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* 1 Introduction 

The CAP query system software at Fermilab has several major components, 
including SQS (for managing the query), the retrieval system (for 
fetching auxiliary data), and the query software itself. 

The central query software in particular is essentially a modified 
version of the "ptool" product created at UIC {University of Illinois at 
Chicago) as part of the PASS project under Bob Grossman. The original 
UIC version was designed for use in a single-user non-distributed Unix 
environment. The Fermi modifications were an attempt to permit 
multi-user access to a data set distributed over a set of storage nodes. 
(The hardware is an IBM SP-x system - a c~uster of AIX POWER2 nodes with 
an IBM-proprietary high speed switch interconnect) . 

Since the implementation work of the Fermi-ized ptool, the CAP members 
have learned quite a bit about the nature of queries and where the 
current performance bottlenecks exist. This has lead us to design a 
persistent object manager that will overcome these problems. For 
backwards compatibility with ptool, the ptool persistent object API will 
largely be retained, but the implementation will be entirely different. 

The proposed name of the new query program is [POPM], which stands for 
"Physics Object Persistency Manager". This name has not been settled on 
yet, but for the purpose of these notes, that is what we will call it. 
Once a name has been agreed upon, it will be changed here. 

This document is a summary of the current query program, followed by a 
detailed collection of design notes outlining our goals and concepts 
behind the [POPM] implementation. It is assumed that the reader is 
already familiar with the persistent object API, as implemented in the 
UIC ptool product. 

Also included in these notes are the currently understood serious 
limitations of the proposedsystem {section 7) . It is strongly 
recommended that potential users of [POPM] {or the original ptool for 
that matter) carefully read that part of the design notes. 

Please realize that these are a collection of notes. Even though they 
have been organized into a more or less document form, there are still 



holes and unanswered questions about the design and implementation of 
[POPM]. Even in the course of writing this document, more issues have 
become apparent. Such problems & issues have been pointed out wherever 
possible in these notes, but solutions in many cases are still 
forthcoming. 

* 2 Current situation 

First some background. 

** 2.1 UIC ptool 

The original ptool product came out of the UIC PASS project, under the 
guidance of Bob Grossman. The persistent object API originated with this 
product. 

The underlying implementation divided a 64 bit large persistent address 
space into "stores". The stores in turn were composed of "folios", each 
of which contained a fixed number of "segments". Folios were stored in 
regular Unix files, while stores were represented as a collection of 
these folio files, with the metadata contained in a special store "root 
file". 

A persistent pointer therefore was composed of 64 bits, which were 
divided into several fixed fields (adjustable actually via C preprocessor 
macros) . Each pointer contained: 

1) A store number field. Each store in a persistent space was guaranteed 
a unique store number. 

2) A folio number field, which identified which folio for the given store 
was being accessed. 

3) A segment number field, which identified the segment within the given 
folio. 

4) An offset, which identified the actual byte offset within the segment 
where the object was stored. 

To access persistent data, individual whole segments were mmap{)'ed into 
the address space of the ptool process. All of the mapped segments 
together composed a "slot cache" which was transparently controlled by 
the ptool implementation. The API defined a persistent pointer "type" (a 
class actually) which overloaded the C++ dereference operator ("->") such 
that use of it resulted in a look-up into the slot cache. If the segment 
containing the persistent object was present, a "real" pointer to the 
offset of that object within the segment was returned. If the segment 

_was not present, another segment of the slot cache was remapped to the 
correct segment of the correct folio in the correct store, and a "real" 
pointer to the object offset inside that segment was returned. 

Since persistent data was always mmap()'ed, sparse access was handled 
efficiently (i.e. only parts of the segment being touched would actually 
be faulted in), and modified data write-back was also automatic {the OS 
will recognize dirty pages and transparently perform the needed 
write-back into the folio file) . 

** 2.2 Fermi-ized ptool 

The Fermilab CAP effort viewed ptool as a possible way to efficiently 



organize the immense amounts of data that experiments need to have online 
for their data mining requirements. However the system we had to work 
with was an IBM SP-2 system. It is a machine composed of RS/6000 CPUs 
interconnected by a high-speed message passing switch. The disk storage 
is physically distributed across the I/O nodes. There is no "single 
system image", in that each node looks unique, and disks are only visible 
on the local node where the particular disk(s) were attached. 

We looked at the UIC ptool product and sized up our situation on the 
SP-2. The following problems were found: 

1) The ptool implementation used mmap, which will only work with locally 
visible file systems. The I/O disk file systems were not visible 
outside of the I/O nodes {unless NFS was used, but this caused other 
problems) . 

2) Processes using the switch must all be started at one time, and must 
finish as a unit. There was no capability to model a system where a 
set of servers would always be running on the I/O nodes and query 
processes would be able to come and go according to the demands of the 
moment. 

3) The API for accessing the switch in its "fast" mode only permitted one 
process per node; multiple processes on a single node were not able to 
implicitly share switch access. TCP/IP over the switch was available 
as an alternative {which then conceivably could have allowed solving 
issue #1 with NFS) , but this lowered the available maximum bandwidth 
to about 8MB/sec (going directly permitted up to 30MB/sec) . We 
determined that penalty to be too high. But the "fast" mode was also 
problematic because we really needed to be able to run multiple 
queries on a single node. 

We finessed issue #1 by eliminating mmap{) and doing explicit reads into 
the former slot cache data slots. Writes were not permitted, meaning 
that the distributed system was not able to modify any stores. Instead 
the stores I folios were created using the conventional ptool with mmap{) 
running on a local node; then the store files were explicitly spread out 
to the I/O nodes via a standard Unix rep command. 

Issues #2 and #3 were worked around by implementing a set of static 
servers that ran 100% of the time on all nodes. On the compute nodes, 
the servers created SYSV IPC message queues & shared memory through which 
query processes would request segments containing persistent objects; in 
that fashion queries could come and go just by using the message queues & 
mapping the shared memory. When segments were fetched, the local server 
would copy the segment into the shared memory, and the requesting ptool 
process would then use point to that as the slot cache data. On the I/O 
nodes, I/O servers listened for messages from the switch and then 
performed the operation, forwarding the results back to the compute node. 

The solution on the surface appears sound, but it had many problems. The 
biggest one recognized first was that when a single query was taking 
place, there was no parallelization of I/O. A query running in this 
fashion would pound on the I/O nodes in sequence as it scanned through 
the folios of a given store. The net result was that I/O throughput 
could never surpass the rate of one disk drive. 

To overcome this bottleneck, a read-ahead strategy was implemented on the 
I/O nodes. Whenever a ptool process started sequencing through a store, 
all the I/O nodes attempted to analyze the access pattern. If it was 



sequential, then the I/O nodes would attempt to read-ahead so as to 
effectively parallelize the disk access. The read-ahead depth would 
depend upon how many read-ahead streams were running and how much memory 
was available on the I/O nodes. Multiple disk reader processes were 
implemented to make overlapped I/O possible on the I/O nodes. 

This worked to some degree and the overall I/O throughput increased. 
However it still had problems. The biggest problem was that since 
segments were assigned sequentially through the folios and that folios 
(at this time) were 4MB, then at least 4MB times the number of disks per 
I/O node times the number of I/O nodes was required. For example, with 4 
I/O nodes and 4 disks per I/O node, then 64MB of read-ahead depth over 
all the I/O nodes was required for maximal efficiency. The I/O nodes 
only had 64MB of physical memory each, and only about half was available 
for disk buffering! Most stores were not even big enough to benefit from 
this. For example, if a store was only 4MB in size, then only one folio 
could be used and there would be no chance for efficient read-ahead. 

This system suffered from other major problems as well. To list a few: 

1) When a server on a compute node is fetching a segment, it is 
completely blocked. No other query processes on that node will be 
able fetch in parallel. This effect severely restricted the potential 
utilization of the switch. 

2) When a server on an I/O node is performing a fetch, no other compute 
node servers would be able to talk to it. In other words, an I/O node 
server is completely locked to the requesting compute node server when 
a transaction is taking place. This further restricted switch 
utilization, and created a bottleneck on each I/O node. A better 
approach would have been to look for other requests during the time 
that the disk is being read for the current request. 

3) The basic striping unit in this system is the folio. This meant that 
to increase striping efficiency, the folio size had to shrink. If the 
segments had been sequenced _across_ the folios instead of within 
them, then the effective striping unit size would have been the 
segment. This would have enabled far better read-ahead behavior 
because the read-ahead depth per I/O node would only need to be a few 
segment's worth, instead of whole folios. In addition, small stores 
would then still get the maximum read-ahead benefit. 

4) The read-ahead buffer is on the I/O nodes. Assuming problems #1 and 
#2 didn't exist, then placing the read-ahead buffering in the compute 
nodes would have opened up opportunities for more overlapped I/O over 
the switch, which would have allowed us to better utilize the switch 
thereby raising the effective bandwidth. This technique would also 
have permitted us to bury all of the intervening latency - switch 
latency, I/O node process context switch latency, and several 
memory-to-memory copies worth of latency. Finally, placing the 
read-ahead detection logic in the compute nodes will significantly 
simplify the implementation. 

S) Several memory-to-memory copies were taking place that could have been 
avoided. 

** 2.3 Summary 

That's the current situation. These design notes suggest a new design 
that should eliminate nearly all of the above bottlenecks, lift many of 



the inherent limits (of both UIC ptool and the Fermi specific limits) , 
and at the same time provide for a much cleaner implementation. 

The following sections detail the new concepts, implementation ideas for 
these concepts, and a rough analysis of how this will significantly 
enhance overall performance of the system. 

* 3 New concepts 

Listed below are the new concepts and ideas relative to the original UIC 
ptool product. Implementation ideas relative to the concepts are also 
provided where appropriate. 

** 3.1 API enhancements 

It is the goal of [POPMJ that it should be possible to run programs 
originally written for ptool with little, perhaps zero, modifications. 
However it is felt that some aspects of the persistent object API impose 
unnecessary limitations on the system. Explained below are [POPM] 
concepts that enhance the original persistent object API with the goal of 
improving both flexibility and performance of the system. 

Note that these concepts are additions to, not modifications of, the 
original API. 

*** 3.1.1 Flexible persistent pointer bit fields 

The UIC ptool product hard-codes the bit field allocations {i.e. maximum 
folios per store, maximum segments per folio} in a 64 bit persistent 
pointer at compile time. Unfortunately, that doesn't provide enough 
space in some cases. [POPM] will implement a more flexible scheme, where 
the store number size is encoded into the upper two bits of the 
persistent pointer {like IP address classes}, and the remaining bit field 
sizes are defined in the store's metadata when the store is created. 
This will permit pushing any edge of this address space "envelope" at run 
time, on a store-by-store basis. Note that with the upper 2 pptr bits 
set to zero, and appropriate parameters for the other sizes, 
compatibility can be maintained with store data created by the existing 
UIC ptool. 

In addition, the lower 32 bits are no longer reserved for just the offset 
portion of a persistent pointer. It is really unlikely that segments 
could ever be 4GB wide (in fact, the segment size will be fixed by 
[POPM]}. Folio number and segment number fields now also may occupy part 
of the lower 32 bits, significantly increasing flexibility even further. 

Previously, the lower 4 bytes mapped an offset within a segment, while 
the upper 4 bytes specified store number, folio number, and segment 
number. Now, the store number field size is determined by the upper two 
2 bits, the offset field size is fixed to 16 bits (assuming 64KB 
segments; see section 3.3.2 for details}, and the remaining bits are 
available for allocation as any combination of folio number and segment 
number bits. Here is a map of a 64 bit persistent pointer, showing the 
three cases of how the store number is mapped: 

Olssssss ssssssss ssssxxxx xxxxxxxx xxxxxxxx xxxxxxxx 00000000 00000000 
OOssssss ssssssss xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 00000000 00000000 
lsssssss xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 00000000 00000000 

The lower 2 bytes {11 0 11
) map an offset within a segment. The remaining 6 



bytes are divided into a store number part ("s") and a folio I segment 
number part ("x"); the upper 2 bits control that division. The exact 
division between folio & segment number is progranuned on a per store 
basis (like the segment size). Note that like TCP/IP IP numbers, the 
size of the upper field is determined by the top two bits, thus 
maximizing flexibility. 

