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Abstract

Beam crossing and separation schemes in the LHC interaction regions impose non-zero hor-
izontal and vertical closed orbits in the low-β triplets. This induces dispersive terms in the
equation of motion, of first order in momentum deviation. The related perturbative periodic
dispersion is derived ; propagation, multiple-crossing interference, perturbative effects around
the LHC ring are investigated and quantified. It is shown that they are large enough that lo-
cal correction be justified. Compensation schemes are presented, possibly compatible with the
recently designed modular IR optics.
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1 Introduction

Crossing angle and orbit off-centering schemes at beam-beam interaction points (IP) in the LHC
ring are foreseen [1]-[3], for the purpose of full separation of the beams during the injection phase, or
early separation of the beams beyond the IP during collision, in order to reduce as much as possible
harmful effects related to beam-beam interactions in that region where they share a common vacuum
pipe. Both planes may be affected by crossing or off-centering, e.g., in the 45 deg. inclined crossing
plane scheme. From the orbit design viewpoint, this means non-zero closed orbit angle (crossing)
or non-zero closed orbit off-centering (separation) at the IP of concern. The orbit bump can be
canceled by pairs of dipoles placed beyond the separator/recombiner magnets D1-Left and D1-right
since from thereon the two proton beams are in separate pipes.

Such orbit geometry imposes horizontal and vertical off-centerings in the low-β triplets, which
has sensible effect on dispersion in collision optics when betatron functions reach very large values.
In terms of the equations of motion, the non-zero closed orbit (c.o.) induces dispersive terms of first
order in momentum deviation, with so-called anomalous dispersion as the closed solution.

The purpose of the present study is two-fold. On the one hand, study in detail and provide
an understanding of the building-up and effects of the anomalous dispersion ; on the other hand
investigate possible compensation schemes, assimilable within the existing interaction region (IR)
optical assembly. Numerical applications and simulations undertaken in the report are based on the
Version 4.2 of the LHC optics [1], while LHC Version 5 optics was not yet stabilized at the time this
study was carried out ; however they differ mostly by an additional quadrupole in the outer triplet,
which should not change anything fundamental as to analysis or correction of anomalous dispersion.
MAD simulations are performed wherever necessary [4], with the regular LHC lattice files [5]. A
typical c.o. geometry has been designed for this study ; it is inspired from general descriptions
already available [2][3], apart from some non-fundamental specifities clearly pointed out. Details are
given in Appendix A.

The report is organized as follows. In section 2 the equation of motion is established and an
expression for the anomalous dispersion is worked out in the elementary kick model ; ±10−4rad c.o.
angle is shown to have non-negligible effect, while ±10−3m off-centering is less harmful. In section
3 simplified expressions relevant with LHC optics are derived which allow accurate quantifying of
the perturbative effects under c.o. angle ; interference effects due to multiple crossing are also
investigated and quantified. Section 4 gives detailed survey and plots of the anomalous dispersion
around LHC. Section 5 presents correction schemes, assimilable as part of the regular up-to-date IR
optics.

2 Anomalous dispersion due to beam crossing/off-centering
geometry at IP

2.1 Equation of the anomalous dispersion

Dispersive effects related to c.o. geometry can be derived from the equation of motion of an off-
momentum particle. Up to the second order in transverse excursion y(s) (y stands for x or z, s
is the azimuth) with respect to the machine reference axis (hence the subscript r) and momentum
deviation δ the equation writes [6]

d2yr/ds
2 +K(s)yr = (1− δ)∆B(s)/Bρ + δ/ρ(s) +K(s)yrδ (1)

where Bρ is the particle rigidity, K(s) is the quadrupole strength, 1/ρ(s) the curvature (identically
zero if y=z) and δ is the momentum deviation. The field defect term ∆B(s)/Bρ is introduced by
the c.o. bump dipoles (it stands for −∆Bz(s)/Bρ if y=x, ∆Bx(s)/Bρ if y=z) and the coefficient
(1− δ) accounts for their first order chromatic effect. The term K(s)yrδ is second order dispersive
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effect introduced by the quadrupoles. The equation of motion with respect to the c.o. is obtained
by introducing yr = yco + y. Considering that the c.o. is solution of

d2yco/ds
2 +K(s)yco = ∆B(s)/Bρ (2)

and dropping the second order term K(s)yδ this gives to first order in y and δ

d2y/ds2 +K(s)y = [−∆B(s)/Bρ + 1/ρ(s) +K(s)yco]δ (3)

This equation shows that the c.o. bump is at the origin of anomalous first order dispersion
dy = y/δ whose source term K(s)ycoδ takes its origin in the low-β quadrupoles and any other
quadrupole contained within the limits of the bump. It also shows that the horizontal anomalous
dispersion superposes on the regular first order dispersion dx(s) of source term 1/ρ(s) (the main
dipoles). We are therefore concerned with the particular, closed solution of

d2dy/ds
2 +K(s)dy = −∆B(s)/Bρ +K(s)yco (4)

which in the case of the horizontal motion (y ≡ x) adds to the first order dispersion dx(s), and in
the case of the vertical motion is free standing periodic dispersion. The solution for the sole driving
term −∆B(s)/Bρ is that of Eq. (2) with opposite sign, i.e., −yco(s). Therefore the equation to solve
reduces to

d2dy/ds
2 +K(s)dy = K(s)yco (5)

while keeping in mind that its solution dy is to be subtracted the c.o. yco(s) everywhere this last is
non-zero. Eq. (5) can be solved in the elementary kick approximationK(s)yco(s) =

∫
K(s)yco(s)δ(s−

sq)dsq [δ(s− sq) is the Dirac impulse at kick azimuth sq ]. Integration of Eq. (2.5) provides the ele-
mentary kick amounts

∆(ddy/ds) =
∫
K(s)yco(s)δ(s− sq)ds = (KL)qyco(sq) (6)

Comparison can be performed with the kick produced by a separator/recombiner dipole : D1
strength is about 2.17 10−3rad while numerical calculation with y′∗ = 10−4rad c.o. angle gives, for
odd-IR low-β triplet,

∑
(KL)qyco(sq) ≈ 0.125 10−3rad i.e., about 20 times less (note that, with such

angle at IP the c.o. reaches 4.7 10−3m in the quadrupoles). However comparison of the respective
effects on dispersion needs deeper insight (section 2.3). Eq. (2.5) now writes

d2dy/ds
2 +K(s)dy =

∫
K(s)yco(s)δ(s − sq)dsq (7)

and can be solved by classical methods [7]. This leads to the perturbative closed dispersion solution
of Eq. (4), and its derivative

dy(s) = −yco(s) +
√
β(s)/(2 sinπν)

∑
(KL)qyco(sq)

√
β(sq) cos ν[π− |φ(s)− φ(sq)|]

d′y(s) = 1/[2 sinπν
√
β(s)]

∑
(KL)qyco(sq)

√
β(sq){−α(s) cos ν[π− |φ(s)− φ(sq)|]

+ε sin ν[π− |φ(s) − φ(sq)|]}
[ε = ±1 for resp. φ(s) >< φ(sq), ∀q] (8)

where φ(s) = 1/ν
∫
ds/β is the normalized betatron phase (the integral extends from arbitrary zero to

current azimuth s), φ(sq) = normalized phase at the kick, β = betatron function, ν = machine tune,
yco(sq) = closed orbit at the kick. Note that a reasonable fractioning of the low-β quadrupoles takes
care of possibly strong variations of the betatron function in the triplets. The discrete summation

∑
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extends over those quadrupoles situated within the local c.o. bump responsible for beam separation
and/or crossing. In case several bumps are settled at various IP’s along the machine, a convenient
way to calculate the overall perturbation is to solve Eq. (4) for each bump, and sum the individual
solutions dy(s) (Eq. 8).

It is not uninteresting to verify that solutions analogous to Eq. (8) arise in the treatment of
gamma transition jump [8], which is also concerned with dispersion perturbation, induced by non-
zero chromatic closed orbit in quadrupole families [9].

Assuming that all c.o. dipoles are situated beyond the quadrupoles sources of the anomalous
dispersion, it is leisurable to introduce the c.o. in terms of the unperturbed first order optics by its
transport from the IP,

yco(sq) = y∗
√

[β(sq)/β∗ cos ν[φ(sq)− φ∗] + y′∗
√
β(sq)β∗ sin ν[φ(sq) − φ∗] (9)

in which the subscript ∗ denotes quantities taken at the IP, y∗ is the c.o. off-centering (half beam-
beam separation at IP), y′∗ is the c.o. angle (half crossing angle), and beam divergence α∗ = 0 is
assumed. Reporting Eq. (9) in Eq. (8) yields

dy(s) = −yco(s)
+ y∗

√
β(s)/β∗/(2 sinπν)

∑
(KL)qβ(sq) cos ν[φ(sq)− φ∗] cosν[π − |φ(s)− φ(sq)|]

+ y′∗
√
β(s)β∗/(2 sinπν)

∑
(KL)qβ(sq) sin ν[φ(sq)− φ∗] cos ν[π− |φ(s)− φ(sq)|] (10)

2.2 Upper limits of the perturbation

Beyond the low-β triplets associated with the non-zero c.o. Eq. (8) can be written under the form

dy(s)/
√
β(s) = −yco(s)/

√
β(s) + D̄y cos ν[φ(s) + Ω] (11)

with the peak amplitude

D̄y = { [
∑

(KL)qyco(sq)
√
β(sq) cos ν(π + εφ(sq))]2

+ [
∑

(KL)qyco(sq)
√
β(sq) sin ν(π + εφ(sq))]2 }1/2/(2 sinπν)

[ε = ±1 for resp. φ(s) >< φ(sq), ∀q] (12)

attained at normalized betatron phase Ω such that

tan(Ων) = [
∑

(KL)qyco(sq)
√
β(sq) sin ν(π + εφ(sq))]

/ [
∑

(KL)qyco(sq)
√
β(sq) cos ν(π+ εφ(sq))] (13)

Calculation of the cosine and sine sums for φ(s)><φ(sq) (App. B) from the first order optical functions
in collision optics yields

D̄x|x∗=0 ≈ 170 x′∗, D̄z|z∗=0 ≈ 158 z′∗, D̄x|x′∗=0/x
∗ ≈ D̄z |z′∗=0/z

∗ ≈ 2 (14)

Considering that βx and βz have similar shapes Eq. (14) shows that the perturbation due to 10−4rad
c.o. angle is about 8 times that due to 10−3m c.o. off-centering at IP. Typical upper limits to
dy(s) = D̄y

√
β(s) are, 0.23 m in the arcs (βmax = 178m/rad) ; 1.13 m in the odd-type low-β

triplets (βmax = 4430m/rad) ; 1.07 m in the even-type low-β triplets (βmax = 4020m/rad). These
extrema are attained iff adequate betatron phase is reached at βmax. However this shows that the
survey of anomalous dispersion and possibly its compensation deserve finer insight.
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2.3 Comparison with the effects of the separator/recombiner optics

It is not uninteresting to compare the dispersive effects due to the non-zero c.o. at IP to those
induced by the separator/recombiner dipoles D1/D2, in particular in view of possible simultaneous
compensation of both by a common optical assembly such as proposed in Ref.[10]. One single
separator dipole (D1 or D2) with bend angle ΘD excites a closed dispersion of the form

Ddx(s)/
√
β(s) = ΘD/(2 sinπν) <

√
β(sD)> cos ν[π− |φ(s)− φ(sD)|] (15)

where <
√
β(sD)> denotes the mean value of

√
β(sD) over the dipole, and the normalized betatron

phase φ(sD) is supposed constant over a dipole. The perturbation beyond D1/D2 range and in
particular in the arcs is obtained by taking φ(s) > φ(sD1), φ(sD2) [φ(s) < φ(sD1), φ(sD2) would do
as well ; the former has the merit of eliminating the absolute value in the cosine argument] and
superimposing the effects of D1 and D2, which gives the closed solution

D1/D2dx(s) /
√
β(s) = ΘD/(2 sinπν){<

√
β(sD1)> cos ν[π

− |φ(s)− φ(sD1)|]− <
√
β(sD2)> cos ν[π− |φ(s)− φ(sD2)|] } (16)

This expression can be written under the form

D1/D2dx(s)/
√
β(s) =D1/D2 D̄x cos ν[φ(s) + τ ] (17)

It can be assumed that φ(sD1) ≈ φ(sD2) (this is true at about 2π 10−3 in collision optics), which
leads to

D1/D2D̄x ≈ ΘD/(2 sinπν)[<
√
β(sD1)> − <

√
β(sD2)>] (18)

The peak amplitude D1/D2D̄x can be evaluated by taking ΘD = 2.17 10−3rad and <
√
β(sD1)>≈√

<β(sD1)>, which gives

D1/D2D̄x|Left ≈ 2.17 10−3/(2 sin 63.28π)(
√

4000−
√

2100) ≈ 250 10−4m
D1/D2D̄x|Right ≈ 2.17 10−3/(2 sin 63.28π)(

√
4000−

√
2100) ≈ −210 10−4m (19)

The overall effect of the π/ν apart left and right separator dipole pairs is obtained by summing these
two values, namely

D1/D2D̄x|Left+Right ≈ 460 10−4 (20)

Given βx ≈ 180m this yields the modulation D1/D2D̄x|Left+Right
√
βx ≈ ±0.6m. This can readily be

compared to the analogous coefficients in presence of 10−4rad c.o. angle (Eq. 14), namely

CrossingD̄x /
D1/D2D̄x ≈ 170/460 ≈ 35% (21)

In other words, the extremum of the modulation in the arcs due to 10−4rad c.o. angle at IP can be
expected to amount to ±0.35 × 0.6m ≈ ±0.2m. It also means that a correction scheme intended
to compensate the dispersion introduced by the separator/recombiner optics must have its strength
changed (increased or decreased depending on the sign of the crossing) by about 35% so as to take
care additionally of ±10−4rad c.o. angle effects (see Fig. 10).
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3 Typical effects of crossing angle geometry

In the following we investigate and quantify the major effects of the non-zero c.o. in the low-β
triplets, in terms of the extrema and other characteristic values of the perturbative dispersion so
induced around the ring. We consider for simplification the sole crossing scheme (y∗ = 0, y′∗ 6= 0),
which has the major perturbative effect as shown above. As a consequence we are concerned with
(Eq. 10)

dy(s) = −yco(s) (22)

+ y′∗
√
β(s)β∗/(2 sinπν)

∑
(KL)qβ(sq) sin ν[φ(sq)− φ∗] cos ν[π− |φ(s)− φ(sq)|]

which, we recall, is valid as long as Eq. (9) is, i.e., if the orbit bump is closed beyond the quadrupoles
entering the discrete summation. In this case, simplified formulae useful for determining the major
effects of dy(s), d′y(s) and in particular their local extrema, can be derived ; they depend only on
unperturbed first order optical parameters, which is convenient for estimating the effects of c.o.
angle and off-centering from bare LHC optics.

