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Disclaimer 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the Government nor any agency thereof, nor 
any of their employees, makes and warranty, express or implied, or assumes any 
legal responsibility for the accuracy, completeness, or usefulness of an 
information, apparatus, product or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein to any specific 
commercial product, process or service by trade name, trademark, manufacturer 
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Chapter 1 

Introduction 

Canopy provides a machine-independent environment for attacking grid­
oriented problems. This document describes the concepts and routines 
common to all Canopy implementations, independent of the system 
and implementation. Information specific to the massively parallel 
ACPMAPS/indexACPMAPS system at FermiLab is contained in two 
other documents: The CANOPY ACPMAPS USER'S GUIDE provides 
user-oriented instructions on compiling, running, file system usage, and 
production job control. The CANOPY ACPMAPS SYSTEM MANUAL 
describes system tools and installation and system management tech­
niques. System-specific User's Guides may be created for implementa­
tions on other systems. 

The goal of Canopy is to allow scientists to use massively parallel 
systems for a broad class of applications without having to become 
expert in any particular system or in parallel programming techniques. 
The Canopy approach identifies grid-oriented concepts and implements 
them as routines in a library. Applications written in terms of these 
concepts will run on any system which supports the Canopy software. 
A side benefit in dealing with familiar concepts is that programs can 
more easily be understood by other researchers. 

5 
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1.1 Manual Organization 

The INTRODUCTION and the second and third chapters in this manual, 
CONCEPTS IN CANOPY and A TUTORIAL EXAMPLE, familiarize the 
user with with the Canopy paradigm. They assume, however, that the 
user already knows something about both C and numerical analysis. 
Together they give an overview of the way Canopy programs work. 

The fourth chapter, PARALLELISM CONSIDERATIONS, describes con­
sequences of the assumption that Canopy programs run on parallel, 
distributed memory systems. 

The fifth and sixth chapters, STRUCTURES AND TYPEDEFS and 
CANOPY SUBROUTINE REFERENCE, form a reference manual for the 
Canopy software. They describe the provided subroutines (and user­
provided customization functions) and explain how to use them. 

The seventh chapter describes standard Canopy libraries. GR!DLIB 

is a library of functions to define different sorts of Canopy grids. Cur­
rently it contruns only periodic rectilinear grids but these subroutines 
may be used as examples to define grids with other topologies. SETLIB 

is a library of common set functions which are mostly related to recti­
linear grids. RANLIB is a library of random number generators suitable 
for the massively parallel environment. Currently, it contains routines 
only for uniformly-distributed randoms. CMPLXLIB is a library of com­
plex number macros, typedefs, and subroutines. FFTLIB is a library 
of FFT routines for periodic rectilinear grids. It contains fast multi­
dimensional FFT's for arrays whose sizes are multiples of three and five 
as well as factors of two. PROMPTLIB is a library of prompted input 
routines which recover from errors in the input and handle terminal 
and re-directed file 1/0 appropriately. 

As a general rule, references to sections of the manual are set in 
SMALL CAPS and references to C or Canopy objects are set in type­
writer face. 
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1.2 Perspectives on Usage 

Canopy is a library of C-linkable subroutines designed to guide the 
organization of parallel software. Properly written programs using 
these subroutines will automatically take advantage of parallel hard­
ware. However, it makes perfect sense to compile, link and run Canopy 
programs on a single-node machine as well, and is often useful to do 
so while debugging. A Canopy application can be run on any system 
which supports the Canopy software (any "Canopy platform"). Care 
has been taken to give platform-independent results. 

Canopy applications are structured as a control program which is­
sues tasks. The strategy of using a parallel system is that the exectution 
of these tasks is distributed over many nodes. A node consists of a CPU 
along with its own memory; at any time (including during a task), a 
node may access its own memory or the memory of other nodes. Canopy 
routines facilitate the access to data which may or may not reside on 
the local node. (See Section 2.3 CANOPY PROGRAM ORGANIZATION.) 

As Canopy is built on C, almost all C programming concepts apply. 
In particular, since C is built on UNIX, system calls and program in­
vocation follow UNIX conventions. Canopy is generally written to use 
POSIX system calls where-ever possible to enhance portability. There­
fore Canopy programs look almost like UNIX C programs. 

However, there are a few subtle differences arising from the parallel 
nature of Canopy. These are gathered together here and apply to all 
Canopy platforms 

Canopy programs have control() instead of main() as 
their main entry point. Just as main returns an exit code 
and has argc and argv and envp arguments, so does control. 
Using control this way allows Canopy set-up to be done 
before the program starts. 

Canopy modules are compiled and linked with a special 
tool instead of cc which defines appropriate macros and 
links appropriate libraries. The cane tool prepares modules 
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for the native UNIX machine. Tools for module prepara­
tion on specific massively parallel systems are described in 
system-specific user's guides. For example, the dcanc and 
acanc tools prepare modules for the multi-node ACPMAPS 
machine; these are detailed in the CANOPY ACPMAPS 
USER'S GUIDE. On these tools, most of the cc flags work 
in the normal way. 

All Canopy programs should call complete_defini tions () 
once and only once. This is required to set up the grids and 
fields but also ensures the linker will find the main program. 
Sometimes a program without this call will link correctly 
but it is a good idea to include it. 

I/O should not be done inside task routines. This is mostly 
a logical restriction, since the order of I/ 0 would then be 
undefined. Sometimes it is useful to print from inside a 
task and while this is allowed it is discouraged except for 
debugging. Input is not supported. The result of output 
is not completely defined and may cause surprises, even if 
ffl ush is used. 

The use of global variables is discouraged since the compiler 
cannot tell if their use is legal. In general they should only 
be used to pass data between different parts of the control 
program or different parts of the task routine on the same 
site or to pass data from the control program to all the 
task routines using broadcast. Other uses are probably 
not logically correct in ways that are hard to find. Sending 
data through do_task is much safer. 

The setjmp and longjmp routines are not allowed. While 
these may work in some implementations (and do strange 
things) they are not required of a valid Canopy platform. 
In particular, setjmp and longjmp must not jump into or 
out of tasks. 
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Canopy modules created with cane work exactly the same way nor­
mal C programs do, picking up the environment and command line 
arguments the same way. They are invoked simply by typing their 
names and work with pipes in the normal UNIX fashion. Multi-node 
Canopy modules also pick up environment and command line argu­
ments and work with pipes, but using them requires understanding the 
ACPMAPS system tools. Notice that, as with all cross-compiler tools, 
. o object files created with different compilers are incompatible and 
therefore must be kept separate. 

1.2.1 Canopy on UNIX 

On UNIX systems, the Canopy-specific tool cane is used instead of 
cc to compile and link Canopy programs. Here is a simple Canopy 
program which does not make use of the Canopy grid or parallelism 
concepts: 

f* file hi.c, almost the simplest Canopy program*/ 

/* */ 
#include <canopy.h> 

void control(int argc, char **argv, char **envp) 
/* pick up command line */ 

{ 

int i; 
printf("Hi Guys!\n"); 
complete_definitions(); /*significant for linker*/ 
printf("argc = %d\n",argc); 
for (i=O; i<argc; i++) { 

printf("argv[%d] = %s\n",i,argv[i]); 
} 

} /* control */ 

cane works like cc, in particular obeying the command line options 
-c, -o <file>, -D<name>, and -l<lib>. To use cane to compile the 
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example do this: 

>cane hi.c -a hi 

The hi module is an ordinary UNIX module which runs in the ordinary 
UNIX way: 

>hi users 
Hi Guys! 
argc = 2 
argv[O] = hi 
argv[1] = users 

1.3 Perspectives on Implementation 

Although Canopy is designed as an environment providing the concepts 
natural to grid-oriented applications, it is also designed for efficient 
implementation on a variety of massively parallel, distributed memory 
systems. The Canopy software implementation is organized with that 
in mind, striving for ease in portability. There are two aspects to 
portability: Applications making use of Canopy routines should run 
on any Canopy platform; and it should be straightforward to port the 
Canopy software to suitable new systems. 

To achieve these goals, Canopy is designed as a layered product, 
with each layer presenting a clean interface to the higher layers. The 
lowest layer, the Canopy Hardware Interface Package (or CHIP), pro­
vides routines unifying different machines. The public interface to 
the CHIP routines-and all routines in layers above CHIP-will be 
machine-independent. The next layer, Canopy, provides grid and task 
primitives, implementing the concepts needed for grid-oriented appli­
cations. On top of that are libraries built on the Canopy routines 
(and using the public CHIP interfaces where necessary): The set, grid, 
prompt, cmplx, and fft libraries provide specific tools within the Can­
opy framework. The highest layer is, of course, the user application. 
Each layer has access to all of the public concepts of the lower layers. 
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The CHIP layer is designed to isolate the higher layers from ma­
chine details. Intended as a base for Canopy and other higher-level 
application packages, it introduces concepts for dealing with single- or 
multi-node machines in a unified way, so that details such as the exact 
flavor of C or the number of nodes are unimportant above this layer. 
All the mechanics of synchronizing and controlling parallel CPU's are 
provided by CHIP, including: an overall paradigm for system addresses; 
routines to read and write to those addresses; the general job start-up 
and running procedures; fatal error handling; semaphores; and a facility 
to run subroutines on all nodes. 

The Canopy layer introduces concepts appropriate for solving grid­
oriented problems, including grids, sites, sets, directions, paths, fields, 
maps, and tasks. It contains a large number of subroutines for manipu­
lating the concepts discussed in the second chapter of this manual. The 
CANOPY SUBROUTINE REFERENCE chapter of this manual describes 
the public Canopy and CHIP subroutines in detail, and explains how 
to use them. The last section of this chapter describes the public CHIP 
routines, 



Chapter 2 

Concepts in Canopy 

Canopy provides a natural environment for solving grid-oriented prob­
lems. It includes concepts such as links, sets, and fields over grids; 
and subroutines for doing numerical analysis operations that deal with 
these concepts. Since it is designed to run in a parallel environment 
(the massively parallel ACPMAPS system), it uses the natural paral­
lelism in most grid-oriented problems automatically, isolating the user 
from the multi-node nature of the machine. By using the grid-oriented 
concept of performing the same operation on many sites of the grid 
simultaneously, it encourages more structured programming as well as 
efficient use of the parallel processing machine. 

2.1 Grid-Oriented Structures 

The underlying arena on which grid-oriented problems are solved is 
a grid consisting of sites (or points on the grid) and links connecting 
these sites. Canopy requires the additional concepts of the coordinates 
of a site and the direction of a link. Each site is referenced by its 
coordinates, and each link by its direction from some site. 

Each link may therefore be named in two ways since it connects two 
sites. The link in direction +d from site A to site A+d must be the link 
in direction -d from site A+d to site A. It is not trivial to require links 

13 
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and directions to be labeled this way, although it is natural to do so on 
rectangular grids. For lattice gauge theory programs in four dimensions 
on a regular hypercubic grid there are four positive directions X, Y, 
Z, and T; and the four corresponding negative directions. On a two­
dimensional rectangular grid there are two positive and two negative 
directions, and the labelling looks as follows: 

to (0,0) 

I 
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(to (2,2))-- (0,2) 

I 
I 
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For other types of grids the direction and coordinate structure 
can be more complicated. For example, one way to set up a hexagonal 
grid is to use three positive directions on the plane: +xOOO, +x120 and 
+x240; and the corresponding negative directions -xOOO, -x120, and 
-x240. Then, as is shown in the diagram on the next page, some sites 
only have links in the positive directions and some have links only in 
the negative directions, so not all directions lead to links from every 
site. The coordinate assignment is also arbitrary, and some coordinates, 
such as (1, 1) in the diagram, do not correspond to sites. 
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The concepts of coordinate and direction do not always have 
direct physical meaning. For example, a problem done on a mesh model 
of a surface where each site always has four nearest neighbors can easily 
be handled in Canopy by mapping the surface to a two-dimensional 
rectangle with appropriate boundary conditions and using the X and 
Y directions. It is also possible to define irregular grids by increasing 
the number of directions, although the unused directions will take up 
memory space. 

The standard library gridlib contains definition routines for peri­
odic rectilinear grids. Other grids, such as the example hexagonal grid, 
may be defined by the user with the Canopy subroutine arbitrary_ 
grid. 
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2.1.1 Paths 

A path is a list of directions showing how to move from site to site 
along the links of a grid. Paths are a powerful concept because they 
can express algorithms in a position-independent way. For example, 
a common object in lattice gauge theory is the product of link matri­
ces around a plaquette or square formed by the path +dl, +d2, -dl, 
-d2. The plaquette can be calculated from any site on the grid without 
reference to coordinates, even if the path crosses a boundary; all that 
matters is the grid connectivity set up at the beginning of the Canopy 
program. 

However, not all paths need be valid from all sites since not all sites 
have links in all directions. On the hexagonal grid example there are 
really two types of sites (those with links in the +xOOO, +x120, and 
+x240 directions and those with links in the -xOOO, -x120, and -x240 
directions), and paths valid for one would not be valid for the other. It 
is also possible to define a rectilinear grid without periodic boundary 
conditions where the sites on the edge have no neighbor in the direction 
of the edge. In this situation paths are still useful but some of them 
may lead NOWHERE and the program must account for this. 

2.1.2 Fields 

Many physical problems involve fields of some sort defined on the con­
tinuum, such as the electric field on space or the gluon field on space­
time. When problems involving fields are solved by a grid approxima­
tion, the continuum fields are replaced by fields on the sites or links of 
the grid. Canopy allows fields to be defined which reserve space for 
field elements on either the sites or links of a grid and provides a set 
of subroutines for manipulating the field elements. Note the distinc­
tion between a field element, which is some structure stored on a site, 
and a field, which is a variable used to refer to a particular group of 
structures on sites. The field concept is one of the ways Canopy hides 
the multi-node nature of the machine. Field elements are distributed 
over the nodes automatically, but the user always references field ele-
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ments through Canopy subroutines so the actual distribution of field 
elements to nodes never affects the high-level user programs. Even on 
a single-node machine this construct improves modularity by making 
all references to field elements (which are a kind of global data) only 
through conceptually simple subroutines. 

2.1.3 Sets 

After grids and fields have been defined Canopy is ready to do op­
erations on some set of sites on the grid, such as all sites on a grid or 
the sites on the grid boundary. The do_task subroutine loops over all 
the sites in a set, calling some task routine on each one. These calls to 
the task routine are automatically distributed over nodes and are done 
in parallel. The task routine does something relative to its HOME site 
(the current site in the do_ task loop). Canopy does parallel operations 
only through calls to do_task() on some set of sites. 

2.1.4 Maps 

A map establishes relations between grids. Each site on a domain grid 
is mapped either to some site on a range grid or to a special site called 
NOWHERE. These maps may be one-to-one or many-to-one and need not 
cover the entire range grid. Canopy provides subroutines for finding 
the image or inverse image of a site, and for doing operations on each 
site in the inverse image of a site. 

Maps are intended for problems where there is an obvious sub-grid 
structure. For example, it is sometimes useful to sum up all elements of 
one time-slice of a four-dimensional grid. By creating a separate time 
grid and mapping each element of the four-dimensional grid to its time 
coordinate in the time grid, a task can be written for the time grid 
which does a sub-task to sum up the elements of the four-dimensional 
grid for each time slice. This allows all the time slices to be summed 
up in parallel, which is hard to do any other way. 
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2.2 Canopy Variables 

To implement the above concepts Canopy uses the following variable 
types which are all defined in C typedef statements: 

grid: Variables of type grid identify particular grids. 

set: Variables of type set identify particular sets. 

map: Variables of type map identify particular maps. 

field: Variables of type field identify particular fields. These are 
used by Canopy subroutines with site and direction variables 
to fetch and store field elements, which may be any C structure. 

site: Variables of type site identify particular sites on a grid. There 
is a special variable inside task routines, HOME, which points to the 
current site in the loop over sites done by the do_task routine. 
Another special site, NOWHERE, is used by map routines to indicate 
that the image or inverse image of a map is empty. 

direction: Variables to indicate particular directions, which range 
from -ndir to +ndir (skipping 0). For example, grid. h defines 
the symbols MINUS_T, MINUS_Z, MINUS_y, MINUS_X, X, Y, Zand T 
as the numbers -4 to 4, appropriate for hyper-cubic grids. 

coordinates: This is a 1-based array of integers used to specify a 
site's coordinates. For the above-mentioned hyper-cubic grid the 
directions X, Y, Z and T are indices for this array. 

path: This type is a pointer to a list of directions. 

These types are described in detail in the TYPEDEFS and CANOPY 

SUBROUTINE REFERENCE sections. There are some additional types, 
used mainly for internal reference and optimization, but they are built 
around the same concepts. 
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2.3 Canopy Program Organization 

Canopy programs are divided into three parts: the declaration section 
where grids, fields, sets, and maps are defined; the single-thread ex­
ecutable section which does overall process control and calls parallel 
tasks; and tasks, which do some operation in parallel on a set of sites. 
The first and second sections together compose the control program, so 
called because its main entry point must be named control(). 

2.3.1 Control Program Declaration Section 

The declaration section is the place where all the grids, fields, sets 
and maps are declared. This section can read input from a file or 
terminal and then decide what sizes to use, so very flexible programs 
may be written. After completing the declaration section the program 
must call complete_defini tions, which reserves space for and sets up 
pointers to the declared structures. 

2.3.2 Control Program Executable Section 

The executable section of the control program actualy executes the 
algorithm. It can invoke do_task() to call the task routines, which are 
executed in parallel. Both the declaration and the executable section 
of the control program may call subroutines which are still considered 
part of the control program for all system purposes. 

2.3.3 Task Routines 

Task routines do the same thing on each site for which they are called. 
Typically they use the HOME site, which is set by the do_task() call to 
each site in the set in turn, as a base site. Some fields are gathered in 
directions or paths relative to HOME, some calculation is done and the 
results stored back in a field on the HOME site. 

The task routines must be written so that each site in the set may 
be acted on without interfering with the task routine on other sites 
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of the same set. Thus Canopy can run on all of the sites in parallel 
without any additional user intervention. Provisions are made for com­
pound sets of sites, where do_task must call the task routine in some 
specific order. The PARALLELISM CONSIDERATIONS chapter describes 
the special subroutines needed to manage this situation properly. 

2.4 Summary 

Canopy is a framework for writing programs that solve grid-oriented 
problems. Subroutines to create grids with known connectivity are built 
into it, as are subroutines to manipulate the fields that live on these 
grids. Parallelism is automatically achieved by writing task routines 
which do an operation on a site. The user need not be aware of machine 
details such as the number of nodes or the distribution of sites to nodes. 
With Canopy, programs can be debugged on a normal single-thread 
machine and then moved to a multi-node system without change. 



Chapter 3 

A Tutorial Example 

Perhaps the simplest and best-known grid-oriented problem is the Lap­
lace heat equation, '17 2 </> = 0. It can be solved numerically by a relax­
ation algorithm. The program laplace. c, which solves this equation 
on a rectangular grid, is a good example of how Canopy functions fit 
together. This chapter discusses laplace. c in detail and also explains 
how to use other Canopy concepts to solve more complicated problems. 
The basic organization of the example program will be shared by all 
Canopy programs. 

To solve '17 2 </> = 0 on a rectangular grid, start by writing the differ­
ential equation as a difference equation: 

(3.1) 

or 

((</>x+x - </>x)- (</>x - </>x-x)) + ((<f>x+Y- </>x)- (</>x - </>x-;;)) = 0 (3.2) 

which yields the equation 

</> _ <f>x+x + <f>x-x + </>x+fJ + <f>x-fJ 
x - 4 . (3.3) 

This may be solved by a relaxation algorithm which replaces the value 
at each point on the grid with the average value of its nearest neighbors. 

21 
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The program laplace. c (there is a copy of it available in Canopy source 
files) implements this algorithm. Lines from laplace. c appear roughly 
in order throughout this chapter with explanations. Its main sections 
work as follows: First, it sets the boundary conditions on the grid, 
which are fixed throughout all the relaxation sweeps. This is actually 
one of the hardest parts of the program to write since considerable 
thought must be given to various details. In laplace. c, the program 
takes as input the values of the temperature at the four corners of the 
rectangle and then interpolates these values along the edge, thereby 
eliminating any possible discontinuity problems. Then the program 
sweeps over the interior sites iteratively, replacing the temperature at 
each site with the average of the temperature of its four neighbors. The 
sites are updated in a red/black order and the new values of the red 
sites are used to update the black sites. For the convergence of the 
Laplace equation this ordering is unimportant, but for other problems 
it is crucial. The PARALLELISM CONSIDERATIONS chapter discusses 
some of the subtler issues involving the order. Finally, the program 
uses a subroutine to print out the initial and final temperature values 
in a user-readable form. 

As usual in a C program, lower-level routines precede the top rou­
tines which call them. In the context of this Canopy TUTORIAL ex­
ample, that means the overall control program appears at the end; the 
individual task routines (to be executed in parallel) are presented be­
fore that; and the routines defining sets of sites over which the tasks 
are to work are presented first. 

3.1 Canopy C Conventions 

Canopy is designed to run under C compilers which conform to the 
ANSI standard. Canopy applications should be written in ANSI C 
style. 

Since Canopy existed before the ANSI C standard, and the com­
piler for the Weitek processor used in the original ACPMAPS system 
was not ANSI C, the Canopy compilation tool applies a pre-processor 
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which performs necessary conversions such as including changing ANSI 
prototypes and function declarations to the old Kernighan and Ritchie 
style. 

In order to be compatible with the preprocessor, programs should 
use the voidptr type instead of void* and should not use array types 
in function argument lists (that is, avoid constructs such as int f(int 
x [3]) )-use typedefs instead. Also, variable length argument lists 
pose a special problem since there are many ways to handle them. 
The pre-processor does not attempt to convert these automatically. 
However, the Canopy routines which take variable length argument lists 
(do_task and make_path) are declared in <canopy.h> in the correct 
way for several target systems. 

3.2 Required Include Files 

Every Canopy program must include the <canopy .h> file, which con­
tains function prototypes and definitions for all the Canopy and CHIP 
functions. In additions to <canopy .h>, the Laplace program uses rou­
tines from <math.h>, <prompt.h>, and <grid.h>. The math library 
is standard C and the prompt and grid libraries is described in this 
manual. MINUs_y, MINUS_X, X and Y are #defined in <grid. h>. 

#include <canopy.h> 
#include <grid.h> 
#include <math.h> 
#include <prompt.h> 

3.3 Grid and Set Defining Functions 

A Canopy program may contain functions defining one or more grids, 
and functions to define sets of sites on the grids. The example Laplace 
program will use periodic_square_grid() defined in <grid.h>, so no 
grid definition functions appear here. The program defines five simple 
and one compound set of site functions, some of which are used as 
building blocks for the others. Some of these set functions are also in 
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setlib, but are repeated here for clarity. If setlib functions are used, 
then set . h should also be included .. 