Variation on the theme: 

About the only thing in the above definition that is hardcoded is 
allocation for the store number field. There is a way to make that 
totally flexible however. The answer is to maintain some address-space 
specific metadata (see section 3.1.3 on multiple address spaces) that can 
be used to find the store number field. When a [POPM] application sets 
its address space, this metadata can be read. With this ability, the 
store number field can be made completely arbitrary. 

This last bit is just a thought for now; the metadata required would have 
to be stored in the address space-specific dbmap file, and there is some 
issues remaining about how that file will be formatted & accessed. For 
now it's best to keep this idea out of the dbmap file and employ the 3 
class approach. But we can change to this other store number approach 
fairly easily down the road, once the dbmap issues are understood. 

*** 3.1.2 Physical pointers 

Though the persistent pointer dereference overhead isn't too much, it is 
still too heavy when running codes that populate object stores. In this 
case, _every_ field of a given object is going to be dereferenced 
(assuming the use of a null constructor - see section 7.2.2 for the 
explanation) , resulting in a very large number of redundant executions of 
the dereference operation. 

[POPM] implements a new element to the API called a "physical pointer". 
It can effectively hold onto a pre-dereferenced persistent pointer. 
Accessing data through a physical pointer is very fast; in fact the 
access function is merely a single type cast. With this new API concept, 
population code will only take a hit of 1 actual dereference per object 
instead of 1 dereference per object member per object. 

This also addresses a problem with persistent pointer lifetimes, a 
subject discussed in section 4.4.4. 

*** 3.1.3 Multiple address spaces 

In the UIC persistent object design, all object stores effectively reside 
in a single large 64 bit address space. Because of the single address 
space, there is little isolation between stores. For reliability, 
policy, and practical reasons there must be an ability to support 
multiple address spaces. [POPM] will explicitly provide this. 

Before any store can be opened in a [POPM] application, the address space 
must be selected - either via some kind of global function in the 
program, or perhaps through an environment variable {some kind of 
permission checking mechanism may also be employed here) . Once the 
address space has been picked, stores may be opened and accessed in the 
usual way. Though it is not possible for a single [POPM] application to 
have concurrent access to multiple address spaces, a running query system 
can have different [POPM] processes running, each using different address 
spaces. 



Multiple address spaces will allow several different data models to be 
imported onto the system at once, and will also.allow different 
experiments to coexist on the same system. 

*** 3.1.4 Persistent pointers as templates 

Instead of a macro (PPTR) to define a persistent pointer to a given 
object type, [POPM] will use a more natural template instead. Presumably 
the original authors of UIC ptool had intended for this to be a template, 
but compiler technology at the time wasn't quite up to the task. 

The template will be designed to eliminate code bloat problems usually 
associated with template classes. How? By using a non-template base 
·class which contains all of the persistent member functions. The 
template class will just be short inline code containing only a few type 
casts. It should compile down to virtually nothing. 

** 3.2 Distributed implementation 

The UIC ptool product provides local mapping to store data for a single 
process at a time. Portions of local files are mmap()'ed into the 
process address space as the program runs. This is a fine approach, but 
it is not appropriate if the desire is to raise I/O throughput beyond 
what a few disks on a single host can provide. 

One of the goals of [POPM] is to provide an inherent ability to 
distribute and stripe store data across multiple hosts in a cluster. 
Assuming a fast (i.e. > lOMB/s) interconnect, it should be possible to 
have an effective I/O throughput for a single query that far exceeds what 
is possible on a single node. In addition, the distributed approach 
should also permit efficient scaling up and sharing of I/O throughput as 
more [POPM] applications run. 

Sections described here below explain t~e new concepts that should make 
this fast distributed I/O possible. 

*** 3.2.1 Explicit I/O with dirty flags 

The UIC ptool implementation employs an internal "slot cache" containing 
the last few segments that were mapped in response to the dereferencing 
of a persistent pointer. Each slot cache element is in fact an mmap() 'ed 
section of a folio file. 

In a distributed implementation, use of mmap() is no longer possible 
because the files being accessed are no longer directly accessible to the 
local node. The [POPM] implementation will instead perform direct reads 
& writes to existing memory in the slot cache. 

There are two advantages to using mmap() over the direct reading and 
writing of file data: 

(1) Since the mmap()'ed page can be demand-faulted in, extraneous disk 
activity can be avoided if only a small part of the segment is ever 
touched. 

(2) Writes are automatically optimized because the virtual memory 
subsystem of the Unix kernel will only write-back pages which have 
really changed by the system when the segment is unmapped. 



The [POPM] implementation does not try to solve issue (1); it is believed 
that there would be nothing to gain anyway because a) reads over the SP-2 
system's switch are optimal when large blocks are read, and b) It is 
likely that most of the segment will probably be touched anyway by the 
application. 

Issue (2) is a different story. The [POPM] implementation will in fact 
be able to efficiently determine when a segment needs a write-back at 
appropriate times by: a) modifying the slot mapping protections such that 
it is read-only, b) catching a SIGSEGV if an application attempts 
modification, and c) setting a "dirty flag" & re-enabling read/write 
access for the slot in the SEGV handler if the faulting address was 
within a protected slot AND the store was opened in a writable mode (and 
then of course allowing the handler to return and the application to 
continue) . The dirty flag can then be used to execute a write-back when 
the slot needs to be re-cycled. Note that it will also be possible for 
the application to explicitly force the dirty flag in certain cases when 
it is known that a write-back will be needed (i.e. for newly created 
segments) . Thus the signalling and protection changing overhead can even 
be avoided in these situations. 

With the ability to write-back segments in this fashion, then it will be 
possible to populate distributed object stores far more efficiently than 
is currently being performed. 

*** 3.2.2 Slot cache in shared memory 

[POPMJ employs a slot cache, but it is no longer fixed in size, and is 
instead placed into a large block of shared memory. The size would be 
considerably larger, probably 128 or 256 entries @ 64KB/slot. All [POPM] 
applications running on a single node share the same slot cache. 

This approach has two notable benefits: 

(1) It now becomes possible to dynamically partition the number of slot 
cache entries to each process according to demand. For example, if 
only one [POPM] process were running, it would be able to use all of 
the slots of this much larger cache. As more [POPM] processes run on 
a node, the cache would be divided among them. If a particular 
process happens to have a larger "working set" (if this concept is 
even useful; not sure yet), then it may get proportionally more slot 
cache entries. 

(2) A memory-to-memory copy is avoided. This is important since the slot 
I/O is performed with explicit reads & writes instead of direct file 
mapping. Note that the actual reads and writes will be performed by 
external server processes (see the implementation section for an 
explanation) . Since the slot cache data is externally visible to 
other processes, there is no requirement for an extra copy operation 
into (or out of) a [POPM] process's internal data segment when a slot 
is read (or written) . 

*** 3.2.3 Segment read-ahead 

Read-ahead is a concept where the underlying system attempts to 
anticipate the needs of the application and brings in the next few 
segments before they are actually asked for, thus eliminating any wait 
when the segment data is finally neededt Enabling multiple segment reads 
to run concurrently with the operation of the application therefore 
reduces process blockage due to segment waits, and also opens up 



opportunities for parallelizing and overlapping I/O into the system. 
Read-ahead results in some very significant benefits, so it pays to 
provide it. 

The UIC ptool product does not provide any kind of explicit read-ahead. 
The current Fermilab-modified multi-node version of the UIC ptool 
implementation does provide it, but it is not correctly implemented. The 
rest of this section compares [POPM] read-ahead to the current Fermi 
implementation of read-ahead: 

The Fermi-modified ptool does its read-ahead at the level of the I/O 
nodes, which has several drawbacks: 

1) Detection of read-ahead is performed in the I/O nodes by analyzing the 
pattern of access from a given client. Presumably, the choice to do 
it in the I/O node was on the belief that the right place for 
computing the amount of read-ahead should be where it is possible to 
balance the amount of available memory in the I/O node. However the 
detection is more difficult here, and the memory size of the I/O node 
becomes irrelevant when the actual read-ahead cache is kept in the 
compute nodes. 

2) All read-ahead parallelization & caching is only happening in the I/O 
nodes. Unfortunately, this scheme does not allow for any overlapped 
parallel I/O outside of the actual I/O nodes {i.e. in the switch path 
or on the compute nodes) . 

[POPM] will implement read-ahead in the application process itself, where 
it is easier to detect, and where it will do the most good. When a user 
application starts sequencing through a list, read-ahead can be 
performed. When this happens, [POPM] sets up and requests reads for 
multiple segments, instead of the one being blocked on {but continues as 
soon as the blocked-on segment arrives) . The amount of read-ahead is 
again a function of available memory, but this time it is the slot memory 
in the compute node, not the server. And since the memory at issue is 
simply the slot cache, this is made easy. Remember that a single slot 
cache is now being shared by all [POPM] processes on a node. 

Another problem the Fermi implementation has is that no parallelization 
can occur at all if the read-ahead distance does not exceed the size of 
one folio. This is because when reading ahead only a few segments, all 
of the reads are going to be within a single folio file, since there is 
no striping of segments across folios. In order to cause parallel 
accesses, therefore the read-ahead distance must be large (4MB/folio in 
typical use, meaning more than 64 segments of read-ahead is required). 
[POPM] will implement segment striping {see section 3.3.1). This will 
permit much better read-ahead performance with smaller read-ahead 
distances {as little as 2 segments worth of read-ahead can be distributed 
over multiple I/O nodes) . 

*** 3.2.5 Storage units & folio striping 

First, a sidebar about "storage units": 

A distributed I/O system is composed of one or more I/O nodes. Each 
I/O node is a CPU connected to one or more "storage units". The 
storage unit is the defined unit of I/O striping, namely that I/O 
operations pending to different storage units should in theory be able 
to proceed in parallel. I/O operations pending to the same storage 
unit will always be scheduled sequentially, one after another. 



Typically, a storage unit is a disk drive. 

So, given the above, then for example a distributed I/O system composed 
of 8 I/O nodes with 4 disks on each node actually contains 32 "storage 
units". 

With that concept understood, examine now the issue of distributing 
persistent store data across an I/O system. The UIC ptool implementation 
of course was not designed with this in mind since it doesn't allow 
distributed data, but [POPM] is intended for exactly this use. 

In [POPM] , distribution of the data means spreading the folios evenly 
across the storage units. So what is the pattern to the scattering? 
There are two cases that determine how to locate the folios: accessing 
existing folios, and creating new ones. 

When accessing existing folios, they are allowed to exist on arbitrary 
storage units; the [POPM] implementation will always be able to locate 
the proper storage unit when a given folio is required. This means of 
course that all folio file names must remain unique across all candidate 
storage units. 

When creating new folios, the initial location is determined via an 
algorithm, whose parameters are set when the store in which the folio is 
a member is created. The parameters are as follows: 

a) The set of storage units over which store data is distributed. 
Logical storage unit numbers are assigned to each storage unit in 
sequence according to the order of declaration. For example, if the 
following storage units (using semi-arbitrary naming conventions) 
"capfcnl: /spoolO", "capfcnl: /spooll", "capfcn3: /spooll", 
"capfcn5:/spool2" were declared when creating store "foobar", then the 
following association is created for numbering the logical units: 

capfcnl:/spoolO 
capfcnl:/spooll 
capfcn3:/spooll 
capfcn5:/spool2 

--
--
--
== 

unitO 
unitl 
unit2 
unit3 

b) The horizontal striping factor. This determines how many "striping 
groups" there are. The horizontal striping factor is the number of 
logical storage units to group together per striping group. For 
example, a horizontal striping factor of 2 in a set of 8 logical 
storage units results 4 striping groups, each containing 2 storage 
units apiece. NOTE: The number of logical storage units declared for 
the store must be an even multiple of the horizontal striping factor. 

c) The vertical striping factor. 
assigned to each storage unit 
a vertical striping factor of 
apiece. 

