0-6, 6*
no dim., cm
2*deg, 5cm

normally 0

cm, no dim.

deg, no dim.

2%cm, 2*deg, cm

2*deg,
2*no dim.

2,40r25

cm

1-2

cm, rad, cm, rad

no dim.

O
I, T*E

7*E

2*E

2*E

5*E

4*E

4*E



A: Parameters used to define the field map and geometric boundaries.
B: Parameters used to define the field map and fringe fields.
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Second order type fringe field.
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*(shift = 0)
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(shift £ 0) | \ S
| >
-A l 0 N

Shift

Exponential type fringe field.
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AUTOREF Automatic transformation to a new reference frame

I 1: Equivalent to CHANGREF (XCE =0,YCE =Y (1), ALE =T(1)) 1-2 I

2: Equivalent to CHANGREF (XW, YW, T(1)), with (XW, YW)
being the position of the intersection (waist) of particles 1, 4 and 5
(useful with MATRIX, for automatic positionning of the first order focus)

3: Equivalent to CHANGREF (XW, YW, T(I1)), with (XW, YW)
being the position of the intersection (waist) of particles I1, I2 and I3
(for instance: I1 = central trajectory, I2 and I3 = paraxial trajectories
that intersect at the first order focus)

ifI=3 Next record only if I = 3
I1, 12, I3 Three particle numbers 3*(1-200) 3*1
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BEND

IL

XL, YL, B

Xg, A, Wg

N, Co~Cs

XS; AS) WS

N, Co—Cs

XPAS

KPOS, XCE,
YCE, ALE.

Bending magnet

IL =1,2: print field and coordinates
along trajectories (otherwise IL = 0)

Length; unused; field

Entrance face:
Integration zone extent; fringe field
extent (normally ~ gap height); wedge angle

Unused; fringe field coefficients: B(s) = BoF(s),

with F(s) = (1+ exp(P(s))~! and P(s) = So_; Ci(s(\)*
Exit face:

See entrance face

Integration step

KPOS=1: element aligned, 2: misaligned;
shifts, tilt (unused if KPOS=1)

KPOS = 3:

entrance and exit frames are shifted by YCE
and tilted w.r.t. magnet by an angle

e either ALE/2 if ALE#£0

e or half the deviation if ALE=0

Entance Exit
EFB
W>0 i w>0

temecaaa
RS
AR
/! oS
#
/
——
v
4
v
I
/

Geometry and parameters in BEND:
XL = length, B, = field, 8 = deviation.
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0-2

cm, unused, kG

cm, cm, rad

unused, 6*no
dim.
cm, cm, rad

unused, 6*no
dim.

cm

1-2, 2*cm, rad

3*E

3*E

I, 6*E

3*E

I, 6*E

I, 3*E



BINARY Binary/Formatted data converter

NF Number of files to convert <20 I
The next NF lines:

FNAME Name of the file to be translated AS80
(begin with “B_” iff binary)
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BREVOL 1-D uniform mesh magnetic field map
X-axis cylindrical symmetry is assumed

IC,IL IC =1,2: print the map 0-2, 0-2 2*1
IL = 1: print field and coordinates along trajectories
BNORM Normalization coefficient: %‘% no dim. E
TIT Title A80
IX Number of longitudinal nodes of the map <400 I
FNAME! Filename (e.g., solenoid.map) A80
ID, A B, C Integration boundary. Ineffective when 1D = 0. > -1, 2*no dim., [,3*E
(4, B, ¢’ ID=-1,10r >2: as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B’ ete., if ID > 2] cm, ete.]
IORDRE unused 2,4 or 25 I
XPAS Integration step cm E
KPOS, XCE, KPOS=1: element aligned, 2: misaligned; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1FNAME contains the field data. These must be formatted according to the following FORTRAN sequence:

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [ FORM="UNFORMATTED"))
DO11=1,IX
IF (BINARY) THEN
READ(NL) X(I), BX(I)
ELSE
READ(NL,*) X(I), BX(I)
ENDIF
1 CONTINUE

where X(I) and BX(I) are the longitudinal coordinate and field component at node (I) of the mesh. Binary file names
FNAME must begin with B_. ‘Binary’ will then automatically be set to . TRUE.’
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CARTEMES

Ic, IL

BNORM
TIT

IX, JY

FNAME!
ID, A,B,C

[AI BI Cl AI/
B etc., if ID > 2]

IORDRE

XPAS

KPOS, XCE,
YCE, ALE

2-D Cartesian uniform mesh magnetic field map
mid-plane symmetry is assumed

IC = 1,2: print the map
IL = 1,2: print field and coordinates along trajectories

Normalization coefficient: %‘%

Title

Number of longitudinal (IX) and transverse (JY)
nodes of the map

Filename (e.g., spes2.map)

Integration boundary. Normally ID = 0.

ID = —1: integration in the map begins at
entrance boundary defined by AX + BY +C = 0.
ID = 1: integration in the map is stopped

at exit boundary defined by AX + BY +C =0.
ID > 2: entrance (A, B,C) and up to ID — 1 exit
(4’,B',C’, A", B” etc.) boundaries

Interpolation polynomial order
(see DIPOLE)

Integration step

KPOS=L1: element aligned, 2: misaligned;
shifts, tilt (unused if KPOS=1)

0-2, 0-2

no dim.

<400, <200

> —1,2%no dim.,
cm [,2*no dim.,
cm, ete.]

2,4 0r 25

cm

1-2, 2*cm, rad

1FNAME contains the field data. These must be formatted according to the following FORTRAN sequence:

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [, FORM="UNFORMATTED’])
IF (BINARY) THEN

READ(NL) (Y(J), J=1, JY)

ELSE

READ(NL,100) (Y(J), J=1, JY)

ENDIF

100 FORMAT(10 F8.2)

DO 1 I=LIX

IF (BINARY) THEN
READ(NL) X(I), (BMES(I,J), J=1, JY)

ELSE

READ(NL,101) X(I), (BMES(I,J), J=1, JY)
101 FORMAT(10 F8.2)

ENDIF

1 CONTINUE

2*1

A80

2*1
A80

I, 3*E
[3*E,etc.]