We proceed by assuming a phase difference of π/2ν between the IP and neighboring low-β triplet
quadrupoles i.e., sin[ν(φ(sq) − φ∗)] = ±1, ∀sq . The way things are worked out can be summarized
as follows (see App. C for more details) : Eq. (10) is split in two distinct equations, that provide the
solutions dLy and dRy from respectively the contributions of non-zero c.o. in the left- and right-hand
side low-β triplets. The general solution is obtained by addition, dy(s) = dLy (s) + dRy (s) which after
some algebra yields the following perturbative dispersion beyond the low-β triplets associated with
the non-zero c.o. bump (s < sqL ∀qL, and s > sqR ∀qR),

dy(s < sqL , s > sqR) = −yco(s)
± y′

∗√
β(s)β∗/(2 sinπν) sinν[π− |φ(s) − φ∗|]

∑
(KL)qβ(sq)

[±1 for resp. φ(s) >< φ(sq), ∀q] (23)

Similar expression dy(s > sqL , s < sqR) can be derived for the perturbation within the limits of the
low-β triplet associated with the crossing (App. C, Eq. 54).

3.1 Crossing at a single IP

Simple expressions and relevant numerical results are drawn from Eq. (23). These can be verified to
be in excellent agreement with MAD simulations, by means of the material provided in Appendix D.
Note that 10−4rad c.o. angle is taken ; it may be a conservative value in view of larger values men-
tioned in various publications. This is to be kept in mind when judging of the strength of correctors
or harmfulness of the anomalous dispersion induced by crossing/off-centering schemes.

Extrema in the arcs

The extrema of the dispersion in the arcs can be obtained from Eq. (23) by taking sin ν[π −
|φ(s) − φ∗|] = 1. On the other hand yco(s) = 0 since the orbit bump is closed in the IR itself,
while βmax(s) ≈ 180m/rad and

∑
(KL)qβ(sq) ≈ 370 in odd-type IR’s (App. B). This leads to

dx,extr(arcs) < 0.228m for the horizontal plane (νx = 63.28) that is, about 10% of the first regular
order dispersion (which has 2.178 m peak value in the arcs) ; dz,extr(arcs) < 0.212m for the vertical
plane (νz = 63.31) (this is consistent with the results of section 2.2).
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Extrema in low-β triplets

From Eq. (23) an expression for dy(s) in low-β triplets can be drawn. The phase there is φ(s) ≈
φ(IP )± π/2ν practically independent of azimuth s at better than 10−2rad, which leads to

dy[φ(IP )± π/2ν] ≈ −yco(s) ± y′∗
√
β(s)β∗/(2 sinπν) cosν[π− |φ(IP )− φ∗|]

∑
(KL)qβ(sq) (24)

In particular, the extrema occur at βmax locations : in collision optics the numerical values of concern
are β∗ = 0.5m, β(s) = 4430m at IP1/5, 4020m at IP2/8. Consider for instance horizontal c.o. angle
x′∗ = 10−4rad at IP5 ; the respective normalized betatron phases are (App. D) φ(IP1) = 0, φ(IP2) =
2π8.985/νx, φ(IP5) = φ∗ = π, φ(IP8) = 2π55.745/νx, and ν ≡ νx = 63.28. This yields (Fig. 1)

dx,extr[φ(IP1)− π/2ν] = 1.13m ; dx,extr[φ(IP2)− π/2ν] = 1.07m ; (25)
dx,extr[φ(IP5)− π/2ν] = −0.71m ; dx,extr[φ(IP8)− π/2ν] = −1.05m

Dispersion at IP’s

Non-zero dispersion at IP results in beam size increase (see section 4.2). Eq. (23) with φ(s) = φ(IP )
and the phase values above provide

dx(IP1) = 0 ; dx(IP2) = 1.08 10−3m ; dx(IP8) = −2.58 10−3m

while dx(IP5) = 1.38 10−3m (Eq. 54) (26)

For δp/p = 10−4 these values of the dispersion give negligible beam size increase dx(IP )δp/p.

Derivatives at IP’s

Derivatives d′y[s = s(IP )] are of interest since they determine the amount of perturbation in the
neighboring straight sections and low-β triplets (see section 4.2). Differentiation of Eq. (23) to-
gether with yco(IP ) = 0, α(IP ) = 0, β(IP ) = β∗ leads to

d′y[s(IP ) 6= s∗] = y′∗/(2 sinπν) cosν[π− |φ(IP )− φ∗|]
∑

(KL)qβ(sq) (27)

For instance x′∗ = 10−4rad c.o. angle at IP5 results in

d′x(IP1) ≈ −24.0 10−3rad, d′x(IP2) ≈ −23.9 10−3rad, d′x(IP8) ≈ −23.4 10−3rad (28)

3.2 Interferences

The superposition principle results in interference when crossings are set at various IP’s, between
perturbative dispersion functions awaken at those IP’s. These interferences may be either destruc-
tive or constructive, depending on the local phase, on the phase difference between IP’s of concern
and on the signs of the crossings.

Two-IP interference

Two-IP interference would occur for instance in the case of a pair of inclined crossing geometries, or
four alternating crossings [11]. This can be illustrated as follows. Let dIPay (s > sqR ) be the dispersion
induced downstream IPa by its crossing and dIPby (s < sqL ) that induced upstream IPb by its own.
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The resulting dispersion all way from the right-hand side IPa low-β triplet through the left-hand
side IPb low-β triplet writes (Eq. 23)

dIPay (s > sqR) + dIPby (s < sqL ) = −yIPaco (s) − yIPbco (s) −
√
β(s)/(2 sin π nu) (29)

{y′(IPa)sqrtβ(IPa) sin ν[π− φ(s) + φ(IPa)]
∑
IPa

(KL)qβ(sq)

− y′(IPb)sqrtβ(IPb) sin ν[π+ φ(s) − φ(IPb)]
∑
IPb

(KL)qβ(sq)}

Assuming identical optical design at both IP’s we note, β(IPa) = β(IPb) = β∗,
∑
IPa(KL)qβ(sq) =∑

IPb(KL)qβ(sq) =
∑

(KL)qβ(sq), and y′(IPa) = εy′(IPb) = y′∗ (ε = ±1). Eq. (30) simplifies to

dIPay (s > sqR ) + dIPby (s < sqL) = −[1 + ε]yco(s) + y′∗
√
β(s)β∗/(2 sinπν) (30)

{ sin ν[π− φ(s) + φ(IPa)]− ε sin ν[π+ φ(s) − φ(IPb)] }
∑

(KL)qβ(sq) (ε = ±1)

The extreme value in IPb (left-hand side) low-β triplet is obtained with φ(s) = φ(IPb)−π/2ν, β(s) =
βmax i.e., neglecting yco(s)

dy, extr = −y′∗
√
βmaxβ∗ (31)

/(2 sinπν){cosν[π− φ(IPb) + φ(IPa)] + ε cosπν}
∑

(KL)qβ(sq) (ε = ±1)

Consider for instance interference between IPa ≡ IP1 and IPb ≡ IP5 for z′∗ = 10−4rad vertical
c.o. angle (such eventuality of vertical crossing has already been addressed [2] ; the interest is that
vertical crossing allows arbitrary c.o. angle sign, which is suitable for our demonstration). The
parameters of concern are φ(IP1) = 0, φ(IP5) = π, βmax = 4430m, β∗ = 0.5m, ν ≡ νz = 63.31. The
resulting extremum in IP5 low-β triplets is (Fig. 2)

dz,extr = −z′∗
√
βmaxβ∗/(2 sinπν)(1 + ε cosπν)

∑
(KL)qβ(sq) (ε = ±1) (32)

yielding, −z′∗
√
βmaxβ∗/(2 tanπν/2)

∑
(KL)qβ(sq) ≈ 0.46m ifε = +1

and − z′∗
√
βmaxβ∗/2 tanπν/2

∑
(KL)qβ(sq) ≈ 1.64m ifε = −1

Note that, due to the fact that the two perturbations are not excited in phase there cannot be full
cancellation (neither full addition) of amplitudes. These results clearly show the expectable mutual
enhancement of harmful effects under multiple crossing or separation schemes in the absence of local
correction.

Four-IP interference

Four non-alternating crossing configuration (i.e., all in the same plane) is also addressed in Ref.[11],
though unlikely in view of long range tune shift effects. In such case strong effects may arise with ad-
equate sign combinations. Consider horizontal c.o. angles x′∗ = εIP 10−4 with signs either identical,
ε1 = ε2 = ε5 = ε8 = 1 or alternate, ε1 = ε2 = 1 and ε5 = ε8 = −1. Such combination is speculative
since natural signs are rather ε1 = ε5 = 1 and ε2 = ε8 = −1 ; it entails secondary crossing between
D1 and D2 and hence imposes vertical separation in order to avoid beam-beam interaction (this
type of c.o. geometry is addressed in the hypothesis of so-called non-exchange crossing scheme, in
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Ref.[2]). Assuming all sums
∑

(KL)qβ(sq) take the same value at odd- and even-type IR’s (in fact,
respectively 370 and 350 - see App. B), calculations similar to the above [phases as for Eq. (26)]
lead to extreme perturbation at IP5 left low-β triplet (Fig. 1 and App. D)

dx,extr = −x′∗
√
βmaxβ∗/(2 sinπν) (33)∑

IP=1−8

εIP cos ν[π − |φ(IP )− φ(IP5)|]
∑

(KL)qβ(sq)

yielding, dx,extr ≈ 0.42m if all c.o. angles have identical signs

and, dx,extr ≈ 4.1m if ε1 = ε2 = 1 and ε5 = ε8 = −1

On the contrary the situation may improve at least locally for other combinations, as is the
case with the natural signs ε1 = ε5 = 1 and ε2 = ε8 = −1 which yield the extremum extremorum
dx,extr = 0.4m at IP5 low-β triplet. Fig. 3 shows the behavior of the perturbative dispersion in
these three different cases. It is obtained from a 4-fold superposition of Eq. (23) with the simplifying
hypothesis that all IP’s are identical (same

∑
(KL)qβ(sq), while homologous low-β quadrupoles have

identical phase-shift w.r.t. the IP). The exact perturbed dispersion obtained with MAD is given in
App. D.

4 Survey of the perturbative effects around the ring

4.1 Perturbative closed dispersion around LHC

Hereafter are displayed simulations and plots obtained by numerical calculations after section 2, using
the unperturbed first order optical parameters of the LHC 4.2 optics (App. D). The intermediate
values of the optical functions such as involved in the elementary kick summations or in the transport
of the dispersion, are calculated from a MAD-TWISS output file, by means of dedicated software
derived from the computer code RDTWISS [12].

In Fig. 1 are shown the perturbed closed dispersions Dx + dx (horizontal) and dz (vertical) as
observed at various regions along the LHC ring, under the effect of respectively x′∗ = 10−4rad and
z′∗ = 10−3m closed orbit geometry at IP5. The horizontal and vertical bumps are closed within
Q4A.Left/Q4A.Right range, hence arising anomalous dispersion exclusively in the left- and right-
hand side IR5 low-β triplets, as assumed in section 3.1. Detailed insight shows perfect agreement
with MAD simulations (App. D). It can be observed that up to 1.13 m horizontal peak values are
attained where the dispersion would be zero in the absence of c.o. bump. The second order horizontal
dispersion Dx(s) + dx(s) shows an amplitude modulation in the arcs of ±10% corresponding to the
peak perturbation dx,extr(s)(±0.2m introduced by the crossing optics.