This determines how many folios are 
in a striping group. For example, with 
2, each storage unit will get 2 folios 

Assignment is made in order of horizontal striping factor first, then by 
vertical striping factor (this is unfortunately different than the 
segment striping since the limit is the number of storage units, not the 
size of a storage unit - see section 3.3.1). If all of the striping 
groups fill up, then assignment starts again back at the first striping 
group. Here's an example numbering scheme: 



Horizontal striping factor: 4 
Vertical striping factor: 3 
Number of storage units: 8 

unitO 
0 
4 
8 

24 
28 

unitl 
1 
s 
9 

2S 
29 

unit2 · 
2 
6 

10 
26 

unit3 
3 
7 

11 
27 

unit4 
12 
16 
20 

units 
13 
17 
21 

unit6 
14 
18 
22 

unit? 
15 
19 
23 

Again it is important to note that this rigid organization is only 
employed when _creating_ the folios; once they are created they are 
allowed to exist in any organization. Folios may be freely shifted 
around and the system will still be able to function. The reason for 
this is that if a storage unit fails, the folios it contained can be 
restored onto other storage units without impacting the overall data 
integrity. 

The information describing the folio striping organization is stored as 
part of the store's metadata. 

** 3.3 Other performance enhancements I differences 

*** 3.3.1 Segment striping 

In the UIC ptool implementation, segments are numbered within folios 
first before going to the next folio. Contrasted with that, [POPM] 
stripes segments across groups of folios. For example, segments can be 
striped within groups of four folios at a time. This should permit much 
finer grained scattering of the data across disks and open up much better 
opportunities for the read-ahead logic. 

The horizontal striping "factor" for a given store defines the number of 
folios that make up a striping group. Striping groups are composed 
starting from the first folio in the store. Segments are striped across 
this group until the folios are filled, at which point the next striping 
group is used. 

For example, with a horizontal striping factor of 4, the segments would 
be ordered like (where n= number of segment bits in the pptr): 
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In addition to horizontal striping, [POPM] will allow for a vertical 
striping factor associated with the store metadata. This defines the 
number of consecutive segments to assign to a folio before moving to the 
next horizontal stripe. The above example therefore assumed a vertical 
striping factor of 1. With a vertical striping factor of 2 however, it 
would change to: 
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It is not certain whether the vertical striping factor will allow for any 
kind of performance improvement; what it does is to effectively increase 
the chunk size of the stripe. 

Important note: Though the terms are similar, this striping information 
is _not_ logically the same as that used for the folio striping as 
described in section 3.2.5. Why? Because folios have a fixed size, 
which is different than the "storage units" described as part of the 
folio striping, which logically don't have a size limit. Also note that 
though there is no (effective) limit on the number of folios, the number 
of storage units by comparison is small and fixed up front. In other 
words, the segment striping algorithm has a fixed overall vertical 
dimension, but an arbitrary horizontal dimension. The folio striping 
algorithm however has an arbitrary vertical dimension but a fixed 
horizontal dimension. Therefore the striping description has to be 
different. 

Note that a horizontal striping factor of 1 (with any arbitrary vertical 
striping factor) would result in a segment layout that matches the 
original UIC ptool. 

*** 3.3.2 Non-adjustable segment size 

Per-store adjustment of the segment size is not permitted in [POPM] . All 
segments will be a fixed size (the exact value is not quite decided yet, 
either 64K or 128K). Why do this? It _significantly_ simplifies the 
underlying implementation. This point is very important; the _entire_ 
implementation described in section 4 of these notes hinges on a large 
central fixed array of slots. By its very nature, this array has a 
characteristic "slot" size, which is the segment size. Slots are 
dynamically swapped among stores and query processes as the demand 
warrants (see section 4) . To permit a per-store segment size would 
severely complicate this slot sharing behavior, as now slots would have 
to change size as they are swapped around. 

A possible way to do this might be to divide storage for large segments 
into smaller ones (along power of 2 boundaries} as required by store's 
segment size. However this may lead to fragmentation problems - a large 
segment may be needed when then aren't enough continuous fragments to 
assemble one. In addition, this doesn't even begin to address the 
allocation policy of such a system, nor the problem of guaranteeing 
enough segment header control "elements" (see section 4.1.1). Another 
possible way to accomplish this might be to just declare an very large 
slot size and just not use all of it for smaller segments. However this 
just wastes space, and still imposes an upper limit on the segment size. 
The price for allowing variable length segments is just too high. 

Given a fixed segment size, then what size is appropriate? The size must 
be reasonably large in order to permit efficient distributed I/O, but not 
so large that useless data is always being read in. Also keep in mind 
that since the smallest unit of striping is the segment, that if segments 
are too large then striping will also suffer. 

There is a hidden problem here: It is impossible to permit objects to 
cross segment boundaries. This is a limitation inherent in the 
persistent object API. Therefore it is a limitation in the UIC ptool 
implementation, and will also be a limit with [POPM] . The problem is 



that the compiler hides the information about the offset within the 
object that is being dereferenced, meaning that if an object crosses a 
segment boundary, the implementation is unable to tell which side of the 
boundary the particular dereference really needs. Therefore segments 
must be as least as large as the largest object in the system. There is 
no way around this without significantly altering / damaging the 
persistent object API. 

The segment size will (for what it's worth) be a compile-time constant 
for [POPM] . 

*** 3.3.3 Store migration 

[Note: This concept is very new; at the current time very little work is 
being done to address it.] 

The underlying storage format of data as defined by the persistent object 
API, is not very portable. Three major factors affect the format: 

1) Folio size. The correct choice for folio size depends largely on the 
medium of storage. For example, disk-based folios are best kept 
relatively small (i.e. 5 to 20 MB), but folios coming off of a 
robotic-tape backed HSM should probably be much larger (i.e. 100 to 
200MB). An incorrectly chosen folio size will not render the object 
data unreadable, but performance may be suboptimal: disk based folios 
that are too large may not be stripable because the entire store will 
fit into a single folio, and tape based folios that are too small may 
result in excessive tape seek overhead. 

2) Segment size. The correct choice for segment size depends on the 
communications medium between storage units and the compute nodes. If 
the size is too large, communications & disk bandwidth will be wasted 
because data will be fetched that is never used. If the size is too 
small, communications overhead & disk latency will dominate and 
bandwidth will suffer again~ One other implementation aspect of this: 
since objects may not cross segment boundaries, segments must at least 
be large enough to hold one complete instance of a single object, 
meaning that object sizes are also limited by the segment size. 
Because of these problems, differing segment sizes may be employed on 
different platforms. Since the segment size is fixed in [POPM], 
reading other object data sets with different segment sizes will 
require a recompile, making portability a problem. 

3) Architecture & compiler dependencies. The CPU byte order can be 
different, and different compilers may pad object structures in 
completely different ways. 

Factor (1) makes portability merely uncomfortable. Factor (2) is worse 
than uncomfortable. Factor (3) renders object data portability 
impossible, in the "native" format. 

The native UIC ptool product does not address these issues. [POPM] will. 
Here's how. There will be a method I procedure I function in [POPM] for 
migrating stores, importing stores, and exporting stores. 

For store migration, one needs only to rewrite the store in the new 
organization. The output format is still the same (i.e. native), but the 
organization can shift, which means it will be possible adjust the 
store's metadata (i.e. striping factors & folio size). 



An example of store migration would include situations where a store 
currently in object format on an HSM (large folio sizes, no striping) 
would be moved to a distributed disk system (small folio sizes, extensive 
striping). Another example might include re-striping a store across 
additional I fewer storage units (i.e. changing the segment striping). 

For store import I export, an entirely new file format is needed. This 
format would have to be stream-based, with no padding, and embedded 
metadata describing the structures. The format would not have to be 
"efficient" in terms of accessibility, but it should be efficient with 
respect to compactness. The idea here is that an import I export program 
could be designed that would read & write this new format. Then to move 
store data from one platform to another, export it to this stream format 
at the source, and import the stream back into native object format at 
the destination. · 

This approach will solve all but one problem: too small of segment size. 
If the source object store has any objects that are larger than the 
segment size of the destination, the operation will fail. The only way 
to solve this problem is to either (a) make it possible to easily vary 
the segment size (not easy - potential big efficiency hit) , or (b) make 
it possible for objects to cross segment boundaries (impossible to do 
without changing the API - the compiler hides the object offset being 
read when a persistent pointer is being dereferenced) . 

There is no proposed implementation yet of the import I export process. 
There are a few unsolved problem. For starters, the object data 
structure must be known to [POPM] in order to import or export them. 
This information is lost once the object source code is compiled. A 
possible solution would be to require import I export member functions 
for the persistent objects. This changes the API though. 

The migration process can be performed without direct knowledge of the 
object data structures. 

In the current system at Fermi, the import I export function is 
effectively being done now by using Zebra format as the import I export 
format. This idea does not of course eliminate the Zebra format (since 
the original source data is Zebra format), however implementing it will 
make [POPM] more generally useful. 

* 4 Implementation 

The following sections attempt to put the above concepts into 
perspective, and show how a large query system can be efficiently 
implemented, specifically on the SP-2 hardware. 

** 4.1 The big picture from a single node perspective 

For the sake of simplicity, a single node system is first assumed. With 
a single host, the message passing layer and I/O servers processes are 
not relevant. After the single node configuration is discussed, the 
explanation will be expanded to show how its works in the multiple node 
configuration. 

The following elements exist in a single node query system: 

Shared slot cache - Repository for all slot data, slot control 
information, process control information, and node-global control 
information. Only one instance of this exists, and it is mapped by 



all processes in the system. (This was introduced in section 3.2.2.) 

Disk slave - Performs the actual segment fetching / writeback with the 
physical system. The disk slave functions by locating a slot with a 
pending I/O status and performs the requested operation. There may 
be any number of disk slaves running in parallel on a node 
(presumably a good number that maximizes overlapped I/O is 2 disk 
slaves per storage unit). With multiple disk slaves, multiple slot 
reads I write may be taking place at once. The disk slave is always 
doing one of two things: Either it is looking for work or it is 
performing I/O. 

Query process - This is the analog to the current ptool program instance. 
Each running query process represents one running query. Segment 
data is accessed in the shared slot cache. 

Shared memory manager - This is the process responsible for maintaining 
overall integrity of the system (for this node) . It has two main 
jobs: (1) Managing allocation of slots, and (2) cleaning up after 
query processes when they exit. 

Here is how the pieces fit together for a single node: 
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(Fig 1 - single CPU system) 

Here's how operation normal.ly proceeds: 

1. A query process derefences a persistent pointer. This results in a 
hashed search of its allocated slots. If the slot is present, a 
pointer to it is generated and the operation is complete. 

2. If the slot is not present, the query process allocates a new slot 
(from a free list} , and fills in the control information indicating 
what segment of what file is required. 

3. At this point, a disk slave sees the request and performs the 
requested I/O. 

4. When the I/O operation is complete, the query process generates a 



pointer to the new data and the operation is complete. 

There are of course many other important details that make this concept 
efficient, but we'll get to that in the relevant sections further on. 

Following are sections describing the above parts in detail. 

*** 4.1.1 Shared memory 

The shared memory contains more than just slots. It is actually composed 
of 3 major sections: . 

Slots - There is a fixed size array of slots (expected to be around 128) . 
The array is actually two parallel arrays: One for the actual slot 
data, and one is a "header" for the control information. The slot 
data in reality will be contained in a separate block of shared memory 
(for page alignment and other implementation reasons), however 
logically it is part of the same overall block. The slot control 
information consists of fields describing the slot contents, fields 
describing any pending operation, and various linked list pointers for 
use by other data structures. 

Process control blocks - This is a fixed size array, where each element 
represents a process that is using the shared memory. Whenever any 
process maps the shared memory (be it a disk slave, shared memory 
manager, query process, etc), it must allocate an element of this 
array and fill in the requisite information. This enables certain 
forms of locking that are required, permits per-process linked-list 
data structures to be assigned, and gives the shared memory manager a 
means to learn about all processes in the system. The size of this 
array limits the number of processes that may connect (but the element 
size is small so we can make this very large without significant 
penalty) . 

Global control information - This is a single data structure containing 
various fields for controlling the overall system. Examples. of some 
of the global information include a linked list of free slots, a 
linked list of slots pending for reads, a linked list of slots pending 
for writes, a linked list of disk slaves waiting for work, counts of 
the number of processes in the system, and the key value for the slot 
data shared memory block. 