I, 3*E

where X (I) and Y (J) are the longitudinal and transverse coordinates and BMES is the Z field component at a node (I, J)
of the mesh. For binary files, FNAME must begin with B_.‘Binary’ will then automatically be set to ‘. TRUE.’
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OXY is the coordinate system of the mesh. Integration zone limits may be defined, using ID # 0: particle
coordinates are extrapolated linearly from the entrance face of the map, into the plane A’X + B'Y + C' = 0;
after ray-tracing inside the map and stopping on the integration boundary AX + BY + C = 0, coordinates are
extrapolated linearly to the exit face of the map.
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CAVITE!

IOPT

If IOPT=0
X, X

If IOPT=12
L, h

V,X

If IOPT=2
LR

Vs
If IOPT=3
X, X

V, ¢s

Accelerating cavity

AW = qV sin(2nhfAL + ¢5)

Option

Element inactive

unused

frr follows the timing law given by SCALING
Reference closed orbit length; harmonic number
R.F. peak voltage; unused -

frr follows AW, = quz'fru;Ss
Reference closed orbit length; harmonic number

R.F. peak voltage; synchronous phase
No synchrotron motion: AW = qV sing,
unused; unused

R.F. peak voltage; synchronous phase

1Use PARTICUL to declare mass and charge.

2For ramping the R.F. frequency following Bp(t), use SCALING, with family CAVITE.
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m, no dim.

V, unused

m, no dim.

V, rad

2*unused

V, rad

2*E

2*E

2*E

2*E

2*E

2*E



CHAMBR Long transverse aperture limitation!

IA 0: element inactive
1: redefinition of the aperture 0-2 1
2: stop testing and reset counters, print
information on stopped particles.

IFORM,YIL? ZL,YC,ZC Taken into account only if JA = 1. 1-2, 4*cm I, 4*E
IFORM = 1: rectangular chamber; horizontal
(vertical) dimension +Y L (+ZL);
centered at YC, ZC.
IFORM = 2: elliptical chamber; horizontal
(vertical) axis £Y L(+ZL);
centered at YC, ZC.

1Any particle out of limits is stopped.
ZWhen used with an optical element defined in polar coordinates (e.g. DIPOLE) Y L is the radius and Y C stands for the mean
radius (normally, YC ~ RM).
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CHANGREF Transformation to a new reference frame

XCE, YCE, ALE Longitudinal and transverse shifts, 2*%cm, deg
followed by Z-axis rotation

Old Frame ?

Scheme of the CHANGREEF procedure.
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CIBLE, TARGET Generate a secondary beam from target interaction

My, My, M3, Q Target, incident and scattered particie masses; S*MZS-K, 2%deg
T, 0,6 Q of the reaction; incident particle kinetic

energy; scattering angle; angle of the target
NT,NP Number of samples in T and P coordinates

after CIBLE
TS, PS, DT Sample step sizes; tilt angle 3*mrad
BORO New reference rigidity after CIBLE kG.cm

Scheme of the principles of CIBLE (TARGET)

A, T = position, angle of incoming particle 2 in the entrance reference frame
P = position of the interaction

B, T = position, angle of the secondary particle in the exit reference frame
@ = angle between entrance and exit frames

B = tilt angle of the target
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2*1

3*E



CLORB

ForI=1, N

LABEL’s

Beam Centroid Path; Closed Orbit

0: inactive

> 1: total number of LABEL’s

at which beam centroid is to be recorded
A list of N records follows

N labels at which beam centroid is to be recorded
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COLLIMA Collimator!

IA 0: element inactive

1: element active 0-2 I

2: element active and print information on stopped

particles
IFORM, YL, ZL, Record taken into account only if JA =1 —2 1-2, 4*cm I, 4*E
YC, ZC IFORM = 1: rectangular collimator; horizontal

(vertical) dimension +Y L (+ZL);

centered at YC, ZC.

IFORM = 2: elliptical collimator; horizontal
(vertical) axis Y L (+ZL);

centered at YC, ZC.

L Any particle out of limits is stopped.
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DECAPOLE

IL

XL, R07 BO

XE, AE

NCE, Cy - Cs

Xs, As
NCS, Co — Cs

XPAS

KPOS, XCE,
YCE, ALE

Decapole magnet

IL =1,2: print field and coordinates along trajectories
Length; radius and field at pole tip

Entrance face:

Integration zone extent; fringe field

extent (< 2Rp, Ag = 0 for sharp edge)

NCE = unused

Co — Cs = Fringe field coefficients such that
G(s)=Go/(1+ expP(s)),_ with Go = Bo/R§

and P(s) = 37 Ci(s/A) |

Exit face: see entrance face

Integration step

KPOS=1: element aligned, 2: misaligned;
shifts, tilt (unused if KPOS=1) :
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0-2

2*%cm, kG

2*cm

unused,
6*no dim.

2*em
0-6, 6*no dim.

cm

1-2, 2*c¢m, rad

3*E

2*E

I, 6*E

2*E
I, 6*E

I, 3*E



DIPOLE

NFACE, IC, IL

IAMAX, IRMAX

Bg,N,B, G

AT, ACENT, RM,
RMIN , RMAX

A€

NC, Cy — Cs, shift

w+, 9, Rl: U1, UZ, R2

A€

NC, Co — Cs, shift

w, 91 Rl’ Ul’ U2) R2

Generation of a dipole magnet 2-D map
Bz =FBo (1 N (2zR4) + B (R8)" + G (B )?)

Number of field boundaries
IC =1,2: print field map .
IL =1,2: print field and coordinates on trajectories

Azimuthal and radial number of nodes of the mesh

Field and field indices

Mesh parameters: total angle of the map; azimuth for
positioning of EFB’s; mean radius; minimum and
maXimum radii

ENTRANCE FIELD BOUNDARY

Fringe field extent (normally equal to gap size);
unused

Exponential type fringe field:
F=(1+exp(P(s))"

P(S) =Co+ CI(§) + Cz(§)2 + ...+ C5(§)5

unused; Cy to Cy: see above;
EFB shift

Azimuth of entrance EFB with respect to ACENT;
wedge angle of EFB; radii and linear
extents of EFB (use | Uy 3 [= 0o when Ry 2 = 00)

(Note : A =0, wt = ACENT and 8 = 0 for sharp edge)

EXIT FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)

Fringe field parameters

Positioning and shape of the exit EFB

(Note : A =0, w™ = —AT+ ACENT and 6 = 0 for
sharp edge)
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2.3, 0-2, 0-2

< 400, < 200

kG, 3*
no dim.