The next two figures show interferencial effects. The building up of perturbative closed dispersion
under the effect of a two-IP interference, as observed along Octant 5, is displayed in Fig. 2. Vertical
c.o. angles z′∗(IP1) = 10−4rad and either z′∗(IP5) = 10−4rad or z′∗(IP5) = −10−4rad are taken.
The interference is obtained by superposition 1dz(s) +5dz(s) and 1dz(s) −5dz(s) of the independent
solutions 1dz(s) and 5dz(s) of Eq. (8) obtained under single crossing at respectively IP1 and IP5.
Figure 3. shows the effects of four-IP interference as observed at Octant 5. All crossings are
in the horizontal plane with an angle x′∗ = εIP 10−4rad, and various sign combinations, namely
ε1 = ε2 = ε5 = ε8 = 1, ε1 = ε2 = 1 and ε5 = ε8 = −1, ε1 = ε5 = 1 and ε2 = ε8 = −1. The
interference is obtained by four-fold superposition of the solutions of Eq. (8).
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4.2 Beam size related effects

Beam-beam separation

The normalized beam-beam separation expresses as

dsep(s) = distance between beam centroids
max[σ(s)]

= 2y′∗s
max[σ(s)]

,

where max[σ(s)] is the size of the largest beam at distance s from the IP and 2y′∗ is the c.o. angle
(y stands for either x or z ; results stated below are valid for both planes as long as the first order
horizontal dispersion is zero in the IP straight section). Increased beam size σ(s) in the IP region
therefore entails smaller normalized separation and results in tune shift and tune spread which both
scale as d−2

sep(s). The effect of non-zero dispersion is of concern in this respect since the σ2(s) writes

σ2(s) = β(s)ε/π + [dy(s)δp/p]2 (34)

where ε/π is the r.m.s. emittance, δp/p is the r.m.s. momentum spread and dy(s) = s d′y(IP ) can
be obtained from Eq. (27). However the anomalous dispersion is weak enough that its effect can
be neglected. Indeed, in the long range approximation (s >> β∗) in the IP straight section one has
β(s) ≈ s2/β∗ which leads to σ2(s) = s2{1/β∗ + [d′y(s)δp/p]2} and hence

d2
sep(s) ≈ 4y′∗2/{ε/π/β∗ + [d′y(s)δp/p]

2} (35)

In collision optics the figures of concern are on the one hand β∗ = 0.5m/rad and ε/π ≈ 5 10−10m.rad
giving ε/π/β∗ ≈ 10−9, on the other hand d′y(s) < 0.03 rad under single ±10−4rad c.o. angle and
δp/p = 10−4 giving [d′y(s)δp/p]2 < 10−11. It results that d2

sep(s) ≈ 4y′∗2β∗/ε/π independent of the
anomalous dispersion at better than 1%.

Luminosity

The luminosity scales as 1/σ∗xσ∗z while the effect of momentum dispersion on σ∗x,z is given by Eq. (34).
In the absence of compensation the dispersion at IP does not exceed 3 10−3m (Eq. 26) with neg-
ligible effect of the derivative (Eq. 28) over the 7.5 10−2m bunch length at 7 TeV. In consequence
β∗ε/π ≈ (16 10−6m)2 >> [dx,z(IP )δp/p]2 ≈ (0.3 10−6m)2 and practically σ∗x,z ≈ β∗x,zε/π indepen-
dently of any correction of the anomalous dispersion.

Mechanical aperture

The mechanical aperture related to betatron motion and momentum dispersion writes (Ref.[1], p.38)
A = (σ + Dxδp/p)k + δsep where σ =

√
βε/π, δsep = beam-beam separation in common vacuum

pipes, and k ≈ 1.1 accounts for optics errors. As shown above the anomalous dispersion already
eats up 10%Dx which means that the contribution of dispersion to k is doubled if no compensation
is introduced. In the low-β triplets the additional term δsep is obtained from the c.o. geometry and
culminates at about 4.7 10−3m for 10−4 c.o. angle, the anomalous dispersion enhances it by up to
10−4m for δp/p = 10−4 (collision energy, single crossing) that is, about 2%.

Non linearities

Anomalous dispersion introduced by 10−4rad c.o. angle increases the n-σ transverse excursion
of off-momentum particles by up to about n 10−4(m) at the location of maximum c.o. (inside Q2
or QT.Q3). Considering that multipole feed-down due to the non-zero c.o., unless compensated,
is presumed to have sensible effect on the dynamic aperture [13], the effect of dx in this respect
deserves finer insight.
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5 Correction schemes

The effects of the perturbative closed dispersion are significant enough that their compensation be
worth investigating. Yet their limited amount suggests that natural absorption of the horizontal
component of the anomalous dispersion within regular IR tuning procedures is achievable ; main
aspects of this are given in section 5.1. Section 5.2 shows the feasibility and efficiency of a correction
method proposed for SSC [14] ; it is made attractive by its compatibility with the so-called modular
tuning of the IR [10] and other Q-shift procedures [15] ; some remarks follow concerning single- or
double-quadrupole compensation. Section 5.3 discusses gain expectable from interference, as pointed
out in section 3.2. Section 5.4 presents the application of skew quadrupole correction scheme [14] to
vertical crossing.

5.1 Self-absorption within regular IR tuning procedures

In presence of horizontal crossing/off-centering at an IP the total dispersion is the sum Dx(s)+dx(s)
of the regular first order dispersion introduced by the main dipoles and the anomalous dispersion
waken by non-zero c.o. in the low-β quadrupoles. Dx(s) + dx(s) is nothing else than the second
order dispersion and can be handled and matched straightforwardly with MAD [4] since the code
performs second order transport. Typical IR tuning procedures as used here, relevant in particular
with the Version 4 of LHC ring, can be found in Ref.[16] ; they result in what follows.

The left column in Table 1 shows the odd-IR quadrupole strengths in collision optics for the
bare LHC Version 4.2 optics [5] ; the right column shows their values in presence of x′∗ = 10−4rad
c.o. angle, after re-tuning the IR to the usual matching constraints (recovering the arcs periodic
functions at IR ends, and optical functions at IP), which are attained in the present case with a
penalty < 10−21, signature of adequate fulfillment (the match file is that used in Ref.[16], it is given
in App. E). As expected from dx(s) ≈ 10%Dx(s) under ±10−4rad c.o. angle (see section 3), the Q1-
Q10 quadrupole strength variations from non-crossing to crossing is very limited. Figure 4 displays
the betatron and second order dispersion functions across the IR in presence of the c.o. angle, after
re-tuning of the IR ; the main difference w.r.t. regular optics is in the non-zero dispersion in the
low-β triplets . Table 2 shows such ensuing parameters as the optical functions at IP1, 2, 5, 8, tunes
and other βmax obtained from a one-turn MAD TWISS procedure : there is no meaningful difference
with the unperturbed ones ; it is clear that any remaining mismatch is negligible, otherwise one or
the other of these parameters would be sensibly affected.

Table 1: Odd-IR quadrupole strengths that fulfill the regular constraints in collision optics [16], without
(left column) and with (right column) crossing (10−4rad horizontal c.o. angle at IP5).

Quadrupole Original Strength after
name strength re-tuning
name (m−2) (m−2)
KQT10.L5 -1.046017E-03 -9.771783E-04
KQT9.L5 2.787685E-03 3.143025E-03
KQT8.L5 -3.342663E-03 -4.217364E-03
KQT7.L5 2.578090E-03 3.139576E-03
KQ6L5 -7.224747E-03 -7.129641E-03
KQ5.L5 8.043164E-03 8.037628E-03
KQ4.L5 -9.778419E-03 -9.971877E-03
KQT3.L5 4.267829E-03 4.301427E-03
KQT1.L5 3.424101E-03 3.437690E-03
KQ1.L5 9.725345E-03 9.717873E-03
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Table 2: Optical functions at IP1,2, 5, 8 and other parameters obtained from a one-turn MAD

pos. lmnt betax alfax mux x(co) px(co) Dx Dpx
betay alfay muy y(co) py(co) Dy Dpy
[m] [1] [2pi] [mm] [.001] [m] [1]

1 IP1 0.500 0.000 0.000 0.000 0.000 0.000 0.000
0.500 0.002 0.000 0.000 0.000 0.000 0.000

599 IP2 0.500 0.000 8.985 0.000 0.000 0.000 0.000
0.500 -0.003 7.540 0.000 0.000 0.000 0.000

2409 IP5 0.500 0.000 31.657 0.000 0.100 0.000 0.000
0.502 -0.002 31.639 0.000 0.000 0.000 0.000

4198 IP8 0.500 0.000 55.745 0.000 0.000 0.000 0.000
0.500 0.004 54.322 0.000 0.000 0.000 0.000

Qx = 63.280035 Qy = 63.310027
betax(max) = 4431.634796 betay(max) = 4430.698831
Dx(max) = 2.177799 Dx(r.m.s.) = 1.501178
xco(max) = 4.706675

5.2 Quadrupole correction of the horizontal dispersion

Corrector strength

In the formalism of section 2 the quadrupole correction method consists in waking a perturbative
dispersion which interferes destructively with that due to a low-β triplet. It can be applied indepen-
dently to the left and right triplets, with distinct corrector strengths having distinct strengths since
both triplets induce unequal kicks. Note that there is no obligation to do so, namely the overall
dispersion resulting from additive effect of the two triplets can be canceled with a single quadrupole
having the full compensating strength.

Adding quadrupole corrector(s) to the structure results in the additional term
∫
KQ(s)dx(s)δ(s−

sQ)dsQ in Eq. (7) (the index Q stands for the correctors). The solution (Eq. 8) is to be added the
complementary term√

βx(s)/(2 sinπν)
∑
Q(KL)QDx(sQ)βx(sQ) cos ν[π− |φ(s) − φ(sQ)|]

whose role is to balance the closed orbit effect. This leads to the compensation condition

∑
Q

(KL)QDx(sQ)
√
βx(sQ) cos ν[π− |φ(s)− φ(sq)|]

−
∑
q

(KL)qxco(sq)
√
βx(sq) cos ν[π− |φ(s)− φ(sq)|] = 0 (36)

beyond the corrector/triplets range. Besides, in order to minimize the corrector strength, on the one
hand the phase shifts should verify φ(sQ) = φ(sq) +π/ν[π/ν] 1 ; on the other hand Dx(sQ)

√
βx(sQ)

should be maximized, which also minimizes effects on the orthogonal plane ; considering φ(sq) and
Dx(sQ)

√
βx(sQ) ≈ Cste this leads to

|
∑
Q

(KL)Q| = |
∑
q

(KL)qxco(sq)
√
βx(sq) / Dx(sQ)

√
βx(sQ)| (37)

with sign depending on the phase shift from corrector to triplet (cosine term in Eq. (36)). Note
that, within the corrector/triplet range the effect of the absolute values in Eq. (36) results in

1Modulo π/ν
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the compensation condition being not fulfilled which entails residual dispersion modulation. Nu-
merical calculations give (App. B), in odd IR for respectively the left and right low-β triplets∑

(KL)qxco(sq)
√
βx(sq)|Left/Right = −1.12 10−2/1.50 10−2, while the correctors are at locations

where (Table 3) Dx(sq)βx(sq)|Left/Right ≈ 29. Hence the typical integrated strengths necessary to
independently close the left and right dispersion bumps are (Eq. 37)

|(KL)Q|Left/Right| ≈ 3.9 10−4/5.2 10−4m−1 (38)

Correction with a single quadrupole

A single quadrupole is sufficient in principle to cure the anomalous dispersion, for the reason that
the two low-β triplets sources of the defect are with good precision π/ν from each other, there-
fore exciting independently perturbations that add in phase beyond the IP straight section. It
may be placed close to a MSCBH multipole (in the notations of lhc42.sequence MAD file [5]) at
Dx(sq)βx(sq)|Left/Right ≈ 29 (Table 3) about π/ν[π/ν] away from the triplets and would excite a de-
fect with equal amplitude and opposite sign which would cancel the anomalous dispersion beyond the
local chromatic bump so determined (Fig. 5). Its strength needs be |(KL)Q| ≈ 3.9 10−4 +5.2 10−4 ≈
9 10−4m−1 (Eq. 38). A single quadrupole though would have sensible effect on the tune and β
mismatch, namely (Fig. 5)

∆ν = β(sQ)(KL)Q/4π
≈ 1.3 10−2 in the plane of the dispersion correction, taking β(sQ) = 178m,
≈ 0.23 10−2 in the other plane, taking β(sQ) = 32m (39)

∆β(s)/β = β(sQ)|(KL)Q cos 2ν[π− |φ(s)− φ(sQ)|]|/2 sin(2πν) < β(sQ)|(KL)Q|/2 sin(2πν)
≈ ±8.5% in the plane of the dispersion correction, taking ν ≈ 63.3,
≈ ±1.5% in the other plane, taking ν ≈ 63.3 (40)

Correction with two quadrupoles

These undesirable effects can be taken care of beyond the IR by using two quadrupoles instead
of just one, placed at locations of equal β(sQ), distant π/ν[2π/ν] from one another, both π/ν[π/ν]
away from the low-β triplets. This could constitute a minimal correction scheme. In such case there
are three possibilities.

The two quadrupoles can be placed one at each end of the IR, with each one half the strength
|(KL)Q/2| ≈ 4.5 10−4m−1. This has the effect of avoiding tune-shift since in this case β(sQ)(KL)Q/4π =
0 (Eq. 39) and β-beats since β(sQ)|(KL)Q cos 2ν[π − |φ(s) − φ(sQ)|]| ≈ 0 (Eq. 40). On the other
hand, this precludes balancing on each side of the IP between the correctors and the correspond-
ing low-β triplets which are defect sources of unequal strengths (

∑
(KL)qxco(sq)βx(sq)|Left 6=∑

(KL)qxco(sq)βx(sq)|Right, Eq. 38) ; this results in a dispersion bump localized between the two
correctors and in particular unmatched dispersion values at IP (Fig. 6) ; however this residual effect
is weak and zero dispersion and derivative at the IP can be recovered by slight re-tuning of the IR.
It also leaves residual effects beyond the IR, such as betatron beating in the arcs (up to 2.8%, due to
the two quads being not exactly π/ν[2π/ν] distant), dispersion beating in the arcs [less than ±1% ,
to be compared to ±10% in the absence of correction, see Fig. (1)].