The red_func function sets up a simple set of sites whose sum of 
coordinates is odd. It does this by returning 1 for those sites with 
odd coordinate sums and 0 for those sites with even coordinate sums. 
This function is not actually used except to build the other functions, 
but it could be used to define a set of sites. Note how the number of 
dimensions is obtained from the lattice argument: 

int red_func(grid lattice, intptr coords) 

{ 
/* red sites have odd coordinate sums *I 

int ndirn = number_of_dirnensions_of_grid(lattice); 
int i; 
int csum.=O; /* note that coords is 1-based! */ 
for (i=1; i<=ndirn; i++) { csum += coords[i]; } 
return(csum 'l. 2); /• 1 for red; 0 for black•/ 

} /• red_func •/ 

The black_func function sets up a simple set of sites whose coor­
dinate sum is even by returning 1 if the coordinate sum is even and 0 
if it is odd. It uses red_func to do the work. This function also is not 
used except to build other functions: 

int black_func(grid lattice. intptr coords) 
/* black sites have even coordinate sums */ 

{ 

return (1 - red_func(lattice,coords)); 
} /• black_func •/ 

The boundary _func function sets up a simple set of sites which 
lie on the edge of the grid. This function actually is used to make 
a set of sites, since the initialization is done only on the boundary 
sites and the update only on the interior sites. It uses grid_upper_ -
bounds() and grid_lower_bounds () to find out the grid dimensions 
without explicitly using any global variables. 
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int boundary_func(grid lattice. intptr coords)*/ 

{ 

} 

I* sites on the boundary -- using Canopy data */ 

int ndim number_of_dirnensions_of_grid(lattice); 
int *max= grid_upper_bounds(lattice); 
int *min= grid_lower_bounds(lattice); 
int i; 

/* coords, min. and max are 1-based */ 
for (i=1; i<=ndim; i++) { 

} 

if ( ( coords [i] ==min [i]) I I (coords [i] ==max [i])) { 
return(!);/* boundary sites are in the set */ 

} 

return (O); /* other sites are not */ 
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Now the above three functions are used to make functions for the 
red interior sites and the black interior sites, which are the sets used for 
the Laplace update. As was mentioned above, the Laplace algorithm 
converges no matter what order is chosen for the field update. The 
red/black order is chosen due to subtle issues involving parallism that 
are described in detail in the PARALLELISM CONSIDERATIONS chapter, 
which gives rules on how to choose acceptable orderings. 

int red_interior_func(grid lattice, intptr coords) 
/* red sites not on the boundary */ 

{ 

} 

int i; 
if (boundary_func(lattice,coords) == 1) { 

return(O); /*boundary sites are not in set */ 
} 

/* otherwise red sites are 1 and black sites O */ 
return (red_func(lattice, coords))j 
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int black_interior_func(grid lattice, intptr coords) 
/* black sites not on the boundary */ 

{ 

} 

int ii 
if (boundary_func(lattice,coords) == 1) { 

return(O); /*boundary sites are not in set */ 
} 

I* otherwise red sites are 0 and black sites 1 *I 
return (black_func(lattice, coords)); 

Finally, rb_interior is the compound set of sites. It sets up the 
set of all interior sites in a red-then-black order. For boundary sites it 
returns O, for interior red sites 1, and for interior black sites 2. This 
compound set of sites could be used for updating red sites first and then 
black sites, if appropriate changes are made to the task routines. Again 
there is more discussion of these techniques and their implications m 
the PARALLELISM CONSIDERATIONS chapter. 

int rb_interior(grid lattice, intptr coords) 

{ 

} 

/* sites not on the boundary, in red-black order *I 

int i; 
if (boundary_func(lattice,coords) == 1) { 

return(O); /*boundary sites are not in set */ 
} 

/* otherwise red sites are 1 and black sites 2 */ 
return (1 + black_func(lattice~ coords)); 

3.4 Task Routines 

Task routines are the heart of Canopy programming. They do some 
operation on the HOME site, such as initializing or updating one of its 
fields using the Canopy subroutines. Task routines are called by the 
do_task subroutine once for each site in some set, with the HOME site 
taking on the value of each site in the set. do_taskO automatically 
distributes the calls to the task routine over all the available nodes so 
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operations may be done in parallel. A typical do_t ask call looks like 
this: 

float f; 

float x[4]; 
do_task(task_routine, set_to_do, 

PASS, tf, sizeof(f), 
INTEGRATE, tx, 4•sizeof(float), 
END); 

This causes the subroutine task_routine to be called once for each 
site in the set set_to_do. The remaining arguments of do_task() 
describe the arguments of task_routine and what is to be done with 
them. In this example, task_routine would look like this: 

void task_routine(float *farg, float *xarg) 
{ 

/* code where *farg is read-only but */ 
/* four elements of xarg[] are qritten */ 

} /* task_routine */ 

The two arguments of task_routine are farg, which is used as a 
pointer to a float, and xarg which is used as a four-element floating 
point array. The array is filled with four values. The argument triplets 
in the do_t ask call tell the system exactly how to treat arguments to 
task_routine (see Section 4.3, ARGUMENTS TO TASK ROUTINES). 

The (PASS, &f, sizeof (f)) triplet says that the first argument to 
task_routine is read-only, that its address is &f, and that it has the 
size of a float. The second triplet says that the second argument of 
task_routine is to be summed up over all the sites in the set as a 
floating-point array with four elements. The array at &x will be filled 
with the answer-note that do_ task initializes it to zero first. The last 
"triplet," END, says there are no more arguments. This complicated 
structure is needed in order to properly call task_routine on many 
different processors simultaneously and keep track of the results. 

The task routines in laplace. c use a "generalized subroutine head­
er" structure which lets the calling routine call what looks like an ordi­
nary C subroutine that handles the do_ task call internally. There are 
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two reasons for using this: 1) the control program will look simpler 
and 2) the error-prone ugliness of passing input scalars by address in­
stead of by value is eliminated. The "generalized subroutine header" 
format requires two routines with almost the same name: one of these 
is the actual task routine that appears in the do_task call and the 
other is a header routine that calls do_ task. The first routine has the 
same name as the second with an underscore character appended. In 
the first example below, the task routine is set_field_ to_zero_ and 
the header routine is set_field_ to_zero. 

The header routine has one more argument than the task rou­
tine, since the header routine needs to know which set to use in the 
do_task() call. Conventionally, this set is the first argument of the 
header routine. The remaining arguments of the header routine are the 
same as the arguments of the task routine except that scalar input ar­
guments such as fields, maps, grids, sets, ints and floats may be 
pass-by-value in the header routine. All arguments of the task routine 
are pass-by-address, since do_ task uses the address of the argument. 

The first example is a simple task routine which sets a field of floats 
to zero on its HOME site. It has only one argument: the field to be 
set to zero. This is passed by value to the header routine and passed 
by address in the task routine. This routine is rather specialized since 
it needs to know both that the field is a field of floats and that the 
length of each field element is one. It would be possible to write a more 
general routine that uses the f ield_length () function to zero a field 
of arbitrary length but for laplace. c this is not needed. 

/* first the actual task routine, */ 
/* complete with ending underscore *I 

void set_field_to_zero_(field *f) 
/* zero HOME site of f */ 

I* in task routines, always pass arg'lllllents by address */ 
{ 

float zero ; 0.0; 

put_field(•f, HOME, (voidptr) tzero); 
} 
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/* now the header routine with the */ 
/* same name but no underscore *I 

void set_field_to_zero(set set_of_sites, field f) 
I* note that here arguments can be pass-by-value */ 
{ 

do_task(set_field_to_zero_, set_of_sites, 
PASS, tf, sizeof(field), 
END); 

} /* set_field_to_zero */ 
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The second task routine does a relaxation sweep on the HOME site. 
It replaces the field at the HOME site with the average of the field at the 
nearest neighbors. The header structure is exactly the same as before. 

void laplace_sweep_(field *f) 
/* in task routines, arguments are pass-by-address */ 
{ 

} 

float a == 

•(float•)field_pointer_at_dir(•f, X) + 
•(float•)field_pointer_at_dir(•f, Y) + 
•(float•)field_pointer_at_dir(•f, MINUS_X) + 
•(float•)field_pointer_at_dir(•f, MINUS_Y); 
a /= 4.0; 
put_field (•f, HOME, (voidptr) ta); 

/* now the header routine with the */ 
/* same name but no underscore */ 

void laplace_sweep(set set_of_sites, field f) 

/* note that f is pass-by-value here */ 
{ 

do_task(laplace_sweep_, set_of_sites, 
PASS, tf, sizeof(field), 
END); 

} /• laplace_s~eep •/ 

The third task routine is called at the beginning of the program to 
initialize all the sites on the boundary. It uses the grid information 
routines to get the upper and lower coordinate limits and is passed an 
array of floats containing the values in the corners, which it uses to 
interpolate boundary values for the edges. Since it only makes sense 
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to call this task with the boundary set of sites it would be possible to 
re-write the header to use the boundary set directly. This would require 
that the boundary set be a global variable instead of local to the main 
program, however. 

void set_boundary_sites_(float *corner_value, field *f) 
{ 

} 

grid lattice= grid_supporting_site(HOME); 
int *max= grid_upper_bounds(lattice); 
int *min= grid_lo~er_bounds(lattice); 
coordinates coords; /* temp coordinate array */ 
float valj 

get_coordinates (HOME. coords); 
if (coords [X] ==min [X]) { /• top •I 

val = (corner_value[1] - corner_value[O]); 
val*= coords[Y] - min[Y]j 
val /= max[Y]-min[Y]+l; 
val+= corner_value[O]; 
put_field (•f, HOME, (voidptr) &val); 

} else if (coords[X]==max[X]) { /•bottom•/ 
val= (corner_value[2] - corner_value[3]); 
val•= coords[Y]-min[Y]; 
val /= max[Y]-min[Y]+l; 
val += corner_value[3]; 
put_field (•f, HOME, (voidptr) &val); 

} else if (coords[Y]==min[Y]) { I• left •/ 
val = (corner_value[3] - corner_value[O]); 
val *= coords[X]-min[X]; 
val /= max[X]-min[X]+l; 
val += corner_value[O]; 
put_field (*f, HOME, (voidptr) &val); 

} else if (coords[Y]==max[Y]) { /•right •/ 
val= (corner_value[2] - corner_value[1]); 
val •= coords[X]-min[X]; 
val /= max[X]-min[X]+l; 
val+= corner_value[l]j 
put_field (•f, HOME, (voidptr) &val); 

} 



3.4. TASK ROUTINES 

void set_boundary_sites(set s, float *corner_value, field f) 
{ 

do_task(set_boundary_sites_, s, 
PASS, corner_value, FOUR*sizeof(int), 
PASS, &f, sizeof(field), 
END); 

} /* set_boundary_sites */ 
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The final task routine shows how the same return value can lead to 
radically different answers depending on the keyword in the do_ task 
triplet. get_limits returns the value of field f on the HOME site twice, 
but the do_ task integrator only keeps the maximum value of the first 
argument and the minimum value of the second. The purpose of this 
routine is to return the maximum and minimum values of the field on 
some set of sites. 

void get_limits_(float •high, float •low, field •f) 
{ 

} 

•high= •(float•)field_pointer (•f, HOME); 
*low = *high; 

void get_limits(set set_of_sites, 
float *high, 
float *low, 

{ 

} 

field f) 
/* high and low must both be pass-by-address, */ 
/* since they are return values */ 

do task (get_limits_, set_of_sites, 
MAX_REAL, high, sizeof(float), 
MIN_REAL, low, sizeof(float), 
PASS, &f, sizeof(field), 
END); 
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3.5 Control Routine 

The main entry point of a Canopy program JS a subroutine named 
control(). This is executed as an ordinary C program on a single 
node of the system. Only when do_t ask() is called does Canopy start 
parallel processes. There are therefore some distinctions between the 
control program level and the task routine level. Most importantly, 
task routines cannot call other task routines (though there is a sub-task 
facility using maps, it does not re-distribute control to another node) 
and cannot do I/O. The control program may call other subroutines 
that are also part of the control section-task routines may only be 
entered through do_ task and do_task_n_times. 

Technically speaking the task routine headers are part of the control 
section since they do run at the top level and call do_ task, but it is 
much more convenient to to keep them near the task routine itself as 
has been done in laplace. c. 

The only other subroutine in the control section of the Laplace 
program is show_field, which prints out the field on a grid using the 
digits 0 through 9 to indicate the value of the field normalized to its 
limits. It uses the get_limi ts task to find the upper and lower limits 
of the field value and loops over all the sites on the lattice the hard way 
to print them: 

void show_field(grid g, field f) 
{ 

int *max= grid_upper_bounds(g); 
int *min grid_lower_bounds(g); 
site Si 

coordinates coords; 
int i; 
int j; 
int k; 
float a, h, l; /* h and 1 are upper and lower limits */ 

get_limits (g, th, tl, f); 

I* loop over all sites the primitive way *I 
I* one site at a time on the control node */ 
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for (i=O; i<(max[X]-min[X]+1); i++) { 
for (j=O; j<(max[Y]-min[Y]+1); j++) { 

coords [X] = i; 
coords [Y] = j ; 
s = site_at_coordinates(g, coords); 

a= *(float*)field_pointer (f, ts); 
k = 9.99/(h-l) * (a-1); 
printf ("%1ld' 1 ,k); 

} 

} 

printf("\n"); 

} /* show_field */ 
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The control program itself is the mam entry point for a Canopy 
program. It is called by the system after all of the Canopy set-up 
completes. Notice particularly how the size of the grid plane is input 
before being used to declare the grid-since complete_defini tions () 
is an executable routine, Canopy provides flexibility in changing sizes 
at run-time. 

void control () 
{ 

grid plane; I* declare the grid, field and */ 
field points; /* set variables -- note they */ 
set rb_sites i I* are local. */ 
set boundary_sitesj 
set red_interior; 
set black_interior; 

int x_dimension; 
int y_dimension; 
int number_of_sweeps; 
float corner_value[4]; 
float aO,a1,a2,a3j 

/* these are the values 
/* input by the user. 

*/ 
*/ 

inti, j; /*every program needs a few integers*/ 

/* Now input the size, boundary values, and */ 
I* sweeps using routines in the prompt library */ 
/* */ 
prompt_scanf (2. 11Enter dimensions height. lilidth: 11 
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11 Xld,%ld 11 ,.tx_dimension,ly_dimension); 
number_of_sweeps = 

prompt_int( 11Enter number of sweeps: "); 
prompt_scanf(4, 

"Enter 4 corners clockwise from top 
11 Y.f J Y.f J Xf J Y.f II 0 ll:aO, lal, &:a2, h3); 

printf("Enter 1 to read file or 0 for new 
i = prompt_int 

("Enter 1 to read file or 0 for new 

corner_value[O] = aO;/* aO ... a3 are just 

left: 

run: 

run: 

con-
corner_ value [1] = al;/* venient abbreviations. 
corner_ value (2] = a2; 
corner_ value [3] = a3; 

" 

ti) ; 

.. ) ; 

•I 
•I 

I* Now call the declaration routines. Notice */ 
I* how there were C executable statements before*/ 
I* these calls to get input values. */ 
I• 
plane = periodic_square_grid (x_dimension, 

y_dimension); 
points= site_fiold(plane, sizeof(float)); 
rb_sites = set_of_sites(plane, rb_interior); 
red_interior = set_of_sites(plane, 

red_interior_func); 
black_interior = set_of_sites(plane, 

black_interior_func); 
boundary_sites = set_of_sites(plane, 

boundary_func); 

/*Now set up the grids, fields and sets with */ 
/*this call to complete_definitions. */ 
/• */ 
complete_definitions()j 

I* •/ 
/* The first tasks are to zero the field points */ 
/* ary values. Each of these tasks is done in */ 
I* parallel on all the nodes. *I 
I• 
set_field_to_zero(plane. points); 
set_boundary_sites(boundary_sites, 

•/ 
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corner_ value, 
points); 

/* Now open the field file if the field was to */ 
/* be read. */ 
/• •I 
if (i==l) { 

} 

open_field_file("lap. out" ,READ); 
read_field( 11 lap.out 11 ,points); 
close_f ield_f ile ( 11 lap. out 11

); 

I* Now print the initial values -- note that */ 
I* show_field must loop over the sites itself. */ 
I• •I 
printf( 11 Initial values: \n\n' 1

); 

sho~_field(plane, points); 

/* Now sweep over the grid plane */ 
f* number_of_sweeps times. */ 
I• •I 
/• IMPORTANT: •/ 
I* It would appear on the surface not to be */ 
I* necessary to red-black the laplace sweep. *I 
I* Unfortunately, in a real multi-processor */ 
I* system it is not guaranteed that one might */ 
/* hit the timing exactly wrong and try to */ 
I* read a field while another node is updating*/ 
/* it. For fields of length greater than one, */ 
/* this may result in reading a half-updated */ 
/* field. This can lead to improper results */ 
/* even it either the old or the new field */ 
I* were by itself permissible. */ 
I• •I 
for (i=O; i<number_of_sweeps; i++ ) { 

} 

laplace_sweep(red_interior> points)j 
laplace_sweep(black_interior, points); 

I* Now print out the final values 
I• 
printf("\n\nFinal Values:\n\n"); 

•I 
•I 

35 



36 CHAPTER 3. A TUTORIAL EXAMPLE 

show_field(plane, points); 

/* and write them to a field file. 
I• 
open_f ield_f ile (''lap. out••. WRITE); 
Ti.l'rite_field( 11 lap.out 11 ,points); 
close_f ield_f ile ( ulap. out") ; 

} /* control */ 

•I 
•I 

3.6 Running the Example Program 

A Canopy application can be run on a massively parallel system such 
as ACPMAPS, or on a single-node Unix machine. Individual Can­
opy User's Guides are provided for massively parallel systems. Here, 
we illustrate how the laplace. c application would be run on a Unix 
system. 

The Canopy-specific tool cane is used instead of cc to compile and 
link the Canopy program: 

>cane laplace.c -o laplace 

The laplace module is an ordinary UNIX modules which runs in 
the ordinary UNIX way: 

>laplace 
Enter dimensions height,width: 6,58 
Enter number of sweeps: 1000 
Enter 4 corner values clockwise from top left: 1,2,3,4 
Enter 1 to read file or 0 for new run: 0 
Initial values: 

2222222222223333333333333333333333334444444444444444444444 
3000000000000000000000000000000000000000000000000000000005 
4000000000000000000000000000000000000000000000000000000005 
6000000000000000000000000000000000000000000000000000000006 
7000000000000000000000000000000000000000000000000000000006 
gggggggggggggggggggggggsssssssssssssssssssssss777777777777 
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Final Values: 

Largest site value is 4.000000 at (5,0) 
0000000000000000001111111111111111112222222222222222233333 
1112222222222222222222222222223333333333333333333333333333 
3333344444444444444444444444444444444444444444444444444444 
4555555555555555555555555555555555555555555555555555555554 
6777777777777777777777777777766666666666666666666666666655 
9999999999999999988888888888888888877777777777777777666666 
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Parallelism Considerations 

Canopy is designed to work in a parallel computing environment con­
sisting of many independent processors with independent memory ad­
dress spaces. The control program is run on one of these processors 
and the task routines are distributed across all of them. Most of the 
work involved in doing this is automatic but there are a few special 
considerations of which users should be aware. 

In general, when a task is done over a set of sites, each site can be 
viewed as a virtual processor: The task routine is the program, and 
the HOME site's field data (along with any stack space used) is the lo­
cal memory. The paradigm is that all sites are done simultaneously; 
a practical consequence is that any operation that depends on the or­
der of processing sites within a simple task is logically unsound. (For 
compound tasks, operations which depend on the order of sites within 
a given level would be unsound.) 

4.1 How Field Pointer Works 

The f ield_pointer routines look innocent enough, but on close ex­
amination it is obvious something is missing. On a single CPU with a 
single memory space, the address of any object can always be returned, 
but on a distributed system the field element may be in some other 
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node's address space. If the field element is off-node, a copy of that el­
ement must be made into local memory; field_pointer then returns 
the address of the copy to the caller. This has several implications: 

The returned pointer may point to either the original field 
element or a local-memory copy of the field element 

Something allocates memory for the copy 

Either something frees memory for the copy with no user 
intervention or wasted memory piles up somewhere 

The first implication means that the field element must be considered 
read-only unless it is certain that it was on the same node as the call. 
As the user has no way of telling which node is which, all of the elements 
must be considered read-only. There is one exception to this designed 
to improve efficiency in some common cases: inside task routines the 
HOME site is certain to be on the current node. This means that fields 
on the HOME site may be updated without put_field(). IMPORTANT: 
This is only true in task routines called by do_ task() and do_task_n_ -
times(). In sub-task routines called by do_task_on_inverse_image () 
the HOME site is not guaranteed to be on the current node. 

The memory management issue is more interesting. Since pointers 
inside task routines only are valid inside the task routine (and may not 
be returned since it makes no sense to combine the values returned by 
each site into a single value), the memory used for off-node field storage 
can be returned to the pool after each call do_task makes to the task 
routine. There is a special area of memory for this (on each node) called 
the do_task lalloc heap which is set up at the beginning of the program. 
However, too many calls to off-node field_pointer reads inside a task 
may still overflow the lalloc heap. There are two ways to deal with 
that situation. One is to call the declare_lalloc_sizes () routine in 
the declaration section of the control program to make the do_task 
lalloc heap larger, which is generally best unless the number of calls 
can become large and variable. The other is to call reset_lalloc () 
from inside the task routine itself, invalidating all pointers previously 



4.1. HOW FIELD POINTER WORKS 41 

obtained through field_pointer by freeing the entire lalloc heap at 
once. Any field element that needs to survive a call to reset_lalloc () 
must be copied to a new area before the call. At the present time there 
is no selective free_lalloc routine which determines whether a pointer 
points to the lalloc heap and then frees just that area if it does. In the 
future such a routine may be implemented, but for now reset_lalloc 
is the only way to free space. 

In the control program things are worse since pointers in the 
control program and its subroutines are theoretically valid forever. 
This could require an infinite amount of storage on the control pro­
gram. The solution Canopy adopts is to have field_pointer class 
routines from the control program use memory from another area 
called the control lalloc heap. Unlike the do_task lalloc heap, pointers 
allocated on the control lalloc heap are valid for all time. Since many 
programs call field_pointer routines once or more per iteration, it is 
often impossible to fix overflows by extending the heap with declare_ -
lalloc_sizes () . Instead, the reset_lalloc routine must be used 
with its attendant headache of invalidating all old data. The best way 
to do this is to call resetlallocx at the end of each iteration if the pro­
gram calls field_pointer routines from the control level. Note that 
calls to reset_lalloc inside a task routine do not affect the control 
lalloc heap. 

A side issue concerning the lalloc heap is that of data alignment. 
For some CPU chips, the i860 in particular, it is crucial that double 
precision numbers be 8-byte aligned. Canopy handles that properly by 
having lalloc return 8-byte aligned addresses whenever a multiple of 8 
bytes is requested. (The malloc routine in C works the same way.) Since 
fields containing double precision data should always be sized in mul­
tiples of 8 bytes (assuming that a sizeof() is used as nbytes in the field 
definition routine), the alignment of data fetched by fielcLpointer 
should always be proper. 
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4.2 (Lack of) Global Variables 

The laplace. c program does not have a single global variable. This 
is not due to some perverse stylistic purity concept of its author, but 
rather to a sad fact of life on parallel machines: what C thinks is a global 
variable is not really a global variable. This confusion arises because 
each of the nodes has a separate address space, and if C declares a global 
variable an independent copy is allocated on each node. Updating a 
global variable on one node will not update it on another, and if two 
nodes try to update the same physical memory location by using full­
addresses at the same time bizarre synchonization errors may occur. 
As a result, global variables can lead to many strange bugs and should 
be avoided wherever possible. 

There are a few cases where global objects can be used safely. First, 
the field elements and Canopy data are global variables of a sort, but 
they are always used through subroutines with special rules which keep 
the data sensible. Second, global variables can be set in the control 
program, and the values broadcast to all the nodes. Such variables are 
read-only from the perspective of task routines. Third, global variables 
can be used to transfer data between subroutines running on the same 
node, such as to pass values between various subroutines in the control 
program. 

Global variables might also be used to pass values between sub­
routines called by a particular task routine. This use of "task global" 
variables is not encouraged. Since the space of globals is shared by all 
the sites processed on a node, using task global variables contradicts 
the paradigm of each site being an independent virtual processor. Con­
sequently, these variables must be handled in a special way if "multi­
thread" is used to improve communications efficiency-see the section 
on TASK GLOBALS. Similar issues arise on systems where multiple pro­
cessors share the same address space-global variables which are "one 
copy per processor" must be distinguished from those which are really 
global. 

There are some common temptations to use global variables where 
they won't work at all. Canopy provides structured ways to handle 
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these situations. For example, to accumulate values inside tasks use 
integrate arguments instead of updating a global variable. The global 
variable method will not work when running on more than one node. 
Another improper use of global variables is to synchronize tasks by 
setting a global variable flag. Instead, the compound set of sites and 
synchronization routines will do the job correctly. 