2*deg, 3*cm

cm, unused

0-6, 6*
no dim., cm

2*deg, 4*cm

cm, unused
0-6, 6*no
dim., cm

2*deg, 4*cm

3*1

2*]

4*E

5*E

2*E

L7*E

6*E

2*E
1, 7*E

6*E



if NFACE = 3

A€
NC, Cy — Cs, shift

w™, 8, Ry, Uy, Us, Ry,
RM3

NBS

ifNBS =0

if NBS = -2
Ry, AB/By

if NBS = -1

o, AB/By
ifNBS >1

For I =1, NBS
Ry, Ry, 01, B2, A

v, o, p, B

IORDRE

XPAS

KPOS

if KPOS = 2
RE,TE, RS, TS

if KPOS =1
DpP

LATERAL FIELD BOUNDARY
(See ENTRANCE FIELD BOUNDARY)
Next 3 records only if NFACE = 3

Fringe field parameters

Positioning and shape of the lateral EFB;
RM3 is the radial position on azimut ACENT

Option index for perturbations to the field map
Normal value. No other record required

The map is modified as follows:

B transforms to B * (1 + %?';ﬁgﬂm)

The map is modified as follows:
' 6—6
B transforms to B # (1 + 'AB%W&)

Introduction of NBS shims

The following 2 records must-be repeated NBS times

Radial and angular limits of the shim; A is unused

Geometrical parameters of the shim

Interpolation polynomial order:
2 = second order, 9-point grid
25 = second order, 25-point grid
4 = fourth order, 25-point grid

Integration step

Positioning of the map, normally 2. Two options:

Positioning as follows:
Radius and angle of reference, respectively,
at entrance and exit of the map

Automatic positioning of the map, by means of
reference relative momentum

139

cm, unused

0-6, 6*
no dim., cm
2*deg, 5cm

normally 0

cm, no dim.

deg,no dim.

2*cm, 2*deg, cm

2*deg,
2*no dim.

2,40r25

cm

1-2

cm, rad, cm, rad

no dim.

2*E
IL7*E

7*E

2*E

2*E

4*E



DODECAPO

IL

XL, Ry, By
Xg, A

NCE, Cp — Cs

Xs, As
NCS, Cy—Cs

XPAS

KPOS, XCE,
YCE, ALE

Dodecapole magnet

IL = 1,2: print field and coordinates along trajectories
Length; radius and field at pole tip

Entrance face:
Integration zone extent; fringe field
extent (< 2Ro, Ag = 0 for sharp edge)

NCE = unused

Cp — Cs = Fringe field coefficients such that
G(s) = Go/(l -+ exp P(s)), with Gy = Bo/Rg
and P(s) = 3°0_ Ci(s/A)?

Exit face: see entrance face

Integration step

KPOS=1: element aligned, 2: misaligned;
shifts, tilt (unused if KPOS=1)
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0-2

2*cm, kG

2%cm

unused,
6*no dim.

2*cm
0-6, 6*no dim.

cm

1-2, 2*cm, rad

3*E
2*E

I, 6*E

2*E
1, 6*E

I, 3*E



DRIFT, ESL Field-free drift space

XL length cm E
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EBMULT!

IL

-XL, RO) Ela E2> E3’ [EL) EIO

XE7 AE: E27 E3v E4v E57 EG

NCE,C, — Cs

XS: AS: S2: ‘5’3’ 547 S5, SG
NCS, Cy - Cs

Rl: R27 R31 cees RIO

XL, Ry, By, By, Bs, ..., Bio

Xg, Ag, Es, E3, E4, Es, Eg

NCE,Cy - Cs

Electro-magnetic Multipole

IL =1,2: print field and coordinates along 0-2
trajectories

Electric poles

Length of element; radius at pole tip; 2%cm, 10¥kG
field at pole tip for dipole, quadrupole,

sextupole, octupole, decapole and

dodecapole electric components

Entrance face

Integration zone; fringe field extent; 2%em, 5*no dim.
dipole fringe field extent = Ag; .

quadrupole fringe field extent = Ag * Eo;

sextupole fringe field extent = Ag x Es;

octupole fringe field extent = Ag * Ey;

decapole fringe field extent = Ag * Es;

dodecapole fringe field extent = Ag * Eg

(for any component: sharp edge if field

extent is zero)

same as QUADRUPO 0-6, 6*no dim.

Exit face

Integration zone; as for entrance 2*cm, 4*no dim.
0-6, 6*no dim.

Skew angles of électric field components 10*rad

Magnetic poles

Length of element; radius at pole tip; 2%cm, 10*kG
field at pole tip for dipole, quadrupole,

sextupole, octupole, decapole and

dodecapole magnetic components

Entrance face

Integration zone; fringe field extent; 2%cm, 5*no dim.
dipole fringe field extent = Ag;

quadrupole fringe field extent = Ag * Ey;

sextupole fringe field extent = Ag * Es;

octupole fringe field extent = Ag * Ey;

decapole fringe field extent = Ag * Es;

dodecapole fringe field extent = Ag x Eg

(for any component: sharp edge if field

extent is zero)

same as QUADRUPO 0-6, 6*no dim.

1Use PARTICUL to declare mass and charge.
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12*E

7*E

L6*E

T*E
I, 6*E

10*E

12*E

7*E

L6*E



Xs, As, S2, 53, 84, S5, Ss

Exit face
Integration zone; as for entrance

2*cm, 4*no dim.