The two quadrupoles can be placed one at each end of the IR, with strengths balancing the
corresponding low-β triplet, namely (Eq. 38)
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(KL)Q.Left / Right =
∑

(KL)qxco(sq)βx(sq)|Left / Right ≈ 3.9 10−4 / 5.2 10−4m−1 (41)

This has the effect of leaving some tune-shift ∆ν =
∑
Q β(sQ)(KL)Q/4π ≈ 1.8 10−3 in the horizon-

tal plane, 3.2 10−4 in the vertical plane (Eq. 39) and β-beats
∑
Q β(sQ)|(KL)Q cos 2ν[π − |φ(s) −

φ(sQ)|]| <∼ 1.2% in the plane of the correction (Eq. 40). On the other hand, this balances exactly
each low-β triplet on each side of the IP and results in quasi-zero dispersion and derivative at the
IP (Fig. 7).

The two quadrupoles can be placed at the same end of the IR, with each one half the strength
|(KL)Q/2| = 4.5 10−4m−1. This has the effect of avoiding tune-shift and β-beats, while Dx ≈
9 10−3m and D

′

x < 5104rad (Fig. 8).

Interlaced correction scheme

Following a correction scheme proposed for SSC [14], we extend the considerations above to two
double pair of quadrupoles placed at the IR ends. Such correction scheme is also assimilable within
the recently developed LHC IR tuning scheme [10] and other Q-shift system [15]. Indeed, these last
are to handle in particular the dispersion due to the separator/recombiner dipoles D1/D2, while the
crossing optics amount to about 35% their effect (under single ±10−4rad c.o. angle, see section 2.3).

The scheme and the role of the additional two quadrupole pairs w.r.t. what precedes can be
summarized as follows. A quadrupole corrector is placed π/ν (normalized phase-shift) away from
the low-β triplet source of the perturbation, at a location of high Dx

√
βx so as to maximize its

efficiency and low βz in order to insure decoupling. Its effect is to close the second order dispersion
bump opened in the low-β triplet. In fact, the phase-shift between the corrector and the low-β
triplet cannot presumably be exactly π/ν, there must therefore be a companion corrector, about
π/2ν distant. Moreover, such quadrupole compensation would have sensible effect on the betatron
functions ; this is avoided by using, instead of single quadrupoles, pairs of quadrupoles π/ν apart,
of opposite sign and half the necessary strength. Not much more needs be said about the method,
which is abundantly documented in Refs.[10,13].

We investigate an interlaced geometry, in complement to what was done previously about the
D1/D2 separators [10]. In the present simulations the quadrupole correctors are “INSTALL’ed”
(MAD option [4]) next to the multipoles MSCBH in the LHC sequence (lhc42.sequence MAD file
[5]), at Dx(sQ)βx(sQ) ≈ 29 (Table 3, column 3) close to its maximum value. The integrated
correcting strength is matched with MAD with constraints exclusively on Dx = 0 and D′x = 0 at IP
and Octant ends. The strength is essentially in the HQ1a/b.Left and HQ1a/b.Right pairs (Eq. 38
and column 5 of Table 3) ; their positioning coincides with almost π/2ν[π/ν] distance from the IP,
on respectively the left- and right-hand side of the IR (by QF13/17.Left and QF12/16.Right). The
weak role of HQ2a/b.Left and HQ2a/b.Right companion pairs (distant almost π/ν[π/ν] from the
IP, on respectively the left- and right-hand side of the IR, by QF15/19.Left and QF10/14.Right) is
shown in Table 3 (column 5) ; they however do help canceling residual perturbative dispersion (up
to 0.12 m and 0.30 m peaks remain in IR1 and IR5 low-β triplets if they are off) and should be used
in order to get clean compensation.

With the four pairs the correction of the dispersion is very efficient. The main difference w.r.t. the
original machine parameters (see Table 4) is in the peak value of the second order dispersion, namely
Dx(max) = 2.373 m instead of 2.178 m ; it is due to the modulation within the chromatic bump and
takes place by QF11.Left and Q10.Right. The residual dispersion beating in the arcs is negligible
(Fig. 9). The absence of effect on the first order focusing is apparent in Table 4 which displays
the ensuing values of the optical functions at IP1, 2, 5, 8, as well as tunes and other parameters as
obtained from a one-turn MAD TWISS procedure without any additional re-tuning of the IR ; it is
clear that any induced mismatch is negligible, otherwise some of these parameters would be sensibly
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Table 3: Corrector strengths necessary for canceling the chromatic bump opened in the left and right odd-
type low-β triplets by the non-zero horizontal c.o. due to x′∗ = 10−4rad c.o. angle at IP, as obtained from
a MAD match. The correctors are all placed next to the lattice multipole correctors at high Dx(sQ)βx(sQ)
values (column 3). The pairs HQ1a/b.Left and HQ1a/b.Right are almost π/ν[π/ν] distant from respectively
the left- and right-hand side low-β triplets (column 4), they play the dominant role, with integrated strengths
(KL)q|Left/Right = −3.86 10−4/−5.08 10−4m−1 [twice the value in column 5, consistent with Eq. (38)] ; the
pairs HQ2a/b.Left and HQ2a/b.Right are almost π/2ν[π/ν] distant from respectively the left- and right-hand
side low-β triplets, and have weak role as expected (column 5).

Corrector Neighboring Dx(sQ)
√
βx(sQ) Phase w.r.t. IP (KL)Q

name quadrupole (m3/2) (π/2ν) (10−4m−1)
HQ2a/b.Left QF15/19.Left 29 -1.517 / -2.018 ± 0.22
HQ1a/b.Left QF13/17.Left 29 -1.266 / -1.767 ± 1.93
HQ1a/b.Right QF10/14.Right 29 1.782 / 2.284 ± 2.54
HQ2a/b.Right QF12/16.Right 29 1.531 / 2.033 ∓ 0.56

Table 4: Optical functions at IP1,2, 5, 8 and other parameters obtained from a one-turn MAD TWISS
procedure in presence of the quadrupole corrector pairs tuned as shown in Table 3, without any additional
re-tuning of the IR.

pos. lmnt betax alfax mux x(co) px(co) Dx Dpx
betay alfay muy y(co) py(co) Dy Dpy
[m] [1] [2pi] [mm] [.001] [m] [1]

1 IP1 0.500 0.000 0.000 0.000 0.000 0.000 0.000
0.500 0.001 0.000 0.000 0.000 0.000 0.000

599 IP2 0.500 0.000 8.985 0.000 0.000 0.000 0.000
0.501 -0.003 7.540 0.000 0.000 0.000 0. 000

409 IP5 0.501 0.000 31.640 0.000 0.100 0.000 0.000
0.502 -0.001 31.655 0.000 0.000 0.000 0.000

198 IP8 0.500 0.000 55.745 0.000 0.000 0.000 0.000
0.500 0.003 54.322 0.000 0.000 0.000 0.000

Qx = 63.280014 Qy = 63.31000
betax(max)= 4433.444055 betay(max) = 4430.143142
Dx(max) = 2.373266 Dx(r.m.s.) = 1.504751
xco(max) = 4.707107

affected. The horizontal and vertical β-beating in the arcs are respectively ±0.15%and ± 0.5%
(Fig. 9), and the machine tunes are not affected.

5.3 Partial compensation from interference

Interference with D1/D2

One aspect of interference is the expectable gain in corrector strength for the case of compensa-
tion of D1/D2 by quadrupole pairs placed at the IR ends [10]. With the right sign of crossing at
the corresponding IP, the necessary strength can be decreased by about 35% (Eq. 21), as schemed
in Fig. (10). The reason for this simple behavior is that D1/D2.Left (respectively D1/D2.Right) is
at the same betatron phase than the left (respectively right) low-β triplet source of the anomalous
dispersion.

Interference between IP1 and IP5, or IP2 and IP8

Also, as pointed out in section 3.2 some amount of mutual compensation is to be expected upon in-
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terference of perturbative closed dispersions excited by crossing or off-centering geometry at distinct
IP’s. However since IP’s are not distant π/ν[π/ν] the two perturbations cannot exactly cancel each
other (Fig. 2), yet the overall effect may locally be beneficial with the adequate c.o. signs. Main
features can be summarized as follows.

In the vertical plane for instance, the peak perturbation under 10−4rad c.o. angle at IP1 occurs in
IP5 low-β triplet with about 1.05 m (after section 3.1 and Fig. 1). It comes out from section 3.2 that
this peak goes down to dx,extr[φ(IP1)− π/2ν] + dx,extr[φ(IP5)− π/2ν] = 1.05(1 + cosπν) ≈ 0.46m
(Eq. 33) if crossings are set simultaneously with identical signs at IP1 and IP5. The extremum
of the modulation in the arcs (which occurs in Octant 5), given in the single crossing case by
D̄z|z∗ = 0

√
β(s) ≈ 158z′∗

√
β(s) ≈ 0.21m (Eq. 14) decreases slightly down to 0.19 m if there is

interference (Fig. 11). Similar considerations hold for the even-type IR’s 2 and 8. Again they are
not π/ν[π/ν] distant, yet the interferencial damping factor in the low-β triplets {cos ν[π− φ(IPb) +
φ(IPa)] + cos πν} ≈ (cos πν/2 + cosπν) ≈ 0.09 (Eq. 32) is five times more favorable than the above
odd-type IR’s one (1 + cos πν) ≈ 0.44 (Fig. 12). Identical behavior occurs in the horizontal plane,
to be superposed onto the regular first order dispersion.

The interest of such interferencial compensation is that, although it does not provide full can-
cellation it however damps the anomalous dispersion to values low enough to consider living with.
In any case it is totally transparent for the focusing and avoids the side effects that accompany
corrector based methods.

5.4 Correction of the vertical dispersion with skew quadrupoles

Correction of the vertical dispersion can be attempted with either dipole correctors or skew quadrupole
correctors. Both solutions have been already investigated, in the case of SSC. The former was to be
abandoned, mostly in view of harmful effects entailed by the so induced extended non-zero closed
orbit. Similar attempts have been performed as to LHC, not reported here, with the same draw-
backs ; the more flexible Version 5 of the optics [17] might be worth more investigations in this way.
However, following the correction scheme based on skew quadrupoles [14], the vertical anomalous
dispersion can be compensated by arrangement of corrector pairs located at the neighboring arc
ends. The philosophy is similar to what is done for the horizontal anomalous dispersion in section
5.2. These skew quadrupoles couple the horizontal dispersion to the vertical plane ; they must be
placed at maxima of Dx

√
βz in order to minimize their strength, yet at as low as possible βx in order

to minimize perturbations in the horizontal plane. These constraints are to meet those on the phase,
as for the horizontal plane, namely, at each end of the IR a quadrupole pair is to be placed about
π/ν (normalized phase-shift) away from the low-β triplet source of the perturbation, with a com-
panion pair about π/2ν distant in order to achieve perfect compensation of the vertical anomalous
dispersion. Note that just as for the horizontal dispersion, due to the special phase properties of the
LHC IR optics, the correction scheme can again be simplified to a single or two skew quadrupoles,
as described below. The necessary strength in the correctors can be estimated as follows.

Corrector strength

Following the notations of section 2, adding skew quadrupole corrector(s) of strength R(s) to the
structure results in coupled motion which is described as for its vertical component by (see section
2 for the notations)

d2z/ds2 +K(s)z −R(s)x = 0 (42)

The ensuing equation to solve for dz = z/δ writes

d2dz/ds
2 +K(s)dz = R(s)Dx (43)
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Table 5: Optical functions at IP1,2, 5, 8 and other parameters obtained from a one-turn MAD TWISS
procedure in presence of a single skew quadrupole corrector placed at QD12.L5, without any additional
re-tuning of the IR.

pos. lmnt beta1 alfa1 mu1 R11 R12 xco pxco Dx Dpx
beta2 alfa2 mu2 R21 R22 yco pyco Dy Dpy

[2pi] [mm] [.001]

1 IP1 0.499 0.022 0.000 -0.171 -0.121 0.000 0.000 0.000 0.000
0.512 0.010 0.000 0.552 -0.225 0.000 0.000 0.002 -0.001

599 IP2 0.501 0.022 8.985 0.069 0.149 0.000 0.000 0.000 0.000
0.509 0.016 7.539 -0.646 0.128 0.000 0.000 -0.002 0.002

2411 IP5 0.511 -0.002 31.638 -0.245 -0.109 0.000 0.000 0.000 0.000
0.502 -0.025 31.662 0.520 -0.197 0.000 0.100 0.006 -0.003

4200 IP8 0.504 0.021 55.741 0.090 0.142 0.000 0.000 0.000 0.000
0.511 0.016 54.325 -0.652 0.137 0.000 0.000 0.002 -0.001

Q1 = 63.276573 Q2 = 63.313657
betax(max)= 4443.434002 betay(max) = 4415.146173
Dx(max) =2.180507 Dy(max) = 0.321702
yco(max) = 4.707107

(the vertical anomalous dispersion dz(s) is neglected, or as well considered already corrected). This
differential equation is identical to Eq. (5) (obtained by changing dz to dy and R(s)Dz to K(s)yco)
hence its solution is [after Eq. (8)]

dz(s) =
√
βz(s)/(2 sinπνz)

∑
(RL)SQDx(sSQ)

√
βz(sSQ) cos ν[π− |φ(s)− φ(sSQ)|] (44)

where the discrete sum extends over index SQ which denotes the correctors, φ is the normalized
vertical betatron phase. The compensation condition writes (see section 5.2)