A valid use for global variables is to set up tables of initial values 
or pass overall parameters. The broadcast() subroutine can set this 
up providing that the variables are treated as read-only after being 
broadcast. A call to broadcast makes a static global variable have 
the same value on all nodes that it does on the control node. For 
example: 

int var[4]j 

void control() { 

var[O] = 2; var[l] = 5; var[2] = 11; var[3] 17; 

broadcast( (voidptr) var, sizeof(var) ); 

} /• control •/ 

After the broadcast call the values 2, 5, 11, and 17 are in var on 
every node in the system, so task routines can read var as if it were an 
ordinary global variable. Notice however that no routine can change 
var after the call to broadcast without causing total confusion. It 
is important to remember that broadcast only works on global static 
variables, because only for global static variables is the same memory 
address allocated on each node. If a call to broadcast is made with 
an automatic variable or one for which space has been dynamically 
allocated (say with malloc), the results will be unpredictable. 
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4.3 Arguments to Task Routines 

There are logical subtleties associated with passing arguments to task 
routines. The first problem is that of length of data. In C, it makes 
sense to pass an argument by address; it is assumed that the function 
will use the data in the appropriate manner. But Canopy platforms are 
allowed to have distributed memory, so a copy of the data representing 
the argument must be sent to each processor node running the appli­
cation. This means that somehow the Canopy routines must be made 
aware of the length of data that the task routine will be using. 

The use of arguments to return values from a task routine presents 
another issue. In C, the calling routine can receive a return value by 
passing the address of a variable-the subroutine will eventually store 
a result at that address. But what does it mean to have each of many 
sites return a value? If an array of answers is required, Canopy al­
ready provides the concept of "one datum for each site": A field. If 
a single value is expected, there is the question of how to amalgamate 
the values returned by the task routine for each site, into that single 
value. The routine may wish to return the sum of the values, or the 
maximum value, or some other function of the values. Therefore, for 
each argument to a task routine invoked via do_ task, one must specify 
the data length and how to handle the argument, along with the argu­
ment's address. The syntax Canopy uses to do this is that of do_ task 
triplets, described in Section 6.2.1 Do_TASK ROUTINES. 

Canopy does not support two-way arguments, where the user passes 
a value to the function and then expects a return value at the same 
address. Also, there is no return value for the do_ task routine itself. 

Having resolved the above issues, the use of task routine arguments 
is not inefficient-the same procedure that handles the start and finish 
of task routines can handle the arguments. Except for overall (one­
time-only) initialization, the use of arguments to task routines is recom­
mended over the naive alternative of using (and explicitly broadcasting) 
global variables. 
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4.4 Synchronization 

The most obvious way the parallel nature of the computer intrudes into 
Canopy programs is by requiring that calls to task routines not depend 
on the order sites are processed. Even if the algorithm is insensitive 
to order it may still be inappropriate to let do_task update all the 
sites on the grid at once. For example, laplace. c must use an explicit 
red/black order for the reason discussed below. 

Consider what happens when a Canopy program runs on more than 
one processor. The control sections are executed by one processor 
(called the control node) and then the task routines are done in parallel 
on all the processors. If the Laplace update algorithm were run with 
the set of all interior sites the following error could occur: one processor 
could have written half of the field value it updates at the same time an­
other processor reads that in to update a neighboring site. This causes 
the update on the second processor to be wrong even though the order 
of the update is immaterial. Fortunately this and other synchronization 
errors may be avoided by following these two rules: 

Rule 1: Always write tasks so they only update field ele­
ments on their HOME site. 

Rule 2: Arrange sets and do_ task calls so that if a task up­
dates a field element on its HOME site it never reads elements 
of that field from any other site in the set currently being 
processed. 

For the Laplace example this means that update_si te cannot read the 
field elements of *f from any site in the set being processed by the 
do_ task call, but may read elements of *f from sites not in that set. 
Because all the neighbors of red sites are black sites and vice versa, 
doing the job in a red-then-black order solves this problem. 

Of course, doing separate do_ task calls for each set has some disad­
vantages: notably the number of sets may increase dramatically and the 
opportunity to update sites out of strict order by waiting only for their 
neighbors to finish, instead of the entire set, is lost. The compound set 
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of sites, in conjuction with the sync_fielcLpointer routines, provides 
a way to take advantage of parallelism without such strict order rules 
but adds some complications of its own, For example, the laplace, c 
program could use a compound set of sites to do the red-then-black up­
dating all at once, Such a compound set, called rb_si tes, was defined, 
However, more must be done than just replace the two do_ task calls 
with red_interior and black_interior with one using rb_sites, 
The update_si tes routine must also be modified as follows to use 
sync_field_pointer (): 

void laplace_sYeep_(f) 
field *f; /* always pass-by-address in tasks */ 
{ 

} 

float a = 
•(float•)sync_field_pointer_at_dir(•f, X) + 
•(float•)sync_field_pointer_at_dir(•f, Y) + 
•(float•)sync_field_pointer_at_dir(•f, MINUS_X) + 
•(float•)sync_field_pointer_at_dir(•f, MINUS_Y); 
a /= 4,0; 
put_field (•f, HOME, (voidptr) &a); 

void laplace_sweep(set_of_sites,f) 
field fj /* note that f is pass-by-value here */ 
set set_of_sites; 
{ 

do_task(laplace_sweep_, set_of_sites, 
PASS, if, sizeof(field), 
END); 

} /* laplace_sweep */ 

The calls to sync_field_pointer will wait for the task routine at 
the target site to finish if the target site is at a lower level then the 
HOME site, Here is a rule to decide where to use the sync-class routines: 

Rule 3: Use tbe sync routine only to fetcb field elements 
of fields wbose elements on tbe HOME site are updated by 
tbe task Fetcb all otber field elements witbout tbe sync 
routine, 
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Note that there are certain situations, such as where a field update 
requires some new elements and some old elements, where this system 
is inadequate. These should be handled by multiple sets of sites. When 
a task is done over a compound set of sites the calls to the task routine 
will not necessarily be done in order, and it is not even guaranteed that 
all sites on a particular level will finish before sites on other levels start 
(in fact, that is part of the point!). Since it is easy to make mistakes 
here it is strongly recommended that programs be written without using 
compound sets and sync routines and then modified after they are 
working. That way any errors due to the modification will show up 
clearly. 

4.5 Note on Efficiency 

The laplace. c program illustrated in the TUTORIAL EXAMPLE is, as 
it stands, not very efficient (if efficiency is measured by megaflop rate) 
because it spends most of its time fetching numbers instead of doing 
arithmetic. On realistic lattice gauge problems this sort of arrangement 
works better because proportionally more computation is done on each 
field. For example, if the Laplace program were re-written so that each 
field element had a hundred numbers instead of one then the time spend 
fetching fields would be less significant. 

The field_pointer_from_address() and address_of_field() rou­
tines are available to create and use pre-computed field addresses and 
thus avoid the overhead of computing locations on every sweep, but 
this optimization does not save much time. In absolutely critical appli­
cations they may make a 53 or so difference (and they aren't always 
faster). 

In general, the efficiency of a Canopy application on a given system 
will depend on several factors, including: the fraction of work which 
is done by tasks (as opposed to the control program); the expense of 
the Canopy "bookkeeping" to fetch fields and move among sites; the 
cost of synchronization in terms of nodes becoming idle during and at 
the end of tasks; and the cost of internode communication required to 
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transfer data between processors. 

For realistic problems running on typical massively parallel systems, 
most work is done in tasks, and the bookkeeping and synchronization 
inefficiencies are small. Canopy bookkeeping becomes expensive when 
very little work is done by each task. Synchronization inefficiency can 
occur if each node is handling only a few sites, or on algorithms with 
compound tasks implementing an order of processing which forces se­
quential operation. 

4.6 Multi-thread 

A number of strategies have been implemented in the Canopy library 
to improve performance of communications-intensive Canopy applica­
tions; these strategies are collectively referred to as "multi-thread", 
since they involve the running of multiple threads of execution on each 
node. 

Multi-thread operation improves performance because it allows many 
small transfers to be transparently coalesced into fewer, larger transfers. 
Fewer communications overheads are taken, and the available commu­
nications bandwidth is used more efficiently. This coalescing is done by 
processing multiple sites in parallel on each node. Each site has its own 
CPU context-multi-thread is simple form of multi-tasking. The coa­
lescing of data transfers is done transparently by the Canopy library, 
by grouping together transfer requests from multiple sites. 

In most cases, no modifications are required to existing Canopy ap­
plications, to allow them to be run multi-threaded. The Canopy library 
guarantees bit-for-bit identical results for correctly written applications, 
whether run single- or multi-threaded. 

The use of multi-thread can be controlled by Canopy subroutine 
calls and command-line switches to the canopy hosting tool. These 
switches are explained in the RUNNING APPLICATIONS section of the 
CANOPY ACPMAPS USER'S GUIDE. 
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4.6.1 How Multi-thread Works 

In "classic" Canopy, task routines are single-threaded. A task routine 
which requests off-node data (via a field_pointer request) blocks­
no other work is done on the node requesting the transfer until the 
data transfer completes. Likewise for put_field()-all processing on 
the node is suspended until the data is actually written to the remote 
node 1s memory. 

Under multi-thread operation, multiple sites are processed in par­
allel on each node; each site being processed has its own CPU con­
text (thread). When field_pointer requires an off-node field access, 
the CANOPY run-time library records information about the requested 
transfer, but does not actually perform the remote access. Instead, 
the CPU moves on to do the task routine for another site-another 
"thread" of execution. The new thread has its own stack, but is run­
ning the identical task routine; the cost of this "context switch" is 
minimal. 

This process is repeated until all of the available threads are waiting 
for off-node data (or the list of sites to be processed is exhausted). 
Then, all of the requests for each target node are combined into a single 
scatter/gather transfer request. The transfers are done, and threads 
which now have the data they need are allowed to proceed. The key 
point is that of the many access requests accumulated, usually several 
will involve the same remote node - these requests can be coalesced 
into a single transfer. 

Similarly, off-node writes required by put_field are queued up; 
in this case the same thread continues execution, until a remote read 
access or the end of the task forces it to do the remote writes. 

Multi-thread gains when the cost of a thread context switch is 
smaller than the overhead associated with a transfer, or when commu­
nications overheads affect the availability of a resource which is shared 
among many nodes. So any advantages depend on the nature of the 
system, and on particulars of the algorithm and its communications 
pattern. On the ACPMAPS system at Fermilab, when production lat­
tice gauge physics programs are run on hundreds of nodes, the typical 
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application gains a factor of 2-3 in performance with multi-thread en­
abled. 

4.6.2 Control of Multi-thread 

To use multi-thread mode, all that is generally necessary is to specify 
the number of threads to be used; this controls how many sites can 
be processed in parallel. The number of threads may be set between 
1 and MAXTHREADS, which is currently 512 on ACPMAPS. Generally, 
the more threads the better for efficiency, but each thread requires 
some extra memory. Each thread requires a separate stack; for typical 
Canopy applications, the default value of SK bytes of stack per thread 
is adequate. Each thread also gets its own local allocation lalloc 
heap (see the section 6.3.9 THE LALLOC HEAPS in THE CANOPY 

SUBROUTINE REFERENCE); if a non-default size for the task lalloc 
heap is declared, this is applied to every thread. (The default lalloc 
heap size is 2K bytes.) 

By default, the number of threads is set to 1 and Canopy processes 
each site on each node sequentially. The number of threads may be 
selected at the start of the job by the -threads <nthreads> option on 
the canopy command line or via the environment variable CAN_ THREADS 

= <nthreads, nstack>. It may also be changed from within the ap­
plication by calling the function 

multithread(int nthreads, int stack_size); 

from the control program. This may be called multiple times in an 
application to dynamically change the number of threads or stack size, 
but it is a relatively expensive operation and so should not be done 
frequently. It is best to choose a number of threads and stack size 
which works for the entire application, and set them once at the start 
of the program. 

For optimal performance, the user must choose an appropriate num­
ber of threads. The additional memory used for stacks and local allo­
cation heaps is about lOK bytes per thread, so if the application is 
tight on memory, that can restrict the number of threads. In general, 
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the more threads the better; but adequate transfer coalescing is usually 
achieved by the time nthreads reaches 32-64. 

Under certain special conditions it may be desirable to temporarily 
disable context switching between threads. This might be useful if: 

A section of code which does its own synchronization needs 
to protect a critical section (i.e. to prevent other threads 
from running, even if the current thread requests an off-node 
access). 

It is "known" that a task on some site is critical-many 
other sites are waiting on results from the current site. 
In this case allowing the task on the current site to fin­
ish quickly, at the expense of other sites on the same node, 
can be a net win. 

A task violates the multi-thread rules for usage of task 
global variables or does something else unorthodox. 

Two functions, multi threacLdisable () and multi threacLenable(), 
are provided to disable and re-enable multi-thread context-switching. 

4.6.3 Advanced Multi-thread Features 

This section describes techniques which may be useful in certain special 
situations - dealing with non-standard usage of global variables, fine­
tuning applications for maximum efficiency, and getting statistics on 
multi-thread coalescing and memory usage. 

Task Globals 

It is possible (but considered harmful) to use global variables to pass 
values between subroutines called by a particular task routine. For 
example: 
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int tg; 
mytask_ () 
{ 

/• A task global •/ 
/* The task routine */ 

SotThingsUp (); 

mysub (); 

} 

SetThingsUp () 
{ 

tg = ~hatever;/* Set global to its desired value*/ 
} 

mysub () I* Subroutine done during this task */ 
{ 

value :: tg; /* Using the value set up */ 
} 

Here, the variable tg is written in one subroutine and used in an­
other; we call tg a "task global". The light-weight context-switching 
used by multi-thread does not provide a separate copy of task globals 
for each thread. This means that the task globals, unlike broadcast 
globals and automatic (stack) variables, cannot be used if nthreads > 
1. 

The following work-around may be used in cases where the task 
global construct is required: during execution of a task routine with 
multi-thread enabled, the CANOPY run-time library guarantees that 
the global variable CAN_my _thread will contain a unique value, between 
0 and MAXTHREADS-1. This value will be unique in each active thread. 
An appropriately defined array can replace a task global, as illustrated 
in this example: 
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int tg_[MAXTHREADS]; 
#define tg (tg_[CAN_my_thread]) 
/* Now there is a separate tg for each thread */ 
mytask_ () { /• The task routine •/ 
{ 

Set Things Up (); 

mysub (); 

} 

SetThingsUp () 
{ 

tg = whatever; 
I• Expands to tg_[CAN_my_threadJ = whatever •/ 

} 

mysub () I* Subroutine done during this task */ 
{ 

value = tg; 
I• Expands to value = tg_[CAN_my_thread] •/ 

} 

53 

A warning: The above technique has several limitations. The use of 
#define to hide the indexing operation becomes more complicated if 
the task global is an array or a structure, and will fail if the name of the 
task global matches the name of an element in some other structure. 
Also, task globals take up at least MAXTHREADS times as much space 
as before, and become slightly less efficient to access. (NOTE: For 
cases where the actual number of threads used tends to be much less 
than MAXTHREADS, some savings in memory usage may be realized by 
dynamically allocating the array with the malloc () library function, 
such that it has exactly CAN~threads elements, instead of MAXTHREADS 
elements.) 

Independent of Canopy considerations, using global variables in this 
way may be considered "poor coding practice"; but if there are com­
pelling reasons, they can be handled (with care) as illustrated above. 
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Vertical Coalescing 

Normally, the thread associated with a given site will hlock when it 
calls field_pointer() to request off-node data; the thread resumes 
execution only after the data has been obtained. There is a small 
amount of overhead incurred whenever this happens, due to the thread 
context switch. In some situations, it may be possible to reduce the 
number of context switches (thereby increasing program efficiency), by 
combining several field_pointer() calls made from the same thread. 
This is called vertical coalescing. 

The CANOPY library provides routines which allow vertical coalesc­
ing to be explicitly turned on and off. All field_pointer() calls sand­
wiched between multithread_begiILvertical() and multithread_­
end_vertical () will be coalesced. IMPORTANT: This means the re­
turned pointers will not be valid until after the multi thread_ end_ -
vertical() calL Here is an example: 

multithread_begin_vertical(); 
/* queue the requests but do not do the actual transfers */ 
for (i;O; i<n; i++) { 

} 

ar[i];(whatever•)field_pointer(f1, &sites[i]); 
I• •(ar[O .. n-1]) is not valid here yet•/ 
br[i];(whatever•)field_pointer(f2, &sites[i]); 

multithread_end_vertical(); 
/* now ar and br are valid */ 

Because off-node accesses after a call to multithread_begiILver­
tical() might not receive data until multithread_end_vertical() 
is executed, routines which return a site structure which might be 
based on off-node information are illegal while vertical coalescing is ac­
tive. Specifically, move_siteO, move_site_by_path(), and site_at_­
pathO, are illegal between calls to multi thread_begiIL vertical() 
and multi thread_ end_ vertical(). 

It is a logical error for a task to terminate while vertical coalescing 
still active, since any field pointers that have been acquired have never 
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been valid. Canopy will declare an error and terminate the job if this 
happens. 

NOTE: When multi-thread is enabled, vertical coalescing is al­
ways enabled for data written to remote nodes with the put_field () 
function. Vertical coalescing of put_field() calls is not affected by 
rnul ti thread_ begin_ vertical() or rnul ti thread_end_ vertical(). 

Copying Put_field() Data 

Most Canopy programs use put_field() only to modify field data at 
the HOME site, but some (for example, the FFT routines in FFTLIB), 

modify data at other sites. When multi-thread is enabled, outgoing 
data transfers are coalesced: putJield() requests are queued, and 
the thread is allowed to continue. All putJield requests are buffered 
until processing of the site is complete; at that time, all of the buffered 
putJield () requests are flushed. 

It is possible for the current thread to modify the contents of the 
buffer passed to put_field (),before completing the task at the current 
site. If this happens, there is a danger that the wrong data will get 
written to the remote node, since the data has been changed before 
the queue of outstanding put_field () requests has been flushed. To 
avoid incorrect behavior in this situation, the putJield() function 
normally makes a copy (on the lalloc heap) of any data being sent 
off-node. Making these copies imposes a small performance penalty, 
and increases the required lalloc heap size. (Since each thread has its 
own lalloc heap, the amount of additional memory required can be 
fairly large.) 

Two routines are provided, which allow a task routine to control 
whether or not a copy of off-node put_field() data is made. The 
rnultithreacLbegin_nocopy() function tells Canopy that it is safe to 
skip the copying of put_field data, since the contents of these vari­
ables will not be modified until after a call to multi threacLencL­
nocopy(). When rnultithreacLencLnocopy() is called, the queued 
putJield() requests are flushed. These routines will normally be 
used to bracket a short section of code which issues a series of put_ -
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field() requests, or a loop, which writes out the results of some op­
eration. 

Miscellaneous Multi-thread Interactions 

The features available for control of multi-thread opoerations are in­
tended to provide performance advantages when used in the simple 
intended ways. For instance, veritcal coalescing should be invoked 
by sandwiching a short section of code (containing field_pointer­
class routines) between calls to multi thread__ begiIL vertical() and 
multi thread__ end__ vertical(). Similarly, multi thread__begiILnocopy() 
should start a short code segment which is terminated by multi thread_ -
end_nocopy(). Invoking multi-thread should never alter the result of 
a program. 

However, Canopy cannot prevent these routines from being called 
in arbitrary combinations and circumstances. In these cases, the prime 
object is that the Canopy program will always get the correct result. 
In order to prevent errors, certain combinations of advanced options 
will be "turned off", behaving in a conservative manner with respect 
to waiting and coalescing transfers: 

Calling field_pointerO automatically causes the queue 
of pending put_field() requests for the current site to be 
executed. This is necessary to prevent data coherency prob­
lems which could otherwise occur if a task writes data with 
put_field(), then turns around and attempts to access the 
same data again using field_pointer(). 

A task or subtask inherits the multi-thread state (enabled 
or disabled) of its parent. Furthermore, if multi-thread is 
disabled on entry to a task or subtask, then that task or 
subtask may not itself enable multi-thread (any calls to 
multithread_enable() are ignored). 

All tasks and subtasks started while multi-thread is enabled 
begin executing with vertical coalescing disabled, and copy­
ing of put_field() data enabled. Calling a subtask does 
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not affect the state of these settings in the calling task, but 
will have the side effect of causing the queue of pending off­
node requests (both read and write) for the current site to 
be executed. 

Calling any of the following routines, or returning from a 
task routine, will cause any queued put_field or field_ -
pointer requests for the current site to be executed: 

multithread_enable() 
multithread_disable() 
multithread_begin_vertical() 
multithread_end_vertical() 
rnultithread_begin_nocopy() 
rnultithread_end_nocopy() 

Multi-Thread Statistics 

57 

The print_mul ti thread_stats () function prints statistics which may 
be useful for fine-tuning the number of threads and/or stack size for 
an application. It reports the average degree of communications coa­
lescing, and stack usage statistics. The statistics are reset each time 
print_mul ti thread_stat s is called. The print_mul ti thread_ stats 
function may be called only from the control program (it is illegal inside 
of tasks). 
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4. 7 General Multi-Processing Issues 

4.7.I Random Numbers 

There are several subtleties relating to the use of (pseudo- )random num­
bers in a massively parallel environment, For one thing, the increased 
computational power of these systems means that many more random 
numbers can be run through; this implies more severe requirements 
on the quality of the random sequence. Another point is that it is 
desirable to have precisely reproducible results; many schemes for gen­
erating random numbers would lead to different results depending on 
the number of nodes used. And it can be undesirable for two streams 
of random numbers used in the same job to actually be two parts of 
the same longer stream-this increases the likelihood of getting invalid 
results due to similarities between the streams. 

Even in single-processor systems, there are examples of researchers 
obtaining incorrect results by using fl.awed random number generators. 
Although Canopy provides a generator which is strongly felt to have 
excellent properties (see RANLIB-RANDOM NUMBERS), the user is 
free to provide a different kernel for generating the random sequence, 
within the bookkeeping framework Canopy provides. 

The proper logical entity for producing a stream of random numbers 
is the site (the virtual processor). If a separate stream is associated 
with each site, then random numbers will not cause results to depend 
on the number of nodes, or on how the sites are distributed among the 
nodes. Since typical jobs involve millions of sites, there are concerns 
about correlations among the millions of streams, as well as the usual 
concerns about randomness of an individual stream. 

To set up and use random numbers in Canopy, the progam calls 
make_randol!Lgeneratorduring the declaration phase-the random func­
tion is specified here. (Canopy provides in RAN LIB an excellent func­
tion: duaLrandom, which is based on a large feedback register method. 
However, the user is free to create a different function-see section 6.1.5 
RANDOM NUMBER DECLARATION.) Whenever a random number is 
desired, whether during a task or otherwise, the random() function is 
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called. 
The naive way of handling randoms numbers on massively paral­

lel systems is to have one stream of numbers per node. Compared to 
stream-per-site, this approach is very slightly faster, and saves the ne­
cessity of allocating room for seeds and queues of randoms for every 
site (about 80 bytes per site). Canopy provides the option of stream­
per-node randoms. Using stream-per-node has the consequence that 
repeated runs of the identical application on different numbers of nodes 
will not produce identical results. If multi-thread is active, stream-per­
node randoms can lead to non-identical results, even if the number of 
nodes is unchanged. Identical repeatability is often useful, so most 
applications should select stream-per-site random numbers. 

4.7.2 System Independence 

In important consideration in program development is that programs 
should give bit-for-bit identical results regardless of details such as the 
number of nodes or the exact CPU on which the program was run. 
Unfortunately, while Canopy was designed with this principle in mind, 
C was not. However, if stream-per-site random numbers are used, the 
only remaining problems are related to floating-point arithmetic. The 
following may cause programs to give results which are not bit-for-bit 
identical: 

Integrate arguments involving floating point operations are 
used in do_task, and the number of nodes has changed. 

The compiler has re-arranged the order of floating-point 
operations. 

