
Extensions of the Longitudinal Envelope Equation

David Neuffer
A ccelerator Physics Group

Fermilab, PO Box 500, Batavia IL 60510 

Introduction

Recently, longitudinal space charge effects have become of increased importance in a variety of
dynamical situations. The CEBAF FEL injector beam dynamics shows large space-charge
effects, even at 10 MeV (γ ≈ 20).1 Space-charge dominated longitudinal motion has also been
studied in the IUCF ion storage ring2,3. Previously a longitudinal envelope equation with a self-
consistent phase-space distribution has been developed,4 and has been of considerable use in
analyzing the motion of these cases. Longitudinal motion in detailed agreement with this
envelope equation has been observed at the U. of Maryland Laboratory for Plasma Research,5 and
at the GSI electron cooling storage ring ESR,6 as well as at the IUCF. However, the initial
presentation in ref. 4 used non-relativistic linear-accelerator bunching motion as a simplifying
approximation in order to avoid inadvertent errors and minimize misprints, and must be adapted
to include relativistic and/or synchrotron effects. 

In the present note we extend the envelope equation formulae to include relativistic, synchrotron,
and acceleration effects, and define the various factors in the equations in explicit detail. The
object is to obtain a set of debugged formulae for these extended cases, with all of the various
factors defined explicitly, so that the formulae can be used as a reference without repetitive
rederivations. The usual ambiguities over emittance definitions and units and β, γ, g factors
should be resolved. The reader (or readers) is invited to discover any remaining errors,
ambiguities or misprints for removal in the next edition.

Nonrelativistic Envelope Equation

Under simplified assumptions (no transverse dependence, a round beam of radius a within a
perfectly conducting round beam chamber of radius b, and no resistive wall impedances), the
longitudinal space charge force can be written as:7

where q is the charge of the particles in the bunch (e for electrons, Ze for ions), λ is the number
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of particles per unit length, β, γ are the usual kinematic factors, and g = 1 + 2 ln(b/a) is "a
geometrical factor of order unity". Note that g ≈ 3—4 in typical accelerators; also, in ref. 3 and
some other references, a g factor that is smaller by a factor of 2 is used (g3 = ½ + ln(b/a)).
(These expressions for the g factor ignore radial dependences; observationally Wang et al.
observe g ≈ 2 ln(b/a).8) The force is made non-relativistic simply by taking E/m = γ ⇒ 1; that
approximation is used in reference 4. (We have used MKS units in eq.1; ref. 4 used cgs units for



electromagnetic force.)

In addition, there may be a bunching force due to a ramp in a longitudinal accelerating field.
This force may be written as:

where -E0'(s) is the local ramp in the longitudinal field and we have chosen to use a linear,
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position-dependent bunching force. The coordinate z is position with respect to the bunch center.
In reference 4, a self-consistent longitudinal distribution with an envelope equation was
developed, consistent with these force equations.

In ref. 4, the self-consistent longitudinal distribution for a particle bunch is written as:
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within the region in z, z' that the argument of the square root is positive (f = 0 outside). In
reference 4, position along the accelerator s is used as the independent variable (z' = dz/ds). z,
z' are particle coordinates, N is the total number of particles in the bunch. z0 is the bunch half-
length (full length = 2z0) or beam envelope amplitude. εL is the longitudinal emittance
(unnormalized) in z – z' coordinates. (Lawson8 includes an excellent discussion of this distribution
but unfortunately his equation 4.49 (in the current edition) contains a typo: the square root is
missing. His symbols are also somewhat different: his definition for N differs and his γ" refers
to the bunching force parameter and not the second derivative of the central beam energy.) The
bunch density profile corresponding to eq. 2 is parabolic:
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The equation for the beam envelope amplitude z0(s) is:



where A = q2g/(4πε0mβ2c2)= rqg/β2 (rq is the classical particle radius), and K(s)= qE0'(s)/(mβ2c2)
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indicates an external linear bunching force. Note that, with this bunch shape and bunching force,
the forces on individual particles are linear. We may write: 

as an equation of motion for individual particles in the bunch. Note that we have dropped
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relativistic factors in the motion.

Relativistic Envelope Equation

The above equations are adequate for heavy ions in linear motion. However for protons and
electrons, the motion is often somewhat relativistic, and it is desirable to change these equations
to include relativistic motion factors. Smith10 has given a (non-consistent) relativistic form of
the envelope equation; we will rederive it here in a self-consistent form.

It is somewhat tricky to obtain correct relativistic forms in all terms. To improve our chances,
we will switch to canonically-correct coordinates from the previous z–z' case, but retain position
along the accelerator, s, as our independent variable. Our variables are relative position z and
scaled momentum ∆, where ∆ = δp/(mc) = δ(βγ), and δp indicates the difference from the
central beam momentum. In these coordinates, the equations of motion are:

where K∆(s) = –q E'(s) /(m c2β) =β K(s). 
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Following the same method shown in ref. 4 (Take a wild guess and test it.), we can obtain a
relativistic envelope equation with a self-consistent distribution from the Vlasov equation. The
phase-space distribution function is:



where εN is the emittance in z–∆ coordinates and is invariant (normalized). Here z0(s) is the
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envelope amplitude and ∆p(s) = βγ3(d z0/ ds). The resulting density profile is parabolic:
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which implies a linear space-charge force.