∑
q

(KL)qzco(sq)
√
βz(sq) cos νz[(−|φ(s)− φ(sq)|]

−
∑
SQ

(RL)SQDx(sSQ)
√
βz(sSQ) cos νz[π− |φ(s)− φ(sSQ)|] = 0 (45)

where the index q designates the low-β triplet quadrupoles. Now, on the one hand the approximation
φ(sSQ) = φ(sq) + π/ν[π/ν] while φ(sq) ≈ Cste still holds ; on the other hand as shown below
Dx(sSQ)

√
βz(sSQ) ≈ Cste, which leads to

|
∑
S

Q(RL)SQ| = |
∑
q

(KL)qzco(sq)
√
βz(sq) / Dx(sSQ)

√
βz(sSQ)| (46)

with sign depending on the phase shift π/ν[π/ν] from corrector to triplet. Note that the compen-
sation condition is not fulfilled within the corrector/triplet range which entails residual dispersion
modulation. Numerical calculations (App. B) give, in odd-type IR for respectively the left- and
right-hand side low-β triplets

∑
(KL)qzco(sq)

√
βz(sq)|Left/Right = −1.50 10−2/1.12 10−2, while at

correctors locations Dx(sSQ)
√
βz(sSQ)|Left/Right ≈ 14 (Table 9, column 3). Hence the integrated

strengths necessary to independently close the left and right dispersion bumps are (Eq. 46)

|(RL)SQ|Left/Right| ≈ 10.6 10−4/7.9 10−4m−1 (47)

Correction with a single skew quadrupole
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Table 6: Optical functions at IP1,2, 5, 8 and other parameters obtained from a one-turn MAD TWISS
procedure in presence of two skew quadrupole corrector placed respectively at QD12.L5 and QD17.R5 with
opposite strengths, prior to any re-tuning of the IR.

pos. lmnt beta1 alfa1 mu1 R11 R12 xco pxco Dx Dpx
beta2 alfa2 mu2 R21 R22 yco pyco Dy Dpy

[2pi] [mm] [.001]

1 IP1 0.500 -0.001 0.000 0.009 -0.004 0.000 0.000 0.000 0.000
0.501 0.001 0.000 -0.013 -0.007 0.000 0.000 0.000 0.000

599 IP2 0.500 -0.001 8.985 -0.009 0.004 0.000 0.000 0.000 0.000
0.501 -0.003 7.540 0.016 0.006 0.000 0.000 0.000 0.001

2411 IP5 0.500 0.000 31.640 -0.053 0.022 0.000 0.000 0.000 0.000
0.502 -0.001 31.655 0.006 0.001 0.000 0.100 -0.002 -0.003

4202 IP8 0.500 -0.001 55.745 -0.011 0.003 0.000 0.000 0.000 0.000
0.501 0.003 54.322 0.011 0.008 0.000 0.000 0.000 -0.001

Q1 = 63.280131 Q2 = 63.310120
betax(max)= 4432.261623 betay(max) =4426.964313
Dx(max) = 2.178097 Dy(max) = 0.180680
yco(max) = 4.707107

Things are similar to what has been discussed about the horizontal dispersion (Section 5.2). The
skew quadrupole is placed by QD12.L5 at the arc end, with strength (RL)SQ = 18.2 10−4m−1 (after
Eq. 47) ; MAD simulations with the sole constraint DY = DPY = 0 outside the bump provides iden-
tical strength. The tune shifts are respectively ∆νx = −∆νz ≈ −3.4 10−3 while ∆βx,z/βx,z < ±3%
(Table 5). The dispersion is damped from 0.71 m (Fig.1 and Eq. 26) to 0.32 m at the crossing IR,
to less than 0.12 m in the other IR’s (where it was of the order of 1 m), and less than 0.05 m in the
arcs. Relevant graphs are shown in Fig. 13.

Correction with two skew quadrupoles

As for the horizontal dispersion there are several possibilities in positioning the quadrupoles, more
or less beneficial in terms of residual dispersion, tune shift and β-beat. Things can be summarized
as follows.

Fig. 14 and Table 6 show the optical functions when the quadrupoles are placed one at each arc
end (QD12.L5 and QD17.R5 respectively) with opposite strengths (RL)SQ/2 = ±9.1 10−4m−1. In
particular the residual dispersion is about 0.12 m in the crossing triplet, less than 0.12 m in the
other IR’s, and less than 0.05 m in the arcs.

Fig. 15 and Table 7 show the optical functions when the quadrupoles are placed one at each arc
end (QD12.L5 and QD17.R5 respectively) with distinct strengths (RL)SQ|Left/Right| ≈ 10.6 10−4/−
7.9 10−4m−1 balancing the respective strength of the opposite low-β triplet. The residual dispersion
is 0.22 m in the crossing triplet and zero everywhere beyond the crossing IR.

Fig. 16 and Table 8 show the optical functions when the quadrupoles are placed at the same arc
end (QD12.L5 and QD16.L5 respectively) with opposite strengths (RL)SQ/2 = ±9.1 10−4m−1. In
particular the residual dispersion reaches about 0.32 m in the crossing triplet, less than 0.12 m in
the others, and less than 0.05 m in the arcs.
Interlaced correction scheme

We extend the preceding consideration to an interlaced 4-pair assembly. The quadrupole correc-
tors are installed next to the multipoles MSCBV in the LHC sequence at Dx(sSQ)

√
βz(sSQ) ≈ 14.2

(Table 9, column 3). The integrated correcting strength is matched with MAD with constraints
exclusively on DY = 0 and DY’ = 0 at IP and Octant ends The strength is essentially in the
SQ1a/b.Left and SQ1a/b.Right pairs (Eq. 47 and column 5 of Table 9) ; their positioning coincides
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Table 7: Optical functions at IP1,2, 5, 8 and other parameters obtained from a one-turn MAD TWISS
procedure in presence of two skew quadrupole correctors placed at QD12.L5 and QD17.R5 with distinct
strengths (RL)SQ|Left/Right| ≈ 10.6 10−4/− 7.9 10−4m−1, prior to any additional re-tuning of the IR.

pos. lmnt beta1 alfa1 mu1 R11 R12 xco pxco Dx Dpx
beta2 alfa2 mu2 R21 R22 yco pyco Dy Dpy

[2pi] [mm] [.001]

1 IP1 0.501 0.000 0.000 0.039 0.015 0.000 0.000 0.000 0.000
0.501 0.000 0.000 -0.105 0.029 0.000 0.000 0.000 0.000

599 IP2 0.500 -0.001 8.985 -0.021 -0.019 0.000 0.000 0.000 0.000
0.501 -0.003 7.540 0.124 -0.014 0.000 0.000 0.000 0.000

2411 IP5 0.498 0.001 31.640 -0.021 0.043 0.000 0.000 0.000 0.000
0.502 0.003 31.655 -0.078 0.034 0.000 0.100 -0.003 -0.003

4202 IP8 0.500 -0.001 55.745 -0.027 -0.020 0.000 0.000 0.000 0.000
0.501 0.002 54.322 0.120 -0.013 0.000 0.000 0.000 0.000

Q1 = 63.280049 Q2 = 63.310209
betax(max)= 4447.25488 betay(max) =4424.177009
Dx(max) = 2.177816 Dy(max) = 0.203188
yco(max) = 4.707107

Table 8: Optical functions at IP1,2, 5, 8 and other parameters obtained from a one-turn MAD TWISS
procedure in presence of two skew quadrupole correctors placed at the same end of the IR (next to QD12.L5
and QD16.L5 respectively) with opposite strengths, prior to any re-tuning of the IR.

pos. lmnt beta1 alfa1 mu1 R11 R12 xco pxco Dx Dpx
beta2 alfa2 mu2 R21 R22 yco pyco Dy Dpy

[2pi] [mm] [.001]
1 IP1 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.500 0.001 0.000 0.000 0.000 0.000 0.000 0.002 0.000
599 IP2 0.500 0.000 8.985 0.000 0.000 0.000 0.000 0.000 0.000

0.500 -0.003 7.540 -0.001 0.000 0.000 0.000 -0.002 0.001
2413 IP5 0.500 0.000 31.640 -0.001 0.000 0.000 0.000 0.000 0.000

0.502 -0.001 31.655 -0.001 0.000 0.000 0.100 0.007 -0.004
4202 IP8 0.500 0.000 55.745 0.001 0.000 0.000 0.000 0.000 0.000

0.500 0.003 54.322 0.000 0.000 0.000 0.000 0.002 -0.001
Q1 = 63.280015 Q2 = 63.310005
betax(max)= 4431.614434 betay(max) =4430.117034
Dx(max) = 2.177883 Dy(max) = 0.322977
yco(max) = 4.707107
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Table 9: Corrector strengths necessary for canceling the chromatic bump opened in the left and right odd-
type low-β triplets by the non-zero horizontal c.o. due to z′∗ = 10−4rad c.o. angle at IP, as obtained from a
MAD match. The correctors are all placed next to the lattice multipole correctors at high Dx(sSQ)

√
βz(sSQ)

values (column 3). The pairs SQ1a/b.Left and SQ1a/b.Right are almost π/ν[π/ν] distant from respectively
the left- and right-hand side low-β triplets (column 4), they play the dominant role, with integrated strengths
|(RL)SQ|Left/Right| = 10.3 10−4/7.8 10−4m−1 [twice the value in column 5, consistent with Eq. (47)] ; the
pairs SQ2a/b.Left and SQ2a/b.Right are almost π/2ν[π/ν] distant from respectively the left- and right-hand
side low-β triplets, and have weak role as expected (column 5).

Corrector Neighboring Dx(sSQ)
√
βz(sSQ) Phase w.r.t. IP (KL)SQ

name quadrupole (m3/2) (π/2ν) (10−4m−1)
SQ2a/b.Left QD12/16.Left 14.2 -1.779 / -2.281 ± 1.07
SQ1a/b.Left QT.Q10/14.Left 14.2 -1.528 / -2.030 ± 5.15
SQ1a/b.Right QD11/15.Right 14.2 1.019 / 1.521 ± 3.90
SQ2a/b.Right QD13/17.Right 14.2 1.269 / 1.771 ± 0.52

Table 10: Optical functions at IP1,2, 5, 8 and other parameters obtained from a one-turn MAD TWISS
procedure in presence of interlaced four skew quadrupole corrector pairs tuned as shown in Table 9, prior
to any additional re-tuning of the IR.

pos. lmnt beta1 alfa1 mu1 xco pxco Dx Dpx
beta2 alfa2 mu2 yco pyco Dy Dpy

[2pi] [mm] [.001]

1 IP1 0.500 0.000 0.000 0.000 0.000 0.000 0.000
0.500 0.001 0.000 0.000 0.000 0.000 0.000

599 IP2 0.500 0.000 8.985 0.000 0.000 0.000 0.000
0.500 -0.003 7.540 0.000 0.000 0.000 0.000

2417 IP5 0.500 0.000 31.640 0.000 0.000 0.000 0.000
0.502 -0.001 31.655 0.000 0.100 0.000 0.000

4214 IP8 0.500 0.000 55.745 0.000 0.000 0.000 0.000
0.500 0.004 54.322 0.000 0.000 0.000 0.000

Q1 = 63.280012 Q2 = 63.310003
betax(max)= 4431.547892 betay(max) = 4430.849387
Dx(max) = 2.178292 Dy(max) = 0.195784
Dx(r.m.s.) = 1.500096 Dy(r.m.s.) = 0.017911
xco(max) = 0.000001 yco(max) = 4.707107

with almost π/2ν[π/ν] distance from the IP, on respectively the left- and right-hand side of the IR
(by QD10/14.Left and QD11/15.Right). The weak role of SQ2a/b.Left and SQ2a/b.Right compan-
ion pairs (distant almost π/ν[π/ν] from the IP, on respectively the left- and right-hand side of the
IR, by QD12/16.Left and QD13/17.Right) is shown in Table 9 (column 5) ; they however do help
canceling residual perturbative dispersion.