The supplied C math library, or the floating point arith­
metic itself, is different. (Not every CPU is perfectly IEEE 
compliant.) 

Only the first of these is specific to Canopy. If stream-per-node 
random numbers are used, the the following discrepanceies can also 
occur: 
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Random numbers are used, and the number of nodes has 
changed. Since different streams of randoms will apply to 
a given site, the results can be completely different. The 
difference is analogous to starting with a different random 
seed. 

Multi-thread context-switching is active, and randoms are 
called for during task routines after f ield_pointer is called. 
In this case, the order of randoms can vary even if the num­
ber of nodes remains unchanged. 

Of course, a genuine error can cause inconsistency (and invalid re­
sults). This can happen if the application violates the Canopy paradigm, 
which states that sites in a task are (logically) processed simultaneously. 
For example, if the laplace. c example did not use the red-black tech­
nique to avoid the use of "stale" field data, it could produce inconsistent 
results, depending on just how quickly each node does its work. Or the 
application might use a global variable which is set but not broadcast, 
or broadcast a variable which is obtained through dynamic allocation 
(and in different places on various nodes). 



Chapter 5 

Typedefs, Structures, and 
Variables 

This chapter and the next chapter CANOPY SUBROUTINE REFERENCE, 

form a reference manual for the Canopy software. 
Canopy is designed as a set of subroutines callable from ordinary 

C programs. This chapter describes the typedefs, structures, #defines 
and global variables visible to the user and explains how to use them. 
These objects are all declared in the include files for the Canopy sys­
tem. There are a few additional reserved words in Canopy which are 
private variables and functions which for some reason or other cannot 
be hidden. These reserved names all start with the string "CAN_" so 
they can be avoided by normal programs. There are additional private 
structures and typedefs but these are not in the linker tables so they 
do not affect user programs. 

Canopy is a layered product, with each layer presenting a clean 
interface to the higher layers. The lowest layer, the Canopy Hardware 
Interface Package (or CHIP), is designed to isolate the higher layers 
from the machine and system details. The next layer, Canopy, is built 
upon CHIP; other concept-oriented tools can be built upon the same 
CHIP foundation. 

Canopy is a set of subroutines designed for solving grid-oriented 
problems on a multi-processor machine. Accordingly, the canopy. h 
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include file contains structures and typedefs for grid, field, and site 
variables; and function prototypes for the routines that manipulate 
them. Everything at the Canopy layer is built upon CHIP, so the 
site variables, for instance, know about multiple nodes. However, a 
great deal of effort has been spent ensuring that the user does not need 
to know about CHIP; the multi-processor (or not) nature of the real 
machine is not visible from the application software. 

All the CHIP features documented here are visible at all levels. 
The include file canopy. h itself includes chip. h, so the casual user 
need never be concerned about the levels at which features are defined: 
As long as canopy. h is included and the application is compiled using 
a Canopy compilation tool (to link in appropriate libraries), an ap­
plication can freely mix Canopy routines and direct CHIP primitives 
if needed. Normally, CHIP routines will not be called directly; but 
some typedefs defined at the CHIP level (e.g. voidptr) will commonly 
appear in user applications. 

For convenience in porting Canopy to other platforms, and in iden­
tifying the nature of the CHIP interface, concepts defined at the CHIP 
level are identified explicitly in this chapter. The last section of the 
CANOPY SUBROUTINE REFERENCE forms a reference for CHIP sub­
routines. 
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5.1 Typedefs 

CHIP sets up some simple types to allow the ANSI-style Canopy code 
to work on non-ANSI compilers. It is recommended that user Canopy 
programs utilize these same types (e.g. voidptr rather than void*) so 
that the applications will be portable to Canopy platforms which do 
not have ANSI C. 

void: void is defined as int (with a macro definition) if a non-ANSI 
compiler lacks it, so programs can, with no modification, take 
advantage of ANSI type-checking for void function return values 
when compiled with an ANSI compilero 

logical: A synonym for int, intended to be TRUE or FALSE 

intptr: A synonym for int*. 

floatptr: A synonym for float*. 

charptr: A synonym for char*. 

voidptr: Canopy uses voidptr extensively in the ANSI sense of 
a "pointer to anything." All of the field_pointer routines, for 
example, return voidptr because the fiel<Lpointer routine is 
general and does not know the type to which its return value 
points. Canopy uses voidptr in formal arguments and function 
return values where the argument must be a pointer to some 
type but that type is not fixed. Pointer arguments to Canopy 
routines must thus be cast as voidptr and return values of Can­
opy routines cast back as pointers to the real type, since ANSI C 
sometimes complains voidptr does not conform to a pointer to 
something not void even though this practice is officially blessed. 
For non-ANSI compilers lacking a void type, voidptr may be de­
clared as either intptr or charptr, which means *voidptr may 
not be type void, (it may be char instead of int, for example). 
This can never matter for valid programs. 
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intfunptr: A pointer to a function returning an integer, declared as 
typedef int (*intfunptr)(). 

voidfunptr: A pointer to a function with no return value, declared 
as typedef void (*voidfunptr) () or something else as appro­
priate for a non-ANSI compiler. 
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5.2 Structures 

The Canopy structures define the types of variables that the user ma­
nipulates to utilize the Canopy concepts. There are also CHIP struc­
tures that the Canopy routines work with. For instance, the concept of 
a fulLaddress is used to specify a memory location in a distributed 
memory system. The Canopy concept of a site variable is based on 
this underlying CHIP concept. The user manipulates sites and should 
never need to know the details of the fulLaddress structure. 

5.2.1 Canopy Structures 

grid: Type for grid variables. 

field: Type for field variables. 

set: Type for set variables. A grid may be cast as a set and used as 
the set of all sites on the grid. 

map: Type for map variables. 

site: This type is a structure whose purpose is to point to a Canopy 
site. One element of this structure is a fulLaddress, which can 
be used as an argument to ONMYNODE(). 

<site>. address The fulLaddress of the "origin" of the data­
including field data and other Canopy structures-for this 
site. 

When checking whether two site variables refer to the identi­
cal site, is_same_si te () should be used, rather than comparing 
fulLaddress. 

path: Structure to refer to a path along the grid. A path is an array 
of directions, so path is the same as direction*-a synonym 
for intptr. Note that malloc must be used to allocate enough 
space for a path-the path variable is just a pointer. An array 
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of integers may be cast as path. The path array is terminated 
by the special value END, which is an integer greater than any 
allowable direction. 

direction: Type of a direction, which is an integer between -ndir 
and +ndir skipping zero. In grid. h definitions are made for the 
directions X, Y, Z, T, MINUS_X, MINUS_ Y, MINUS_Z and MINUS_ T. 
Since directions are small integers skipping 0, loops over directions 
may be done as follows: 

Positive directions: for (i=X; i<=T; i++) {} 

Negative directions: for (i= -X; i>= -T; i--) {} 

All directions: for (i= -T; i<=T; i=(i==-1)?1:i+1) {} 

coordinates: Type to store coordinates. This is a 1-based array 
of coordinates for each direction, with enough space to hold the 
largest possible number of dimensions. The 0 element is present 
but unused. For the rectilinear grids, the index into this array is 
just the direction, so that, say, coords [X] is the coordinate in the 
X direction. When a coordinates object is passed to a function 
the function should declare it as type intptr. 

field_address: This type is a structure whose purpose is to point to 
a Canopy field element. One element of this structure is a fulL 
address. 

<field_address>.fieldadd: The fulLaddress of the data 
composing this field element. 

sync_address: This type is a structure with a fulLaddress as its 
only element. Its purpose is to point to a Canopy synchronization 
word, and its components should only be used internally: 

<sync_address>. syncadd: The fulLaddress of the synchro­
nization word. 
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5.2.2 CHIP Structures 

CHIP defines structures to deal with the distributed memory nature 
of systems, the need for semaphores, and the control of multi-node 
task processing. Most Canopy programs will not use these structures 
directly. 

Ordinary C pointers specify an address in the process memory space. 
On a multi-node machine a pointer must also specify the node where 
an address is valid. CHIP uses these structures to do so: 

fulLaddress: This type comprises a node number and a voidptr, so 
it may be used as a sort of "extended pointer" to point to memory 
anywhere in the machine. Anywhere Canopy needs to refer to a 
memory location that may be on an arbitrary node it uses this 
construct. The internal nature of a fulLaddres structure may 
depend on the platform on which Canopy is running. Although 
definitions of the elements making up this structure may be found 
in chip.h, those are not part of the public CHIP interface (and 
thus not listed in this manual). Explicit use of such elements may 
lead to non-portable code, and is deprecated. 

fulLaddress_ptr: Synonym for fulLaddress* 

CHIP has a special type for a CHIP semaphore. These provide a 
system-independent means of contending for resources; they are used 
via the routines in the SEMAPHORES section of the CHIP SUBROU­

TINE REFERENCE. The individual elements of the semaphore structure 
are not described here because they have meanings which are system 
dependent. 

semaphore: A piece of memory used to keep track of a semaphore 

semaphore_ptr: Synonym for semaphore* 

CHIP defines the type for controlling arguments in calls to do_task() 
and do_on_alLnodes (). While the former is a Canopy layer concept 
the typedefs required for it must be defined in CHIP in order to be 
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passed through multi-node subroutine calls. This is the only place 
where a CHIP concept has been modified for Canopy. 

These structures appear in the Canopy library routines establish­
ing various sorts of do_task argument types. A user-supplied routine 
defining new types of integrate arguments would utilize these struc­
tures (see USER SUPPLIED ROUTINES in the subsection on Do_TASK 
KEYWORDS). 

CAN_do_task_keyword: A structure describing a do_ task argument. 
This is the type of the first argument to a do_task triplet, a 
structure controlling how to combine the return arguments from 
task routines.as described in detail in 6.4. 7 TAILORING Do_TASK 
KEYWORDS. 

CAN_do_task_keyworcLptr: Synonym for CAN_do_task_keyword* 

One structure exists only as part of the host communication scheme. 
This is never touched by any higher layer but it must be public so the 
host can find it in the symbol table and interpret it: 

CHIP _node_start_frall\e: Used for host communications. 
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5.3 Global Variables and Macros 

5.3.1 Canopy Variables 

Canopy makes public several global variables, which are valid on all 
nodes may be used inside tasks or in the control program. They may be 
implemented as ordinary variables or as macros (by #define directives). 
Either way, these are to be treated as read only variables; attempts to 
change their values directly will lead to undesired results. 

site *HOME: A pointer to the HOME site. 

grid NOGRID: A grid variable used as the null grid (type is grid). 

site NOWHERE: The null site. The NOWHERE site is valid during and 
after the call to complete_definitions. Note that the variable 
NOWHERE is of type site, in contrast to HOME which is a site* 
pointer to a site. It is appropriate to use NOWHERE in user-supplied 
mapping functions and lattice definition functions-these func­
tions get called by complete_defini tions. 

site CAN_current_site_pointer: This variable is pointed to by HOME 
and should probably not be used by itself. It is valid only inside 
tasks. 

int CAN_nlattices: Number of grids. 

int CAN_nfields: Number of fields. 

int CAN_nsets: Number of sets. 

int CAN_nmaps: Number of maps. 

int CAN_nrandoms: Number of random number generators. 

int CAN_nthreads: Maximum number of threads to be used. 



70 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES 

int CAN_stack_size Size of stack assigned to each thread. The values 
of CAN_stack_size and CAN_nthreads may be controlled using 
the multi thread routine (section 4.6.2 CONTROL OF MULTI­

THREADING); the user must not modify these variables directly. 

int CAN_my_thread: Number of the thread currently executing. This 
is valid anywhere, but will be zero outside of tasks. 

(The lattice, field, set, map and randoms counters are valid for use 
at all times, but before complete_defini tions () they only count the 
number declared to that point.) 

These lalloc structures have to be visible to the linker but should 
probably not be used directly: 

CAN_lalloc_structure CAN_lalloc 

CAN_lalloc_structure CAN_control_lalloc 

CAN_lalloc_structure CAN_do_task_lalloc 

In addition, canopy. h defines the following symbol for convenience 
in compilation: 

CANOPY ..l:!: This is defined to prevent errors if canopy. h is included 
more than once. 

5.3.2 CHIP Variables and Macros 

CHIP defines logical values (as integers), for internal use. The user is 
free to take advantage of these when using logical variables. 

TRUE: Value 1 for logical variables. 

FALSE: Value 0 for logical variables. 

CHIP also defines the words ZERO through TWENTY as the integers 0 
through 20 (in the obvious way). This can be useful when invoking 
routines which expect arguments passed by reference. 

The following is defined as a fulLaddress structure which matches 
no other fulLaddress: 
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NULLFULLADDRESS: A fulLaddress that matches no other, and 
which is invalid to attempt to dereference. 

NDDE_NUMBER(NULLFULLADDRESS) returns -1, a value which can­
not match any actual node. 

locaLaddress_fronLfulLaddress(NULLFULLADDRESS) returns 
NULL, a null pointer. 

The NOi/HERE site has NULLFULLADDRESS as its fulLaddress. 

The following variables are established and exported by the CHIP 
layer routines. They are set up before the call to control and so are 
valid anywhere. The Canopy program is allowed to read them (but 
should not normally need to). 

int CAN...number_of_nodes: Number of nodes used by this job. 

int CAN...number_of_ this_node: Index of this node, where the control 
node is 0 and the range is up to CAN...number_of_nodes - 1. 

The following provide portable ways of extracting infromation from 
fulLaddresses. These can be macros in a given implementation, so 
user code should not attempt to pass them as a function, or to use 
them with pre- or post-incremented arguments: 

logical ONMYNODE(fulLaddress *fa): TRUE if *fa is local to this 
node. 

logical IS-5AME_FULL...ADDRESS (fulLaddress *fal, fulLaddress *fa2): 

TRUE if both arguments point to the same location in the mem­
ory space. 

int NDDLNUMBER(fulLaddress *fa): Returns the node number of 
*fa; returns -1 if fa is NULL_FULL...ADDRESS. 

voidptr LDCALADDRESS(fulLaddress *fa): Returns the address 
(within local memory on the relevant node) of *fa; returns NULL 
if fa is NULL_FULL_ADDRESS. 
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Functions for forming fulLaddresses from node numbers and pointers 
are described in section 6.5.2, FULL ADDRESS FUNCTIONS. 

The following macros are defined in chip.h for use by Canopy inter­
nals: 

DO_TASK_PASS: Value for task keyword type. 

DO_TASK_FUNCTIDN: Value for task keyword type. 

DO_TASK_INTEGRATE: Value for task keyword type. All user-defined 
do_ task keywords will be of this type. 

MAXARGS: Maximum number of arguments permitted in a do_task call. 

MAX_NODES: Maximum number of nodes in any given job. 

WORD SIZE: sizeof ( voidptr), which in most implementations matches 
sizeof (int). 

In addition, chip. h defines the following symbols for convenience 
in compilation and inter-system compatibility: 

ANSLPRDTDTYPES: Defined if ANSI C prototypes exist. 

BIG_ENDIAN: Defined only if the machine is big endian. 

VARARGS: Defined if using VARARGS 

STDARG: Defined if using STDARGS (we are moving toward this) 

BSD: Defined if BSD 4.2 or 4.3 

SYS_V: Defined if SYSV Unix. 

XXX_C: XXX is replaced by the machine currently in use-see chip. h for 
a list. This is used for language-dependent ifdefs. It is usually 
set by a -D option in the shell running the compilation. 

CHIP ..1l: Defined after chip. h has been included; this prevents errors 
if the file is included more than once. 



5.4. KEYWORDS 73 

5.4 Keywords 

5.4.1 Canopy Keywords 

Canopy applications will make use of these keywords, defined as integer 
values in canopy .h, to direct the behavior of various Canopy routines. 

READ: Keyword used by open_field_file(). 

WRITE: Keyword used by open_fiel<Lfile(). 

APPEND: Keyword used by open_field_file(). 

STREAM_PER._SITE: Keyword used to make a random number generator 
that keeps a separate stream of pseudo-random numbers for each 
site on each grid. 

STREAM_PER_NODE: Keyword used to make a random number generator 
that keeps a separate stream of pseudo-random numbers only on 
each node, which is the minimum number of streams needed to 
do things in parallel. 

While Canopy itself does not include #def in es to refer to any di­
rections, most user programs do. The file grid. h, for example, defines 
these: 

X, Y, Z, T: Many programs define these as 1, 2, 3, and 4 for the 
four positive directions. 

MINUS_X, MINUS_ Y, MINUS_Z, MINUS_ T: Many programs define these 
as -1, -2, -3, and -4 for the four negative directions. Note that 
with these definitions MINUS_]( = -X and so forth. 
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5.4.2 Do_task Keywords 

Canopy applications use keywords to describe the nature of arguments 
to tasks. These keywords are used by do_task, but also by the CHIP 
level routine do_on_alLnodes -therefore, they are CHIP concepts. 
These keywords are pointers to CAN_do_task_keyword structures which 
must be in the same memory location on all nodes. The Do_TASK 
KEYWORDS subsection of USER-SUPPLIED ROUTINES describes how 
such a structure is set up. The most common types of arguments are 
specified by the following keywords, set up by CHIP: 

PASS: Pass any type of argument except a function. 

FUNCTION: Pass a function. 

SUM-11.EAL: Sum up the returned argument as a float. 

INTEGRATE: Synonym for SUM-11.EAL 

MAX-11.EAL: Take the maximum returned argument as a float. 

MIN-11.EAL: Take the minimum returned argument as a float. 

SUM_INTEGER: Sum up the returned argument as an integer 

MALINTEGER: Take the maximum returned argument as an integer. 

MIN_INTEGER: Take the minimum returned argument as an integer. 

SUMJ)OUBLE: Sum up the returned argument in double-precision. 

MAXJ)OUBLE: Take the maximum returned argument (double-precision). 

MINJ)OUBLE: Take the minimum returned argument (double-precision). 

TAGJ1AX_INTEGER: Return the maximum integer value and a tag field 
associated with it. 

TAGJ1ALREAL: Return the maximum float value and a tag field 
associated with it. 
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TAG.J1ALDDUBLE: Return the maximum double value and a tag field 
associated with it. 

END: Not a CAN_do_task_keyword_ptr but rather just an integer which 
is used to signify the end of the do_task triplet list. 

5.4.3 Other CHIP Keywords 

These special values are defined in CHIP for internal use, and are not 
typically used by applications: 

AVAILABLE: Used by semaphores. 

5.5 Function Types 

Canopy declares several special types of functions even though C com­
pilers do not notice the distinction. These different declarations are 
made anyway since they improve clarity. 

set_of_sit es_func: intfunptr returning TRUE or FALSE and used to 
set up a set of sites. 

connecti vi ty_Iunc: voidfunptr described m USER SUPPLIED 

ROUTINES and used to set up grids. 

distribution_iunc: voidfunptr described m USER SUPPLIED 

ROUTINES and used to set up grids. 

coordinate_func: voidfunptr described in USER SUPPLIED ROU­

TINES and used to set up grids. 

inverse_coordinate_func: voidfunptr described m USER SUP-

PLIED ROUTINES and used to set up grids. 



76 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES 

5.6 Private Canopy Types 

Canopy uses an assortment of private types. These words are, of course, 
reserved. More information about the private types is in the canopy. h 
file. 

define_fielcLlist: Information about field set-up. 

define__map_list: Information about map set-up and maps. 

lalloc_structure: lalloc pointers. 

queue_struct : Random number queue. 

random_generator_area: Used by random number definition. 

5. 7 Canopy Limits 

Several Canopy limits are set by various #define objects. These may be 
changed by changing the #define statement in canopy. h. The current 
value of each of these limits is in parantheses: 

MAXPARAMETERS (57): Maximum number of parameters in a grid 
definition. For periodic rectilinear grids this must be at least 
twice the dimension. 

MAXFIELDS (200): Maximum number of site fields. Each link field 
takes up ndim + 1 site fields. 

MAXLATTICES (10): Maximum number of grids. 

MAXSETS (200): Maximum number of sets. Each grid takes up one 
set as well as one grid. 

MAXCLUSTERS (20): Maximum number of field clusters. Each link 
field takes up one cluster. 
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MAXPAIRS (20): Maximum number of field pairs. Each link field also 
takes up one pair. 

MAXFILES (5): Maximum number of simultaneously open field files 
of both the tape and disk variety. 

MAXMAPS (20): Maximum number of maps. Each map also takes up 
two fields. 

MAXGENERATORS (5): Maximum number of simultaneous different 
random number generators. Each generator also takes up at least 
two fields and a cluster. 

MAXTHREADS (512): Maximum number of threads of execution which 
may be active simultaneously. 

Other limits are set in chip .h, as described in CHIP VARIABLES 

AND MACROS: 

MAx_.NoDES (630): Maximum number of processor nodes to be used 
by any one process. This may be less than the total number in 
the system. Implementations of Canopy on very large systems 
will modify this limit to allow for very large jobs. 

MAXARGS (10): Maximum number of argument triplets in a call to 
do_ task. 

CAN_ATOMIG_GATHER (512): Maximum number of blocks of data that 
will be atomically transfered by a remote_gather or remote_scatter 
call. 

5.8 List of All Reserved Words 

This is a list of words the Canopy user is restricted from defining in an 
application, because the Canopy software already defines them. These 
words include typedefs, structs, keywords, global variables and macros, 
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defined in this chapter, and names of public routines, defined in the 
CANOPY SUBROUTINE REFERENCE chapter. 

There may, depending on implementations, be other reserved words, 
which are inappropriate for the user to use but which need to be ex­
ported for interfacing to hosting or other tools. All such "hidden" 
reserved words begin with CAN_ or CHIP_; every symbol is either public 
(and defined in this manual) or begins with one of those strings. 



5.8. LIST OF ALL RESERVED WORDS 

ANSI_PROTOTYPES 
APPEND 
AVAILABLE 
BIG_ENDIAN 
BSD 
CANOPY_H 
CAN_ATOMIC GATHER 
CAN_control_lalloc 
CAN_current_site_pointer 
CAN_do_task_keyword 
CAN_do_task_keyword_ptr 
CAN_do_task_lalloc 
CAN_lalloc 
CAN_lalloc_structure 
CAN_my_thread 
CAN_nf ields 
CAN_nlattices 
CAN_nmaps 
CAN_nrandoms 
CAN_nthreads 
CAN_nsets 
CAN_number_of nodes 
CAN_number_of_this_node 
charptr 
CHIP_H 
connectivity_func 
coordinates 
coordinate_func 
define_field_list 
define_map_list 
direction 
distribution_func 
DO_TASK_FUNCTION 
DO_TASK_INTEGRATE 
DO_TASK_PASS 

EIGHT 
EIGHTEEN 
ELEVEN 
END 
FALSE 
field address 
FIFTEEN 
FIVE 
floatptr 
FOUR 
FOURTEEN 
full_address 
FUNCTION 
grid 
HOME 
INTEGRATE 
intfunptr 
intptr 
inverse_coordinate_func 
IS_SAME_FULL_ADDRESS 
LOCAL_ADDRESS 
logical 
map 
MAXARGS 
MAX CLUSTERS 
MAXFIELDS 
MAXFILES 
MAXGENERATDRS 
MAXLATTICES 
MAXMAPS 
MAXPAIRS 
MAXPARAMETERS 
MAXSETS 
MAX_DDUBLE 
MAX_ INTEGER 
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MAX_NODES 
MAX_REAL 
MINUS_T 
MINUS_X 
MINUS_Y 
MINUS_Z 
MIN_DOUBLE 
MIN_INTEGER 
MIN_REAL 
NINE 
NINETEEN 
NODE_NUMBER 
NO GRID 
NOWHERE 
ONMYNODE 
ONE 
PASS 
path 
queue_struct 
random_generator_area 
READ 
semaphore 
semaphore_ptr 
set 
set_of_sites_func 
SEVEN 
SEVENTEEN 
site 
SIX 
SIXTEEN 
stack_ size 
STDARG 
STREAM_PER_NODE 
STREAM_PER_SITE 
SUM_ DOUBLE 

SUM_ INTEGER 
SUM_REAL 
sync_ address 
SYS_V 
T 

TAG_MAX_DOUBLE 
TAG_MAX_INTEGER 
TAG_MAX_REAL 
TEN 
THIRTEEN 
THREE 
TRUE 
TWELVE 
TWENTY 
TWO 
VARARGS 
void 
voidfunptr 
voidptr 
WORDSIZE 
WRITE 
x 
y 

z 



Chapter 6 

Canopy Subroutine 
Reference 

6.1 Declaration Routines 

Before the call to cornplete_defini tions () all of the grids, fields, sets, 
maps, and random number generators used in Canopy must be declared 
using these routines. The grid, set, map, and random number generator 
routines require user-supplied functions to determine which grid, set, 
map or random number generator is being declared. (These are detailed 
in the section USER-SUPPLIED ROUTINES.) 