NCS, Cy — Cs 0-6, 6*no dim.
R1, Ry, Rs, ..., Ry Skew angles of magnetic field components  10*rad '
XPAS Integration step cm
KPOS, XCE, KPOS=1: element aligned, 2: misaligned; 1-2, 2*cm, rad
YCE, ALE shifts, tilt (unused if KPOS=1)

7

/

Electrode

—Q———
™
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/

Magnetuc pole

7T*E
I, 6*E

10*E

I, 3*E




EL2TUB! Two-tubes electrostatic lens

IL IL =1,2: print field and coordinates 0-2 I
along trajectories

X1, D, X5, Ry Length of first tube; distance between tubes; 3*m 4*E
length of second tube; radius

Vi, Vo Potentials 2%V 2*E

XPAS Integration step cm E

KPOS, XCE, KPOS=1: element aligned, 2: misaligned; 1-2, 2*¢cm, I, 3*E

YCE, ALE shifts, tilt (unused if KPOS=1) rad

Ro
R . "A I R B /-3 _X,
X1 D X2
d L e -

1Use PARTICUL to declare mass and charge.

144



ELMULT!

IL

XL, Ry, F1, By, Es, ..., Eqo

XE, AEy E'Z) E37 E47 E5, E6

NCE, Cy-Cs

Xs, As, S2, S3, Sa, S5, Se
NCS, Cy—C5s

Ry, Ry, Rs, ..., Rio
XPAS

KPOS, XCE,
YCE, ALE

Electric Multipole

IL =1,2: print field and coordinates along

trajectories

Length of element; radius at pole tip;
field at pole tip for dipole, quadrupole,
sextupole, octupole, decapole and
dodecapole components

Entrance face

Integration zone; fringe field extent;
dipole fringe field extent = Ag;
quadrupole fringe field extent = Ag * Fy;
sextupole fringe field extent = Ag * Ej3;
octupole fringe field extent = Ag * Ey;
decapole fringe field extent = Ag * Es;
dodecapole fringe field extent = Ag * Eg
(sharp edge if field extent is zero)

same as QUADRUPO

Exit face ‘
Integration zone; as for entrance

Skew angles of field components
Integration step

KPOS=1: element aligned, 2: misaligned,;
shifts, tilt (unused if KPOS=1)

0-2

2*cm, 10¥kG

2*cm, 5*no dim.

0-6, 6*no dim.

2*cm, 4*no dim.

0-6, 6*no dim.
10*rad

cm

1-2, 2*%cm, rad

1Use PARTICUL to declare mass and charge.
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7*E
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ELREVOL!

1-D uniform mesh electric field map
X-axis cylindrical symmetry is assumed

IC, IL IC =1,2: print the map 0-2, 0-2 2*1
IL =1,2: print field and coordinates along trajectories
ENORM Normalization coefficient: %‘S—eiﬁ—dre%}ﬂ no dim. E
TIT Title A80
IX Number of longitudinal nodes of the map < 400 I
FNAME? Filename (e.g., elens.map) A80
ID A B, C Integration boundary. Ineffective when 1D = 0. > —1, 2*no dim., [,3*E
4, B,c’ ID=-1,10r > 2: as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B etc., if ID > 2] cm, etc.]
IORDRE unused 2,4 0r25 I
XPAS Integration step cm E
KPOS, XCE, KPOS=1: element aligned, 2: misaligned,; 1-2, 2*em, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1Use PARTICUL to declare mass and charge.

2FNAME contains the field data. These must be formatted according to the following FORTRAN sequence:

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [ FORM="UNFORMATTED"])
DO11=1,IX
IF (BINARY) THEN
READ(NL) X(I), EX(I)
ELSE
READ(NL,*) X(I), EX(I)
ENDIF
1 CONTINUE

where X (I) and EX(I) are the longitudinal coordinate and field component at node (I) of the mesh.
Binary file names FNAME must begin with B_. ‘Binary’ will then automatically be set to ‘. TRUE.’
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FAISCEAU Print particle coordinates

Print particle coordinates at the location where the
keyword is introduced in the structure.

FAISCNL Store particle coordinates in file FNAME

FNAME!2 Name of storage file (e.g. zgoubi.fai). A80
FAISCNLA Store coordinates every IP other pass [,at labeled elements]

FNAME! Name of storage file (e.g. zgoubi.fai) [; label(s) of the element(s) A80

[, LABEL(s)] at the exit of which the store occurs (10 labels maximum)]. [, 10%A10]
IP Store every IP other pass (when using REBELOTE I

with NPASS > IP — 1).

1FNAME contains the particle coordinates and other informations. These are stored following the FORTRAN
sequence below.

OPEN (UNIT = NL, FILE = FNAME)
DO 11 =1, IMAX
WRITE (NL, 100) LET(I),IEX(I),(FO(J,I), J=1,6),(F(J,I),J=1,6),DUM,IDUM,I,IREP(I),
i SORT(I),DUM,DUM,DUM,DUM,PH(I),DP(I),DUM,DUM,DUM,BORO,IPASS,DMY,HMS,KLEY,LABEL,NOEL-1
100  FORMAT (1X, Al, 1X, 12, IP, 6E16.8,
/, 3E24.16,
/, 3E24.16, E16.8,
/, 11, 213, 7E16.8,
/, TE16.8, 11, 218,
/, TE16.8,
/, 4E16.8, 16, 1X, A9, 1X, A8, 1X, A8, 1X, A10, I5)
1 CONTINUE

The signification of these parameters is given as follows

DUM, IDUM: dummies

From LET(I) to IREP(I): see OBJET

SORTYI): path length of particles stopped by walls (CHAMBR, COLLIMA)
PH(I), DP(I): phase and momentum kick at traversal of CAVITE

BORO: reference rigidity (see OBJET)

DMY, HMS: date, time

KLEY, LABEL, NOEL-1: last encountered keyword, its LABEL and position

2These data can in turn be read directly from the file FNAME by means of OBJET, KOBJ = 3.
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\FIN, END End of input data list

Any information following these keywords will be ignored
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FIT

NV
ForI=1,NV

IR, IP, XC, DV

NC
ForI =1, NC

IC,I,J, IR, V, WV

Fitting procedure

Number of physical parameters to be varied <20

repeat NV times the following sequence

Number of the element in the structure; <200, <99,
number of the physical parameter in the element; =+ 200.99,
coupling switch (off = 0); allowed == range of variation relative

of the parameter.

Number of constraints <20

repeat NC times the following sequence

IC, I and J define the type of constraint 0-3, 1-200,
(see table below); number of the element current unit!,
at the exit of which the constraint applies; no dim.

value; weight of the constraint (the lower the stronger).