The residual dispersion in the arcs is quasi-zero (Fig. 17). The absence of effect on the first
order focusing is apparent in Table 10 which displays the ensuing values of the optical functions
at IP1, 2, 5, 8, as well as tunes and other parameters as obtained from a one-turn MAD TWISS
procedure without any additional re-tuning of the IR ; it is clear that any induced mismatch is
negligible. Horizontal and vertical β-beating in the arcs are also negligible, and the machine tunes
are not affected.
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Figure 1: Horizontal (Dx, first order ; dx, perturbative), and vertical (dz, perturbative) closed dispersions
(Eq. 10), under the effect of respectively x′∗ = 10−4rad horizontal c.o. angle and z′∗ = 10−3m vertical c.o.
off-centering at IP5, as observed at Octant 5, IR1, IR2 and IR8. As for the horizontal dispersion the upper
left plot reveals about ±10% amplitude modulation in the arcs ; peak values of the dispersion at low-β
triplets and derivatives at IP’s are as stated in section 3.1 (Eqs. 26,28).
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Figure 3: Four-IP interference as observed at Oc-
tant 5. All crossings are in the horizontal plane,
x′∗ = εIP 10−4rad, with ε1 = ε2 = ε5 = ε8 =
1, ε1 = ε2 = 1 and ε5 = ε8 = −1, ε1 = ε5 = 1 and
ε2 = ε8 = −1.
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Figure 4: Betatron and second order dispersion functions across IR5 in presence of x′∗ = 10−4rad horizontal
c.o. angle, after compensation of the horizontal anomalous dispersion by mere re-tuning of the IR ; the only
noticeable (though negligible) difference w.r.t. regular optics is the non-zero dispersion in the low-β triplets.
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Figure 5: Single quadrupole compensation of the anomalous dispersion induced by 10−4rad horizontal
c.o. angle at IP5. The quadrupole is placed at QF13.Left at the left end of IR5, with strength (KL)q =
−9.1 10−4m−1 (after Eq. 38). There is no additional re-tuning of the IR. Upper plot : extrema of the
dispersion function, it can be observed that the residual modulation is very small (1%). Middle : horizontal
β-beating, the modulation is about 8.5% (the quadrupole has similar though much smaller effect in the
vertical plane, inducing about 1.5% modulation, not shown here) ; lower plot : general shape of the optical
functions at IR5 ; it can be observed that the dx peak in the low-β triplet is strongly decreased, from 0.71
m (Eq. 26 and Fig. 1) down to about 0.08 m ; the dispersion and derivative at IP5 are Dx ≈ 10 10−3m,
D′x ≈ −2 10−3rad and respectively less than 10−3m, 5 10−4rad at other collision IP’s.
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Figure 6: Double quadrupole compensation of the anomalous dispersion induced by 10−4rad horizontal
c.o. angle at IP5. The quadrupoles are placed at opposing arc ends respectively by QF13.Left at the left
end and QF16.Right at the right end of IR5 with respectively half the strength (KL)Q = ∓9.1 10−4/2m−1

(after Eq. 38). There is no additional re-tuning of the IR. Upper plot : extrema of the dispersion function,
comparable to the single quadrupole case (≈ 1% residual modulation). Middle : horizontal β-beating, the
modulation is about 1.5%, strongly improved w.r.t. Fig. (5) (and much less than 1% in the vertical plane,
not shown here) ; lower plot : general shape of the optical functions at IR5 ; the dispersion and derivative
at IP5 are Dx ≈ 2 10−3m, D′x ≈ −3 10−3rad, and respectively less than 10−3m, 510−4rad at other collision
IP’s.
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Figure 7: Double quadrupole compensation of the anomalous dispersion induced by 10−4rad horizontal
c.o. angle at IP5. The quadrupoles are placed at opposing arc ends respectively by QF13.Left at the left
end and QF16.Right at the right end of IR5 with distinct respective strengths (KL)Q = −3.9 10−4 m−1,
(KL)Q = +5.2 10−4 m−1 balancing each one the corresponding low-β triplet (after Eq. 38). There is no
additional re-tuning of the IR. Upper plot : extrema of the dispersion function, comparable to the single
quadrupole case (≈ 1% residual modulation). Middle : horizontal β-beating, the modulation is about 1.5%,
strongly improved w.r.t. Fig. (5) (and much less than 1% in the vertical plane, not shown here) ; lower
plot : general shape of the optical functions at IR5 ; the dispersion and derivative at IP5 are Dx ≈ 10−3m,
D′x ≈ −3 10−3rad, and respectively less than 10−3m, 5 10−4rad at other collision IP’s.
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Figure 8: Double quadrupole compensation of the anomalous dispersion induced by 10−4rad horizontal
c.o. angle at IP5. The two quadrupoles are placed at the same end of IR5, respectively by QF13.Left and
QF17.Left with strengths (KL)q ≈ ∓9.1 10−4/2 m−1. There is no additional re-tuning of the IR. Upper
plot : extrema of the dispersion function, comparable to the single quadrupole case. Middle : horizontal
β-beating, the modulation is negligible, strongly improved w.r.t. Fig(5.3) (and much less than 1% in the
vertical plane, not shown here) ; lower plot : general shape of the optical functions at IR5 ; the dispersion
and derivative at IP5 are Dx ≈ 2 10−3m, D′x ≈ −2 10−3rad, and respectively less than 10−3m, 5 10−4rad at
other collision IP’s.
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Figure 9: Compensation of the horizontal anomalous dispersion due to x′∗ = 10−4rad c.o. angle at IP5, with
four quadrupole pairs placed at the arcs ends (Tables 3,4). Upper plot : peak amplitudes of the dispersion
along the ring ; no noticeable modulation remains. Only local modulation within the dispersion bump in IR5
is left. Middle plot : peak amplitudes of the beta functions in the arcs along the ring. The horizontal and
vertical β-beating are respectively ±0.15% and ±0.5%. Lower plot : general shape of the optical functions
at IR5.
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Figure 10: Upper plot : first order dispersion function as perturbed by switching on the D1/D2 separa-
tor/recombiner dipole pairs while the IR has been tuned beforehand with D1/D2 pairs off ; the extremum
value of Dx is 2.76 m [namely, the regular extremum 2.178 m increased by the modulation of 0.6 m (Eq.20)],
reached in the arcs. Middle plot : second order dispersion function Dx+dx under the effect of the anomalous
dispersion induced by x′∗ = 10−4rad horizontal c.o. angle at the IP ; w.r.t. the upper plot the extremum
value in the arcs has been damped by about 35% (Eqs. 2) down to 2.58 m. Lower plot : second order disper-
sion function Dx + dx under the effect of the anomalous dispersion induced by x′∗ = −10−4rad horizontal
c.o. angle at the IP ; w.r.t. the upper plot the extremum value in the arcs has been increased by about 35%
up to 3 m
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Figure 11: Vertical interference between IP1 and IP5 (these simulations are identical to the results displayed
in Fig. 2). Upper plot : second order dispersion function Dx+dx along the ring under single 10−4rad vertical
c.o. angle at IP1. Middle :10−4rad c.o. angle at IP1 and 10−4rad at IP5. Lower plot : 10−4rad at IP1 and
−10−4rad at IP5.
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Figure 12: Vertical interference between IP2 and IP8. Upper plot : second order dispersion function dz
along the ring under single 10−4rad vertical c.o. angle at IP2 ; peak amplitude d̄z = 0.96m in IP5 low-β
triplet. Middle : 10−4rad c.o. angle at IP2 and 10−4rad at IP8 ; maximum amplitude d̄z = 0.24m in the
range ARC8/ARC1. Lower plot : 10−4rad at IP2 and −10−4rad at IP8 ; peak amplitude d̄z = 1.95m in IP5
low-β triplet.
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Figure 13: Compensation of the vertical anomalous dispersion due to z′∗ = 10−4rad c.o. angle at IP5,
with one skew quadrupole placed at QD12.L5. Upper plot : residual dispersion at Octant 5. Middle plot :
peak amplitudes of the horizontal β function along the ring.Lower plot : peak amplitudes of the vertical β
function along the ring.
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Figure 14: Compensation of the vertical anomalous dispersion due to z′∗ = 10−4rad c.o. angle at IP5,
with two skew quadrupoles placed one at each arc end (QD12.L5 and QD17.R5 respectively) with opposite
strengths (RL)SQ/2 = ±9.1 10−4m−1. Upper plot : residual dispersion at Octant 5. Middle plot : peak
amplitudes of the horizontal β function along the ring. Lower plot : peak amplitudes of the vertical β
function along the ring.
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Figure 15: Compensation of the vertical anomalous dispersion due to z′∗ = 10−4rad c.o. angle at IP5,
with two skew quadrupoles placed one at each arc end (QD12.L5 and QD17.R5 respectively) with distinct
strengths (RL)SQ|Left/Right| ≈ 10.6 10−4/− 7.9 10−4m−1 balancing the respective strength of the opposite
low-β triplet. Upper plot : residual dispersion at Octant 5. Middle plot : peak amplitudes of the horizontal
β function along the ring. Lower plot : peak amplitudes of the vertical β function along the ring.
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Figure 16: Compensation of the vertical anomalous dispersion due to z′∗ = 10−4rad c.o. angle at IP5,
with two skew quadrupoles placed at the same arc end (QD12.L5 and QD16.L5 respectively) with opposite
strengths (RL)SQ/2 = ±9.1 10−4m−1. Upper plot : residual dispersion at Octant 5 ; it is comparable to the
single quadrupole case (Fig. 13) remains. Middle plot : peak amplitudes of the horizontal β function along
the ring. Lower plot : peak amplitudes of the vertical β function along the ring.
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Figure 17: Compensation of the vertical anomalous dispersion due to z′∗ = 10−4rad c.o. angle at IP5, with
four skew quadrupole pairs placed at the arcs ends (Tables 9,10). Upper plot : residual dispersion along the
ring ; it is practically zero outside the IR. Lower plot : peak amplitudes of the vertical β functions in the
arcs along the ring.
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A Appendix : Beam crossing and off-centering schemes

- LHC 4.2 optics -

Appendix A describes the crossing and/or off-centering closed orbit (c.o.) bumps on which the
numerical applications and other plots presented in this report are based.

A priori, adequate phase shift w.r.t. the IP, in collision mode where it is the most critical, should
be a strong criterion for the positioning of the c.o. dipoles (COD), in order to minimize the field
strengths. However other criteria should be envisaged, such as

- the steering is possibly to include a combination of crossing or off-centering at IP in each plane
(e.g., in order to achieve ±45 deg. inclined crossing plane). This imposes a pair of COD’s per plane
on each side of the IP (rather than a single one at π/ν (normalized) phase-shift in crossing optics,
for instance),

- it may be desirable for aperture considerations to avoid additional non-zero c.o. in the outer
triplet or dispersion suppressor magnets. For instance, on the left-hand side of odd-IP, π/ν phase-
shift is attained at Q7.Left in LHC Version 4.2 optics ; a (single) steering dipole placed there to get
x′∗ = 10−4rad c.o. angle at the IP would produce 0.8 10−3m c.o. in Q5.Left.

This last criterion guided the present design in confining the c.o. bump within the range
Q4A.L/Q4A.R. On each side of the IP, the horizontal and vertical COD pairs have been placed
between the outer triplet and the separator/recombiner dipole D2 (Fig. 18). Typical strengths nec-
essary to achieve 10−4rad horizontal c.o. angle or 10−3m vertical c.o. off-centering are given in
Table 11.

Table 11: Dipole strengths for beam crossing/off-centering at IR1/5, collision optics.

Horizontal c.o. angle Vertical c.o. off-centering
x′∗ = 10−4rad z∗ = 10−3m

K2L -4.072315E-05 -2.630684E-05
K1L 1.319483E-05 6.466302E-05
K1R 2.126390E-11 4.055659E-05
K2R 2.248126E-05 -1.721094E-05

B Appendix : Sums related to the elementary kick model

- LHC 4.2 optics -

The following sums are obtained from MAD TWISS output, by means of a program derived from
RDTWISS [12].

Sums relative to section 2 of the text.

x′∗ = 10−4rad c.o. angle (half beam-beam horizontal angle), odd-type IP, collision optics∑
(KL)qxco(sq)

√
β(sq) cos ν[π+ φ(sq)] = −2.573 10−2,∑

(KL)qxco(sq)
√
β(sq) sin ν[π+ φ(sq)] = −4.741 10−3

x∗ = 10−3m c.o. off-centering (half beam-beam horizontal distance at IP), odd-type IP, collision
optics∑

(KL)qxco(sq)
√
β(sq) cos ν[π+ φ(sq)] = −3.262 10−3,∑

(KL)qxco(sq)
√
β(sq) sin ν[π+ φ(sq)] = −5.290 10−4
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Figure 18: Collision optics. Horizontal ±10−4rad c.o. angle (top plot) and vertical ±10−3m off-centering
(bottom plot). In both cases the beam-beam separation is normalized to largest σ-value. These geometries
are used for numerical applications presented in the report.
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z∗ = 10−3m c.o. off-centering, odd-type IP, collision optics∑
(KL)qzco(sq)

√
β(sq) cos ν[π+ φ(sq)] = 3.034 10−3,∑

(KL)qzco(sq)
√
β(sq) sin ν[π+ φ(sq)] = 1.302 10−3

z′∗ = 10−4rad c.o. angle, odd-type IP, collision optics∑
(KL)qzco(sq)

√
β(sq) cos ν[π+ φ(sq)] = −2.421 10−2,∑

(KL)qzco(sq)
√
β(sq) sin ν[π+ φ(sq)] = −9.780 10−3

Sums relative to section 5.2 of the text (x′∗ = 10−4rad c.o. angle, collision optics, odd-type IR)

Left triplet :
∑

(KL)qLxco(sqL )βx(sqL ) = −1.12 10−2

Right triplet :
∑

(KL)qRxco(sqR)βx(sqR) = 1.50 10−2

and, by antisymmetry, section 5.4 of the text (z′∗ = 10−4rad c.o. angle, collision optics, odd-type IR)

Left triplet :
∑

(KL)qLzco(sqL )
√
βz(sqL ) = −1.50 10−2

Right triplet :
∑

(KL)qRzco(sqR)
√
βz(sqR ) = 1.12 10−2

Sums relative to section 3.1 of the text (crossing scheme, horizontal plane, collision optics)

Left-hand side odd-type low-β triplet, horizontal β :
∑

(KL)qLβ(sqL ) = 158.4
Right-hand side odd-type low-β triplet, horizontal β :

∑
(KL)qRβ(sqR ) = 211.6

Sum and difference of the above yield :∑
(KL)qβ(sq) = 370, |

∑
(KL)qLβ(sqL )−

∑
(KL)qRβ(sqR )| = 53

Sums relative to section 3.2 of the text (crossing scheme, horizontal plane, collision optics)

Left-hand side even-type low-β triplet :
∑

(KL)qLβ(sqL ) = 202
Right-hand side even-type low-β triplet :

∑
(KL)qRβ(sqR ) = 146

Sum and difference of the above give :∑
(KL)qβ(sq) = 350, |

∑
(KL)qLβ(sqL ) −

∑
(KL)qRβ(sqR )| = 56

C Appendix : Simplified expressions for the anomalous dispersion

along the LHC ring

The contribution of the low-β triplet pair associated with the non-zero c.o., to the perturbative
closed dispersion dy(s) is split into contributions dLy (s) and dRy (s) of respectively the left- and right-
hand side triplets. This leads to splitting the term

∑
K(s)yco(s)δ(s − sq)dsq of Eq. (7) into two

separate integrals, for respectively the left and right triplet. The superposition principle thus allows
to solve the equation for each triplet independently.