The libraries gridlib, setlib, and ranlib contain routines for 
several commonly-used constructs, which may be used as examples and 
templates for building customized functions for other constructs. 
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6.1.1 Grid Declaration 

indextarbitrary _grid() 

grid arbitrary_grid(int nsites, 
int ndim, 
int ndir, 
intptr lower_limits, 
intptr upper_limits, 
intptr other_params, 
distribution_func dist_func, 
coordinate_func c_func, 
inverse_coordinate_func icfunc, 
connectivity_func conn_func); 

Purpose: To declare an arbitrary grid using user-supplied functions 
for the grid connectivity and distribution. When arbi trary_grid 
is called, Canopy will the coordinate function and distribution 
function for site 1, the site 2, ... up to nsi tes, ] to determine 
the coordinates and the node responsible for each site. Although 
the coordinates may have gaps, site serial numbers run from 1 
to nsi tes continuously. After the coordinates and site distribu­
tion have been set up, the connectivity and inverse coordinate 
functions are used to create the remaining structures defining the 
grid. 

Arguments: 

int nsi tes: The number of sites in the grid. 

int ndim: The number of dimensions of the grid. 

int ndir: The number of positive directions of the grid. This 
is not necessarily the number of dimensions. For example, 
in a hexagonal lattice on a plane there are three positive 
directions but only two dimensions. Also notice that of the 
six possible links (in the positive and negative directions 
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from each site) only three are realized. This is allowed as 
long as the grid has the property that the site in direction 
+d from the site in direction -d from site s is site s (which 
simply says that the way to get back is to go in the negative 
direction). 

intptr lower_limits: A one-based array containing the lower 
limits (or least coordinate allowed) in each dimension. 

intptr upper_limits: A one-based array containing the upper 
limits (or greatest coordinate allowed) in each dimension. 
Notice two things: 1) The number of sites allowed in a di­
mension is thus upper_limit-lower_limit + 1; and 2) 
Not all the allowed coordinates need be used. For rectilinear 
lattices all combinations of coordinates correspond to sites. 
For some grids (such as hexagonal grids) this will not be so, 
which is fine as long as all the points have coordinates inside 
the limits. 

intptr other _params: Pointer to an array which may be used 
to pass extra user-defined information about the grid, to var­
ious user supplied connectivity, coordinate and distribution 
functions (see section 6.4, User Supplied Routines). The 
number of words of data available in this manner is MAXPA­
RAMETERS - 2*ndim. This array must always be present; 
if no extra data is to be used, a dummy array of dimension 
MAXPARAMETERS is always safe. 

distribution_func dist_func: A pointer to a distribution 
function, as described in USER SUPPLIED ROUTINES. 

coordinate_func c_:func: A pointer to a coordinate function, 
as described in USER SUPPLIED ROUTINES. 

inverse_coordinate_:func ic_func: A pointer to an inverse 
coordinate function, as described in USER SUPPLIED ROU­
TINES. 
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connect i vi ty_func conn_func: A pointer to a connectivity 
function, as described in USER SUPPLIED ROUTINES. 

Return Value: The grid variable referring to this grid. 

The following functions already exist in gridlib and are good ex­
amples of where to begin. The default distribution function can be 
used without change for any new grid, leading to sensible (though not 
necessarily optimal) distribution of sites among the nodes. 

default_distribution_function 
periodic_connectivity_func 
periodic_coordinate_func 
periodic_inv_coordinate_func 
chunk_coordinate_func 
chunk_inv_coordinate_func 
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6.1.2 Field Declaration 

Declaration 

field site_field(grid g, int nbytes); 
field link_field(grid g, int nbytes); 
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Purpose: To declare fields on the sites or links of a previously declared 
grid. If the field is a site field it has one element on each site of 
the grid. If it is a link field it has one element on each link, and 
the element in direction +d from site s is the same as the element 
in direction -d from the site in direction +d from site s. 

Arguments: 

grid g: The grid on which the new field is to be declared. 

int nbytes: The size of each element of the new field, in bytes. 
Especially when a field may contain a complicated structure, 
it is highly recommended that sizeof (fieldelement) be used 
rather than a manual count of the size of the field. This is 
because many C compilers will pad a structure to allow for 
alignment of the data in that structure; sizeof () will always 
take this padding into account. 

Return Value: The field variable referring to the new field. 

The data reserved for fields is aligned in an appropriate manner: 
Fields are always at least 4-byte aligned, and nbytes for a field is a 
multiple of eight, then the field elements will be 8-byte aligned. On 
certain chips (the i860 in particular), this 8-byte alignment is crucial, 
since double-precision loads must start on an 8-byte boundary. Even if 
a system is capable of handling a non-aligned access, aligned accesses 
are more efficient. 

Canopy does not support automatic quadword (16-byte) alignment. 
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Grouping 

void overlap_fields(int n, field *list); 
void cluster_fields(int n, field *list); 

Purpose: To force fields to be consecutive or to share memory space. 
This is used primarily by the link_field function, which creates 
an overlapped and clustered field as described below. 

Arguments: 

int n: The number of fields to be overlapped or clustered. 

field *list: An array of fields of length n. 

Return Value: None 

Example: A 4-D Link Field: 
/* notice that site_field returns */ 
I* consecutive integers. *I 

field clist[4]; /*list of clusters *I 
field olist[2]; /*list of overlaps*/ 
field flink=site_field(g,4*nbytes); 
clist[O]=site_field(g,nbytes);/*a field for each*/ 
clist[1]=site_field(g,nbytes);/*direction on the*/ 
clist[2]=site_field(g,nbytes);/*grid -- known to*/ 
clist[3]=site_field(g,nbytes);/*be 4-dimensional */ 
cluster_fields(4,clist);/* force to be in order */ 
olist [1] = list [O]; 
olist[O] = flink; 
overlap_fields(2,olist);/* link field now is one*/ 

/* large field overlapped*/ 
/* with four smaller ones*/ 
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6.1.3 Set Declaration 

set set_of_sites(grid g, set_of_sites_func func); 
set redefine_set_of_sites(grid g, 

set_of_sites_func func, 
set set_to_change); 
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Purpose: To declare a set of sites for use by do_task. The redefine 
function is special: it is the only declaration routine that is called 
after complete_definitions time. If the set_of_sites function 
uses global variables this can be used to make a set of sites which 
depends on some calculation done on the grid. 

Arguments: 

grid g: The grid on which to declare the set. 

set_of _si tes_func func: The function that determines which 
sites are in the set and, if the set is compound, their level in 
the set. This function is described in the USER SUPPLIED 

ROUTINES section. 

set set_to_change: For a redefinition, this is the set variable 
of the set to be changed. This set must have been already 
declared on the same grid as the new definition. 

Return Value: The newly declared set. For redefinitions, this is the 
same as seLto_change. 



88 CHAPTER 6. CANOPY SUBROUTINE REFERENCE 

6.1.4 Map Declaration 

map define_map(grid domain, 
grid range, 
intfunptr mapfunc); 

map compose_map(map mid_to_range, 
map domain_to_mid); 

Purpose: To declare maps. define~ap declares a map from a 
function; compose~ap declares the composition of two maps. The 
maps in a composition must have already been declared and the 
range of the second must be the domain of the first, which is 
required by the mathematical definition of composition. Maps 
may be automorphisms, and there may be more than one map 
connecting the same grids. 

Arguments: 

grid domain: The domain grid for the new map. 

grid range: The range grid for the new map. 

intfunptr mapfunc: A pointer to the mapping function, as de­
scribed in USER SUPPLIED ROUTINES. Note that mapfunc 
returns a logical rather than an integer, but that logical 
is a synonym for the subset (0,1) of the integers so the types 
really do conform. 

map mid_to_range: The map applied second in a composition. 

map domain_to_mid: The map applied first in a composition. 
The composed map maps a site in the domain grid of the 
domain_ t o_mid map to the range grid of the micL t o_range 
map. The site maps to NOWHERE in the obvious cases. 

Return Value: The newly declared map. 
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6.1.5 Random Number Declaration 

int make_random_generator(voidfunptr random_func, 
int type, 
int number_to_make, 
int seed); 

Purpose: To declare a random number generator. 

Arguments: 
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voidfunptr random_func: The function returning pointers to 
the generation and initialization functions, as described in 
USER SUPPLIED ROUTINES. 

int type: Either STREAM_PER...SITE or STREAM...PER...NODE. 

int number_to_make: The number of random numbers to be 
generated in a single call to the generation function. It is 
more efficient to use larger values for this number but it 
takes more storage, particularly in the stream-per-site case. 
The random sequence does not depend on this number. 

int seed: The seed value. The same seed value leads to the 
same sequence. 

Return Value: The integer number of the random number generator 
as used by multLrandom. 

Note: In stream-per-site mode each site on each grid is assigned 
a unique stream number from its coordinates and grid number. 
Therefore changing from, say, a periodic grid to a chunky periodic 
grid of the same size has no effect on the random numbers, but 
changing the program so a new grid is declared before the old grid 
will change the streams. With a little thought programs may be 
revised so the random number sequence is the same if the same 
seed is used-this simplifies debugging. 
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6.1.6 Complete_Definitions 

void complete_definitions(); 
void complete_canopy_handshake(); 

Purpose: 
used to 

complete_definitions creates the internal structures 
control all of the declared objects. All of the declara-

tions except redefine_set_of_sites must precede it, and only 
one call to it may be made in a program. A call to complete_ 
definitions also causes the linker to load in all of the Canopy 
structure that calls the control entry point, so a C program may 
be converted to a Canopy program by adding the line complete_ 
definitions and changing the main entry point from main to 
control. 

complete_canopy_handshake may be used instead of complete... 
definitions to run a prgram with no other Canopy library rou­
tines, on a platform which expects Canopy applications. This 
makes the executable image smaller, since the internal Canopy 
routines called by complete_defini tions need not be linked in. 

Arguments: None 

Return Value: None 
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6.2 Routines Called By Control Program 

6.2.1 Do_Task Routines 

Tasks Using Sets 

void do_task(voidfunptr task, sets, ... , END); 
void do_task_n_times(voidfunptr task, set s, 

int ntimes, ... , END); 

Purpose: To call some subroutine on each site in a set. This is 
how Canopy effects parallelism: The sites in the set are done on 
individual nodes in parallel. An example of how to use this is 
given later in this section: Do_ TASK EXAMPLE. 

Arguments: 

voidfunptr task: The task to be done on sets. Task functions 
are described in detail in USER SUPPLIED ROUTINES. 

set 

int 

s: The set on which to do the task. If s is a compound set 
later levels are done only after earlier levels are completed, 
but consult the description of compound set usage in the 
PARALLELISM CONSIDERATIONS of the TUTORIAL chapter 
for details of how to ensure synchronization. 

ntimes: For do_task_n_times, this is the number of times 
to do the task. This is like creating a compound set of sites 
with each site in the set several times, so the synchronization 
routines must be used the same way. 

Triplets of arguments, as described in Do_ TASK TRIPLETS. 

END: The keyword to end the variable argument list. 

Return Value: None 
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Sub-Tasks Using Maps 

void do_task_on_inverse_image(voidfunptr task, map m, 
... , END); 

void do_task_on_inverse_image_set 
(voidfunptr task, map m, set s, 
... , END); 

Purpose: To do a sub-task. These must be called inside another task 
routine. They do a task on the inverse image of the HOME site. 
These calls may be nested to any level, as the HOME site in the 
sub-task may have another inverse image by another map. 

Arguments: 

voidfunptr task: The task to be done on set s. This task func­
tion is described in detail in USER SUPPLIED ROUTINES. 

map m: A map whose range grid must be the grid of the current 
HOME site. The task is done on those sites on the domain 
grid of m in the inverse image of the HOME site. 

set s: A set in the domain of the map used to restrict the inverse 
image. The task will be done only on those sites both in the 
inverse image of the HOME site and in set s. Ifs is a compound 
set, the sites will be done in the order described by the levels 
just as in do_task itself. 

Triplets of arguments, as described in Do_ TASK TRIPLETS. 

END: The keyword to end the variable argument list. 

Return Value: None 

A warning: During a sub-task, the fields on the HOME site are not guar­
anteed to reside on the local node. During sub-tasks, put_field must 
be used to modify field data, even at the HOME site. 
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Do_Task Triplets 

Ordinary subroutines only need to know the address or value of their 
arguments. Because Canopy task subroutines are done over a set of 
sites on (possibly) different CPU's, they need to also know the length 
of their arguments. In addition, Canopy tasks need to know what to 
do with output arguments from a task on a site, since there is only 
one output returned to the calling routine instead of one for each site. 
This is controlled by the keyword governing the argument. For internal 
reasons, arguments to task routines must all be pass by address. A 
complete triplet is of the form: 

<keyword>, <address of argument>, <length in bytes> 

Several keyword arguments have already been defined: 

FUNCTION: To pass a function address. 

PASS: To pass any other variable. 

INTEGRATE: To sum up the arguments after the task routine returns, 
treating them as real numbers. 

SUM...REAL: Synonym for INTEGRATE 

MAX...REAL: To keep only the maximum argument, treating them as 
real numbers. 

MIN...REAL: To keep only the minimum argument, treating them as real 
numbers. 

SUM_INTEGER: To sum up the arguments, treating them as integers. 

MAX-INTEGER: To keep only the maximum argument, treating them as 
integers. 

MIN_INTEGER: To keep only the minimum argument, treating them as 
integers. 

SUMJ)OUBLE: Double-precision sum. 
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MAX...DOUBLE: Double-precision maximum. 

MIN...DOUBLE: Double-precision minimum. 

TAGJ1AX_INTEGER: Used to return a tag field. Returns the maximum 
value of the first element of a structure (treated as an integer) 
and the remainder of the structure associated with the maximum 
value. For example, this could be used to return the coordinates 
of the site with the largest value. 

TAGJ1AX_REAL: As above, but treats the first element as a float. 

TAGJ1AX_DOUBLE: As above, but treats the first element as a double. 

Obviously, PASS and FUNCTION are used when the task routine is 
expecting a pointer to an input argument, and the others are used 
when the task routine computes a value and stores it. The length of 
the arguments is also needed so that do_task can process the return 
values properly. Users may create additional keywords as described in 
the section on USER-SUPPLIED ROUTINES. 

Examples of triplets are: 

PASS, &this, sizeof(this), 
INTEGRATE, &somefloat, sizeof(float), 
MAX_INTEGER, &intarray, arraydimension*sizeof(int), 
MIN_REAL, &realval, sizeof(realval), 
FUNCTION, functionname, sizeof(functionname), 

For the FUNCTION keyword the argument is always a function name and 
the length is always the size of a pointer (function pointers have the 
same length as any other pointer type). If an array of function pointers 
is passed to the task routine (which is completely legal since functions 
are guaranteed to have the same address on all nodes) use PASS instead. 

On the following page is an example of how to use tag fields to write 
a routine that returns the coordinates of the site with the largest value 
of some field. 
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typedef struct { /* Define the structure first */ 
float value; 
coordinates coords; 

} test_tag; 

void task_(tt,f) 
test_ tag *tt; 
field *f; 

/* the task routine */ 

{ 

I* the value and its coordinates */ 
tt->value = *((float*)field_pointer(f,HOME)); 
get_coordinates(HOME, tt->coords); 

} /* task_ */ 

void task(f)/* this routine for 2-D grids only */ 
field f; 
{ 

test_tag tt; /* temporary */ 
do_task(task_, grid_supporting_field(f), 

TAG_MAX_REAL, &tt, sizeof(tt), 
PASS, &f, sizeof(f), 
END); 

printf("%f at (%d,%d)\n" ,tt.value, 
tt.coords[X] ,tt.coords[Y]); 

} /* task */ 
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Do_Task Example 

/* Here is an example of do_task using the */ 
/* 'generalized subroutine header' structure. */ 

/* test_task returns the sum of the co- */ 
I* ordinates at a site multiplied by an */ 
/* integer in the array inarg. */ 
/*The output is a float. */ 

void test_task_(inarg, outarg);/* note at end*/ 
int *inarg; 
float *outarg; /* everything is pass-by-address*/ 
{ 

coordinates coords; 
grid g = grid_supporting_site(HOME); 
int ndim = number_of_dimensions_of_grid(g); 
int i; 
get_coordinates(HOME,coords); 
for (*outarg=O.O, i=1; i<=ndim; i++) { 

*outarg += inarg[i]*coords[i]; 
} 

} /* test_task_ */ 

void test_task(s, inarg, outarg) /* routine to */ 
set s; /* call test_task_ through do_task */ 
int *inarg; 
float *outarg; 
{ 

grid g = grid_supporting_set(s); 
int ndim = number_of_dimensions_of_grid(g); 
do_task(test_task_, s, 

PASS, inarg, ndim*sizeof(int), 
INTEGRATE, outarg, sizeof(float), 
END); 

} /* test task */ 
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I* this is a sample control */ 
/* program using test_task. */ 

void control() 
{ 

grid g; 
coordinates a; 

float outval; 
/* define the grid here */ 

g = periodic_cubic_grid(3,4,5); 
/* This call must be in all */ 
f* Canopy programs after the */ 
/* declarations are done. */ 

complete_definitions(); 

/* set up the array for inarg*/ 
a[1] = 1; a[2] = 2; a[3] = 4; 
test_task((set) g, a, &outval); 

/* print the result */ 
printf("And the answer is %f\n",outval); 
printf("And the answer should be 270.0\n"); 

} /* control */ 
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6.2.2 Broadcast 

void broadcast(voidptr object, int length); 

Purpose: To make the value of a global variable set in the control 
program known to all of the task routines on every other node as 
well. 

Arguments: 

voidptr object: The address of the static variable. This 
address is cast as a voidptr since Canopy uses that type as 
a "pointer to anything." 

int length: The length in bytes of the object to be broadcast. 

Return Value: None 

NOTE: This cannot be called from inside a task routine, nor can it 
be used on variables obtained through dynamic allocation (since 
those variables will not be in the same place on all nodes). It also 
makes a temporary copy of the object being broadcast, so very 
large objects should be broken into pieces if malloc runs out of 
space. 
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6.2.3 Field File Routines 

Opening and Closing Files 

void open_field_file(char *filename, int rwmode); 
void close_field_file(char *filename); 

Purpose: To open and close Canopy field files. These must not be 
called from a task routine. 

Arguments: 

char *filename: The field file name. If the name does not 
contain a '#' sign, the file is an ordinary UNIX file on the 
host machine. If the name does contain a '#' then the field 
file is stored on the distributed file system. The format for 
file-names on the distributed system is setname#filename, 
where set name identifies the tape set or ( disknn) the multi­
disk set. Tape sets must have been already initialized and 
mounted using the appropriate tape system commands be­
fore open is called. See the User's Guide for more details 
about mounting tapes and about set names for files on disk. 

int rwmode: This is the keyword value READ or WRITE, de-
pending on whether the field file is to be opened for read, 
write. On the distributed file system, open for write will 
only create a new file-if a file already exists open will fail. 
For disk files, a third option is APPEND, which allows new 
field records to be appended to existing files (or creates a 
new file if filename does not exist). 

Return Value: None. Errors in file open or close operations are 
reported as fatal errors. 
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Writing and Reading Fields 

void write_field(char *filename, field f); 
void read_field(char *filename, field f); 
void read_slice_of_field 

(char *filename, field f, intfunptr mapfunc); 

Purpose: To read and write fields on field files. (These must not 
be called from a task routine.) Use read_slice_of_field() to 
input a subset of field elements from a stored field. For example, 
one time-slice of a 4-dimensional grid may be input onto a field 
defined on a 3-dimensional grid. 

Arguments: 

char *filename: The field file name as used in the open_ -
field_file() call. 

field f: The field to read or write: read_field and wri te_field 
read or write the entire field to disk or tape. 

intfunptr mapfunc: For read_slice_of_field, this is a 
pointer to the mapping function specifying where each in­
put field element is to be placed. See the section Mapping 
Functions in USER SUPPLIED ROUTINES for a description 
of the function syntax. The input coordinates of the map re­
fer to the grid associated with the field stored on disk or tape; 
the output coordinates are on the grid supporting the field 
f. For given input coordinates, if mapfunc returns FALSE, 
then the field element at that site is not read in at all. 

Return Value: None. Errors are fatal. 
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6.2.4 IEEE Precision Control 

On those machines which have IEEE floating-point arithmetic (such as 
the D860 and FPAP nodes) these routines provide a unified method of 
setting the mode in use. Canopy programs print out the IEEE mode 
they are using at the beginning so there is no confusion. Not all CPU's 
support all modes and the defaults may be different for different ma­
chines. 

The modes and flag names are described on the next page. Canopy 
reads the enviroment variable FMODE to over-ride the default IEEE 
modes. For example, 

setenv FMODE="ROUND_UP,UNDERFLDW_ZERO" 

selects round toward plus infinity and set underflows to zero. The 
default modes for some existing target machines are: 

FPAP: Round to nearest, underflow to zero, all the rest IEEE. 

D860: Round to nearest, underflow to zero, all the rest abort. 

ULTRIX: IEEE handling unavailable. 

SGI: Round to nearest, all the rest IEEE. 

The reason the defaults are different is that the IEEE modes are not 
provided on all platforms. As the system matures full IEEE handling 
will be available for D860's eventually. 
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Rounding Mode: Sets the IEEE rounding mode 

FMDDLROUND_TQ_NEAREST: The usual IEEE handling whereby 
several guard bits are kept. 

FMODLROUND_UP: Round toward positive infinity. 

FMODE.JWUND_DOWN: Round toward negative infinity. 

FMODLROUND_ TQ_ZERO: Round toward zero. 

Underflow Handling: Specifies underflow handling 

FMODLUNDERFLOW_IEEE: Does IEEE "soft" underflow by us-
ing denormals to represent numbers smaller than the least 
possible floating-point value available with full precision. 

FMODE_UNDERFLOW_ZERO: Sets the result to zero when an under­
flow occurs. 

FMODLUNDERFLOW_ABORT: Stops the job if an underflow occurs. 

Overflow Handling: Specifies overflow handling 

FMODLOVERFLOW_IEEE: Sets the result to +Inf or - Inf if an 
overflow occurs, depending on the sign of the result. 

FMODLOVERFLQW_ABORT: Stops the job if an overflow occurs. 

Zero Divide Handling: Specifies handling of divide-by-zero errors. 

FMODE_ZERO_DIVIDLIEEE: Sets the result to +Inf or -Inf if a 
zero-divide error occurs depending on whether the dividend 
was positive or negative. 

FMODLZERO_DIVIDLABORT: Stops the job if a zero-divide occurs. 

Invalid Handling: Specifies handling of illegal subroutine arguments. 

FMODLINVALID_IEEE: Sets the result to the IEEE specified value 
if an invalid operand is detected. 

FMODLINVALID_ABORT: Stops the job if an invalid operand is 
detected. 
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int set_default_floating_mode(); 
int set_floating_mode_to_environment(); 

Purpose: 

Arguments: None 

Return Value: If there were no errors these return 0, if there are 
errors (which cannot occur setting the default mode) the return 
is ~ 1 and the reason for failure is printed on std err. 

int get_current_floating_mode(); 

Purpose: To return the currently set floating-point mode. This is the 
logical or of all the currently set mode flags. 