Type of Parameters defining the constraint
constraint
IC 1 J Constraint
Beam matrix? | 0 1-4 1-4 ory
First order 1-6 1-6 Rrj
transfer 1 7 any Horizontal determinant
coefficients? 8 any Vertical determinant
Second order | 2 1-6 11 - 66 T1,5%
transfer (4 =1[J/10),k= J - 10[J/10])
coefficients®
Trajectory 3 [1-IMAX | 1-65 F(J,I)
coordinate?

1The unit of V is that specified in the corresponding keyword.

21t is advised to use OBJET and KOBJ = 5, for the definition of the initial coordinates.

31t is advised to use OBJET and KOBJ = 6, for the definition of the initial coordinates.

4For use normally with object definition by OBJET. Thus, I = trajectory number = 1 to IMAX if KOBJ # 2;
I = trajectory number = 1 to 7 if KOBJ = 2.

5 J = coordinate number = 1 to 6 for respectively D, Y, T, Z, P or X.
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FOCALE Particle coordinates and horizontal beam dimension at distance XL

XL Distance from the position of the keyword cm
FOCALEZ Particle coordinates and vertical beam dimension at distance XL
XL Distance from the position of the keyword cm
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GASCAT Gas Scattering

KGA Off/On switch 0,1 I

Al, DEN Atomic number; density 2¥E
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HISTO

J: Xmim Xma.x,
NBK, NH

NBL, KAR,
NORM, TYP

1-D histogram

J = type of coordinate to be histogramed,;

the following are available:
e current coordinates:

1(D), 2(Y), 3(T), 42), 5(P), 6(5),

¢ initial coordinates:

11(D0)7 12(Y0)a 13(T0), 14(Z0)> IS(PO)’ 16(30)1

¢ spin:

21(5’2)1 22(3’.!/): 23(Sz)7 24(< S >)7
Xpin, Xmax = limits of the histogram, in units
of the coordinate of concern; NBK = number of
channels; NH = number of the histogram (for
independency of histograms of the same coordinate)

Number of lines (= vertical amplitude);
alphanumeric character; normalization if
NORM = 1, otherwise NORM =0; TYP = ‘P":
primary particles are histogramed, or ‘S’
secondary, or Q: all particles - for use

with MCDESINT
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current units,
<120, 1-5

normally 10-40, I, Al, [, Al
char., 1-2, P-S-Q



IMAGE

IMAGES

IMAGESZ

IMAGEZ

Localization and size of horizontal waist

Localization and size of horizontal waists

For each momentum group, as classified by
means of OBJET, KOBJ =1,2o0r 4

Localization and size of vertical waists

For each momentum group, as classified by
means of OBJET, KOBJ =1, 2or 4

Localization and size of vertical waist
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MAP2D 2-D Cartesian uniform mesh magnetic field map

no symmetry
IC, IL IC =1,2: print the field map 0-2,0-2 2¥]
IL =1,2: print field and coordinates along
trajectories ’
BNORM Normalization coefficient: 9—;—5:’1—5“;%%‘1 no dim. E
TIT Title A80
IX, JY Number of longitudinal and transverse < 400, <200 2*1
nodes of the mesh
FNAME! File name (e.g., magnet.map) A80
ID, A, B, C Integration boundary. Ineffective when ID = 0. > —1, 2*no dim., [,3*E
[, B, C’ ID=-1,1o0r >2: as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B" ete., if ID > 2] » cm, ete.]
IORDRE Interpolation polynomial order 2,25 1
See DIPOLE
XPAS Integration step ‘ cm E
KPOS, XCE, KPOS=1: element aligned, 2: misaligned; 1-2, 2*em, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

1FNAME contains the field map data. These must be formatted according to the following FORTRAN read sequence (that nor-
mally fits TOSCA code OUTPUTS):

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’)
DO1J=1,JY
DO1I="1,IX
IF (BINARY) THEN
READ(NL) Y(J3), X(I), BY(L,J), BZ(1,J), BX(1,J)
ELSE
READ(NL,100) Y(J), X(I), BY(1,J), BZ(L,J), BX(I,J)
100 FORMAT (1X, 6E11.2)
ENDIF
1 CONTINUE

where X (I), Y(J), Z, are the longitudinal, horizontal and vertical coordinates, and BX, BY, BZ are the components of the
field at a node (I, J, K) of the map.

For binary files, FNAME must begin with B_; 'Binary’ will then automatically be set to . TRUE.’
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MATRIX

IORD, IFOC

Calculation of transfer coefficients

Options : 0-2, 0-1 or 2*1
IORD = 0: Same effect as FAISCEAU > 10

1: First order transfer matrix

2: First order transfer matrix R;;, second

order array T, and higher order transfer

coefficients

IFOC = 0: matrix at actual position,

reference = particle # 1

1: matrix at the closest first order horizontal focus,
reference = particle # 1

10 + NPER: same as IFOC = 0, and also calculates

the twiss parameters and tune numbers

(assuming that the DATA file describes one period of a
NPER-period structure). '

135



MCDESINT! Monte-Carlo simulation of in-flight decay

Ml — M2 + M3
M2, M3 Masses of the two decay products 2*MeV/c? 2*E
I, 12,13 Seeds for random number generators 3*~ 106 3*]

Particle 1 decays into 2 and 3; Zgoubi then calculates trajectory of 2, while 3 is abandoned. 8 and ¢ are the
scattering angles of particle 2 relative to the direction of the incoming particle 1. They transform to T2 and P,
in Zgoubi frame.

1MCDESINT must be preceded by PARTICUL, for the definition of the mass and lifetime of the incoming particle M1.
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MCOBJET

BORO

KOBJ

IMAX

KY,KT,KZ, KP,
KX, KD!