The contribution of the left triplet writes, in the crossing scheme (y∗ = 0) [after Eq. (10)]

dLy (s) = y′∗
√
β(s)β∗/(2 sinπν)

∑
(KL)qLβ(sqL ) sin ν[φ(sqL)− φ∗] cos ν[π− |φ(s)− φ(sqL)|] (48)

The index qL designates the left triplet quadrupoles, the superscript ∗ designates parameters taken
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at the IP. Now we assume ν[φ(sqL)− φ∗] = −π/2 (this is true at better than 2% within the triplet).
It leads to the following simplifications, valid as long as sin ν[π− |φ(s)− φ∗|] is not to small,

cos ν[π − |φ(s)− φ(sqL)|] = cos ν[π+ φ(s) − φ(sqL )] = cos ν[π+ φ(s)− φ∗ − φ(sqL)− φ∗)]
= cos ν[π+ φ(s) − φ∗] cos ν[φ(sqL)− φ∗] + sin ν[π+ φ(s)− φ∗] sinν[φ(sqL)− φ∗]
= − sin ν[π+ φ(s)− (∗]ifφ(s) < φ(sqL )∀qL

cos ν[π − |φ(s)− φ(sqL)|] = cos ν[π− φ(s) + φ(sqL)] = cos ν[π− φ(s) + φ∗ + φ(sqL )− (∗]
= cos ν[π− φ(s) + (∗] cos ν[φ(sqL)− φ∗]− sin ν[π− φ(s) + (∗] sin ν[φ(sqL)− φ∗]
= sin ν[π− φ(s) + φ∗]ifφ(s) > φ(sqL)∀qL (49)

The closed dispersion associated with the left triplet therefore simplifies to

dLy (s < sqL) = y′∗
√
β(s)β∗/(2 sinπν) sinν[π+ φ(s) − (∗]

∑
(KL)qLβ(sqL ),

dLy (s > sqL) = −y′∗
√
β(s)β∗/(2 sinπν) sinν[π− φ(s) + φ∗]

∑
(KL)qLβ(sqL ) (50)

valid as long as sin ν[π−|φ(s)−φ∗|] is not to small. As concerns the right triplet, ν[φ(sqR)−φ∗] = π/2 ;
similar calculations give the closed dispersion

dRy (s < sqR) = y′∗
√
β(s)β∗/(2 sinπν) sinν[π+ φ(s)− φ∗]

∑
(KL)qRβ(sqR ),

dRy (s > sqR) = −y′∗
√
β(s)β∗/(2 sinπν) sinν[π − φ(s) + φ∗]

∑
(KL)qRβ(sqR ) (51)

The general solution to Eq. (7) beyond the left and right triplets is therefore

dy(s < sqL ) = dLy (s < sqL ) + dRy (s < sqR)

= y′∗
√
β(s)β∗/(2 sinπν) sinν[π+ φ(s) − φ∗][

∑
(KL)qLβ(sqL ) +

∑
(KL)qRβ(sqR )]

= y ′∗
√
β(s)β∗/(2 sinπν) sinν[π+ φ(s)− φ∗]

∑
(KL)qβ(sq) (52)

dy(s > sqL) = dLy (s > sqL ) + dRy (s > sqR )

= −y′∗
√
β(s)β∗/(2 sinπν) sinν[π− φ(s) + φ∗]

∑
(KL)qLβ(sqL ) +

∑
(KL)qRβ(sqR )]

= −y′∗
√
β(s)β∗/(2 sinπν) sinν[π− φ(s) + φ∗]

∑
(KL)qβ(sq) (53)

Combining Eqs. (52, 53) and taking into account the c.o. term −yco(s) leads to Eq. (23). It also
provides the closed dispersion between the left and right triplets, namely

dy(sqL < s < sqR) = dLy (s > sqL ) + dRy (s < sqR)

= y′∗
√
β(s)β∗/(2 sinπν){− sin ν[π− φ(s) + φ∗]

∑
(KL)qLβ(sqL )

+ sin ν[π+ φ(s) − φ∗]
∑

(KL)qRβ(sqR ) }

= y′∗
√
β(s)β∗/2{ cos ν[φ(s)− φ∗]

∑
εq(KL)qβ(sq)

+ sin([φ(s)− φ∗]/ tanπν
∑

(KL)qβ(sq) }
[εq = ±1 for resp. φ(s) <> φ(sq), ∀q] (54)
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D Appendix : MAD simulations

- LHC V4.2 optics -

D.1 Single x-crossing/z-off-centering at IP5. Optical parameters in the
vicinity of the IP’s

The following table extracted from a MAD print file displays the betatron functions, phases, and
other parameters relevant with the numerical calculations performed in section 3.1 of the text. It
includes a 10−4rad horizontal closed orbit angle and 10−3m vertical closed orbit off-centering at IP5
for comparison with the numerical results for the anomalous dispersion provided in sections 3 and
4 of the text.

Table 12: Optical parameters, LHC V4.2 optics. Including x′∗ = 10−4rad and z∗ = 10−3m at IP5.

ELEMENT SEQUENCE I H O R I Z O N T A L I V E R T I C A L
pos. element occ. dist I betax alfax mux x(co) px(co) Dx Dpx I betay alfay muy y(co) py(co) Dy Dpy

no. name no. [m] I [m] [1] [2pi] [mm] [.001] [m] [1] I [m] [1] [2pi] [mm] [.001] [m] [1]

1 IP1 1 0.000 0.500 0.000 0.000 0.000 0.000 0.000-0.024 0.500 0.001 0.000 0.000 0.000 0.000 0.003
3 Q1.R1 1 28.500 2079.668******* 0.247 0.000 0.000 -0.774-0.059 1243.313 15.691 0.247 0.000 0.000 0.070-0.001
5 QT.Q1.R1 1 30.300 2704.737******* 0.247 0.000 0.000 -0.882-0.063 1178.228 21.399 0.248 0.000 0.000 0.068-0.001

7 Q2A.R1 1 36.500 4378.477-26.180 0.248 0.000 0.000 -1.123-0.007 1253.042-41.971 0.249 0.000 0.000 0.071 0.002
9 Q2B.R1 1 43.000 3490.785180.182 0.248 0.000 0.000 -1.003 0.052 2395.576******* 0.249 0.000 0.000 0.098 0.007
11 Q3.R1 1 50.800 1790.136 24.775 0.248 0.000 0.000 -0.718 0.010 4428.776 -2.415 0.250 0.000 0.000 0.133 0.000
587 QT.Q3.L2 1 3283.258 1585.815-22.014 8.736 0.000 0.000 0.674 0.009 4017.383 0.361 7.290 0.000 0.000 0.123 0.000

589 Q3.L2 1 3289.058 2442.825******* 8.737 0.000 0.000 0.836 0.050 2910.673179.988 7.290 0.000 0.000 0.105-0.007
591 Q2B.L2 1 3296.858 4019.274 27.307 8.737 0.000 0.000 1.073-0.007 1169.991 39.833 7.291 0.000 0.000 0.067-0.002
593 Q2A.L2 1 3303.358 2639.600188.882 8.737 0.000 0.000 0.870-0.062 989.862-18.123 7.292 0.000 0.000 0.061 0.001
595 QT.Q1.L2 1 3305.558 1894.746146.376 8.738 0.000 0.000 0.737-0.057 1060.517-11.622 7.292 0.000 0.000 0.063 0.001
597 Q1.L2 1 3311.358 882.531 42.001 8.738 0.000 0.000 0.503-0.024 881.601 41.960 7.293 0.000 0.000 0.058-0.003

599 IP2 1 3332.358 0.500 0.000 8.985 0.000 0.000 0.001-0.024 0.500 -0.003 7.540 0.000 0.000 0.000-0.003
601 Q1.R2 1 3358.858 1068.593 11.675 9.232 0.000 0.000 -0.551 0.006 1806.485******* 7.786 0.000 0.000 -0.083-0.007
603 QT.Q1.R2 1 3360.658 1016.426 18.377 9.232 0.000 0.000 -0.538 0.010 2379.860******* 7.786 0.000 0.000 -0.095-0.007
605 Q2A.R2 1 3366.858 1092.748-38.511 9.233 0.000 0.000 -0.558-0.020 3961.593-27.096 7.787 0.000 0.000 -0.123-0.001
607 Q2B.R2 1 3373.358 2143.642******* 9.234 0.000 0.000 -0.782-0.056 3160.901166.651 7.787 0.000 0.000 -0.110 0.006

609 Q3.R2 1 3381.158 4020.929 -0.358 9.234 0.000 0.000 -1.071 0.000 1597.689 22.089 7.788 0.000 0.000 -0.078 0.001
2398 QT.Q3.L51 13278.332 4431.270 2.415 31.391 -4.707 0.003 -0.707 0.001 1767.406-24.562 31.407 0.614 0.042 0.048 0.001
2400 Q3.L5 1 13284.132 3227.889194.256 31.391 -4.017 0.242 -0.603 0.036 2699.084******* 31.407 0.964 0.084 0.058 0.003
2402 Q2B.L5 1 13291.932 1338.724 43.387 31.392 -2.587 0.084 -0.388 0.013 4411.264 26.220 31.408 1.428 0.013 0.074 0.000
2404 Q2A.L5 1 13298.432 1148.763-21.133 31.392 -2.396 -0.044 -0.359-0.006 2968.115201.521 31.408 1.301 -0.062 0.061-0.004

2406 QT.Q1.L51 13300.632 1234.248-15.637 31.393 -2.484 -0.031 -0.372-0.005 2165.561160.378 31.408 1.168 -0.056 0.052-0.004
2408 Q1.L5 1 13306.432 1058.461 45.998 31.393 -2.300 0.100 -0.343 0.015 1053.826 45.797 31.409 1.000 0.000 0.037-0.002
2410 IP5 1 13329.432 0.500 0.000 31.640 0.000 0.100 0.001 0.015 0.502 -0.001 31.655 1.000 0.000 0.001-0.002
2412 Q1.R5 1 13357.932 2079.493******* 31.887 3.224 0.244 0.485 0.037 1238.261 15.629 31.902 0.856 -0.051 -0.037 0.000
2414 QT.Q1.R51 13359.732 2704.511******* 31.887 3.677 0.262 0.552 0.039 1173.433 21.314 31.903 0.761 -0.055 -0.036 0.001

2416 Q2A.R5 1 13365.932 4378.110-26.178 31.888 4.678 0.028 0.702 0.004 1247.916-41.797 31.903 0.514 -0.023 -0.038-0.001
2418 Q2B.R5 1 13372.432 3490.494180.167 31.888 4.177 -0.216 0.628-0.032 2385.740******* 31.904 0.434 0.001 -0.052-0.004
2420 Q3.R5 1 13380.232 1789.987 24.773 31.888 2.992 -0.041 0.453-0.006 4410.555 -2.403 31.904 0.382 -0.021 -0.071 0.000
4186 QT.Q3.L81 23277.406 1585.812-22.013 55.496 0.000 0.000 -0.662-0.009 4019.471 0.355 54.073 0.000 0.000 -0.126 0.000

4188 Q3.L8 1 23283.206 2442.820******* 55.497 0.000 0.000 -0.822-0.049 2912.245180.079 54.073 0.000 0.000 -0.108 0.007
4190 Q2B.L8 1 23291.006 4019.266 27.307 55.497 0.000 0.000 -1.054 0.007 1170.690 39.851 54.074 0.000 0.000 -0.068 0.002
4192 Q2A.L8 1 23297.506 2639.594188.882 55.497 0.000 0.000 -0.855 0.061 990.533-18.141 54.075 0.000 0.000 -0.063-0.001
4194 QT.Q1.L81 23299.706 1894.743146.376 55.498 0.000 0.000 -0.724 0.056 1061.263-11.636 54.075 0.000 0.000 -0.065-0.001
4196 Q1.L8 1 23305.506 882.530 42.001 55.498 0.000 0.000 -0.495 0.023 882.284 41.986 54.076 0.000 0.000 -0.059 0.003

4198 IP8 1 23326.506 0.500 0.000 55.745 0.000 0.000 -0.003 0.023 0.500 0.003 54.322 0.000 0.000 0.000 0.003
4200 Q1.R8 1 23353.006 1068.589 11.675 55.992 0.000 0.000 0.540-0.006 1806.912******* 54.569 0.000 0.000 0.085 0.007
4202 QT.Q1.R81 23354.806 1016.422 18.377 55.992 0.000 0.000 0.526-0.009 2380.450******* 54.569 0.000 0.000 0.097 0.007
4204 Q2A.R8 1 23361.006 1092.745-38.511 55.993 0.000 0.000 0.547 0.019 3962.668-27.110 54.570 0.000 0.000 0.126 0.001
4206 Q2B.R8 1 23367.506 2143.636******* 55.994 0.000 0.000 0.766 0.055 3161.827166.694 54.570 0.000 0.000 0.112-0.00

4208 Q3.R8 1 23375.306 4020.918 -0.358 55.994 0.000 0.000 1.050 0.000 1598.232 22.091 54.570 0.000 0.000 0.080-0.001
4784 QT.Q3.L11 26607.764 4431.634 2.415 63.031 0.000 0.000 1.130-0.001 1774.800-24.666 63.062 0.000 0.000 -0.084-0.001
4786 Q3.L1 1 26613.564 3228.154194.272 63.031 0.000 0.000 0.964-0.058 2710.402******* 63.062 0.000 0.000 -0.104-0.006
4788 Q2B.L1 1 26621.364 1338.834 43.390 63.032 0.000 0.000 0.621-0.020 4429.794 26.328 63.063 0.000 0.000 -0.133 0.001
4790 Q2A.L1 1 26627.864 1148.857-21.135 63.032 0.000 0.000 0.575 0.011 2980.600202.367 63.063 0.000 0.000 -0.109 0.007

4792 QT.Q1.L11 26630.064 1234.348-15.638 63.033 0.000 0.000 0.596 0.008 2174.676161.051 63.063 0.000 0.000 -0.093 0.007
4794 Q1.L1 1 26635.864 1058.546 46.002 63.033 0.000 0.000 0.552-0.024 1058.276 45.989 63.064 0.000 0.000 -0.065 0.003
4796 IP1.L1 1 26658.864 0.500 0.000 63.280 0.000 0.000 0.000-0.024 0.500 0.001 63.310 0.000 0.000 0.000 0.003
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D.2 Multiple crossing, at IP1, 2, 5 and 8. Optical parameters in the vicin-
ity of the IP’s

The following table extracted from a MAD print file displays the betatron functions, phases, and
other parameter relevant with the numerical calculations performed in section 3.2 of the report. It
includes horizontal c.o. angles x′∗ = 10−4rad at IP1/2 and −10−4rad at IP5/8, as well as vertical
closed orbit angles z′∗ = 10−4rad at IP1 and −10−4rad at IP5, for comparison with the numerical
results provided in sections 3.2 and 4.