Arguments: None 

Return Value: The currently set floating modes. 
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void print_current_floating_mode(); 

Purpose: Prints the currently set floating-point mode on stdout in 
human-readable form. 

Arguments: None 

Return Value: None 

int set_current_floating_mode(int flags); 

Purpose: 

Arguments: 

int flags: The flag bits for the desired mode, or'ed together. 
A full specification would be five flag bits set, one for each of 
the exception types. If no bit is specified for an exception, 
the mode for that exception is unchanged. For example, 
setting flags to FMODLUNDERFLOW_ZERO has no effect on the 
rounding, overflow, zero divide, or invalid handling. 

Return Value: If there were no errors these return 0, if there are 
errors (which cannot occur setting the default mode) the return 
is -1 and the reason for failure is printed on std err. 
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6.2.5 Transfer Coalescing 

These routines control the efforts to mm1m1ze he number of actual 
data transfers by coalescing accesses required by field_pointer and 
put-±ield routines. For some systems (including any single-CPU im­
plementation of Canopy), multi-threading and transfer coalescing are 
null concepts or unnecessary. These routines are present (but have not 
effect) in Canopy on such systems. 

Multi-thread Setup 

void multithread(int nthreads, int stack_size); 

Purpose: To establish multi-thread operation, in which some number 
of threads may be active at one time on each node, to allow 
for coalescing of multiple transfers to other remote nodes. An 
explicit call to multithread() will override any multi-thread mode 
settings established in other ways. This function can be called 
multiple times in an application to dynamiccally alter the number 
fo threads or stack size; specifying nthreads= 1 will disable multi­
thread mode. Note that calling multithread() is a relatively time­
consuming operation. 

Arguments: 

int nthreads: The maximum number of threads that will be 
active simultaneously on each node. 

int stack_size: The amount of local stack space reserved 
for each potential thread. If multi-threading is enabled from 
the command line, this defaults to a reasonable value (8K 
bytes). 

Return Value: None. 
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Multi-thread Control 

void multithread_disable (); 
void multithread_enable (); 

Purpose: To temporarily disable (and later enable) multi-thread 
mode. This may be desirable under conditions discussed in sec­
tion 4.6.2 CONTROL OF MULTI-THREADING. A task cannot en­
able multi-thread mode if it has been disabled by its "parent": 
If the control program disables multi-thread, then multi thread_ 
enable() has no effect inside a task routine, and if a task dis­
ables multi-thread, then it cannot be enabled within any subtask 
it invokes. Unlike multithread(), these routines are not time­
consummg. 

Arguments: None. 

Return Value: None. 

void print_multithread_stats (); 

Purpose: To print statistics which may be useful for fine-tuning 
the number of threads and/ or stack size for an application. In­
formation reprorted includes the average degree of coalescing and 
stack usage statistics. The statistics are reset each time print_ 
multithread_statsO is called. This function may not be called 
from inside a task routine. 

Arguments: None. 

Return Value: None. 
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6.3 Routines Called During Tasks 

This section describes routines for manipulating Canopy concepts. These 
routines in this section are typically called by task routines, but may 
also invoked by the control program. 

6.3.l Site Manipulation 

Absolute Site Location 

site site_at_coordinates(grid g, intptr coords); 

Purpose: To set a site variable to the location specified by 
coordinates on grid g. 

Arguments: 

grid g: The grid on which to place the site. 

intptr coords: The coordinates to place the site, in a one-
based coordinates array (see GETTING COORDINATES in 
section 6.3. 7). 

Return Value: A site variable at the desired location. 

Examples: 
coordinates coordsj 

site s1, s2, s3; 

coords[X] = 1; /* X, Y, Z, T are 1, 2, 3, 4 */ 
coords[Y] = 3· 

' 
coords [Z] = O· 

' 
coords[T] = 4· 

' 
s1 = *HOME; /* HOME is a pointer a site! */ 
s2 = site_at_coordinates(g, coords); 
s3 = s2; /* set s3 equal to s2 */ 
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Relative Site Location 

site move_site(site *startsite, direction dir); 
site move_site_by_path(site *startsite, path p); 
site site_at_dir(direction dir); 
site site_at_path(path p); 

Purpose: To return a site variable offset from another site variable or 
the HOME site. The move_site, move_site_by_path, and site_­
at_path routines are illegal while vertical coalescing is active. 

Arguments: 

site *startsi te: A pointer to a site. 

direction dir: A direction used to specify the site in direction 
dir from *startsite or HOME. If dir is zero, then the site 
returned is startsite (or HOME for site_at_dir). 

path p: A path used to specify the site at the end of path p 
from *startsite or HOME. 

Return Value: A site variable at the desired location. 

Note: Inside a task routine HOME may be used as a pointer to a site, 
so the site_at_dir and site_at_path routines can be built out 
of the others: 

move_site(HOME, dir) <--> site_at_dir(dir) 

move_site_by_path(HOME, p) <--> site_at_path(p) 
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Site Comparison 

logical is_same_site(site *s1, site *s2); 

Purpose: To test if two sites are the same. 

Arguments: 

site *s 1: A pointer to a site. 

site *s2: A pointer to another site. 

Return Value: TRUE if *s1 and *s2 are the same, FALSE if not. 

Note: The special site NOWHERE matches only itself. 

Site Information 

grid grid_supporting_site(site *s); 

Purpose: To return the grid on which a site is located. 

Arguments: 

site *s: Apointertoasite. 

Return Value: The grid where *s lives. If the argument is NOWHERE 
then the return is NOGRID. This can create confusion with maps, 
since it means that the grid supporting the site of a mapped image 
may be NOGRID and not the range grid of the map. 
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Mapping Sites 

site irnage_of_site(map m, site *s); 
site *inverse_image_of_site(map m, site *s); 

Purpose: To use a map to find the image and inverse image of a site. 

Arguments: 

map m: The map to use for mapping *s. 

site *s: A site on the domain of rn for image_of_si te and on 
the range of m for inverse_image_of_si te. 

Return Values: For image_of_si te, the return is the site on the 
range of m mapped to by *s. If *s does not map to any site in 
the range under m, the function returns the special site NOWHERE. 

For inverse_image_of_site, the return is a pointer to a list of 
sites in the inverse image terminated by NOWHERE. This list is not 
guaranteed to be in any particular order but it does include all of 
the sites which map to *sunder rn. If no sites map to *s, the first 
element in the list is NOWHERE (the return is not a null pointer). 
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6.3.2 Field Manipulation 

Field_Pointer Routines 

voidptr field_pointer(field f, site *s); 
voidptr field_pointer_at_dir(field f, direction dir); 
voidptr field_pointer_at_path(field f, path p); 
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Purpose: To return a pointer to a read-only copy of the field element 
at the desired site. If the site is HOME inside a task (but not a 
sub-task) then the pointer points to the actual field element and 
not to a copy. Except in that case, modifying the copy of the field 
element is not permitted. 

Arguments: 

field f: This is the field variable whose value at some site 
is desired. If field was a link__field this routine returns a 
pointer to the cluster of links in all the positive directions. 

site *s: Specifies the desired site absolutely. May be HOME. 

direction dir: Specifies the site in direction dir from the 
HOME site. 

path p: Specifies the site at the end of path p from the HOME 
site. 

Return Value: A pointer to a copy of the field element at the 
specified site. (See the caveat in PURPOSE above.) While this is 
returned as a voidptr, it is used as a pointer to whatever type 
the field element actually is. Hence the typical call looks like this: 

whatsit *w; 
w = (whatsit*) field_pointer(whatsitfield,HOME) 
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PuLField Routines 

void put_field(field f, site *s, voidptr object); 
void put_field_at_dir 

(field f, direction dir, voidptr object); 
void put_field_at_path 

(field f, path p, voidptr object); 

Purpose: To copy object into the specified field element. Except 
during sub-tasks, this is normally only used to store objects not 
on the HOME site, since field_pointer returns a pointer directly 
to the field element on the HOME site. 

Arguments: 

field f: The field variable of the desired site field. 

site *s: Specifies the desired site absolutely. May be HOME. 

direction dir: Specifies the site in direction dir from the 
HOME site. 

path p: Specifies the site at the end of path p from the HOME 

site. 

voidptr object: Pointer to the data to be copied into the 
field element. This is a voidptr because it must accept 
pointers to all types of objects. This argument is usually 
cast explicitly to voidptr in the call. 

Return Value: none. 
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Link~Field_Fointer Routines 

voidptr link_f ield_pointer 
(field f, direction link, site *s); 

voidptr link_field_pointer_at_dir 
(field f, direction link, direction dir); 

voidptr link_field_pointer_at_path 
(field f, direction link, path p); 
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Purpose: To return a pointer to the element of the link field f on the 
link in direction link emanating from the specified site. If the 
site is HOME inside a task (but not a sub-task) and the direction is 
positive, then the pointer points to the actual field element and 
not to a copy. Except in that case, modifying the copy of the field 
element is not permitted. 

Arguments: 

field f: The field variable of the desired link field. 

direction link: The desired link direction. This may be 
positive or negative, but if it is negative then remember that 
it is the same as the link in the positive direction from the 
site at its other end. 

site *s: Specifies the desired site absolutely. May be HOME. 

direction dir: Specifies the site in direction dir from the 
HOME site. 

path p: Specifies the site at the end of path p from the HOME 

site. 

Return Value: Pointer to a copy of the link field element. (See the 
caveat in PURPOSE above.) 
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PuLLink_Field Routines 

void put_link_field 
(field f, direction link, site *s, voidptr object); 

void put_link_field_at_dir 
(field f, direction link, direction dir, 

voidptr object); 
void put_link_field_at_path 

(field f, direction link, path p, voidptr object); 

Purpose: To copy object into the element of link field f at the speci­
fied site. This is normally only used to store objects on links not in 
positive directions from the HOME site, since link_fielcLpointer 
returns a pointer directly to link field elements on links in positive 
directions from the HOME site. 

Arguments: 

field f: The field variable of the desired link field. 

direction link: The desired link direction. This may be 
positive or negative, but if it is negative then remember that 
it is the same as the link in the positive direction from the 
site at its other end. 

site *s: Specifies the desired site absolutely. May be HOME. 

direction dir: Specifies the site in direction dir from the 
HOME site. 

path p: Specifies the site at the end of path p from the HOME 

site. 

voidptr object: Pointer to the data to be copied into the field 
element. Normally this must be cast as a voidptr. 

Return Value: none. 
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6.3.3 Field Manipulation For Compound Tasks 

Synchronization Routines 

void synchronize(site *s); 
void synchronize_at_dir(direction dir); 
void synchronize_at_path(path p); 

Purpose: To wait for a site to reach the current synchronization 
level, which is needed only when using compound sets of sites. 
The machine waits until the target site has been processed by 
this call to do_ task. The intended use of these routines is to 
ensure, in compound tasks, that each site whose level is less than 
the current level has indeed completed before its field is read. For 
do_ task_n_ times, the synchronization routines ensure that the 
previous sweep has been completed on all the needed sites before 
their field elements are read. 

Arguments: 

site *s: Specifies the desired site absolutely. May be HOME. 

direction dir: Specifies the site in direction dir from the 
HOME site. 

path p: Specifies the site at the end of path p from the HOME 

site. 

Return Value: none. 
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sync_address sync_word(site *s); 
sync_address sync_word_at_dir(direction dir); 
sync_address sync_word_at_path(path p); 

Purpose: Returns the sync_address for the desired site. This is 
used by synchronize_wi th... sync_ word to wait for a site to reach 
a certain level in a compound task. 

Arguments: 

site *s: Specifies the desired site absolutely. May be HOME. 

direction dir: Specifies the site in direction dir from the 
HOME site. 

path p: Specifies the site at the end of path p from the HOME 

site. 

Return Value: The sync_word for the desired site. 

void synchronize_with_sync_word(sync_address *sync); 

Purpose: Same as synchronize, but uses a previously computed 
sync instead of a site. 

Arguments: 

sync_address *sync: The previously computed sync_address. 

Return Value: none 
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Synchronize and Get Pointer Routines 

voidptr sync_f ield_pointer 
(field f, site *s); 

voidptr sync_field_pointer_at_dir 
(field f, direction dir); 

voidptr sync_field_pointer_at_path 
(field f, path p); 
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Purpose: These are optimized combinations of synchronize and 
field_pointer. 

Arguments: 

field f: The field variable of the desired site field. 

site *s: Specifies the desired site absolutely. May be HOME. 

direction dir: Specifies the site in direction dir from the 
HOME site. 

path p: Specifies the site at the end of path p from the HOME 

site. 

Return Value: Pointer to a copy of the field element. 
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6.3.4 Direct Field Addressing 

Field Address Creation 

field_address address_of_field 
(field f, site *s); 

field_address address_of _f ield_at_dir 
(field f, direction dir); 

field_address address_of_field_at_path 
(field f, path p); 

field_address address_of _link_field 
(field f, direction link, site *s); 

field_address address_of_link_field_at_dir 
(field f, direction link, direction dir); 

field_address address_of_link_field_at_path 
(field f, direction link, path p); 

Purpose: To pre-compute a field.address variable for later use. This 
saves only a little time. 

Arguments: 

field f: The field variable of the desired site or link field. 

direction link: The desired link direction. This may be 
positive or negative, but if it is negative then remember that 
it is the same as the link in the positive direction from the 
site at its other end. 

site *s: Specifies the desired site absolutely. May be HOME. 

direction dir: Specifies the site in direction dir from the 
HOME site. 

path p: Specifies the site at the end of path p from the HOME 

site. 

Return Value: The field.address for later use. 
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Field Address Use 

voidptr field_pointer_frorn_address 
(field_address *where); 

voidptr sync_field_pointer_frorn_address 
(field_address *where, sync_address *sync); 

void put_field_at_field_address 
(field_address *where, voidptr object); 

int length_of_field_address_field 
(field_address *where); 
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Purpose: To use precomputed field_address variables instead 
of doing the computation each time. Otherwise these routines 
behave like their brothers. Nate that this approach saves only a 
little time. 

Arguments: 

field_address *where: The previously computed field address. 

sync_address *sync: The previously computed sync address. 

voidptr object: Pointer to the data to be copied into the field. 

Return Values: Same as for the field_pointer routines. 
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6.3.5 Path Manipulation 

int make_path(path p, ... ); 
int extend_path(path p, direction dir); 
int concat_path(path dest, path source); 
int copy_path(path dest, path source); 
int path_length(path p); 

Purpose: These routines create, extend, concatenate, and copy paths. 

Arguments: 

path p: A path variable (that is, an intptr) pointing to at least 
as many available words as 1 +path_length . 

. . . : A list of directions terminated by END. 

direction dir: A direction to add to the end of the path. 

path dest: The target of a concatenation or copy. 

path source: The source of a concatenation or copy. 

Return Value: 
path. 

Example: 

All of these routines return the length of the new 

direction *pl, *p2; 
pl= (direction *)malloc(10*sizeof(direction)); 
p2 = (direction *)malloc(10*sizeof(direction)); 
make_path((path)pl, X, Y, END); /*returns 2 */ 
make_path((path)p2, -X, -Y, END); /*returns 2 */ 
concat_path((path)p1,(path)p2); /*returns 4 */ 
path_length((path)p1); /*returns 4 */ 
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Manipulating Paths Directly 

A path variable is a pointer to a direction. The path is an array of 
directions in order, terminated by the special value END, which is defined 
in canopy. h as an integer out of the range permissible for genuine 
directions. At the end of the previous example, path pl would be 

X, Y, -X, -Y, END 

Any ordered, END-terminated array of directions may be used wherever 
a Canopy routine expects a path argument. It is legal (and sometimes 
convenient) to deal with the direction* path variable directly. For 
example, to create a null-terminated array of paths initialized to values 
for subsequent use: 

direction pathx[] = {T, T, X, x, -T, -T, END}; 
direction pathy[] = {T, T, Y, Y, -T, -T, END}; 
direction pathz[] {T, T, Z, z. -T, -T, END}; 
direction longpath[] = {X, Y, z. T, -x, -Y, -z. T, END}; 

path mypatharray[]= {pathx,pathy,pathz,longpath,NULL}; 

In this example, a path is initialized by declaring it as an array of 
directions. C syntax does not support the following slightly cleaner 
construct: 

path pathx {T,T,X,X,-T,-T,END}; /* won;t compile! */ 
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6.3.6 Informative Routines 

Information About Grids 

intptr grid_lower_bounds(grid g); 
intptr grid_upper_bounds(grid g); 
intptr grid_parameters(grid g); 
int number_of_directions_of_grid(grid g); 
int number_of_dimensions_of_grid(grid g); 
int number_of_fields_on_grid(grid g); 
int number_of_sets_on_grid(grid g); 

Purpose: To return the desired data about the grid at any time after 
it has been defined. 

Arguments: 

grid g: The grid for which information is desired. 

Return Values: The first three routines return pointers to read-only 
arrays. For the supplied grids, grid_parameters is meaningless. 
The grid_upper_bounds and gricLlower_bounds routines both 
return a pointer to an array of integers of length grid-dimensions 
containing the lowest and highest coordinate in each dimension. 
Note that the return value points to a 1-based array of integers 
(the same as the coordinates type) and it is illegal to use the 0 
element. 

intptr lower= grid_lower_bounds(g); 
intptr upper= grid_upper_bounds(g); 

For the supplied grids, lower [X] , lower [Y] , ... are now all 0 and 
upper [X] is the maximum coordinate in the X direction (which is 7 if 
the lattice size is 8). 
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Information About Fields 

grid grid_supporting_field(field f); 
int field_length(field f); 

Purpose: To return data about a field. 

Arguments: 

field f: The field for which information is desired. 
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Return Values: The grid on which field f is defined and the length 
in bytes of an element of field f. 
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Information About Sets 

grid grid_supporting_set(set s); 
int number_of_sites_in_set(set s); 
int number_of_levels_in_set(set s); 
intptr nsites_at_each_level(set s); 
int level_of_site_in_set(set s, site *ss); 

Purpose: To return data about a set. Information about the number 
of sites is available only after the call to complete_defini tions. 

Arguments: 

set s: The set for which information is desired. Note that a 
grid may be used as the set of all sites on that grid if it is 
cast as a set. 

site *ss: For level_of_si te_in_set this is the site whose 
level is desired. 

Return Values: The grid on which set s is defined; the total number 
of sites in set s; the number of levels in set s (which is 1 ifs: is not 
a compound set); a pointer to a read-only array whose 0 element 
is the total number of sites in set s and whose level element is 
the number of sites at that level. For non-compound sets, the 
number of sites at level 1 is the same as the total number of sites 
in the set. For level_of_si te_in_set, the site's level. If the 
site is not in the set it returns zero; if the site is not on the same 
grid as the set a fatal error is declared. 
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Information About Maps 

grid domain_grid_of_map(map m); 
grid range_grid_of_map(map m); 
map *maps_connecting_grids(grid domain, grid range); 
logical is_sarne_map(map ml, map m2); 
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Purpose: To return information about maps. Note that is_sarne...rnap 
can only be called from the control program. 

Arguments: 

map m: The map for which information is desired 

grid domain: domain grid to check for maps 

grid range: range grid to check for maps 

map ml: One of two maps to test for sameness 

map m2 : One of two maps to test for sameness 

Return Values: maps_connecting_grids returns a pointer to a list 
of those previously declared maps with the specified domain and 
range. This list is terminated by (map) 0 (a null pointer). The 
is_sarne_map routine returns TRUE if ml and m2 are isomorphic 
and FALSE otherwise. 
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6.3. 7 Using Coordinates 

Getting Coordinates 

void get_coordinates(site *s, intptr coords); 
void get_coordinates_at_dir 

(direction dir, intptr coords) ; 
void get_coordinates_at_path 

(path p, intptr coords); 

Purpose: To copy the coordinates of a site into an array. 

Arguments: 

intptr coords: The array where the coordinates will be 
placed. Note that coordinates range from 1 to ndim. This 
means that X, Y, ... are the indices into this array. 

site *s: A pointer to the site. 

direction dir: Specifies the site in positive or negative direc­
tion from the HOME site. 

path p: Specifies the site at the end of a path from the HOME 
site. 

Return Value: None. 

Example 
coordinates mycoords; 
get_coordinates(HOME,mycoords); 
I* now mycoords[X] ... mycoords[Z] make sense */ 
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Printing Coordinates 

void sprintf_site_coordinates(char *ss, site *s); 

Purpose: To print the coordinates of site *s in the string *ss. 
The coordinates will be formatted using " (%d, %d, ... ) ". This 
routine is intended for use by the control program to assist in 
printing out site locations. 

Arguments: 

char *ss: A pointer to the string where the coordinates will be 
sprinted. 

site *s: A pointer to the site. 

Return Value: None. 
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6.3.8 Obtaining Random Numbers 

float random(); 
float multi_random(int generator); 

Purpose: To return the next pseudo-random number in a sequence 
set up by the make_randolll.generator declaration. 

Arguments: 

int generator: If more than one random number generator was 
declared, mul t i..random uses this value to select which one to 
use. The random function returns a random number using 
the first random generator declared. This number is the 
number returned by the make_randolll.generator routine. 

Return Value: The next pseudo-random number. 

Note: Even a single random number generator in Canopy has several 
streams: in the STREAM_PER_NDDE case, one on each node; in the 
STREAM_PER_SITE case, one for each site in addition to a separate 
one for the control program. 
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6.3.9 The Lalloc Heaps 

The lalloc heaps are the memory areas for an inferior (but efficient) 
malloc-like function used by the field_pointer class routines when an 
off-node read occurs. There are separate heaps for the control program 
and for task routines, since the pointers in a task routine become invalid 
at the end of each site and the memory can be reclaimed, but the 
pointers in the control program are valid until the end of the program. 
Normally the default sizes and resets are adequate. 

Declaring Heap Size 

void declare_lalloc_sizes(int do_task_size, 
int control_size); 

Purpose: To override the default size of the lalloc heaps. This routine 
must be called before complete_definitions. 

Arguments: 

int do_task_size: Size in bytes of the do_task lalloc heap 

int controLsize: Size in bytes of the control lalloc heap. 

Return Value: None 

Resetting the Heap 

void reset_lalloc(); 

Purpose: To reclaim all of the memory in a lalloc heap, thereby 
invalidating all pointers returned by field_pointer class rou­
tines. This resets the control lalloc heap if called from the control 
program or resets the do_task lalloc heap if called inside a task 
routine. 

Arguments: None 

Return Value: None 
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6.3.10 Quick Copy Routine 

void intcpy(voidptr dest, voidptr src, int words); 

Purpose: To copy data faster than the C library memcpy routine. 
This is possible for a word oriented processor, when it is known 
that the source and destination are word-aligned. 

Arguments: 

voidptr dest: Word-aligned pointer to destination. 

voidptr src: Word-aligned pointer to source. 

int words: Number of words to copy. 

Return Value: None 

Note: dest and src must not overlap. 
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6.3.11 Control of Coalescing 

Vertical Coalescing 

multithread_begin_vertical() 
multithread_end_vertical() 
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Purpose: To allow a task routine to delay fetching off-node data or 
suspending the thread. multi threacLbegiIL vertical() asserts 
that data from ensuing field_pointer calls will not be used until 
multi threacLencL vertical() is called. 

Warning: If these pointers are used before the multithreacL 
end_vertical () call (in violation of the assertion), the results 
will be unpredictable. Using move_site, move_sita_by_path, or 
si te_at_path routines while vertical coalescing is active is illegal, 
and may lead to invalid pointers. 

Arguments: None. 

Return Value: None. 

Put_field Copying Control 

multithread_begin_nocopy() 
multithread_end_nocopy() 

Purpose: multi threacLbegiILnocopy() informs Canopy that 
it is safe to skip the copying of put_field data, because the 
data will remain unchanged until multi thread_ encLnocopy () is 
called. Allows for a smaller lalloc heap for each thread. 

Warning: If the put_field data is changed before multi thread_ 
end_nocopy() is called, the data stored at the put_field site will 
be unpredictable. 