The phase-space distribution is a self-consistent solution of the Vlasov equation:
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if z0(s), ∆p(s) are solutions of the envelope equations: 

 These can be combined into a single envelope equation (found also in Smith10):
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Note that the normalized (z–∆) emittance εN is related to the (z–z') emittance εL by εN = β γ3εL.
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If the central beam energy is unchanged (β, γ are constant), we can return to unnormalized
coordinates, obtaining the envelope equation:



which can be compared with the nonrelativistic fixed-energy envelope equation (5). The large
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factors of γ which appear in the force terms indicate that the nonrelativistic approximation
becomes somewhat inaccurate at relatively low energies for light particles. It is therefore more
desirable to use the relativistic forms. (The appearance of larger powers of γ in longitudinal
motion can be explained in terms of the appearance of a longitudinal mass (mγ3) rather than a
transverse mass (mγ) in the equations of motion.8  From eq. 7, we note that dz/dt = δp/(mγ3 ).)

An important parameter is the momentum width (or energy width) of the beam. z0 is the bunch
half-width, but ∆p refers to βγ3dz0/ds, in our current notation. A complementary momentum half-
width ∆0 can be obtained. A derivation for this expression can be obtained by rewriting the
argument of the distribution function as:
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The maximum value of ∆, ∆0, in this distribution is found from:
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This can be written in terms of the relative momentum spread (half-width δp/p) as:

The large factors of γ in the expression indicate that in semi-relativistic motion a relatively large
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momentum spread increase can occur with relatively small envelope-size motion. 

Circular Accelerator (Synchrotron) Motion

The equations of motion are somewhat modified in the case of motion in a circular accelerator.
In circular motion, the change in particle position with respect to time also depends on the
change in path length with momentum, and those changes in path length result from the



momentum-dependence of particle motion through the bending magnets and depend on the
accelerator transport design. That dependence is expressed in terms of the ring momentum
compaction factor αp = 1/γT

2, where γT is the "transition gamma". The equation of motion is
changed by:

where we have introduced the symbol ηp = 1/γ2 - 1/γT
2.
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Synchrotrons have an accelerating rf voltage per turn, V0 sin(φ) = V0 sin(h z / R), which provides
acceleration and bunching, where φ is the rf phase, h is the rf harmonic number and 2πR is the
ring circumference. In a linearized (short-bunch) approximation, this can be decomposed into
the acceleration of the bunch center (dγ/ds = e V0 sin (φs)/(2πRmc2 )) and a bunching term. The
bunching term can be written as:
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Developing an envelope equation in exactly the same manner as above obtains the equations:
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where we have used the symbol ∆S = βγ/ηp (dz0/ds) instead of ∆p to distinguish synchrotron from
linear motion. The distribution function would be the same as before, but with ∆p replaced by
∆S.
 
If the acceleration term is zero, this can be simplified, as above, to:

Nagaitsev et al3 have obtained an envelope equation for synchrotron motion but in somewhat
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different coordinates(t, scaled position, and relative momentum δ = δp/p) We will transform these
equations toward that form by using dt = ds/ βc and scaled position Z = z0 /βR as variables,



obtaining: 

We have redefined the rf voltage, using VB = -V0 sin(φs), to obtain the desired sign in that term.
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This equation can be simplified in form by changing emittance to Z-δ units (εZ-δ = εN/(Rβ2γ)),
expressing space charge in terms of the bunch current I = eβcN/(2πR), Ip = ecβ4γ3/(3πgηprq), A
= ηpheVB/(2πmc2γ):

This is similar to the form used in ref 3, eq. 11, but that form uses rms full-widths for bunch
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length and emittance, hence differ by factors of √2 and 2 in the formulae. g is also defined
differently by a factor of two, and ηp is handled differently. After these appropriate unit changes,
the expressions agree. Note that the sign of ηp is not handled in ref. 3 but is handled correctly
here (I think); space charge actually bunches the beam when the beam energy is above transition
( γ > γT). 

Discussion

The envelope equations described here can be used as an accurate first approximation for
longitudinal motion in any accelerator. As mentioned above, experimental groups at Maryland,
IUCF, and GSI have all observed longitudinal motion and envelope oscillations in very close
agreement with the present model. The self-consistent longitudinal distribution has been used
to initiate a modal analysis as a basis for instability studies11 ( as has also been done for
transverse motion, based on the Kapchinsky - Vladimirsky equation12). The dipole, quadrupole,
and sextupole modes have been observed at GSI, in close agreement with the predictions.6
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