Just to further cement this description, here is an illustration of the 
logical layout of the shared memory slot cache {with N process control 
blocks and K slots) : 
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. . . . 
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(Fig 2 - shared slot cache layout) 

*** 4.1.2 Disk slaves 

As said before, disk slave processes are responsible for actually 
shipping segment data to I from persistent storage. Logically, a given 
disk slave process is always looking for a slot with a pending I/O 
operation. Upon finding one, it performs the request, leaving the 
results (completion code plus data if a read} in the slot. Disk slaves 
are always looking for I/O to perform. Since there is no real limit on 
the number of disk slaves, and since a single operation can be completely 
described in a slot and performed by a single disk slave, then the 
maximum number of parallel I/O operations is limited only by the number 
of disk slaves or the number of slots (whichever is less} . 

The actual implementation is more efficient than this description 
suggests. In reality, all pending I/O operations are collected in a few 
linked lists (pending reads, pending writes, and pending reads with 
priority} so no searching is required. In addition, when a disk slave 
fails to find any work to do, it will put its process control block onto 
a linked lists of disk slaves waiting for work and then wait for a 
signal. When a new I/O request becomes pending, the first PCB on that 
list will be pulled and signalled. So there actually won't be any 
busy-waits either. 

It is interesting to note here that no assumption has been made about 
what kind of storage actually exists at the other side of the disk slave. 
Certainly, a Unix file system may be trivially employed. But a raw disk 
partition could also be used (with the disk slaves imposing their own 
file system} - this might be considerably faster when one considers that 
since the slot cache is effectively _the_ cache, then the Unix buffer 
cache will probably be wasted. An HSM could also be employed as the disk 
slave back end ... 

*** 4.1.3 The [POPM] client library (query process} 

The [POPM] client library, when linked with query code, becomes the query 
process. It is at this level where the persistent object API exists, and 
it is at this level where all the persistent object specific concepts are 
implemented. 



All persistent pointer dereferences performed in the query are translated 
to segment addresses. In concept, this address is used to locate a slot 
in the shared cache, and pointer to it is used by the query code for 
accessing the persistent data. 

In practice, much more than that will be happening. The following 
important algorithms I concepts are also a part the query process: 

Hashed segment search - In order to make persistent pointer deref encing 
as fast as possible, the 64 bit pointer is first changed to a tag (by 
masking off the off set portion) and that tag is hashed to a chain 
contained in the query process's PCB (Process Control Block in the 
shared slot cache) which is then linearly searched for a previously 
set slot tag matching the computed tag. This operation needs to be 
extremely fast, hence the tags and hashing. Hopefully with a good 
hashing function and enough hash chains, the linear search should 
only average one or two lookups. 

Slot allocation - Shared slots are in reality private to a given query 
process instance (but they are in shared memory to allow for dynamic 
balancing and to eliminate extraneous copying when fetched I 
returned). A list of the slots that a process "owns" is kept in the 
PCB for the process. Query processes must therefore allocate empty 
slots from a free list of slots kept in the global section of the 
shared memory. If that list is empty, the query process must wait 
for more slots to become available, by placing itself on a 
resource-wait list, signalling the shared memory manager, and then 
blocking until a signal is received. 

Slot stealing - The shared memory manager is able to steal slots from 
query processes. It does this in order to keep the free list at an 
optimal level. This behavior means that it is possible for slots to 
"go away behind the back" of the query process. To guarantee correct 
behavior under this circumstance, a locking mechanism must be 
employed. The "physical pointer" concept described in section 3.1.2 
is a natural consequence of this. But there's a more sinister 
problem lurking - if an "old style" persistent pointer is directly 
dereferenced, there is a period of time when the query process has a 
direct pointer into the slot but no lock to protect it. Remember 
that the API provided by the UIC ptool implementation did not provide 
for the concept of a pointer dereference lifetime. If the timing 
were really bad, the shared memory manager could yank back the slot 
before the qliery process has a chance to read the required data from 
it. To solve this problem, a single global lock (actually an 
instance of the base class for the physical pointer) is employed. 
This lock is always used for the last persistent pointer 
dereferenced, in other words the last slot pointed to always remains 
locked. When another dereference takes place, the global lock is 
released from that last slot and reset to the newly dereferenced 
slot. This guarantees validity for persistent pointer dereferences 
up until the next persistent dereference, and has an effect similar 
to the UIC ptool implementation - actually we can mimic the UIC ptool 
pointer lifetimes by using an array {of size equal to the old slot 
cache) of global locks with a circulating pointer to the next to 
reset. 

Store root file access - When a store is opened, a "root" file must be 
opened by the query process so that the store's metadata may be 
retrieved (or updated) . The UIC ptool code directly opened and 



manipulated root files. [POPM] will do something different. The 
same I/O path used to reach the folios will be used to access the 
root files. Specifically, a root file will be mapped into a slot 
just like another segment, using the same mechanisms available for 
segment I/O. This will permit the same uniform access for root files 
as that available for folios (which becomes much more important in 
the multiple node configuration). Note that this works because below 
the level of the query process, everything is just seen as blocks of 
arbitrary files - there is no notion of stores, folio, segments or 
anything ptool-ish below the actual code for the [POPM] client 
library in the query process. 

Dbmap file access - The 11 dbmap 11 file maps store numbers to stores. This 
is required for allocating unique store numbers when creating new 
stores in an address space. It is also useful for locating the 
proper store when an arbitrary persistent pointer is dereferenced 
(but this is not expected to be important for datamining applications 
envisioned) . There must be one and ONLY ONE unique dbrnap file per 
address space. Again, this file will be mappable in the same manner 
as a store root file. Additionally, we may require some kind of 
file-global locking to go on here (not sure about this) . 

Read-ahead - This is probably going to be the most complicated part of 
the query process. Read-ahead, when done correctly, will allow the 
query system to anticipate the next few segments needed and prefetch 
ahead of time. There are two parts to this: detection of read-ahead 
and performing of the actual read-ahead operations. The performance 
part is fairly straight-forward. When read-ahead.is required, the 
query process will just allocate and start reads going on a few more 
slots at a time (how far ahead to go depends on the number of queries 
running on the node and the number of other read-ahead streams in 
progress). The detection part is deceptively non-trivial, and is a 
problem not completely solved. There is a detailed discussion of 
this important topic in section 4.3. 

It is important to point out here that ALL of the persistent 
object-specific parts of the query system are contained only within this 
query process. All of the other parts only contend with fixed blocks 
transferred to/from arbitrary files. If in the future we find a better 
concept for managing data that can work with a memory-mapped model of 
I/O, then only the query process will require changes. 

*** 4.1.4 The shared memory manager 

This process does not participate directly in the data path, but is 
instead responsible certain aspects of the data structures in the shared 
memory: 

1) When any process mapping the shared slot cache on the node dies, the 
shared memory manager will clean up any wreckage left behind 
(including the freeing of any locked resources} and deallocate the 
dead process's PCB. It will also periodically check that connected 
processes are still functioning. 

2} There is a free list in the shared slot cache from which query 
processes constantly allocate slots for use. The shared memory 
manager is responsible for refilling that free list, by stealing 
unlocked "old" active slots from other query processes. For optimal 
performance, this list should never become empty, and in fact the 
shared memory manager will begin scarfing up more slots when the free 



list size passes below a set threshold (detection is accomplished via 
signal from a query process when the pool gets low) . Also, there is a 
list of PCBs which may be waiting on the free list (when it becomes 
empty} . The shared memory manager will wake up those processes as 
appropriate. 

The first function is a requirement if the system is going to remain 
robust. Without it, then the first query process that crashes will 
likely leave the entire system in an unstable state. The PCB will 
contain enough state such that the shared memory manager will be able to 
reconstruct what was going on and to undo it, finish it, or just 
deallocate it. 

The second function is part of the "circulation pattern" for slots. The 
pattern goes something like this: 

(allocated by a process} - - -> 
/-------> disk slave read >--------\ 

1 I v 
on the 

free list 
A 

in use by 
a process 

v 

I I 
\-------< (write-back) <-----------/ 
<- - - (swiped by shared memory mgr} 

(Fig 3 - slot circulation pattern) 

When there are not enough slots on the "left" side of the picture above, 
the shared memory manager will start swiping slots away from various 
query processes until enough slots exist on the free list. Dirty slots 
will be written back appropriately as the operation proceeds. In a 
well-balanced system, the free list size should never reach zero, which 
means that query processes should never block waiting for a free slot. 

** 4.2 Extending the big picture to multiple nodes 

To make a distributed system out of this diagram, two things happen: 

1) The single node system is replicated over all nodes, except that query 
processes only run on ncompute" nodes, and disk slave processes only 
run on 11 I/0 11 nodes. 

2) A new process type is introduced into the system, called the I/O 
server: 

*** 4.2.1 I/O servers 

I/0 server - process which forwards slot requests & data between nodes of 
the query system. It effectively acts as either a surrogate disk slave 
or a query process, depending on which side is driving the request. The 
I/0 server process employs the system's native high speed message 
transport for conununication among instances of itself, which in the case 
of the IBM SP-2, is the MPL library. 

There is only one I/O server process per node, and each one is designed 
in an event-driven stateless style such that there is no "blocking" that 



takes place when a given slot request has been forwarded over to another 
node (i.e. I/O server can handle an arbitrary number of outstanding 
requests) . This is an important feature, in that it enables full 
overlapped I/O and potentially full utilization of the underlying switch 
bandwidth. 

The I/O server process is going to require enough intelligence to know 
where to route slot requests, meaning that some kind of file name <-> 
node name mapping is going to be needed. In addition, when files are 
created, there needs to be some way to communicate that file's desired 
location to the local I/O server so that it may properly forward the 
creation operation to the correct remote end. 

*** 4.2.2 Message passing layer & C++ wrapper 

The implementation of [POPM] is currently targetted for the IBM SP-2 
platform, using the user-space mode of the TB-2 high speed switch system. 
IBM has an API, called MPL, for programming switch transfers. It is 
intended that an efficient class wrapper be put around this for use by 
the I/O server process. 

MPL has some serious performance issues that must be correctly addressed 
in order to achieve the maximum performance. The class wrapper should 
hopefully allow us to compartmentalize all of the MPL issues into one 
place and therefore keep the I/O server code "clean". Theoretically, 
then when I if we port to another system architecture (i.e. perhaps 
arbitrary workstations connection via ethernet!), the only changes needed 
should be contained within this class. 

The maximum speed of a user-space programmed TB-2 switch adapter, 
assuming 100% CPU utilitization and nothing else going on in the 
processor, is 30MB/sec. It appears that with the class wrapper in place 
we should be able to sustain effectively at least 20MB/sec between shared 
slot caches on different nodes. 

*** 4.2.3 Putting it all together 

Given everything discussed so far, then it should be fairly easy now to 
see how the pieces fit. 

Here is a diagram of the [POPM] structure on an I/O node: 
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(Fig 4 - I/O node, multinode configuration) 

This is the corresponding diagram for a compute node: 
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(Fig 5 - compute node, multinode configuration} 

Here is an example 8 node SP-2 system (5 I/O, 3 Compute), with 3 disk 
slaves per I/O node and 3 query processes per compute node (each box is 
an instance of either figure 4 or figure 5 above) : 

Key: 

I/O Nodes Compute Nodes 

+-----+ +-----+ 
D\ I I /Q 
D-C-S==================\\ //=======S-C-Q 

+~~~--l +~,---i +---.J,.J,---+ I I l--~:?+ 
D-C-S===> <==// 

+-----+ D/M I High +-----+ 
I /Q D\ I +-----+ 

D-C-S=============> Speed <===========S-C-Q 
D /M I + - - - - - + 

+-----+ D\ I Switch 
I M\Q 
+-----+ 

D-C-S===> <==\\ 

+~,---i +~~~--l +---11---+ I I i---;Q+ 
D-C-S==================// \\=======S-C-Q 
D~ I I ~Q 

+-----+ 

D -- Disk slave process 
· C -- Shared slot cache 
S -- I/O server 

(Fig 6 - distributed 

+-----+ 
Q -- Query process 
M -- Shared memory manager 
= -- Switch data path 

query system overview) 

That's basically it. A [POPM] query system consists of I/O and compute 
nodes. On each node is an I/O server interfacing the high speed switch 
port to the locally shared slot cache. Attached to the shared slot 
caches are disk slaves and query processes. Finally, each shared slot 
cache has a dedicated shared memory manager process for maintaining data 
integrity and slot distribution. 