Arguments: None. 

Return Value: None. 
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6.4 User-Supplied Routines 

The substance of a Canopy program will of course be the user code. 
This will consist of a control program (to be run on a single node) and 
task routines to be executed for multiple sites (and which thus may be 
run in parallel on multiple nodes). In addition, the user may supply 
routines to tailor Canopy concepts to a particular application. 

For example, a typical application may use sets of sites other than 
entire lattices. To define the nature of these sets, the user supplies a 
Set of Sites function to pass to the set_of_si tes definition routine. 

Other user supplied functions include coordinate, connectivity and 
distribution functions used to define arbitrary "customized" grids; func­
tions to create customized do_task keywords by defining arbitrary meth­
ods of collating data; functions defining maps from one grid to another; 
and functions defining customized kernels for random number genera­
tors. 

Working samples of the various types of user-supplied functions can 
be found in the Canopy libraries. For example, GRIDLIB contains coor­
dinate, connectivity and distribution functions used to define the pre­
packaged grids. These can be used as templates when an application 
requires custom features not available in the libraries. 
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6.4.1 The control Program 

void control(int argc, char **argv, char **envp); 
void control(); 

Purpose: The main entry point of a Canopy program. This takes 
the place of main() in a C program. If the application does not 
use arguments to the main program or environment variables, it 
is permissible to omit the declaration of the arguments (as per C 

conventions). 

Arguments: 

int argc: The number of command-line arguments. 

char **argv: The array of command-line arguments, with 
the 0 element the name of the executing program. When a 
multi-node Canopy job is launched the canopy tool removes 
the number of nodes and time limit from the argument list 
and sets argv[O] to the name of the file canopy is executing 
instead of the canopy tool itself. 

char **envp: An array of environment strings. This is not 
edited by the canopy tool, so the environment array is the 
same for a job running on the host and for a job running in 
a multi-node way from that host. Numerical precision may 
be controlled through the environment. 

Return Value: None. To return a non-zero exit code call make an 
explicit call of exit (code). 
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6.4.2 Do_Task Routines 

All users must write task routines which are called on each site in some 
set of sites. These simple routines are the basic means of providing 
parallelism in Canopy programs. 

More advanced users may wish to define new do_ task keywords that 
allow more flexible communication between the control program and 
task routines. In Canopy all do_ task keywords (except for END, which is 
just a number) are pointers to a CAN_do_ task__keyword structure which 
may be defined by the user. The existing keywords are defined in 
chip.c and may be used as examples. 

Task Routines 

void <task_routine>( ... ); 

Purpose: To do some task on a set of sites. This is the routine called 
by do_task. 

Arguments: 

The argument list for the task routine. These must all 
be pass-by-address arguments matching the call to do_task. 
There is a detailed description of task routines and an ex­
ample in the Do_TASK section. 

Return Value: None 
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6.4.3 Set of Sites Functions 

int <set_of_sites_function>(grid g, intptr coords); 

Purpose: To return the level of the site in the set or zero if the site 
is not in the set. For simple sets, the level is always one. This is 
used only by calls to set_of_sites and redefina.seLoLsites 
to create sets of sites. This function is called on all nodes, so if 
it uses any global variables (this is allowed but discouraged) they 
must be broadcast first. 

Arguments: 

grid g: The grid on which this set of sites is defined. Be-
cause of this argument, the set of sites function can get grid 
information using the grid information routines. 

intptr coords: One-based array of coordinates describing this 
site 

Return Value: Zero if the site is not in the set; level if the site is 
in the set. For non-compound sets, level is always one. 

Note: The type set_of_sites_func is really a pointer to a function 
returning an int. In most C's, there is no distinction between 
pointers to functions of different types, so there is no real need to 
cast the function during the set-up call. However, if you want to 
be completely clean, the cast should be there. 

Examples are on the next page: 
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Examples: 

int odd_func(g, coords) 
grid g; 
intptr coords; { 

int i; 
int csum = O; 

/* a simple set first */ 
f* sites Yith odd */ 
/* sum of coordinates */ 

for(i=1; /* coords is one-based */ 
i<=number_of_dimensions_of_grid(g); 
i++) { 

csum += coords[i]; /*add up coordinates*/ 
} 

return(csum % 2); 
} /* odd_func */ 

f* 0 if even, 1 if odd */ 

/* another simple set *f 
int even_func(g, coords) 
grid g; 
intptr coords; { 

return (1 - odd_func(g, coords)); 
} /* even_func */ 

/* a compound set */ 
int odd_then_even_func(g, coords); 
grid g; 
intptr coords; { 

return (1 + even_func(g, coords)); 
} /* odd_then_even_func */ 
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6.4.4 Lattice Definition 

The arbi trary_grid routine uses several functions to allow the user to 
define a custom grid: A function (and its inverse) assigning coordinates 
to each site, and a connectivity function defining neighbors in each 
direction. In addition, the user may supply a distribution function 
specifying which physical node will assume responsibility for each site. 

These functions are only of interest if you wish to define a new grid 
with new connectivity. The distribution function is not logically crucial 
to defining the grid, but a suitable choice will allow efficient processing 
of mostly-local applications on the grid. A default distribution function 
is provided, which will be adequate in most cases. 

Coordinate Function 

void <coordinate_function>(grid g, 
int serial, 
intptr coords); 

Purpose: Used only at start-up time To obtain the coordinates of a 
site from its internal canopy serial number. 

Arguments: 

grid g: Grid to which the coordinates refer. 

int serial: Internal Canopy serial number from 1 to the 
number of sites on the grid. 

intptr coords: (Output) array of coordinates which have this 
internal serial number. 

Return Value: None 

Note: This had better match the inverse coordinate function. 
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Inverse Coordinate Function 

void <inverse_coordinate_function>(grid g, 
intptr coords, 
intptr serial); 

Purpose: Used both at start-up time and by site_at_coordinatesto 
obtain the internal serial number of a site from its coordinates. 

Arguments: 

grid g: Grid where the site lives. 

intptr coords: Coordinates of the site. 

intptr serial: (Output) internal serial number of the site. 

Return Value: None 

Note: Examples coordinate functions and matching and mverse 
coordinate functions may be found in the file grid. c 
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Connectivity Function 

void <connectivity_function>(grid g, 
intptr coords; 
site *site_struct; 
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Purpose: To fill the Canopy connectivity structure at set-up time 
and thus determine the grid's connectivity. 

Arguments: 

grid g: The grid whose connectivity is about to be calculated. 

intptr coords: The coordinates of the site whose connectivity 
is about to be calculated. 

site *site_struct: (Output.) A pointer to an array of sites 
which are going to be filled with nearest-neighbor informa­
tion, as described in the <canopy. h> file. What the con­
nectivity function does is to use the si te_at_coordinates 
function (which is a part of Canopy and quite callable by 
ordinary users) to get nearest neighbor sites by coordinates. 
Si te_struct is used as an array with elements . . . [ -Y], 

[-X], [OJ, [+X], [+Y], ... whicharefilledwithsite 
variables refering to the neighbors in all directions. The 
0 direction must point to itself. Other connectivities may 
be contructed by giving this function a different idea of the 
coordinates of nearest neighbors. Note that the number of 
directions need not be the number of dimensions and that 
some of the neighbors may be NOWHERE. 

Return Value: None 

An example of a connectivity function may be found in grid. c. 
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Distribution Function 

void <distribution_function> (grid g, 
int serial, 
int *node, 
intptr posit); 

Purpose: Determines how the arbitrary _grid routine distributes 
sites to nodes. A default_distribution_function, provided in 
the GRIDLIB library 

(see grid. c) may be used as an example to guide the creation of 
custom distribution functions. 

Arguments: 

grid g: The grid whose sites are to be distributed. Note that 
this is a hook into all of the information about grids. 

int serial: The serial number of the site. Serial numbers are 
internal numbers Canopy uses to keep track of sites at set­
up time. It is required that serial numbers be consecutive 
integers from 1 to the total number of sites on the grid. 
These serial numbers are related to site coordinates by the 
coordinate and inverse coordinate functions. 

int *node: (Output) node on which to place the input 
site. This must be a valid node address-between 0 and 
CAN_number_of_nodes-1. See the default distribution func­
tion for correct details. 

intptr posit: (Output) integer which is the position of the 
input site on the output node. posit must be unique for 
each site and must be between 1 and the number of sites on 
the node without any gaps. It is the responsibility of the 
programmer to ensure this is so! 

Return Value: None 
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defaul LdistributioILfunction assigns the sites in order of coor­
dinate numbers, with the last coordinate varying most rapidly. This 
algorithm is recommended for most user-definied arbitrary grids. It re­
sults in reasonable efficiency for most applications on most grids. This 
simple strategy is easy to modify, but very hard to improve in general 
cases. 
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Using the other_params Argument 

The other_params argument to arbitrary_grid (see section 6.1.1 GRID 
DECLARATION) may be used to pass to the user-supplied lattice defini­
tion routines additional lattice information beyond the numbers of sites, 
dimensions and directions and the range of each coordinate. These 
additional parameters are amalgamated into the array containing the 
lower and upper limits of the coordinates. Because the parameters 
are amalgamated with other information, and because the coordinates 
arrays are 1-based, this access is a bit tricky. The following exam­
ple sets up a skew-periodic lattice- when crossing the boundary in the 
last dimension, the coordinates in the other dimensions shift by a skew 
vector. The skew vector is passed to the connectivity function via 
other_params. The routine uses the periodic coordinate and inverse 
coordinate functions appearing in grid. c, and defines its own connec­
tivity function. 

#include <canopy.h> 
#include 11 

•• /cansource/canopy_prv.h" 

#include <grid.h> 

void skew_periodic_connectivity_func( 
int lattice, 

{ 

intptr coords, /* 1 based!!! */ 
site *site_struct) 

grid_list *point; /* pointer to lattice structure */ 
int i,j; 
int newcoords[MAX_COORDINATES]; 
intptr skews = &point->other_parameters[-1]; 

/* This is how to get at the other parameters. *I 
/* We want skews[1] to correspond to others[O] .•/ 
point= grid_list_pointer(lattice); 
site_struct[O] = site_at_coordinates( (grid)(lattice), coords); 
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for (i=O; i<point->ndir; i++) { 

} 

/* fill +dir site_struct with +dir neighbor */ 
I* using 0-based skew periodic boundary conditions *I 
for (j;Q; j<point->ndir; j++) { 

newcoords[j+1]=coords[j+1]; 
} 

if ( coords [i +1] ! ; point->max_coords [i]) { 
newcoords[i+1] =val+ 1; 

} else { 
if (i==point->ndir-1) /* Now implement skew */ 

for (j;Q; j<point->ndir-l;j++) { 
newcoords[j+1] += skews[j+i]; 

} 

if (newcoords[j+1]>point->max_coords[j]) 
newcoords[j+1] -= point->max_coords[j]; 

newcoords[i+1] = O; 
} 

site_struct[(i+l)] 
site_at_coordinates ( (grid)lattice, newcoords); 

/* fill -dir site_struct with -dir neighbor */ 
I* using 0-based skew periodic boundary conditions */ 
for (j;Q; j<point->ndir; j++) { 

newcoords[j+1]=coords[j+1]; 
} 

if (coords [i+l] ! ; 0) { 
newcoords[i+1] = val - 1; 

} else { 

} 

if (i==point->ndir-1) /* Now implement skew */ 
for (j;Q; j<point->ndir-l;j++) { 

newcoords[j+l] -; skews[j+l]; 
if (newcoords [j+l] < 0) 

newcoords[j+1] += point->max_coords[j]; 
} 

newcoords[i+1] = point->max_coords[i]; 

site_struct[-(i+l)] ; 
site_at_coordinates( (grid)lattice, coords); 

} /* periodic_connectivity_func */ 
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grid skew_periodic_grid(int ndims, 
intptr sizes, intptr skews) 

{ 
I* sizes and skews are 1-based arrays *I 

int i; 
int nsites; 
coordinates upper_limits; 
coordinates lower_limits; 
int others[MAXPARAMETERS]; 

int n_nodes; 
n_nodes = CAN_number_of_nodesj 

for (nsites=1, i=1; i<=ndirns; i++) { 

nsites *= sizes[i]j 
upper_limits[i] = sizes[i]-1; 
lower_lirnits[i] = O; 

} 

for (i=O; i<ndims; i++) { 
others [i] = skews [i +1] ; 

} 

for (i=ndirns; i<MAXPARAMETERS; i++) { 
others[i] = O; /*Set unused others to 0 */ 

} 

/* call define_arbitrary_lattice to do it */ 
return(arbitrary_grid (nsites, ndims, ndims, 

lower_limits, upper_limits, others, 
default_distribution_func, 
periodic_coordinate_function, 
periodic_inv_coordinate_function, 

skew_periodic_connectivity_func) ); 
} /* skew_periodic_grid */ 

Users wishing to define complicated grids can also be guided by 
the gridlib routine chunky_periodic...grid, appearing in grid. c. Here, 
when the coordinate ranges and number of nodes are suitable, each node 
is assigned an n-dimensional "chunk" of sites, rather than the default 
"sheet" of sites. (This reduces the "surface to volume ratio" for each 
node, potentially reducing the frequency of off-node communications.) 

To accomplish this, before arbi trary_grid is called, a routine is 
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called to determine the best division of sites; this produces an array of 
one "divisor" per coordinate. The coordinate (and inverse coordinate) 
function will use these divisors to create a special relation between site 
serial number to coordinates, implementing the improved assignments. 
The other_params mechanism is used by chunky_periodic_grid to 
make the computed divisors available to the these functions. 

(The gridlib routine chunky_periodic_grid uses the usual periodic 
connectivity function and its own coordinate and inverse coordinate 
functions, while the ske1Lperiodic_grid example uses the usual cood­
inate functions and its own connectivity function. Both routines use 
the default distribution function; clever ways of distributing sites can 
often be incorporated into the way the coordinate function relates serial 
number to coordinates.) 
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6.4.5 Mapping Functions 

logical <mapfunctionname> (intptr incoords, 
intptr outcoords); 

Purpose: define_map and read_slice_of_field use these user-
supplied routines to define maps between two grids. 

Arguments: 

intptr incoords: (Input) array of coordinates (1-based) on 
the domain grid of map or the field on the tape. 

intptr outcoords: (Output) array of coordinates (1-based) on 
the range grid of the map or the grid supporting the field 
to be read. Note that there is no information available on 
the dimension or size of either the domain or range grid. 
The mapping function must know it internally, which means 
that mapping functions are really rather delicate. As a rule 
they must be shaped individually for each different program. 
However, some simple transformations, such as setting the 
nth coordinate to zero or returning FALSE for all sites with 
odd coordinates, may be used for many different sizes of 
grids. 

Return Value: FALSE if the site at incoords maps to NOWHERE (or 
the site is not to be read in read_slice) and TRUE otherwise. 

Example: /* map sites from 4-d to 3-d */ 
logical example_map(i,o) 
intptr i,o; { 

o[X] = i[Y]; /* ignore the X coord */ 
o[Y] = i[Z]; f* in the original and*/ 
o[Z] = i[T]; I* map all sites. */ 
return (TRUE); 

} /* example_map */ 
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6.4.6 Random Number Generators 

Defining Function 

void <random_func>(random_generator_area *area); 

Purpose: To define a random number generator. The area argument 
is a pointer to a structure containing the length in bytes of the 
state information, an initialize routine, and a generator rou­
tine. All <random±unc> does is return pointers and sizes through 
area. Many different random number generators may be declared 
and the mul ti_random routine used to get numbers from different 
generators. 

Arguments: 

random_generator_area *area: Pointer to an area to be filled 
as follows: 

area->size_of_state: size of the state area for this 
random number generator. 

area->generator_func: Address of the generator function 
for this random number generator. 

area->ini tialize_func: Address of the initialization 
function for the random number generator. 

Return Value: None 

NOTE: There are concerns about the propeties of pseudo-random 
sequences for use in massively parallel systems. Obviously, increased 
computational power means more random numbers can be used in a 
single stream of jobs; this argues that generators should have more 
bits of internal state. Less obvious is a problem that can occur if a 
single pseudo-random algorithm is used to generate many streams of 
random numbers, distinguished only by different initial states: The 
state of one stream can eventually match the initial state of another. 
For large numbers of streams, unless the period of the random sequence 
is extremely large, it is surprisingly likely that some pair of streams 
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will be related in this way. These concerns should be addressed when 
selecting a random number generator. 
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Generator Function 

void <randorn_generator>(int nurnber_to_rnake, 
queue_struct *queue; 
voidptr state; 
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Purpose: To put nurnber_to_rnake new random numbers in *queue, 
using and updating state. 

Arguments: 

int nurnber_to_rnake: Number of new random numbers to put 
in the queue. Normally, the queue is empty when this call 
is made. 

queue_struct *queue: Pointer to the queue structure. This 
structure is defined in canopy. c. 

voidptr state: Pointer to the state structure. This structure 
is defined privately by the random number generator, which 
is why it is cast as voidptr. 

Return Value: None 
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Initialize Function 

void <randorn_initialize>(int seed, 
int stream, 
voidptr state); 

Purpose: To initialize *state. cornplete_defini tions is the only 
routine that calls this. 

Arguments: 

int seed: The system-wide random number seed. 

int stream: The stream number of this stream. Together seed 
and stream are used to create a unique state for this stream 
of the random number generator which is independent of the 
other streams. 

voidptr state: The state to be filled. 

Return Value: None 
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6.4.7 Tailoring Do_Task Keywords 

Each do_ task keyword such as SUM_REAL or PASS is a pointer to a 
CAN_do_task_keyword structure which in turn consists of pointers to 
various functions used by the system to implement that keyword. The 
user can create an instance of this structure, with poiters to user­
supplied functions, customizing new do_ task keywords. This section 
explains how that is done, and illustrates the process with an example 
at the end. Other examples, implementing the keywords supported by 
Canopy, can be found in chip. c. (The keywords are defined at the 
CHIP level, so that do_task triplets can be used by do_on_alLnodes 
as well as by the Canopy do_task routine.) 

The elements of a do_ task triplet are the keyword which controls the 
action, the address of the argument, and the length of the argument. 
The argument as it appears in do_task is called the final argument 
and its length the final size. The arguments of a task routine are all 
pointers to the argument area, called the local argument. The task 
routine is assumed to know the length (or local size) of the argument. 
What do_ task does is to call the task routine once for each site in 
some set and accumulate all of the returned local arguments into the 
final argument, where the exact meaning of accumulate depends on the 
keyword. For the standard keywords, the final and local arguments 
have the same type and size. 

Internally, do_ task uses a third sort of argument called the interme­
diate argument which has the intermediate size. All of the returned lo­
cal arguments are accumulated into intermediate arguments first, then 
the intermediate arguments on each node are accumulated together, 
and finally the intermediate argument on the control node is copied 
into the final argument. The do_ task keyword points to a structure 
containing the functions for these operations. Note that the PASS and 
FUNCTION keywords work a little differently since they copy data down 
to the nodes instead of back up to the control program. In fact they 
use the same structure and routines as the accumulate arguments. 

The accumulate operation must be commutative and associative, 
such as addition or taking the maximum value. If the computer rep-
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resentation of the operation is not exactly commutative or associative 
then the computer will give slightly different answers depending on the 
number of nodes used in the calculation. 

The third argument in the triplet, the final size, is present so vectors 
may be accumulated efficiently. A final size of zero is allowed; this does 
nothing. Note that local argument to the task routine will still be a 
valid non-null pointer in this case but that what it points to must not 
be written. 

The most common reason for making the intermediate type differ­
ent from the final type is to handle initial cases-see the MAx..REAL 
keyword definition in chip. c. At the end of this section is an example 
of a user-tailored keyword, illustrating the use of the final, local, and 
intermediate arguments. 

In addition to functions describing how to accumulated results, the 
user supplies constructors, telling how to set aside room for intermedi­
ate and final results, and how to initialize them. These are conceptually 
similar to constructors in the C++ sense. The fact that a pointer to 
the created area are output as an argument rather than as the return 
value, and that the return value is set to the size of the allocated area, 
is not an important difference. An important restriction stems from 
Canopy calling a standardized destructor to free memory when the ob­
ject constructed is no longer needed, and from assumptions made about 
how an intermediate or final object may be copied. Because of this, the 
constructor must malloc contiguous memory that can be freed with a 
single free. For instance, the intermediate constructor function can 
not set *inter to a pointer to a static area, or to an array of pointers to 
allocated blocks. 



6.4. USER-SUPPLIED ROUTINES 

The Keyword Structure 

typedef struct { 
int do_task_type; 
intfunptr verify_length_func; 
intfunptr inter_constructor_func; 
voidfunptr inter_accumulate_func; 
voidfunptr inter_finish_func; 
intfunptr local_constructor_func; 
voidfunptr local_accumulate_func; 

} CAN_do_task_keyword, *CAN_do_task_keyword_ptr; 
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int do_task_type: This is DO_TASK_INTEGRATE for all of the user­
defined functions. Other possible values are DO_TASK_PASS and 
DO_TASK_FUNCTION. PASS and FUNCTION arguments handle mem­
ory differently. 

verify _length_func: Checks to see that final size is valid. 

inter _constructor _func: 
malloc's space. 

Computes the intermediate size and 

inter _accumulate_func: Does the accumulate operation on two 
intermediate arguments (called only on multi-node systems). 

inter _finish_func: Copies from the accumulated intermediate argu­
ment to the final argument. 

locaLconstructor _func: 
space. 

Computes the local size and mallocs's 

locaLaccumulate_func: Accumulates a returned local value into the 
intermediate argument for that node. 
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Verify Length Function 

logical <verify_length_function>(int bytes); 

Purpose: Returns TRUE if bytes is a valid final size and FALSE 
if not. For keywords that allow varying lengths zero should be a 
valid value. 

Arguments: 

int bytes: The length in bytes passed as the third element of 
the do_task triplet. 

Return Value: TRUE if the length is OK and FALSE if it is invalid. 



6.4. USER-SUPPLIED ROUTINES 

Inter Constructor Function 

int <inter_constructor_func>(voidptr final, 
voidptr *inter, 
int finalsize); 
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Purpose: Returns the intermediate size in bytes and malloc's and 
initializes *inter, which is copied as an initialized empty accu­
mulate variable to all the nodes. The memory must be allocated 
using a single malloc call. 

Arguments: 

voidptr final: Pointer to the final argument, which is the 
second argument of a do_task triplet. 

voidptr *inter: Pointer to a pointer to the intermediate area 
being prepared by this function. 

int final size: The size in bytes of the final argument, which 
is the third argument of the do_task triplet. 

Return Value: The length in bytes of *inter. This is computed 
from finalsize after finalsize has been verified. 
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Inter Accumulate Function 

void <inter_accumulate_func>(voidptr inter_acc, 
voidptr inter, 
int intersize); 

Purpose: Accumulates *inter into *inter_acc. 

Arguments: 

voidptr inter_acc: Pointer to the intermediate argument 
which will be updated. 

voidptr inter: Pointer to the intermediate argument with the 
new values. 

int intersize: The size in bytes of intermediate arguments as 
returned byte the inter_constructor_func. 

Return Value: None 

Note: This is only called on multi-node systems. 
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Finish Function 

void <finish_func>(voidptr final, 
voidptr inter, 
int intersize); 
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Purpose: Finishes the do_task operation by copying *inter to 
*final, editing it appropriately. 

Arguments: 

voidptr final: Pointer to the final argument. This is the 
second argument in a do_task triplet. 

voidptr inter: Pointer to the intermediate argument with the 
completed accumulation. 

int intersize: The intermediate size as returned by the 
<inter_constructor_func>. 

Return Value: None 
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Local Constructor Function 

int <local_constructor_func>(voidptr inter, 
voidptr *local, 
int intersize); 

Purpose: Returns the local size in bytes and malloc's a local area 
which usually requires no initialization. The memory must be 
allocated using a single malloc call. 