Yo, To, Zo, Po,
Xo, Do

ifKOBI =1

8Y, 6T, 6Z, 6P,
8X, 6D

Nsy, NsT, N5z, Nsp,
Nsx, Nsp

Ng, Co, Cy, Cs, C3

IR1, IR2, IR3

Monte Carlo generation of a 3-D object

Reference rigidity

Type of support of the random distribution
KOBJ = 1: window

KOBJ = 2: grid

KOBJ = 3: phase-space ellipses

Number of particles to be generated

Type of probability density
Mean value of coordinates (Dy = Bp/BORO )

Generation in a window

Distribution widths, depending on KY, KT etc.!
Sorting cut-offs (used oniy for Gaussian density)
Parameters involved in calculation of P(D)

(unused if KD =1)

Random sequence seeds

etz=Y,T,Z,Por X. KY, KT, KZ, KP and KX can take the values
1: uniform, p(z) =1 if —dz <z < éz

2: Gaussian, p(z) = exp(~z2/26x2) /5z+/27

3: parabolic, p(z) = 3(1 — 22/622) /4éz if -6z <z < éx

KD can take the values

1: uniform, p(D) =1 if —6D <z < 34D
2: exponential, p(D) = No exp(Cp + C1l + Cal? + C31®) if —6D < 2 < 6D
3: kinematic, D =6D *T
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kG.cm

1-3

<200
6*(1-3)

m, rad, m,
rad, m, no dim,

m, rad, m,
rad, m, no dim.

units of oy, o,
ete.

no dim.

3*~ 108

6*1

6*E

5*E

6*E

5*E

3*



If KOBJ = 2

IV, IT, IZ, IP,
IX,ID

PY, PT, PZ, PP,
PX,PD

8Y, 6T, §Z, 6P,
§X, 6D

Nsy, Nst, N5z, Nsp,
Nsx, Nsp

No, Co, C1, Cy, Cs

IR1, IR2, IR3
if KOBJ = 3

ay, ,BY, €Y/7T, NU’ey
[, Ng., if Ny, <0

Cey

oz, Bz, €2/, N,
[ Ng., if No, < 02

ax, Bx, EX/Wa Nagx
[N, if N, <O

IR1, IR2, IR3

Generation on a grid

Number of bars of the grid

Distances between bars

Width of the bars () if uniform,

Sigma value if Gaussian distribution
Sorting cut-offs (used only for Gaussian density)
Parameters involved in calculation of P(D)
(unused if KOBJ = 3)

Random sequence seeds

Generation in a phase-space ellipse!
Ellipse parameters and normalized

emittance, Y-T phase-space; cut-off

Ellipse parameters and normalized
emittance, Z-P phase-space; cut-off

Ellipse parameters and normalized
emittance, X-D phase-space; cut-off

Random sequence seeds

1Similar possibilities, non-random, are offered with OBJET, KOBJ=8
2Sorting within the ellipse frontier

14 a%,
24

Y2 4+ 20y YT + By T2 = i{

Y

if Ny, >0, or within the ring

if N, <0.

[lNccy I!N;

:y]
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m, rad, m
rad, m, no dim.

thidem

units of oy, or,ete.

no dim.

3*~ 106

no dim., m/rad,
m.rad, units of
o(ey)

no dim., m/rad,
m.rad, units of

o(ez)

no dim., m/rad,
m.rad, units of
o(ex)

3%~ 10°

6*1

6*E

6*E

6*E

5*E

3*1

3*E, I

3*E, I

3*E, I

L1

31



either

Distribution

ar

:nif ar gaussier bar
A _\— ; it KOJB—4
!
S5y ; 2vBY
=Y
—_— - -
Q Ye Y
N e
A
I¥=5 bars
N\
7 Y
~ Zz
=
»
[~

Scheme of the input parameters to MCOBJET when KOBJ = 3, 4

A: A distribution of the Y coordinate
B: 2-D grid in (Y, Z) space.
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MULTIPOL

IL

XL, Ry, By, Ba, ..., Bio,

XEg, AE, E», E3, Ey, E5, Eg

NCE, Co - Cs

Xs, As, S2, Ss, 84, S5, Se
NCS, Cy - Cs

Ry, Ry, Rs, ..., Ry
XPAS

KPOS, XCE,
YCE, ALE

Magnetic Multipole

IL =1,2: print field and coordinates along

trajectories

Length of element; radius at pole tip;
field at pole tip for dipole, quadrupole,
sextupole, octupole, decapole and

dodecapole components

Entrance face

Integration zone; fringe field extent;
dipole fringe field extent = Ag;
quadrupole fringe field extent = Ag * Es;
sextupole fringe field extent = Ag * F3;
octupole fringe field extent = Ag * Ey;
decapole fringe field extent = Ag * Es;
dodecapole fringe field extent = Ag * Fg
(sharp edge if field extent is zero)

same as QUADRUPO

Exit face

Integration zone; as for entrance

Skew angles of field components

Integration step

KPOS=1: element aligned, 2: misaligned,;
shifts, tilt (unused if KPOS=1)

for QUADRUPO.

KPOS = 3: effective only if By #0:
entrance and exit frames are shifted by YCE
and tilted w.r.t. magnet by an angle

o either ALE/2 if ALE0

o or half the deviation if ALE=0
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0-2

2*cm,10¥kG

2*cm,5*no dim.

0-6, 6*

no dim.

2*cm, 4*no dim.
0-6, *no dim.
10*rad

cm

1-2, 2*em, rad

12*E

7*E

I, 6*E
T*E
I, 6*E

10*E

1, 3*E



OBJET Generation of an object

BORO Reference rigidity kG.cm E
KOBJ Option index 1-6 I
if KOBJ =1 Generation of a symmetric object

IY,IT,1Z, 1P, Ray-Tracing assumes mid-plane symmetry

IV*IT*IZ*IP*  6*1
*IX*ID < 200

IX,ID Total number of points in Y, £T, +Z, £P, +X
and £D coordinates (IY < 20,...,]D < 20)
PY,PT,PZ, PP,

Stepsizein Y, T, Z, P, X and momentum cm, mrad, cm, 6*E

PX,PD (PD = éBp/BORO ) mrad, cm, E
no dim.

D Reference relative momentum Bp/BORO no dim.

if KOBJ = 2 All the initial coordinates must be entered explicitly

total number of particles ; number of distinct momenta IMAX <200  2*I
(if IDMAX > 1, group particles of same momentum)

IMAX, IDMAX

For I = 1, IMAX Repeat IMAX times the following line

Y, T,Z,P, X, Coordinates and tagging character of the cm, mrad, cm, 6*E, Al
D, LET IMAX particles (D = Bp/BORO ) mrad, em,
no dim., char.