Table 13: Optical parameters, LHC V4.2 optics. Including x′∗ = 10−4rad at IP1/2 and −10−4rad at IP5/8,
together with z′∗ = 10−4rad at IP1 and −10−4rad at IP5.

ELEMENT SEQUENCE I H O R I Z O N T A L I V E R T I C A L

pos. element occ. dist I betax alfax mux x(co) px(co) Dx Dpx I betay alfay muy y(co) py(co) DY Dpy
no. name no. [m] I [m] [1] [2pi] [mm] [.001] [m] [1] I [m] [1] [2pi] [mm] [.001] [m] [1]

1 IP1 1 0.000 0.500 0.000 0.000 0.000 0.100 0.004 0.070 0.500 0.001 0.000 0.000 0.100 -0.001 0.035
3 Q1.R1 1 28.500 2079.664******* 0.247 3.224 0.244 2.246 0.170 1243.315 15.691 0.247 2.493 -0.031 0.861-0.011
5 QT.Q1.R1 1 30.300 2704.732******* 0.247 3.677 0.262 2.561 0.183 1178.229 21.399 0.248 2.427 -0.044 0.839-0.015
7 Q2A.R1 1 36.500 4378.469-26.180 0.248 4.678 0.028 3.258 0.020 1253.043-41.971 0.249 2.503 0.084 0.866 0.029
9 Q2B.R1 1 43.000 3490.779180.181 0.248 4.177 -0.216 2.910-0.150 2395.578******* 0.249 3.461 0.242 1.197 0.084

11 Q3.R1 1 50.800 1790.133 24.775 0.248 2.992 -0.041 2.086-0.029 4428.780 -2.415 0.250 4.706 0.003 1.628 0.001
601 QT.Q3.L2 1 3283.258 1585.812-22.013 8.736 -2.816 -0.039 -1.927-0.027 4017.384 0.361 7.290 0.000 0.000 1.717 0.000
603 Q3.L2 1 3289.058 2442.821******* 8.737 -3.494 -0.210 -2.394-0.144 2910.674179.989 7.290 0.000 0.000 1.462-0.090
605 Q2B.L2 1 3296.858 4019.267 27.307 8.737 -4.482 0.030 -3.072 0.021 1169.992 39.833 7.291 0.000 0.000 0.928-0.031
607 Q2A.L2 1 3303.358 2639.595188.882 8.737 -3.632 0.260 -2.492 0.178 989.863-18.123 7.292 0.000 0.000 0.855 0.016

609 QT.Q1.L2 1 3305.558 1894.743146.376 8.738 -3.077 0.238 -2.113 0.163 1060.517-11.622 7.292 0.000 0.000 0.885 0.010
611 Q1.L2 1 3311.358 882.530 42.001 8.738 -2.100 0.100 -1.446 0.068 881.602 41.960 7.293 0.000 0.000 0.808-0.038
613 IP2 1 3332.358 0.500 0.000 8.985 0.000 0.100 -0.020 0.068 0.500 -0.003 7.540 0.000 0.000 0.005-0.03
615 Q1.R2 1 3358.858 1068.591 11.675 9.232 2.311 -0.025 1.552-0.016 1806.486******* 7.786 0.000 0.000 -1.145-0.091

617 QT.Q1.R2 1 3360.658 1016.424 18.377 9.232 2.254 -0.041 1.516-0.026 2379.861******* 7.786 0.000 0.000 -1.314-0.099
619 Q2A.R2 1 3366.858 1092.746-38.511 9.233 2.337 0.082 1.578 0.057 3961.595-27.096 7.787 0.000 0.000 -1.697-0.012
621 Q2B.R2 1 3373.358 2143.638******* 9.234 3.274 0.236 2.216 0.161 3160.902166.652 7.787 0.000 0.000 -1.516 0.080
623 Q3.R2 1 3381.158 4020.921 -0.358 9.234 4.484 0.000 3.039 0.001 1597.689 22.089 7.788 0.000 0.000 -1.079 0.015
2418 QT.Q3.L51 13278.332 4431.277 2.415 31.391 4.707 -0.003 3.930-0.002 1767.405-24.562 31.407 2.979 0.041 1.033 0.014

2420 Q3.L5 1 13284.132 3227.893194.256 31.391 4.017 -0.242 3.354-0.202 2699.082******* 31.407 3.681 0.216 1.274 0.074
2422 Q2B.L5 1 13291.932 1338.726 43.387 31.392 2.587 -0.084 2.159-0.070 4411.261 26.220 31.408 4.706 -0.028 1.626-0.010
2424 Q2A.L5 1 13298.432 1148.765-21.133 31.392 2.396 0.044 1.998 0.036 2968.113201.521 31.408 3.860 -0.262 1.334-0.091
2426 QT.Q1.L51 13300.632 1234.250-15.637 31.393 2.484 0.031 2.070 0.026 2165.559160.378 31.408 3.297 -0.244 1.140-0.084
2428 Q1.L5 1 13306.432 1058.462 45.998 31.393 2.300 -0.100 1.916-0.084 1053.825 45.797 31.409 2.300 -0.100 0.795-0.035

2430 IP5 1 13329.432 0.500 0.000 31.640 0.000 -0.100 -0.005-0.084 0.502 -0.001 31.655 0.000 -0.100 0.001-0.035
2432 Q1.R5 1 13357.932 2079.497******* 31.887 -3.224 -0.244 -2.697-0.204 1238.260 15.629 31.902 -2.493 0.031 -0.860 0.011
2434 QT.Q1.R51 13359.732 2704.515******* 31.887 -3.677 -0.262 -3.076-0.219 1173.432 21.314 31.903 -2.427 0.044 -0.837 0.015
2436 Q2A.R5 1 13365.932 4378.117-26.178 31.888 -4.678 -0.028 -3.913-0.023 1247.915-41.797 31.903 -2.503 -0.084 -0.865-0.029
2438 Q2B.R5 1 13372.432 3490.499180.167 31.888 -4.177 0.216 -3.494 0.180 2385.738******* 31.904 -3.461 -0.242 -1.196-0.0

2440 Q3.R5 1 13380.232 1789.990 24.773 31.888 -2.992 0.041 -2.504 0.034 4410.552 -2.403 31.904 -4.706 -0.003 -1.626-0.001
4214 QT.Q3.L81 23277.406 1585.809-22.013 55.496 2.816 0.039 2.052 0.028 4019.475 0.355 54.073 0.000 0.000 -1.501 0.000
4216 Q3.L8 1 23283.206 2442.816******* 55.497 3.494 0.210 2.542 0.152 2912.247180.080 54.073 0.000 0.000 -1.276 0.079
4218 Q2B.L8 1 23291.006 4019.258 27.307 55.497 4.482 -0.030 3.256-0.023 1170.691 39.851 54.074 0.000 0.000 -0.807 0.028
4220 Q2A.L8 1 23297.506 2639.590188.882 55.497 3.632 -0.260 2.637-0.189 990.534-18.141 54.075 0.000 0.000 -0.739-0.013

4222 QT.Q1.L81 23299.706 1894.739146.376 55.498 3.077 -0.238 2.233-0.173 1061.264-11.636 54.075 0.000 0.000 -0.764-0.008
4224 Q1.L8 1 23305.506 882.528 42.001 55.498 2.100 -0.100 1.522-0.073 882.285 41.986 54.076 0.000 0.000 -0.694 0.034
4226 IP8 1 23326.506 0.500 0.000 55.745 0.000 -0.100 -0.011-0.073 0.500 0.003 54.322 0.000 0.000 0.010 0.034
4228 Q1.R8 1 23353.006 1068.587 11.675 55.992 -2.311 0.025 -1.697 0.019 1806.914******* 54.569 0.000 0.000 1.020 0.080

4230 QT.Q1.R81 23354.806 1016.421 18.377 55.992 -2.254 0.041 -1.654 0.030 2380.452******* 54.569 0.000 0.000 1.170 0.088
4232 Q2A.R8 1 23361.006 1092.743-38.511 55.993 -2.337 -0.082 -1.713-0.060 3962.672-27.110 54.570 0.000 0.000 1.508 0.010
4234 Q2B.R8 1 23367.506 2143.632******* 55.994 -3.274 -0.236 -2.396-0.172 3161.829166.694 54.570 0.000 0.000 1.346-0.071
4236 Q3.R8 1 23375.306 4020.910 -0.358 55.994 -4.484 0.000 -3.279 0.000 1598.233 22.091 54.570 0.000 0.000 0.955-0.014
4826 QT.Q3.L11 26607.764 4431.627 2.415 63.031 -4.707 0.003 -3.274 0.002 1774.802-24.666 63.062 -2.979 -0.041 -1.034-0.014

4828 Q3.L1 1 26613.564 3228.148194.272 63.031 -4.017 0.242 -2.793 0.168 2710.404******* 63.062 -3.681 -0.216 -1.276-0.075
4830 Q2B.L1 1 26621.364 1338.831 43.390 63.032 -2.587 0.084 -1.799 0.059 4429.798 26.328 63.063 -4.706 0.028 -1.628 0.010
4832 Q2A.L1 1 26627.864 1148.855-21.135 63.032 -2.396 -0.044 -1.664-0.030 2980.602202.368 63.063 -3.860 0.262 -1.336 0.091
4834 QT.Q1.L11 26630.064 1234.346-15.638 63.033 -2.484 -0.031 -1.725-0.022 2174.678161.051 63.063 -3.297 0.244 -1.141 0.085
4836 Q1.L1 1 26635.864 1058.544 46.002 63.033 -2.300 0.100 -1.596 0.070 1058.277 45.989 63.064 -2.300 0.100 -0.797 0.035

4838 IP1.L1 1 26658.864 0.500 0.000 63.280 0.000 0.100 0.004 0.070 0.500 0.001 63.310 0.000 0.100 -0.001 0.035
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E Appendix : MAD match file

used in the tuning of the LHC 4.2 Interaction Regions

The following MAD match file is used for re-tuning the IR in the case of Self-absorption within
regular IR tuning procedures, section 5.1 of the text. The values of constraints and weights are as
in Ref.[16].

! LHC V4 odd insertion matching
SIR1MATCH: SUBROUTINE

TWISS, beta0 = sir5, mux = 0.0, muy = 0.0

MATCH, beta0 = sir5, mux = 0.0, muy = 0.0, orbit
VARY, KQ1.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX
VARY, KQT1.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX
VARY, KQT3.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX
VARY, KQ4.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX

VARY, KQ5.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX
VARY, KQ6.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX
VARY, KQT7.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX
VARY, KQT8.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX

VARY, KQT9.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX
VARY, KQT10.L5, STEP=1.0E-07, UPPER= KMAX, LOWER= -KMAX
VARY, BMAX5 ,STEP=1.0E-02, UPPER= 5000, LOWER= 200
WEIGHT, BETX = 100, ALFX = 10, DX = 10, DPX = 100
CONSTRAINT, PLACE= $IP5$, >

BETX = BSTAR, ALFX = 0.0, DX = 0.0, DPX = 0.
WEIGHT, BETX = 1, ALFX = 10, DX = 10, DPX = 100, >

BETY = .0, ALFY = 0., DY = 0, DPY = 0, >
MUY = 0, X = 0, Y = 0, PX = 0, PY = 0, MUX=1.00

CONSTRAINT, PLACE= E.IR5, >

BETA0 = EIR5, MUX=SMU5
CONSTRAINT, PLACE = qt.q3.l5, BETX = BMAX5
CONSTRAINT, PLACE = q2r5 , BETX = BMAX5

LMDIF, CALLS = 1000, TOLERANCE = 1.0E-12

ENDMATCH
ENDSUBROUTINE
RETURN;
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