** 4.3 Read-ahead 

In a steady-state ongoing query, the ideal situation would be a 
"pipeline" arrangement: as the current segment or set of segments are 
being scanned, the successive segments should already be on their way 
from disk storage. For example, while segment O is being scanned, 
segment 1 should be arriving at the compute node, segment 2 should be 
getting read from disk on the I/O node, and a request for segment 3 
should be getting forwarded to the I/O node. Of course in reality, 
different stages of this "pipeline" will be running at different rates, 
multiple streams will be running, and multiple I/O and compute nodes will 
all be involved. But the idea at least should be clear. 

A conventional [POPM] query process, without read-ahead, would not result 
in this desirable pipeline behavior. The reason is because the 
persistent object API models a simple synchronous behavior for segment 
fetching - namely that the next segment needed isn't known until the time 
that the process needs it. There needs to be a way to know what future 
segments are required _before_ the process actually blocks on one. 

The solution to this problem is to implement an algorithm in the query 
process which can predict what the next few segments will be, and a 
method in the [POPM] implementation for requesting these segments ahead 
of time. Also required is implementation of a concurrent segment 
fetching mechanism, better known as overlapped I/O. With overlapped I/O, 
the desired pipeline of I/O requests becomes possible. This is addressed 
in other sections of these notes. The real question is how does one 
detect and initiate the read-ahead in the first place. 

Fortunately, there is one property about the nature of segment access in 
the CAP system that can be taken advantage of, that object stores are 
typically scanned in a monotonically increasing segment order. In other 
words, if segment N in a store is currently being examined, it is likely 
that segment N+K of that store, where K is a small positive integer, will 
be needed next. Our goal at the moment is to consider cases where 
(l/avg(K)) >=threshold as read-ahead candidates, where the threshold is 
probably around .5 or so. A threshold of 1 means no skips, a threshold 
of O permits read-ahead regardless of how wide the average skip is. This 
provides a good switch for detecting when read-ahead is needed. 

So, how does one define a read-ahead "stream"? Assuming that a single 
store will contain all the objects of a given "type" that are being 
sequentially scanned, then the read-ahead parameters can be maintained as 
extra state when the store is opened. Whenever a segment for a given 
store is asked for, a check for K=l is performed. If the K value is 
generally not 11 1 11

, then read-ahead is disabled. If K=l, then read-ahead 
is employed, and extra requests are generated for the next few segments 
in sequence. That's the easy part. 

Note that if several logical "streams" are being scanned within a single 
store, then the above technique for read-ahead detection will fail. In 
that case, some help will be required from the API to enable read-ahead. 

Once it is decided that a given stream needs read-ahead, how far should 
the read-ahead go? That is a much more difficult question to answer. 
The ideal answer is to read-ahead just enough to keep the query process 
from ever having to block waiting for a not-yet-present segment. Reading 
segments ahead any further than that amount {well maybe a few extra 
segments just to be safe) should not have any appreciable additional 



performance impact. 

Implementing this ideal solution is not very easy. In theory, the query 
process will have to measure its own average scan time per segment and 
compare that to the average apparent latency for fetching a segment. The 
read ahead depth should then be 1 plus enough extra segments to bury 
enough latency such that the remaining latency is less than the scan 
time. If the scan latency is already higher than the fetch latency, then 
the computed read-ahead depth of 1 should be sufficient. 

In practice, the above.idea may be too expensive to implement, in which 
case something more primitive, but less accurate could be employed. For 
example, a simple feedback mechanism could be tried: increase the depth 
whenever segment N+l is not present when finally needed, and decrease the 
depth whenever segment N+2 is already present when segment N+l has been 
read in time. 

In addition to measuring and reacting to segment latencies, the 
read-ahead depth is also limited by resources available on the compute 
node. Whenever a read-ahead stream has been enabled on a compute node, a 
stream count is incremented in the process's PCB. The total of all 
read-ahead stream counts in the compute node is used to ration the 
overall use of slots. In other words, if only a single read-ahead stream 
were in progress, its depth is only limited by the number of slots on the 
node. With more streams active however, the slots will be divided among 
the streams, thereby limiting the maximum depth for any particular 
stream. 

Very interesting note: The definition of an ideal read-ahead depth above 
hinges only upon whether or not the query process might block waiting for 

'I/O. One might notice that this has nothing to do with whether or not 
all of the I/O nodes have to be kept busy. It is entirely possible that 
only a fraction of the overall I/O bandwidth would actually be needed to 
keep a query occupied. The fraction required is therefore driven purely 
by the speed of the query process. This is actually what we want! 
Remaining bandwidth will therefore be available to other queries in the 
system. If not enough total bandwidth is available, the result should be 
a fairly even division among all of the competitors. How about that: 
automatic bandwidth allocation! 

Note also that even if full read-ahead can't be achieved in a given 
instant, partial read-ahead is still very beneficial. Every concurrent 
segment fetch in progress is that much less latency for which a query 
process must block. 

Much more thought is still needed for an efficient read-ahead 
implementation in [POPM] . 

** 4.4 Other important details not yet covered 

The next set of topics deal with the remaining issues about the query 
system that have either not been covered, or require more detail for 
proper understanding. 

*** 4.4.1 Efficient slot cache searching 

The UIC ptool implementation performs a linear search when locating a 
slot cache entry. Though the search starts at the point where the last 
"hit" was made, resulting in minimal search time for consecutive 
dereferences of the same segment, this degrades to worst case performance 



if two different segments are being alternately dereferenced. 

If (POPM] were to employ this algorithm, significant problems would 
result. [POPM]'s slot cache size is not limited to a small fixed number, 
and if it gets large (which is entirely likely if only a single query is 
happening on a node) the search time overhead will become unbearable. 
The solution involves the use of multiple chains of slots with a hashing 
function: 

1) Slots in [POPMJ may have arbitrary 64 bit tags assigned. 

2) When a tag is assigned, the tag is hashed to a 5 bit number, which 
selects one of 32 possible PCB-specific linked slot lists. The slot 
is placed in the linked list to which it is hashed. 

3) When a search is conducted, the search tag is hashed using the same 
function to produce another 5 bit index into the array of linked slot 
lists. The correct list is selected and a linear search continues 
from that point. 

With a reasonable hashing function (i.e. one that results in an even 
distribution) , the number of slots to check for a given search will go 
down by a factor of 32. If that isn't enough we can try a larger array, 
like 64 or 256 linked lists. The goal is to reduce the length of the 
linear search to only 1 or 2 actual checks. 

*** 4.4.2 Locking issues during dereference 

Since it is possible for a slot to be stolen asynchronously from a [POPMJ 
process (by the shared memory manager), then it is possible for the 
hashed array of linked slot lists to be changed asynchronously. This 
causes a major problem: 

1) The hashed array must remain stable while it is being searched, which 
implies the use of a locking mechanism. But ... 

2) The searching algorithm which must acquire this proposed lock is going 
to be in the critical path of the persistent pointer dereferencing 
algorithm. Therefore the lock must be extremely fast, preferably 
inline code! 

Normal SYSV-style semaphores therefore won't work. They're just too 
slow; every call results in a trap to the system kernel. The AIX 
operating system has a faster semaphore primitive which avoids a system 
trap if the lock is free, but it can't be inlined. 

The solution is the application of the well-known Dekker semaphore 
algorithm. The implementation requires no special hardware primitives, 
can be inlined easily, and is very fast if only two processes are 
contending for the resource (the algorithm gets more lengthy if more 
contenders are possible) . 

This issue is the reason why slots are allocated to a PCB instead of 
always being shared among all PCBs. If global sharing were allowed, then 
the hashed array of linked lists would also have to be global. This 
means that the number of contenders for it could be as many as there are 
PCBs in the system, which makes the Dekker algorithm a practical 
impossibility. In addition, with more contenders, then this resource is 
likely to become a global bottleneck. 



Since the hashed array of linked lists is private to a PCB, then there 
are only two contenders - the process owning the PCB, and the shared 
memory manager. This makes the Dekker algorithm an ideal solution. 

An example implementation of the Dekker semaphore algorithm is shown in 
figure 4.7, page 86, of the book "An Introduction to Operating System", 
by Harvey M. Deitel (Addison-Wesley, 1984}. 

*** 4.4.3 Implementation for physical pointers 

A physical pointer is a pre-derefenced persistent pointer. An instance 
of a physical pointer has a pointer into the actual slot where the data 
currently resides. Since the shared memory manager is allowed to steal 
slots from a process, then how is it possible to guarantee physical 
pointer integrity? 

There are two possible ways to achieve this; both have advantages and 
disadvantages. One method involves back pointers, the other uses a 
reference count. 

The back pointer method: 

In this case, any physical pointer instance which points to a given 
slot becomes a member of a back pointer list (array, container, 
whatever} associated with that slot. Logically, now it is possible to 
find out which physical pointers are currently referencing a slot: If 
the slot is stolen, the list is traversed and all referencing physical 
pointers are found and invalidated. To invalidate a physical pointer, 
its internal "real" pointer is set to zero. The next time the physical 
pointer is used, this null value is noticed by the internal physical 
pointer class implementation, and the original persistent pointer value 
is re-dereferenced to find a new slot. 

This has one major advantage in that it is impossible to cause a 
resource deadlock. Having a physical pointer into a slot does not 
imply any kind of lock; at any time the slot may still be successfully 
swiped. If there are two many physical pointers in use, the query 
performance will just degrade, down to a level equalling that of not 
using the physical pointers in the first place. However, there is no 
overall limit on the number of physical pointers. 

There are two disadvantages. First of all, since the slot is never 
really locked down, it is possible for the slot to get stolen in the 
window of time between when the "real" pointer is checked for a null 
value and when it is used. This is a serious error, which will become 
more clear in the next section about pointer lifetimes. The other 
problem is worse; the physical pointers are stored in the private data 
of the query process, making it impossible for the shared memory 
manager to access them for purpose of invalidation. Now, it _is_ 
possible to store the physical pointer structures in the shared memory 
with the other data structures, but then that poses a hard upper limit 
on the number of physical pointers that a process can use - which 
effectively eliminates the only advantage. 

The reference count method: 

Each slot has a reference count integer in the control information, 
which is initialized to zero. When a physical pointer is assigned, the 
pointed-to slot's reference count is incremented. When the physical 
pointer is cleared, destroyed, or pointed elsewhere, the reference 



count is decremented. So long as the reference count is non-zero, the 
slot is considered "locked" and immune from being stolen by the shared 
memory manager (or otherwise reused) . Slots owned by a process with a 
reference count of zero are open to reclaimation by the shared memory 
manager. 

Guaranteeing integrity of the reference count is not nearly as 
difficult as it may seem. First of all, the physical pointer type is 
implemented as a class, with constructors and destructors and full 
syntactical protection - which means that there is no burden on the 
user for keeping the reference count correct. Instead the physical 
pointer implementation just adjusts the reference count as appropriate 
when things change. Second, physical pointers may only point at slots 
owned by the process. A physical pointer may not be "aimed" at one of 
another process's slots, so it is impossible for one process to 
interfere with another's slot reference counts. This also means that: 
a) When a slot is allocated to a process, that slot's reference count 
automatically starts at zero, and b) if the process crashes and 
wreckage has to be cleaned up, the reference counts for slots owned by 
that process become irrelevant. 

The big advantage of this scheme is that it clearly defines the 
lifetime of a physical pointer's "real" pointer. So long as the 
physical pointer is pointing at a given slot, that pre-dereferenced 
"real" pointer is guaranteed to remain valid - no races. 

The disadvantage however is critical: use of too many physical pointers 
can cause deadlock on a node. When a physical pointer is referencing a 
slot, there is simply no way to involuntarily break that relationship 
(well we could kill the process and do a wreckage clean-up ... ). A 
poorly written user query could employ too many physical pointers, 
potentially causing a slot resource deadlock. 

We can actually minimize any impact from this disadvantage, since the 
shared memory manager will be able to detect how many slots a process 
has locked. An artificial threshold could be implemented - processes 
which exceed the limit could just be killed. Another less drastic 
approach is the for the query process itself to keep a count of active 
physical pointers and simply cause an error if too many are created. 

The [POPMJ system will use the reference count method in the physical 
pointer implementation. In reality, there will be two classes.: 

-An underlying class for creating and maintaining a reference lock on a 
given segment. It is at this layer where the reference count integrity 
will be maintained. 

-A physical pointer class, which will contain an instance of the above 
class either as a base class or a member. 