IMAX times 1 or -2. If IEX(I) = 1, trajectory lor-2 IMAX*1
number [ is calculated. If IEX(]) = -2, it
is not calculated

IEX(I =1, IMAX)

If KOBJ=3 Reads coordinates from a storage file

IMAX, IDMAX Total number of particles and distinct momenta, <200, <20 2*1
(For more than 200 particles stored in FNAME,
use ‘REBELOTE’)

FNAME! File name (e.g., zgoubi.rays) A80

1FNAME contains the particle coordinates. These must be formatted according to the following
FORTRAN sequence

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD")

DO 11=1, IMAX
READ (NL,100) LET (I), IEX(I), (FO(J.I),J=1,6), (F(J,1),J=1,6), 1, IREP(I)
100 FORMAT (1X, Al, 1X, 12, 6E16.8, / , 6E16.8, 213 / )
1 CONTINUE

with the following meaning for output variables:

LET: tagging letter ; IEX: flag ; FO(1-6,1), initial coordinates of particle number I: relative momentum, horizontal and ver-
tical coordinates, path length ; F(1-6,I), current coordinates of particle number I; IREP:flag.
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If KOBJ = 4

IV,IT, IZ, IP,
IX,ID

PY, PT, PZ, PP,
PX, PD

D

If KOBJ =5

PY, PT, PZ, PP,
PX, PD.

YR, TR, ZR, PR,
XR, DR

If KOBJ =6

PY, PT, PZ, PP,
PX,PD

YR, TR, ZR, PR,
XR, DR

If KOBJ =7
IY,IT,IZ, IP,
IX,ID

PY, PT, PZ, PP,
PX,PD

D

If KOBJ = 8
IV, I1Z,IX

Yo, To, Zo, P,
Xo, Do

ay, ;BY’ EY/7T
oz, ;327 €Z/7T
ax, ﬁX: EX/W

1Similar possibilities, random, are offered with MCOBJET, KOBJ=3

Generation of a non symmetric object

Total number of points in Y, +T, +Z, +P,

IY*IT*IZ*IP

+X and £D coordinates (IY < 20,....ID < 20) *IX*ID < 200

StepsizesinY, T, Z, P X and D.

Reference relative momentum Bp/BORO

Generation of 11 particles,

for the calculation of first order transfer
coefficients with MATRIX

StepsizesinY, T, Z, P, X and D

Reference trajectory;
DR = Bp/BORO

Generation of 61 particles

for the calculation of first and higher order
transfer coefficients with MATRIX

StepsizessinY,T,Z, P, X and D

cm, no dim.

Reference trajectory;

Object with kinematics

Number of points in +Y, £7,+7, +P,

+X; ID is not used

StepsizesinY, T, Z, P and X;
PD = kinematic coefficient, such that

D(T)=D+PDxT

Bp/BORO

em, mrad, cm, mrad,

cm, no dim.

no dim.

cm, mrad, cm, mrad,

cm, no dim.

c¢m, mrad, cm, mrad,

cm, no dim.

cm, mrad, cm, mrad

cm, mrad, cm, mrad,

cm, no dim.

IY¥IT*IZ*IZ*IX* .
IP <200

cm, mrad, cm, mrad,

cm, mrad—!

no dim.

Generation of phase-space coordinates on a 6-D ellipsoid!

Number of samples in each 2-D phase-space

Central values (Dy = Bp/BORO )

ellipse parameters and emittances
(see MCOBJET, KOBJ=3)
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m, rad, m, rad,
m, no dim.

no dim., m/rad,

~ m.rad

6*1

6 *E

6*E

6*E

6*E

6*E

6*1

6*E

3*1

6*E

3*E



OBJETA

BORO

IBODY, KOBJ

IMAX

My — Ms
T

Y07 TO: ZO; P07 DO

&Y, 8T, 87, 6P, 6D

XL

IR1, IR2

Object from Monte Carlo simulation of decay reaction
M1+ M2 — M3+ M4 and M4 — M54+ M6

Reference rigidity kG.cm
Body to be tracked: M3(IBODY = 1}, M5(IBODY =2) 1-3,1-2

M#6(IBODY = 3); type of distribution for Y and Zy:
uniform (KOBJ = 1) or Gaussian (KOBJ = 2)

Number of particles to be generated (use <200
‘REBELOTE’ for more)

Rest masses of the bodies 5%*GeV/c?
Kinetic energy of incident body GeV

Only those particles in the range cm, mrad, cm,
Yo-3dY <Y <Yy +46Y mrad, no dim.

Dy —6D<D<Dyg+6D
will be retained

cm, mrad, cm,
mrad, no dim.

Half length of object: — XL < Xo < XL cm
(uniform random distribution)

Random sequence seeds 2*~ (8
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2*1

5*E

5*E

5*E

2*1



OCTUPOLE
IL

XL7 RO, -BO

XE, A

NCE, Cy—-Cs

Xs, As
NCS, Cy — Cs
XPAS

KPOS, XCE,
YCE, ALE

Octupole Magnet
IL = 1,2: print field and coordinates along trajectories
Length; radius and field at pole tip of the element

Entrance face:
Integration zone;
Fringe field extent (Ag = 0 for sharp edge)

NCE = unused

Co — Cs = fringe field coefficients

such that: G(s) = Go/(1+ exp P(s)), with Go = Bo/R3
and P(s) = Y5 Ci(s/A)!

Exit face:
Parameters for the exit fringe field; see entrance

Integration step

KPOS=1: element aligned, 2: misaligned,
shifts, tilt (unused if KPOS=1)

Octupole magnet
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2%cm, kG

2%cm

any, 6*no dim.