This separation of classes and use of the reference count method enables 
a solution to a subtle problem having to do with persistent pointer 
lifetimes, discussed in the next section. 

*** 4.4.4 Managing persistent pointer lifetimes 

There is an insidious subtle problem with the present persistent object 
API having to do with the lifetime of a dereferenced persistent pointer. 
This flaw in the API definition is currently not causing problems in the 
use of the UIC ptool product only because of a fortuitous feature of the 



implementation, and because current applications tend not to stress cases 
where many persistent pointers need to be active at one time. 

Here's the scenario: A line of code assigns an int field from one 
persistent structure to the value from another persistent structure. 
This line of code is going to generate two dereference operations, one 
for the 1-value, and one .for the r-value. Assume that the two persistent 
structures point to different structures and that the slot cache is only 
one element in size. Now, if the compiler generated code like this: 

int *tmp, v; 
tmp = dereference{rpptr); 
v = *tmp; 
tmp = dereference(lpptr); 
*tmp = v; 

/*1. Dereference r-value*/ 
/*2. Get r-value*/ 
/*3. Dereference 1-value*/ 
/*4. Assign 1-value from previous r-value*/ 

Then things would be fine. But suppose instead the compiler generated 
this sequence: 

int *rtmp, *ltmp; 
rtmp = dereference(rpptr); 
ltmp = dereference(lpptr); 
*ltmp = *rtmp; 

/*1. Dereference r-value*/ 
/*2. Dereference 1-value*/ 
/*3. Assign 1-value from r-value*/ 

Now there's a fatal problem, because when step (2) took place, the slot 
previously assigned for the r-value pointer in step (1) will have been 
remapped to the segment for the 1-value pointer required in step (2) ! 
The assignment will read random data. This sequence is a perfectly legal 
interpretation of a C expression, because except for the case of the 
boolean logical operators, neither C nor C++ stipulate in what order or 
at what points functions within an expression must be called!! 

This case was contrived, but only to illustrate a point. In fact, the 
UIC ptool implementation survives this problem because the slot cache is 
larger than one element, the replacement algorithm is LRU, and few 
applications ever need many simultaneous persistent pointers to be valid 
at a single instant. With LRU replacement, the number of persistent 
dereferences in an expression would have to exceed the maximum size of 
the slot cache before trouble could happen. 

The whole problem comes down to defining the required lifetime of a 
dereferenced persistent pointer. (This issue actually has broader 
implications in the ongoing C++ standardization effort because the same 
problems erupt when defining temporary class instance lifetimes) . 
Basically, the lifetime of an "element" depending on a temporary variable 
generated by the compiler _must_ persist at least until the next 
"sequence point" in the source code (at least a line of code). 

In the case of [POPM], two further comlpications arise. First, the slot 
cache size can dynamically change, so there is absolutely no way to 
assume a safe upper limit on the number of dereferences between sequence 
points. But the really bad problem is that an asynchronous process (the 
shared memory manager) is able to steal slots - it could just as easily 
steal the slot just used as part of a dereference but before the 
resulting "real" pointer is used (but not likely since we are also 
intending on using LRU slot replacement) . This a dangerous problem that 
must be properly dealt with. 

It turns out that the solution to these issues in [POPM] are simple, when 
the techniques used for physical pointers are borrowed. Notice that 



physical pointers (as implemented with a reference count) don't have any 
pointer lifetime problems because in that case, the slot is explicitly 
locked in place when the physical pointer is aimed at it. Obviously, one 
could disallow the dereferencing of persistent pointers altogether and 
only allow access through physical pointers. But that would make the 
persistent object API no longer backwards compatible with the UIC ptool 
implementation. There is still a middleground: Use a global instance of 
the physical pointer's base class. This class is able to lock a slot. 
So now whenever a new persistent pointer is dereferenced, instead use the 
global slot locking instance to grab the slot and then get the 
dereferenced value from there. The slot is therefore guaranteed to stay 
valid (and therefore the dereference result stays valid) until the next 
persistent pointer dereference operation (at which point the global slot 
locking instance is pointed elsewhere) . 

This solution guarantees at most one valid regular persistent pointer 
dereference between sequence points, which is still not good enough. But 
the solution can be extended. Instead of a single global instance of the 
physical pointer's base slot locking class, use a circular list 
(implemented as an array with a rotating index) . Each successive 
dereference operation uses the next slot locking instance in line. For a 
circular list of size N, then the last N dereference operations are 
guaranteed to remain valid between sequence points. 

NOTE! The size of this value N (i.e. the maximum legal number of 
dereferences between sequence points) should be defined as part of the 
persistent object API. Currently it is not. This is a flaw in the 
current API and needs to be discussed. Making it larger is generally 
good, but it can waste resources if it is too large, since the last N 
dereferences are going to cause (up to) N slots to always remain locked. 
The fact that current implementations are not having these problems in a 
serious way indicates that N=8 (size of the slot cache in the UIC ptool 
implementation) is a good starting point for evaluation. 

*** 4.4.5 Allocating PCBs 

When any process in the [POPMJ system starts and maps the local area of 
shared slot cache, it must immediately allocate a PCB (Process Control 
Block) . A fixed size array of these structures exist in the shared 
memory. Allocation of a PCB is important in that it provides for: 

1) Tracking by the shared memory manager. Enough information in the PCB 
exists to find the associated process. In addition, enough state is 
contained in the PCB such that if the corresponding process crashes, 
the shared memory manager will be able to undo any half-completed 
operations, finish irreversible operations, and free any resources / 
locks held by that process (including the PCB itself) . 

2) Unique identification in the [POPMJ system. The logical process id of 
that process is the element number of the PCB that gets allocated. 

3) Resource allocation. Any resources in the shared memory allocated to 
the process (i.e. slots) are represented in the PCB, and various 
overheads to maintain that allocation are instanced by that PCB. 

4) Communication. Any explicit communication among processes may be 
carried out via structures in the PCBs. 

5) Locking. Things which get locked to a process are represented in the 
PCB of the locking process. 



6} Synchronization. The state of the owning process (i.e. running, 
blocked on free slot wait, performing look-up, idle, etc) is always 
represented in the PCB. When the process has to block for some [POPM] 
related reason, the PCB itself will be put on a list representing that 
blockage - which allows other processes to find the blocked process. 

So it should be a pretty safe conclusion that being able to unambiguously 
allocate PCBs is a good thing. But how does one do this in a 
bullet-proof way? All other forms of allocation in [POPM] are without 
holes because the PCB allows for tracking of the allocation. But when 
the PCB is being allocated, who tracks that? And how does one allocate a 
PCB without first having to acquire a lock to guarantee atomicity during 
the allocation? Remember that any number of processes may be trying to 
allocate a PCB at one time - there needs to be a way to serialize this, 
and just acquiring a global exclusive lock opens up a huge hole if the 
holder of the lock should crash before releasing the lock. 

The answer is incredibly simple: Use the Unix pid as the allocation flag 
in combination with the AIX "compare and swap" (cs()) atomic operation. 
A field in the PCB exists (call it the upid) to contain the actual Unix 
pid of the owning process. When the upid field is zero, the PCB is 
considered to be free. When it is non-zero, it is owned by the 
corresponding Unix process. This is ok because it is impossible in Unix 
to have a pid of zero. 

Now, to allocate a PCB, first perform a linear search and find a PCB with 
a upid value of zero (i.e. free). If nothing could be found, then all 
PCBs are in use. If a free PCB is found, then perform the compare and 
swap primitive operation on the location with a compare value of zero, 
and the process Unix pid as the swap value. If the compare fails, then 
another process got the PCB, and the algorithm should restart the PCB 
search. If the compare succeeds, the new Unix pid will be written into 
the upid field and the PCB will be officially allocated! 

The beauty of this scheme is that the instant the upid field has been 
written, it is possible for the shared memory manager to locate the 
owning process. That process could fail on the very next clock cycle 
without causing any problems in the system - the shared memory manager 
would eventually discover the dead process and just free the PCB again. 

This solution provides for a bullet-proof, no-window, holes-free means 
for allocating PCBs. Once a PCB has been allocated, then it is possible 
for that process to allocate other shared resources & locks in the shared 
slot cache without risk of causing resource "leaks" or orphans should it 
crash later on. 

Note: If this system is implemented under Irix, then the ucas() function 
may be employed to take the place of the AIX specific cs(} function for 
compare and swap. This is available in (at least) Irix 5.2 and up. 

*** 4.4.6 Cleaning up wreckage 

This concept was mentioned in the previous section. The [POPM] 
implementation has a shared region of memory, which leaves open the 
possibility that malfunctioning processes could corrupt the data 
structures contained therein and cripple the overall system. This is an 
important point because the [POPM] servers are designed to stay up 
effectively forever, while [POPM] query processes, which have linked-in 
user code, will come and go over time. One user bug which causes a 



[POPM] query process to crash should not be able to leave the shared data 
structures in an indeterminate state and cripple the rest of the system. 
How is this addressed? 

There are three types of problems that are possible within the shared 
slot cache: 

1) Crashing while not doing something in the shared slot cache. When 
this happens, there may be resources allocated to that process that 
need to be freed. 

2) Crashing in the middle of an operation in the shared slot cache. In 
this case, one or more data structures relevant to the operation in 
question may be left in an inconsistent state. 

3) Random memory scribbling I wild pointer dereferencing (not persistent 
pointers, these are "regular" pointers). In this case, user code has 
malfunctioned such that incorrect memory locations are being 
overwritten. Some of those locations could fall within the mapped 
address space of the shared slot cache. 

When a process crashes, the shared memory manager will eventually figure 
it out (i.e. periodic kill(pid,O) operations), and take recovery actions. 

For issue (1), the action is simple since all allocated resources are 
tracked in the PCB - the shared memory manager need only free the 
resources, and then free the PCB. 

Issue (2) is somewhat more complicated, but can still be dealt with. The 
trick is that whenever any process begins an "atomic" operation of this 
nature in the shared memory, it should write enough state I status 
inf orrnation into the PCB such that the shared memory manager can discover 
what was taking place. Then it can either undo or complete it, depending 
on the nature of the operation. Following that, the shared memory 
manager would complete the recovery by following the steps for issue (1) . 

Issue (3) is problematic. There is no bullet-proof defense against it. 
The problem is that certain control structures simply need to be read / 
write accessible to every process in the system. Slot data not logically 
writable to a process can be protected by either unrnapping or 
write-protecting it. The control structures can't be protected in this 
way. However there are three mitigating factors: l} The aperature of 
"vulnerable" shared memory is small compared to the size of the process 
context in which a wild pointer may mess up. Assuming even distribution, 
then it is unlikely that a wild pointer will actually corrupt the shared 
memory control structures. 2} Most of the [POPM] user code is generated 
by another program, and such code is usually resistant to wild-pointer 
errors resulting from bad input. 3) Any kind of wild pointer that DOES 
happen to corrupt a control structure will result in the entire system 
crashing - something very obvious and unambiguous. Since slot data can't 
get accidentally changed by such an error, the failure mode of just 
getting a wrong answer with no indication of a problem simply can't 
happen. 

Warning note: Any place where the shared memory manager is contending for 
a resource or otherwise waiting for some operation from another process 
should NEVER block. There must be an escape hatch if the other process 
crashes. The shared memory manager should still periodically check all 
processes. If a process upon which it is waiting on dies, it should stop 
waiting and take a recovery action! 



*** 4.4.7 Managing multiple address spaces 

A persistent address space is defined by the "dbrnap file", which in turn 
defines all of the stores, which in turn defines all of the folios. To 
permit multiple address spaces in a single system really only requires 
two things: 

1) Support for multiple dbmap files. 

2) Support for multiple "file spaces". Stores and folios within an 
address space should only need to be uniquely named inside that 
particular address space. 

Requirement (2) is trivially achieved in [POPM] by using directories. In 
fact, the address space's name can simply be the directory path required 
for locating it. In a distributed environment, each I/O node should 
conceivably implement the same path to its share of that particular 
address space. Presumably all address spaces (i.e. directory paths) 
would start from a connnon point, which itself can be defined local to the 
particular I/O node. 

With requirement (2) addressed, requirement (1) becomes equally trivial. 
The dbmap file name is a constant, and simply lives in the directory of 
the address space. 

Note that since address spaces are defined by directory paths, the 
ownership and permissions of that directory can be applied when 
validating user access into the particular address space. 

When a [POPM] application process starts up, no stores can be opened 
until the address space has been declared. Given the above, then that 
operation only requires setting the directory path. Once set, the path 
is simply prepended to all file names generated by the [POPM] application 
process. 

*** 4.4.8 Memory mapped I/O 

One important aspect of this system that bears emphasis is the nature of 
the I/O access model. Even though explicit I/O is being performed, the 
model is that of memory mapping. 

Notice also that everything having to do with the persistent object API 
sits above the I/O access model. The servers and disk slaves are totally 
generic. This an important distinction: All the concepts of segment, 
folio, store, address space, etc are only in the query process. Below 
that point is simply an API for mapping 64KB chunks of arbitrary files 
from arbitrary nodes. 

In fact, one can view the entire I/O model as being sort like another 
kind of network file system. It only serves to implement a demand-mapped 
distributed file-I/O system. Except in this case, the granularity of 
allocation is 64KB (the segment) , and the access method more resembles 
nnnap() to a fixed area of memory, instead of read()/write(). 

*** 4.4.9 Store root file metadata access 

This question may have occurred while reading the previous section: If 
the entire method for accessing files is through the slots, then how is 
the store metadata stored? Answer: The store metadata is contained in a 



root file, which coexists with the folio files. Access is accomplished 
by mapping the root file as an ordinary segment, using the same 
mechanisms available for accessing segments within a folio. The root 
file should be small enough to fit in an entire segment slot. 

There are a few "details" to pay attention to here: 

1) If multiple queries are operating on the same store(s), then root 
files may be mapped multiple times. This may be a problem if the 
store metadata is going to be changing. However once the store is 
created, the metadata should be treatable as read-only data. If this 
is not true, then some kind of file locking mechanism will have to be 
added to the [POPM] I/O model. 

2) Slots are expensive. It store metadata needs to be kept around for a 
while, the slot used to map the root file should not be kept 
indefinitely (i.e. by keeping a phsyical pointer aimed at it). 
Instead, the metadata should be immediately copied out to 
process-private heap storage and the slot released for reuse. Else if 
many stores are kept open, each one is going to permanently occupy a 
slot and the possibility exists that all the slots will be used up 
just to retain store metadata. 

*** 4.4.10 dbmap access 

The "dbmap" file is the entity that is used to coordinate allocation of 
store numbers among the stores of a given address space. It contains a 
mapping from store number to store name. It may also be used to contain 
address space-global metadata. For a given address space, there is only 
one dbmap file. 

A query process needs access to the dbmap file. This can be accomplished 
by using the same solution as that applied for root file access: map it 
into a slot. But there are two important differences: 

1) The dbmap file size can exceed the size of a single slot, since it can 
grow as more stores are created (and more store numbers have to be 
allocated I tracked) . 

2) The potential exists for concurrent writes to the dbmap file from 
different query processes. This {in theory) shouldn't happen with 
root files, since they are written once when the store is created. 
But the dbmap fire gets a new entry for every store that is created. 
If multiple processes are creating stores, then concurrent writes to 
the same "segment" of the dbmap file is possible (and likely). 

The first difference is not really a problem; it is solved by just paying 
attention to the possibility when designing the file format and the code 
that needs to access it. 

The second difference however is a much bigger problem. We must either 
(a) implement some kind of record locking mechanism, (b) disallow the 
creation of more than one store at a time (i.e. only one process in the 
system may create stores), or (c) use an entirely different method for 
dbmap file access. The first choice is the "cleanest", but also the most 
difficult. The second choice can be done without too much pain, given 
our intended use of the system. The third choice is repugnant. 

*** 4.4.11 Searching for files in a distributed address space 



This issue is directly relevant to the issue mentioned in section 4.2.1 
of mapping file names to nodes. When a given compute node has a request 
to map block X of file "abc", how does the I/O server know which to I/O 
node the request should be directed? 

There are two answers. First the easy one. If the file in question is 
being created, the query process must communicate the node name. This is 
because the I/O server has no foreknowledge about where new files should 
be created. The query process however knows the folio striping algorithm 
from the store metadata, so it can compute what the correct node should 
be and can communicate that to the I/O server as part of the request. 

Now the tough answer. If the file in question already exists, then the 
I/O server must discover the correct I/O node. Logically, this can be 
done via a search of all the I/O nodes, but this is horribly inefficient. 
Each I/O server should probably maintain a file directory cache from each 
I/O node. When a file is asked for which is not in the cache, the I/O 
should then perform a search to update the cache. Coherency can be 
maintained among the I/O server processes. Here are the details: 

1) Each I/O server should maintain an in-core cache I hashed table of 
file name to I/O node mappings. 

2) The cache starts out empty; when files are asked for on a compute 
node, the local I/O server first checks its cache. If there's a 
"hit", the request is just forwarded to the I/O server on the 
indicated I/O node. If there's a "miss", all I/O servers on all 
defined I/O nodes are asked about the file. The response is used to 
create a new cache entry, and the request is then directed to the 
responding node. 

3) I/O servers can exchange unsolicited information about cache entries. 
This is used both for maintaining coherency among all the caches and 
for efficiency reasons. For example, if a file is deleted, the I/O 
server on the I/O node where the file got deleted should propagate 
that information to all compute node I/O servers where a cache entry 
needs to be invalidated. Also, when an compute node I/O server 
requests information on a particular file, I/O node I/O servers may 
respond with multiple entries (i.e. an entire directory's worth). 

4) The cache size should be fixed in size {hundred's of entries), N-way 
set associative, and should use a hashing algorithm for look-up. 
Older entries are expunged when room is needed for newer entries. 

5) I/O node I/O servers should remember to which compute nodes they have 
sent information. In that way, these servers will know where to send 
updates if the information changes. 

6) There needs to be a way for a local I/O server process to get a 
directory listing. This is not as obvious as it sounds, since the 
associated disk slave might NOT be using physical disk storage - they 
could be talking to an HSM for example. Therefore the directory 
listing operation should be part of the disk slave implementation, 
which suggests that a way is needed for an I/O server to communicate 
this information to a disk slave .... 

This scheme is probably more complicated than one would like, however it 
does provide for a smooth illusion of a homogeneous file space 
distributed across all of the I/O nodes. 



*** 4.4.12 Store deletion 

Up to this point, there has been no thought given toward distributed I/0 
operations that fall outside the primitives of merely mapping I unmapping 
segments of files. For example, what about file deletion & renaming? 

The renaming issue is simple: It isn't an issue. If a file need to be 
renamed, this can be accomplished through manual intervention, as the 
persistent object API has no requirement for this ability. 

The deletion issue is more involved. In a running production system, it 
is intended that over time stores are to be created I migrated into the 
system, and then expunged at some later time, to be replaced by other 
stores. Though store deletion isn't part of the persistent object API, 
it is something that will happen often and should be easy to perform. 
Remember that store deletion requires removal of the root file, all folio 
files on all I/O nodes, and removal of the entry in the dbmap file. This 
should therefore be considered. So here's some thoughts: 

1) A store delete operation can be created in the persistent object API. 
This would be translated into a series of file delete requests to the 
distributed I/O system, which can be conununicated to the I/O nodes via 
a conununications interface in the PCB (there is no natural way to do 
this in a slot) . 

2) Store deletion could be accomplished through some mechanism external 
to [POPM] . The only caveat here is that the delete operation is going 
to write to the dbmap file, which will require some locking protocol 
between [POPM] and the external deletion mechanism. 

3) Store deletion is disallowed. The only way to erase a store is to 
erase the entire address space. Cleaning out an entire address space 
is easy: just do a global delete of all files in the address space's 
directory. 

It is not clear right now what is the right thing to do. This needs 
further discussion. 

*** 4.4.13 Storage classes 

The query system pictured so far has only disk slaves on the I/O nodes 
and query processes on the compute nodes. The I/O server processes would 
act as go-betweens: on the I/0 nodes they act as surrogate query 
processes, while on the compute nodes they act as surrogate disk slaves. 

Simple enough, but what would happen in this system if a query process 
were run directly on an I/O node? This is a problem, because when that 
query process requests slot I/O, the request is going to go directly to 
the local disk slaves, bypassing the I/O servers and therefore making it 
impossible to do any off-node I/O. 

Another related situation is possible if a single I/O node were to 
(attempt to) support both physical disk storage and HSM storage. This 
would mean effectively two different types of disk slave processes 
coexisting on the same node - there would be no way to properly direct 
the request to the right subset of disk slaves. In the current proposed 
implementation, the I/O request would just be picked up by whatever disk 
slave saw it first, which is wrong. 

The solution to the first problem is to be able to tag requests as local 



or global, and to have separate I/O queues in the shared slot cache for 
remote requests. If the request is local, it is placed in one of the 
local request queues (read, read-priority, write). If it is global, it 
is placed in a global request queue. The I/O server only watches the 
global queue in the shared memory. Upon receiving a request, it is 
forwarded just like before. Except if the destination node is really the 
local node, the treatment is simple: just requeue the request to a local 
request queue. 

The solution to the second problem is to implement the concept of a 
"storage class". Slot I/O requests are tagged with a storage class, 
which in the global case is used as additional forwarding information and 
in the local case is used to chose which subset of disk slaves will be 
performing the service. Example of storage classes include physically, 
and HSM. Disk slaves which perform physical disk I/O would only service 
physical-class requests, while RSM-serving disk slaves would only servive 
the HSM-class requests. 

Efficient implementation of multiple storage classes along with local 
versus globally tagged requests would just require multiple sets of 
queues in the shared slot cache for pending I/O: 

-A set of queues (read, read-priority, write) for physical disk access. 

-A set of queues (read, read-priority, write) for HSM access. 

-A queue for global access (in which case the I/O server would forward 
the request to the correct destination and drop it into the appropriate 
queue at that end) . 

When a query process needs to perform I/O, it would set up the request 
and then attach it to the appropriate queue (and signal any process 
waiting for I/O on that queue) . 

Note that the choice of actual storage class could also be made in the 
I/O server process by imposing a convention for the path of the file name 
being requested. For example, any path name beginning with 11 /hsm" would 
indicate HSM class access, in which case the I/O server on the I/O node 
would direct the request into one of the RSM-class request queues. This 
approach would make storage class determination more transparent to the 
query process (but would also complicate the multiple address space 
implementation) . 

* 5 Example of a persistent pointer dereference 

Here is the series of steps taken to dereference a persistent pointer. 
This assumes a distributed configuration (i.e. I/O servers are being 
used), and no read-ahead. 

Key: 
+----Q 
+---c = 
+--s = 

li-D = 
QCSD 

Query process 
I/O server on compute node 
I/O server on I/O node 
Disk slave 

1. Q--- Query process dereferences the persistent pointer. 

2. Q--- The persistent pointer is converted to a 64 bit tag, by zeroing 



the offset portion of the pointer. This is then hashed to form 
an index into an array of linked lists (residing in the PCB, 
currently 32 elements, requiring 5 bits of index). 

3. Q--- The correct linked list, which is selected according to the hash 
index, is linearly searched. The search is accomplished by 
comparing the tag computed in the previous step with the stored 
tag of each slot in the list. If a match is found, the offset of 
the persistent pointer is added to the virtual address of the 
slot, and the algorithm is complete. If the tag is not matched, 
then the remaining steps must take place: 

4. Q--- The query process allocates a new slot from the globally shared 
free list. If the list is empty, the query process puts its PCB 
on the global list of processes blocked waiting for slots, sends 
a signal to the shared memory manager, and waits for a signal. 
As soon as it wakes up and finds its PCB off the blocked list, it 
restarts the attempt to get a free slot. 

s. Q--- The query process initializes the slot's tag with the tag 
computed in step 1 (which also computes the hash and inserts the 
slot in the appropriate hash list) , and fills in the file name & 
block number in the control information. The file name and block 
number are computed by using the store metadata, which is found 
by looking up the store number. The slot is then placed on the 
"read with priority" list of slots, the first idle server process 
is found by pulling a PCB off the list of idle servers (which in 
this case would be the I/O server) , that server is signalled, and 
then the query process waits for a signal. 

6. -c-- The compute node I/O server notices the pending request, and 
determines the correct I/O node for the request (via lookup in a 
file to I/0 node cache maintained among the I/O servers - see 
section 4.4.11). 