2*%cm
0-6, 6*no dim.
cm

1-2, 2*cm, rad

3*E

2*E

I, 6*E

2*E

I, 6*E

I, 3*E



ORDRE

10

Higher order Taylor expansions in lenss

IO = 4: expansions of R and & up to 2 (default option) 4or5

IO = 5: expansions of £ and @ up to &®

This option applies to QUADRUPO, SEXTUPOL, OCTUPOLE,
DECAPOLE, DODECAPO, MULTIPOL, EBMULT and ELMULT.
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PARTICUL Particle Characteristics

M,Q,G,r,X Mass; charge; gyromagnetic factor; MeV/c?, C, no dim., s 5*E
COM life-time; unusued

NOTE : Only the parameters of concern need their value be specified (for instance M, Q for electric lenss);
others can be set to zero.
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PLOTDATA Coordinate Output for PLOTDATA Graphic Software [25]

To be documented.
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POISSON Read field data from POISSON output

IC, IL IC = 1,2: print the field map 0-2, 0-2 C2%]
IL =1,2: print field and coordinates along trajectories
BNORM Normalization coefficient: -‘Lﬁ‘%ﬁﬁ%@ no dim. E
TIT Title A80
IX,IY Number of longitudinal and transverse nodes < 400, < 200 2*]
of the uniform mesh
FNAME! Filename (normally, outpoi.lis) A80
ID, A B,C Integration boundary. Ineffective when ID = 0. > —1, 2%no dim., [,3*E
[A', B', C’ ID=-1,10r > 2: as for CARTEMES cm [,2*no dim., [,3*E,etc.]
B etc., if ID > 2] , cm, ete.]
IORDRE Interpolation polynomial order 2,40r25 I
as for DIPOLE
XPAS Integration step cm E
KPOS, XCE, KPOS=1: element aligned, 2: misaligned; 1-2, 2*cm, rad I, 3*E
YCE, ALE shifts, tilt (unused if KPOS=1)

LFNAME contains the field map data. These must be formatted according to the following FORTRAN
read sequence:

I=0
11 CONTINUE
I=1+41

READ(LUN,101,ERR=99,END=10) K, K, K, R, X(I), R, R, B(I)
101 FORMAT(I1, I3, 4, E15.6, 2F11.5, 2F12.3)

GOTO II
10 CONTINUE

where X (I) is the longitudinal coordinate, and B(I) is the Z component of the field at a node (I) of the mesh.
K’s and R’s are variables appearing in the POISSON output file outpot.lis, not used here.
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POLARMES

Ic, IL

BNORM
TIT

IX,JY

FNAME!

ID, A, B,C
(A", B, C'
B" etc., if ID > 2]

IORDRE

XPAS

KPOS
If KPOS = 2
RE,TE, RS, TS
If KPOS = 1
DP

2-D polar mesh magnetic field map
mid-plane symmetry is assumed

IC =1,2: print the map
IL =1,2: print field and coordinates along trajectories
Normalization coefficient: dggired field

Title

Number of angular (IX) and radial (JY)
nodes of the map

Filename (e.g., spes2.map)

Integration boundary. Ineffective when ID = 0.
ID=-1,10r >2: as for CARTEMES
Interpolation polynomial order

(see DIPOLE)

Integration step

as for DIPOLE. Normally 2.

0-2, 0-2

no dim.

< 400, <200

> —1, 2*no dim.,
cm [,2*no dim.,
cm, etc.]

2,40r25

cm
1-2
cm, rad, cm, rad

no dim.

1FNAME contains the field data. These must be formatted according to the following FORTRAN sequence:

OPEN (UNIT = NL, FILE = FNAME, STATUS = ‘OLD’ [,FORM="UNFORMATTED’))
IF (BINARY) THEN

READ(NL) (Y(D), J=1, JY)

ELSE

READ(NL,100) (Y(J), J=1, JY)

ENDIF

100 FORMAT(i0 F8.2)

DO1I=1IX

IF (BINARY) THEN
READ (NL) X(I), (BMES(1,J), J=1, JY)

ELSE

READ(NL,101) X(I), (BMES(L,J), J=1, JY)
101 FORMAT(10 F8.1)

ENDIF

1 CONTINUE

2¥]

A8C

2*T
A80

I3*E
[,3*E,ete.]

4*E

where X (I) and Y (J) are the longitudinal and transverse coordinates and BMES is the Z field component at a node (I, J)
of the mesh. For binary files, FNAME must begin with B_ .‘Binary’ will then automatically be set to ‘. TRUE.’
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PS170

IL

XL7 RO: BO

XPAS

KPOS, XCE,
YCE, ALE

Simulation of a round shape dipole

IL =1,2: print field and coordinates along trajectories

Length of the element, radius of the circular
dipole, field

Integration step

KPOS=1: element aligned, 2: misaligned;
shifts, tilt (unused if KPOS=1)

2*cm, kG

cm

1-2, 2*%cm, rad

Scheme of the PS170 magnet simulation.
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QUADISEX

IL
XLa RO: BO

N, EB1, EB2, EG1, EG2

XPAS

KPOS, XCE,
YCE, ALE

Sharp edge magnetic multipoles
= N B2, Cv3
Bz |z—0= Bo (1+ ROY+§05Y +§§Y )

IL =1,2: print field and coordinates along trajectories
Length of the element; normalization distance; field
Coefficients for the calculation of B.

ifY >0: B=EBIl and G = EGI;

ifY <0: B=FEB2and G= EG2.

Integration step

KPOS=1: element aligned, 2: misaligned;
shifts, tilt (unused if KPOS=1)
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0-2 1
2*¥cm, kG 3*E
5%no dim. 5*E
cm E

1-2, 2*c¢m, rad I, 3*E



QUADRUPO

IL

XL, RO:-BO

XE, A

NCE,Cy - Cs

Xs, As
NCS, Cy —Cs

XPAS

KPOS, XCE,
YCE, ALE

Quadrupole Magnet

IL =1,2: print field and coordinates along trajectories
Length; radius and field at pole tip

Entrance face:
Integration zone extent; fringe field
extent (=~ 2Ry, Ag = 0 for sharp edge)

NCE = unused

Co ~ Cs= Fringe field coefficients such that
G(s) = Go/(1+exp P(s)), with Go = Byo/Ro
and P(s) = 30_ Ci(s/A)E

Exit face
See entrance face
Integration step

KPOS=1: element aligned, 2: misaligned;
shifts, tilt (unused if KPOS=1)
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0-2

2%cm, kG

2%cm

any, 6*no dim.

2*cm
0-6, 6*no dim.

c<m

1-2, 2*cm, rad

3*E

2*E

I, 6*E

9*E
1, 6*E

I, 3*E