7. -c-- A request message is composed and sent through the network to the 
I/O server process on the target I/O node. In the case of this 
operation, included in the message is the file name and block 
number of the request. The I/O server also provides information 
in the message so that the incoming segment can be read directly 
into the slot data. 

8. --s- The message is received by the I/O server on the I/O node. The 
server uses the message information to allocate a slot and set up 
a local request. The algorithm for allocation is the same as 
that for the query process back in step 4. The request is placed 
on the 11 read with priority" list of slots, the first idle server 
process is found and signalled. 

9. ---DA local disk slave wakes up, sees the request, and performs the 
operation. Upon completion, it signals the owner of the slot 
(the I/O server) . 

10. --s- The I/O server process on the I/O node notices the completed 
request and forwards the slot data and result status back to the 
I/O server on the original compute node. 

11. -c-- The I/O server on the compute node receives the data for the 
segment directly into the slot. The status is updated, and the 
owner of the slot (the query process) is signalled. 



12. Q--- When the query process wakes, it checks the slot for I/O 
completion. When the I/O is complete, the process checks for 
success - if there is a failure, then the query must exit with an 
error. On success, the query process adds the persistent pointer 
offset to the virtual address of the slot, and the algorithm is 
complete. 

The above steps do not include anything about resource locking, slot 
reference count updates, or updating fields required for implementation 
of slot aging. 

Notice that the I/0 servers are able to handle multiple concurrent 
requests. The internal implementation of those servers is a "work list" 
which is constantly being processed and added onto. As new requests show 
up and messages are received, work gets added. The server constantly 
pulls items off that list and processes the required work. Each of the 
steps above involving an I/O server is independant of other requests. 
Once such a step is completed, therefore the I/O server is free to find 
other requests needing work at other phases of the transfer. 

* 6 Expected performance improvements 

Listed here are the features I functions of [POPMJ that should result in 
performance improvement over the currently implemented Fermi-ized ptool. 

The overall performance improvement that should be observed is that 
resulting from the ability of [POPM] to execute overlapped I/O - from the 
physical storage all the way out to the query process. With full 
overlapped I/O comes far better utilitization of all of the resources 
along the I/O path, specifically including the communications network 
{i.e. 30MB/sec at 80% duty cycle instead of 10% duty cycle). 

The next few sections outline various parts of [POPM] that make 
overlapped I/O possible. 

** 6.1 Shared slot cache 

As said before, the slot cache is now a structure physically shared among 
multiple query processes. This has the following benefits: 

+Copy operations are minimized. Reads & writes from server processes go 
directly to the slot. In a single node query, zero memory to memory 
copies are needed, while in a multi-node configuration, the number of 
copies is theoretically the minimum possible. 

+Memory contention among multiple query processes is handled better, 
since now they can dynamically share one pool. 

+Performing read-ahead is now just a matter of setting up a few more slot 
cache entries for pending segments. 

+Pending I/O operation state is completely containable within a slot (and 
its companion control information) . This means that on a given node, 
there can be as many concurrent I/O operations as there are slots 
available. 

** 6.2 Read-ahead 

A good read-ahead algorithm makes it possible for [POPM] to create more 



usable I/O operations for a given query process. Without read-ahead, a 
single query could at most cause only 1 pending I/O operation at a time. 
With read-ahead the next few segments can be scheduled concurrently, thus 
overlapping the I/O reads and burying the latency. 

** 6.3 Segment & folio striping 

The ability of striping segments (or folios) over multiple folios (or 
files) does not in of itself result in overlapped I/O and better 
performance. What it does do is permit better read-ahead. Without this 
striping, the read-ahead distance would have to be much larger before any 
parallelization of I/O can occur. With the striping, the read-ahead 
distance need only be a few segment's worth. 

** 6.4 Distributed I/O effects 

This point is obvious, and was one the reasons for the previous creation 
of the Fermi-derived ptool in the first place. The I/O disks are spread 
over multiple nodes, thus spread the I/O load across CPUs and increasing 
the number of parallel I/O operations. In [POPM], this organization 
should have a "synergistic" effect with the other enhancements in place. 

** 6.5 Stateless requests 

The only state describing a request is contained in the control data for 
the slot in question. This results in far better resource usage along 
the I/O path. For example, the I/O servers don't really have to 
"remember" anything about a pending request to an I/O node and can more 
easily go about finding and forwarding other requests while that first 
request is proceeding. Result: overlapped I/O. 

** 6.6 Multiple disk slaves 

There is no specific limit on the number of disk slave processes that may 
be running on a single node. They're sort of like nfsd daemons - they 
sleep until woken up and then look for work to do. Since all the slot 
I/O requests are independant of one another, the disk slaves can 
therefore all work independantly, permitting concurrent I/O on a node. 

The ideal number of disk slave on a given node should be enough to 
theoretically always keep all of the local storage units busy. Since a 
disk slave is always either accessing a disk or working with the shared 
memory, then about 2 disk slaves per storage unit should do the job. An 
I/O node with 4 storage units (disks) should therefore have about 8 disk 
slaves running. Assuming even distribution of the I/O, then at any given 
time a storage unit will always have 2 disk slaves focused on it, keeping 
it potentially busy at all times. 

** 6.7 Use of "physical pointers" 

This performance boost actually doesn't effect the ability to perform 
overlapped I/O. However it should raise the efficiency of the persistent 
storage API. 

A physical pointer allows the user to amortize the cost of the persistent 
pointer dereference over multiple accesses into persistent storage. This 
should lower the overall pointer dereference overhead, increasing the 
scanning speed of the query. This should have its greatest effect 
however when the persistent data is being populated; in that case the 
number of dereferences per object is significantly higher than during a 



query. 

* 7.0 Caveat Emptor 

This system is not a panacea, and it has some notable limitations 
specifically having to do with the persistent object API. Known problems 
are listed in the following sections. 

** 7.1 Non-portable object data 

As discussed in section 3.3.3, stores really are not portable. Object 
data created on one system can't be presumed readable on another: 

1) Padding within structures is compiler-dependant. 

2) Byte-ordering is CPU architecture-specific. 

3) Segment size is implementation-dependant. 

This is a serious limitation if this system were to be considered as a 
new data interchange format. It just isn't designed with that in mind. 

However, it is conceivable that a specific interchange format could be 
created, based upon some of the concepts of the object-structuring in 
persistent object managers. The API would have to be expanded such that 
it would be possible to "flatten" an address space or store of objects 
into a stream, and "expand" that stream back into a properly formatted 
address space or store at the destination machine. The concept here is 
simple: Use one (native) format for representing the data structure on 
the machine. This would be optimized for the speed and efficiency during 
queries. Use another (generic) format for representing the data 
structure in a compiler, CPU architecture, and implementation-independant 
way. This secondary format is optimized for compatibility, but not 
speed. 

** 7.2 Major problems with member functions in persistent memory 

Are persistent objects in this system really "objects"? No. They are 
really persistent structures. Why? Because the difference between a 
"structure" and an "object" is that an "object" is essentially a 
"structure" with protection and member functions. And it is NOT safe to 
use member functions with the persistent structures supported by [POPM] 
or for that matter by the UIC ptool implementation. Since member 
functions are not safe, protection is useless. That just leaves the 
"structure" part of the definition. 

The following sections illustrate why it is generally not safe to use 
member functions in this system. 

What happens if a member function were defined and called for a 
persistent object? It won't work properly. With normal member functions 
it can be made to work with a little bit of kludginess. With 
constructors, the work-around is more painful. But with virtual 
functions, there is no work-around. 

Let's study the implications of the use of member functions in persistent 
objects: 

*** 7.2.1 Nonvirtual member functions for persistent objects 



First let us consider the case of a simple nonvirtual member function: 

class abc { 
public: 

} ; 

void myfunction(void}; 
int foobar; 

typedef pptr<abc> ppabc; 

void asubroutine(ppabc ap) 
{ 

ap->myfunction(); 

} 

So what happens at the 11 ap->myfunction() 11 call? Well, the overloaded 
11 -> 11 operator gets called, which returns an appropriate pointer into a 
slot for the object in question. The compiler then uses this value as 
the 11 this 11 pointer in a call to abc: :myfunction () . 

Interesting. So abc::myfunction() gets as its context a _direct_ pointer 
into the slot. What happens if abc::myfunction() does further operations 
to manipulate persistent storage? If it does enough such work, the slot 
holding its own context may be reclaimed for use by another segment. If 
the member function then tries to access its class context, then it is 
either going to (a) read garbage, or (b) overwrite some other segment! 

This problem occurs because the slot containing the object's segment must 
remain valid as long as there is an object pointer aimed at it. And in 
the case of a member function, that pointer remains aimed at it for the 
ENTIRE SCOPE OF THE MEMBER FUNCTION. This is a very large window 
compared to the simpler case of just accessing persistent member data 
within an expression. The pointer lifetime issue rears its ugly head 
again. 

One really bad aspect of this situation is that the problem won't 
actually surf ace unless the slot in question gets recycled during the 
member function's execution. And that action depends on factors outside 
the scope of the executing process. For example, on a node with only one 
query running, that query process will likely get all of the available 
slots, making the above scenario relatively unlikely. But if multiple 
queries are running, the slots are going to be divided among the queries, 
making this problem far more likely. In other words, code debugged and 
certified in a test system may fail in a production environment because 
the outside conditions are going to be different. This is an 
exceptionally bad property of this problem. 

To get around this problem, a physical pointer (as described in section 
4.4.3) must be used to make the member function call. The physical 
pointer will hold a lock for that object and guarantee that the slot will 
not be reclaimed during the execution of that member function. It is 
unsafe to use normal persistent pointers when calling member functions. 
One very important caveat of work-around is that now every called member 
function has the potential to be locking a slot. If too many such calls 
are active, there is a possibility of deadlock. Yuck. 



*** 7.2.2 Constructors for persistent objects 

It gets worse. Consider now the impact of constructors. A constructor 
function is just like a normal member function, in that it gets a "this" 
pointer and may internally perform other operations. So it is just as 
vulnerable to the pointer lifetime problem as normal member functions. 
Except now we have no way to bracket the constructor with a physical 
pointer! Why? Because before the constructor is called, there simply is 
no pointer to lock - the persistent pointer gets created as part of the 
"new" operation that calls the constructor. Locking it after the "new" 
statement is too late. The overloaded "new" operator can't do it either 
because the constructor is actually called _after_ the "new" operator 
returns (but before the creating subroutine gets control back) . 

To work around this problem requires an even more restrictive covenant: 
The constructor body must not do any persistent operations. This is 
really hard to live with because it is very likely that the persistent 
object may contain pointers to other persistent objects which logically 
need to be created in the constructor. Or the constructor may need to 
dereference other persistent objects in order to fetch information for 
deposit into its instance. Cases like this can only be addressed by 
performing them outside of the constructor. Perhaps they can be done by 
a normal member function whose invocation has been protected by a 
physical pointer lock. *sigh* 

*** 7.2.3 Virtual functions don't work with persistent objects 

Virtual functions are implemented in C++ by allocating a "hidden" virtual 
table pointer in the class structure. When such a function is called, 
the compiler generates a dereference of that field to find the virtual 
table. The virtual table is then indexed by the virtual function number 
to find the address of the actual function to be called. 

This technique does not work in ptool, nor will it work in our query 
system. Why? Because the virtual table is not persistent data; it is 
logically part of the code for the program. So the virtual table 
pointer, in the persistent object, is pointing at an executable-specific 
table in the code. Worse still, the virtual function number, which is 
used as the index into the table, is executable-specific. 

The upshot of all this is that if a persistent address space is populated 
and queried with the same executable program, then virtual functions in 
persistent objects would be usable. However, if the executable were 
relinked, or different programs were used to access the persistent 
address space, then the first call to a virtual function will dereference 
random code memory and either result in a segmentation fault (if the 
dereference failed), or an instruction trap (if it got as far as calling 
through the bogus function pointer in the bogus virtual table) . 

Therefore it is not possible to employ virtual functions in persistent 
objects, as implemented in this system. If a user tries to write code in 
this manner, this violation will also be impossible to detect until the 
code executes (since the code will compile ok) . 



Local Variables: 
mode:indented-text 
fill-column:75 
eval: (outline-minor-mode 1) 
End: 