Arguments: 

voidptr inter: Pointer to the intermediate argument as 
created by inter _constructor _func. 

voidptr *local: Pointer to a pointer to the local area which 
will be passed to the task routine. Usually this area requires 
no initialization but for PASS-type arguments some set-up 
is needed. 

int intersize: The intermediate size as returned by the 
inter_constructor_func. 

Return Value: The length in bytes of *local. This is computed 
from intersize after intersize has been computed from the 
original finalsize. 
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Local Accumulate Function 

void <local_accmnulate_func>(voidptr inter, 
voidptr local, 
int localsize); 

Purpose: Accumulates *local into *inter. 

Arguments: 
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voidptr inter: Pointer to the intermediate argument which 
will be updated. 

voidptr local: 
values. 

Pointer to the local argument with the new 

int intersize: The size in bytes of intermediate arguments as 
returned by the inter _constructor _func. 

Return Value: None 
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Example of Customized Keyword 

In this example, the user will establish a keyword MEAN_SIGMA which 
takes a single float value from the task routine (for each site), but re­
turns a structure with fields representing the mean of those values and 
the standard deviation. Here, the lengths of the local, intermediate, 
and final arguments are all different: A single float goes to three inter­
mediate quantities (a count, and sums of x and x 2), which in the finally 
lead to a structure containing x and u. For purposes of illustration, and 
in principle to avoid loss of precision, the intermediate real results will 
be kept in double precision. 

As is the case for any DO_TASK_INTEGRATE keyword defined, the 
keyword may be used in the context of a vector of results, of length of 
one or more elements. 

Following the usual C conventions, the example will define the var­
ious user-supplied functions, followed by the keyword structure for this 
new integration type. The user-defined functions will be prefixed by 
UMS, standing for User-defined Mean and Sigma. 

typedef struct { 

float mean; 

float sigma; 
} Mean_and_Sigma; 

I• This structure holds the result: 

I• This typedef ~ould be in a .h file, 
I• to be included in the user program. 

typedef struct { 
double sum; /* Sum of x */ 
double sumsq; /* Sum of x*x */ 
int count; 

} UMS_stats; 

•/ 
•/ 
•I 

I* This structure holds the intermediate argument */ 

#define FINALTYPE Mean_and_Sigma 
#define INTERTYPE UMS_stats 
#define LOCALTYPE float 
#define FINALSIZE sizeof (FINALTYPE) 
#define INTERSIZE sizeof (INTERTYPE) 
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#define LOCALSIZE sizeof (LOCALTYPE) 

logical UMS_Word_Length(int bytes) { 
if (bytes < 0) return FALSE; 

} 

if (bytes%4 == O) return TRUE; 
return FALSE; 
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The inter_constructor_function creates and initializes an inter­
mediate object. The final object size is used to determine how many 
elements there are in the vector of results. (Note that the destructor 
corresponding to this constructor is implicit and assumes this Junction 
does exactly one malloc- the destructor does exactly one free}. 

int UMS_Inter_Con(voidptr final, voidptr *inter, int finalsize) { 
int ii 
int vector_length = finalsize I FINALSIZE; 
•inter= (voidptr) malloc(vector_length•INTERSIZE); 
for (i=O; i<vector_length; i++) { /* initialize inter object */ 

((INTERTYPE•) •inter)[i] .sum = 0.0; 
((INTERTYPE•) •inter)[i] .sumsq = 0.0; 
((INTERTYPE•) •inter)[i] .count= O; 

} 

return(vector_length * INTERSIZE); /*return length of inter*/ 
} /* intermediate constructor */ 

The inter_accumulate._function combines two intermediate ob­
jects. This is used both when combining results from two nodes, and 
within a single node if multi-thread is enabled. 

/*inter_accumulate_function 
void UMS_Accum_Stats(voidptr inter_acc, voidptr inter, int intersize) 
{ 

} 

int i; 
int vector_length = intersize I INTERSIZE; 
for (i=Oj i<vector_length; i++) { 

} 

((INTERTYPE•)inter_acc)[i] .count+= ((INTERTYPE•)inter)[i] .n; 
((INTERTYPE•)inter_acc)[i] .sum += ((INTERTYPE•)inter)[i] .sum; 
((INTERTYPE•)inter_acc)[i] .sumsq += ((INTERTYPE•)inter)[i].sumsq; 
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The finish_function computes the value of the final object from 
the value of an intermediate object. It uses intersize to determine the 
vector length. 

void UMS_Find_Mean_Sigma(voidptr final. voidptr inter, int intersize) 
{ 

} 

int i; 
int vector_length = intersize I INTERSIZE; 
for (i=O; i<vector_length; i++) { 

} 

double n = (double) ((INTERTYPE *) inter)[i] .n; 
double average = ((INTERTYPE *) inter)[i] .sum/n; 
double avsquare = ((INTERTYPE *) inter)[i] .sumsq/n; 
((FINALTYPE*) final)[i] .mean =average; 
((FINALTYPE*) final)[i] .sigma= 

sqrt((avsquare - average*average)); 

The locaLconstructor_function creates a local object. 

int UMS_Local_Con(voidptr inter, voidptr *local, int intersize) 
{ 

int vector_length = intersize I INTERSIZE; 
*local= (voidptr)malloc(vector_length*LOCALSIZE)j 
return(vector_length * LOCALSIZE); 

} /* MSDF_Local_Con */ 

The locaLaccumulate...function combines a local object with an 
intermediate object. In this case it adds to the sum and the sum of the 
squares of the local object, and keeps an explicit count. 

void UMS_Accum_x_x2(voidptr inter, voidptr local, int localsize) 
{ 

} 

int ii 
int vector_length 
INTERTYPE *interd 
LOCALTYPE *locald = 

localsize / LOCALSIZE; 
(INTERTYPE*) inter; 
(LOCALTYPE*) local; 

for (i=O; i<vector_length; i++) { 

} 

double value= ((LOCALTYPE•)local)[i]; 
((INTERTYPE•) inter)[i] .n += 1; 
((INTERTYPE•) inter)[i] .sum +=value; 
((INTERTYPE•) inter)[i] .sumsq += value•value; 
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Finally, we can initialize the do_task keyword structure, and set up 
a mnemonic to refer to it: 

CAN_do_task_keyword UMS_Mean_Sigma = { 

}; 

DO_TASK_INTEGRATE, /• type •/ 
UMS_Word_Length, /• verify •/ 
UMS_Inter_Con, /* intermediate construtor */ 
UMS_Accum_Stats, 
UMS_Find_Mean_Sigma, 
UMS_Local_Con, 
UMS_Accum_x_x2 

/* intermediate 

I* :finisher 
accumulator*/ 

•I 
/* local constructor 
/* local accumulator 

•I 
•I 

CAN_do_task_keyword_ptr MEAN_SIGMA = tUMS_Mean_Sigma; 

Having defined this new type of integration, the user program could 
use it as follows: 

Mean_and_Sigma r; 
do_task (produce_r, mygrid, 

MEAN_SIGMA, &r, sizeof(r), 
END); 

The produce_r task routine will have one float* argument, say xx. 
It after computing a result, it will set xx = result. After do_task 
returns, r will haver.mean set to the average and r.sigma to the 
standard deviation of the results returned by produce_r for each site. 
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6.5 CHIP Routines 

CHIP, the Canopy Hardware Interface Package, is designed to isolate 
the Canopy implementation from machine details. It is a set of sub­
routines that allows machine-independent control of parallelism, and 
is therefore a good package for other parallel meta-applications to use. 
The CHIP routines and the hosting software are independent of the 
Canopy layer. Since Canopy is site-based not node-based, ordinary 
Canopy programs will have little use for these routines-but they may 
be included if needed. 
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6.5.1 Inter-Node Communication 

The CHIP inter-node communication routines read and write data from 
and to fulLaddresses. It makes no difference if the target address is 
on the local node or a remote node; the operation is the same. Any 
piece of memory on any node can be written or read by any other node 
in the same job at any time, so competition must be considered in every 
program. The Canopy layer provides one way of organizing programs 
cleanly. Uses outside the Canopy paradigm must provide another way 
of synchronization. 

The keep, more, and close variations of remote...read and remote_ 
write are advisory only; they tell the communications routines that 
the next transfer is to the same target, so the total number of channel 
arbitrations may be reduced. However, remote...read routines always 
make object valid before returning and reads and writes are guaranteed 
to occur in the order specified. 

Different implementations of CHIP may implement these routines 
in different ways. The only guarantees are these: 

Transfers are done by 32-bit words, which means that a 
particular 32-bit word is always some correct value. Longer 
entities, such as doubles or structures, may have invalid 
values since they may be part old and part new. A 32-bit 
word is never set to any other value than the old value or 
the new value (such as by being cleared to 0 first). Flags 
should therefore always be 32-bit words. 

Any memory access after a remote_wri te, local or remote, 
will read the changed value. Any memory access after any 
local write (even one not using the remote_wri te routines) 
will read the changed value. This means that-unlike some 
implementations of NFS-it will always work in Canopy to 
change a value, tell other nodes the value is changed, and 
know that if they read it they will read the new value (or 
some later value). This is true even of the keep variations. 
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While transfers (except for single-word transfers) need not 
be atomic, the word with the highest address will always 
be changed after all the other words. indextransfers!non­
atomic Even if the keep routines are used, the highest word 
of the previous transfer will be done before any word of the 
next transfer. Of course, it is preferable to write a data 
block and then write a flag in a separate transfer since this 
is easier to modify correctly. 

Transfers may take arbitrary lengths of time. One node may access 
another several times, or none, before a third node can. The order of 
transfers except for the last word is undefined. 

Operations that need exclusive access should use semaphores. Here 
is an example used in setting up maps in Canopy where nodes need 
to update a counter asynchronously. This code works regardless of 
whether where is local or remote. 

/* start an atomic operation */ 
wait_for_resource(&where_semaphore); 

I* keep and close are advisory only */ 
remote_read_and_keep(where, 1, &what); 
what += 1; 
remote_write_and_close(where, 1, &what); 

/* let somebody else update it */ 
free_resource(&where_semaphore); 
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Single-block Communication 

void remote_read 
void remote_read_and_keep 
void remote_read_more 
void remote_read_and_close 

(full_address *add, int len, voidptr object); 

void remote_write 
void remote_write_and_keep 
void remote_write_more 
void remote_write_and_close 

(full_address *add, int len, voidptr object); 
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Purpose: To read len words from *add into object or to write 
len words to *add from object. The keep, close, and more 
variations give hints to the system about whether more data is 
going to the same node. 

Arguments: 

fulLaddress *add: The source (read) or destination (write) 
address. The node may be any node including the calling 
node but the address must be word-aligned. 

int len: The number of words to move. 

voidptr object: A local pointer to the destination (read) 
or source (write) of the data on this node. This must be 
word-aligned. 

Return Value: None 

NOTE: Do not rely on the keep variations to act as semaphores. Use 
the semaphore routines if semaphores are needed. 



168 CHAPTER 6. CANOPY SUBROUTINE REFERENCE 

Multiple-block Communication 

int remote_gather (int nblocks, int* node, 
voidptr *src, int *len, vodiptr *dst) 

Purpose: To read nblocks blocks of data of various lengths from a 
list of addresses ( src) on a specified remote node, into memory 
blocks ( dst) on the local node. The remote gather and scatter 
routines facilitate transfer coalescing, in which several transfers 
between two nodes are done in one transaction on the commu­
nications medium. Although remote_gather and remote_scatter 
could be written in terms of multiple calls to remote_read and 
remote_write, the point of these routines is to reduce the number 
of communications. 

To further facilitate efficient communications in applications which 
may involve high levels of traffic, this transfer is non-blocking: if 
the channel is busy, control may return immediately, with a neg­
ative return value. 

Arguments: 

int nblocks: The number of blocks of data to be transfered. 

int *node: The remote node to gather data from. (May be 
identical to the local node, in which case simple memory 
copies are done.) 

voidptr *src: A local pointer to a list of source addresses. 
Each is to be used as an address of a block of data on the 
remote node. 

int *len: A local pointer to a list oflengths (numbers of words) 
of each block to transfer. 

voidptr *dst: A local pointer to a list of destination addresses. 
Each is to be used as an address on the local node for a block 
of data to be copied. 
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Note: Transfers must be word aligned: The elements of the 
source and destination lists must be multiples of four. 

Return value:: Either a negative integer error code, or the actual 
number of blocks read. The only circumstance in which an error 
can be returned is if the connection is refused (because the channel 
is busy) and should be re-tried later; all other errors result in 
an abort of the job. The actual number of blocks read can be 
less than nblocks, if nblocks is greater than CAN_ATOMICGATHER 

(defined in chip.h). 
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int remote scatter (int nblocks, int* node, 
voidptr *dst, int *len, vodiptr *src) 

Purpose: To write nblocks blocks of data of various lengths from 
a list of addresses ( src) on the local node, into memory blocks 
( dst) on the specified remote node. 

Arguments: 

int nblocks: The number of blocks of data to be transfered. 

int *node: The remote node to gather data from. (May be 
identical to the local node, in which case simple memory 
copies are done.) 

voidptr *dst: A local pointer to a list of destination addresses. 
Each is to be used as an address on the remote node for a 
block of data to be copied. 

int *len: A local pointer to a list of lengths (numbers of words) 
of each block to transfer. 

voidptr *src: A local pointer to a list of source addresses. 
Each is to be used as an address of a block of data on the 
local node. 

Note: Transfers must be word aligned: The elements of the 
source and destination lists must be multiples of four. 

Return value:: Either a negative integer error code (if the channel 
was busy), or the actual number of blocks written. 
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6.5.2 Full Address Functions 

void full_address_from_local_address(voidptr local_address); 

Purpose: To form a full address structure pointing to a location 
on the local node specified by a local pointeL 

Arguments: 

voidptr locaLaddress: The address in local memory space. 

Return Value: A structure of type fulLaddress pointing to the 
local address on this node. 

void full_address_on_another_node 
(voidptr address, int node_number); 

Purpose: To form a fulLaddress structure pointing to a location on 
an arbitrary node, specified by the node number and an address 
within that node's memory space. 

Arguments: 

vo idptr address: The address in in node memory space; an 
ordinary pointer when used by that node. 

int node...number: Specifies the node associated with the mem­
ory of the desired location. 

Return Value: A structure of type fulLaddress pointing to the 
specified address on the specified node. 
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6.5.3 Fatal Errors and Memory Allocation 

void yderr(char *errstring); 

Purpose: To report fatal errors. This routine stops the program when 
called from any level and reports *errstring to the controller. 

Arguments: 

char *errstring: The error message to report to the controller. 

Return Value: None. This function doesn't even return! 

voidptr ckmalloc(int size); 

Purpose: To allocate memory without requiring the user to check for a 
null return. This routine behaves identically to malloc () excpet 
that a yderr() is declared if insufficient memory is available. 

Arguments: 

int size: The number of bytes to be allocated. 

Return Value: A valid pointer to the allocated block of memory. 
If memory could not be allocated, this function will call yd err() 
with a suitable error string, and never return. 
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6.5.4 Do On All Nodes 

void do_on_all_nodes(voidfunptr local_func, 
<triplets>, 
END); 

Purpose: To do locaLfunc on all nodes of the system. 

Arguments: 
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voidfunptr locaLfunc: A pointer to a function whose ar-
guments aare those defined by the <triplets> given. This 
function will be called once on each node. The arguments 
work the same way as for do_task (see section 6.2.l Do_TASK 

TRIPLETS). 

triplets: These are the same as the do_task triplets described 
with do_task. 

END: This is the END keyword used just the same was as in 
do_task. 

Note: This function works at the CHIP level, not at the Canopy 
level, which means that Canopy concepts such as the HOME site 
and field_pointer routines are not valid in locaLfunc. The 
random number generator will not work there either. To use 
Canopy constructs on a per-node basis define a grid containing 
as many sites as there are nodes and then do a do_task over that 
grid. 

Note2: There is an CHIP function called do_frame_oILalLnodes 
which is to this function as vprintf is to printf, used for the 
implementation of the various do_task routines. This private 
function uses a frame argument which is non-trivial to set up and 
subject to change. However, it must be used to build a system 
such as Canopy where vprintf-like functionality is needed. 

Return Value: None 
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6.5.5 Semaphores and Resources 

logical init_resource(full_address *resource); 
logical lock_resource(full_address *resource); 
void wait_for_resource(full_address *resource); 
void free_resource(full_address *resource); 

Purpose: To provide a CHIP standard way of contending for re-
sources. In CHIP, each resource is assigned a semaphore vari­
able which governs it. The full-addresses used as arguments to 
these routines must point to that semaphore variable. Before 
the semaphore can be used, it must be initialized with a call to 
init_resource. After that call the lock, waiLfor, and free 
routines may be used to control the resource. If the semaphore 
variable was automatic or malloc'ed it must not be used after it 
goes out of scope (meaning that the routine automatically allo­
cating it returns-it is OK to use it in that routine's subroutines, 
including tasks that routine spawns) or is freed. 

Arguments: 

fulLaddress *resource: Address of a full-address pointer to 
a semaphore variable. 

Return Value: TRUE if the request was granted and FALSE if the 
semaphore was busy or could not be initialized. 

Note: The CHIP semaphore contention is not guaranteed to be 
fair, especially if wai t_for_resource is used. It will always be 
mutually exclusive and will never deadlock. 
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Canopy Libraries 

The Canopy libraries provide routines for operations which are ubiqui­
tous over a wide range of applications. These include functionallity par­
ticular to Canopy (e.g. gridlib ), generic to massively parallel systems 
(e.g. ranlib), or needed because of peculiarities in I/O or deficien­
cies in the C language (e.g. cmplxlib). The utility of these routines 
extends beyond the obvious advantage of not having to re-create each 
routine: 

• When common routines are standardized, there is an advantage 
in code readability and in confidence in routine correctness. 

• Any subtle issues which arise in implementing these routines can 
be resolved correctly once and for all. 

• In cases where efficiency is likely to be an issue, the library rou­
tines might be more carefully optimized than individually created 
routines would be. 

Other libraries of routines oriented toward more specific applica­
tions groups are also available. An example is QCDLIB, which contains 
routines for manipulation of SU(3) and GL(3) matrices and 3-vectors. 
These applications libraries are not part of Canopy per se, and therefore 
are not documented in this manual. 
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7 .1 Gridlib-Periodic Grids 

The grid library contains standard periodic grid defining functions as 
described in the grid declaration section of CANOPY SUBROUTINE 

REFERENCE. The sources for these routines are also useful as tem­
plates for customized grids. 

The grid library #defines names for the directions in grid. h, which 
should be #included in any program using these routines: 

#define x 1 
#define y 2 

#define z 3 
#define T 4 
#define MINUS _x -1 

#define MINUS_Y -2 
#define MINUS_Z -3 
#define MINUS_T -4 
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7.1.1 Periodic Grids 

grid periodic_linear_grid(int x); 
grid periodic_square_grid(int x, y); 
grid periodic_cubic_grid(int x, y, z); 
grid periodic_hypercubic_grid(int x, y, z, t); 
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indexgrids!periodic linear indexgrids!periodic square indexgrids!periodic 
cubic indexgrids!periodic hypercubic 

Purpose: To declare rectilinear periodic grids with coordinates in 
the range [O .. n-1]. These functions map the sites to the serial 
numbers (and hence to the nodes) with x varying fastest, then y, 
then z, and finally t. The result is that sites in the same time 
slice tend to be together on the nodes. 

Arguments: 

int x, y, z, t: 

periodic grid. 
The x, y, z, and t dimensions of the new 

The grid coordinates run [O .. x-1] [O .. y-1] 

Return Value: The grid variable referring to this grid, which is used 
by all the subroutines using this grid. 
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7.1.2 Chunky Periodic Grids 

grid chunky_periodic_square_grid(int x, y); 
grid chunky_periodic_cubic_grid(int x, y, z); 
grid chunky_periodic_hypercubic_grid(int x, y, z, t); 

Purpose: To declare rectilinear periodic grids with coordinates in 
the range [O .. n-1]. These functions map the sites to the serial 
numbers (and hence to the nodes) in a way that tries to keep 
neighboring sites on the same nodes. Each dimension except the 
last is divided into even chunks (so the size shouldn't be prime) 
and then the chunks are divided by the distribution function. The 
net result is that approximately a square chunk of the grid is on 
each node, which maximizes the likelihood that nearest neighbors 
will be on the same node. 

Arguments: 

int x, y, z, t: 

periodic grid. 
The x, y, z, and t dimensions of the new 

The grid coordinates run [O .. x-1] [O .. y-1] 

Return Value: The grid variable referring to this grid, which is used 
by all the subroutines using this grid. 
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7.1.3 General Periodic Grids 

grid periodic_grid(int ndims, intptr size); 
grid chunky_periodic_grid(int ndims, intptr size); 

Purpose: To declare rectilinear grids of arbitrary dimensions with 
zero-based coordinates. To declare a grid whose lowest coordinate 
is not 0 use the arbi trary_grid routine. 

Arguments: 

int ndims: The number of dimensions of the new grid. 

intptr size: A one-based array of sizes. The coordinates of 
the new grid run [O .. size[1J-1J, [O .. size[2J-1J, ... 
[O .. size [ndimsJ -1J. This agrees with the normal defi­
nitions of directions so that size [XJ is the first direction 
and so forth for Y, z, and T. Note that if size was declared 
as coordinates that size [OJ exists but is not used. If 
size was an array returned from some function call (such as 
grid_lower_bounds) then size [OJ may not exist. 

Return Value: The grid variable referring to this grid. 
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7 .2 Setlib-Predefined sets 

Several set-of-sites functions, such as red_func which selects those sites 
whose sum of coordinates is odd, are quite common. They have been 
written in a clean way and collected here so users don't have to keep re­
writing them. An attempt has been made to keep them general enough 
so they will work on any grid. The #include file is set. h and the C 
switch is -lset. 

All of these functions have the standard syntax of a set-of-sites 
function: 

int <set_of_sites_func>(grid lattice, intptr coords); 

where lattice is the grid on which the set is defined and coords is the 
(1-based) array of coordinates for a particular site. The return value is 
either the level of the site in the set or 0 if the site is not in the set. 
The following functions are provided: 

red_func : The set of sites with odd sum of coordinates. 

black_func : The set of sites with odd sum of coordinates. 

rb_func The compound set of sites red first then black. 

br_func The compound set of sites black first then red. 

hyperl_func 
this set 

The compound set of sites to make a hyperplane. In 
the level of each site is the sum of its coordinates plus 

one. 

hyperu_func The compound set which 1s hyperl_func m the 
reverse order. 

spherel_func : The compound set in which the level of each set is 
its distance from the origin plus one. 

sphereu_func : The compound set which is spherel_func in the 
reverse order. 
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7 .3 Ranlib-Random Numbers 

The random number library contains the functions needed to set up a 
Canopy random number generator. The #include file is random.hand 
the C switch is -lran. Issues involving random numbers in a multi­
processing context are discussed in section 4. 7.1 RANDOM NUMBERS. 

There are currently two random number generator functions in the 
library: 

bad_random () : Created in the dark ages as a test, bad_ random uses a 
modular congruence algorithm with a short period. 

dual_random(): Created 5/25/88 by Doug Toussaint. This is a feed­
back shift register generator xor'ed with a modular congruence 

The way to use either of these in a Canopy program with a single ran­
dom number generator is (cf. section 6.1.5 RANDOM NUMBER DEC­

LARATION and section 6.3.8 OBTAINING RANDOM NUMBERS): 

#include <random.h> 

make_random_generator(dual_random,STREAM_PER_SITE,<n>,<seed>)i 

complete_definitions(); 

Having prepared this, then calls to random() (by either task routines 
or the control program) will return floating point numbers between 0.0 
(inclusive) and 1.0 (exclusive). In place of duaLrandom, bad_random, 
(or a user-defined generator) could be selected; and STREAM_PER_NODE 
randoms may be chosen instead of STREAM_PEILSITE. 

For efficiency, generators produce several randoms at a time and 
dole them out each time random() is called; <n> controls the number 
of randoms to generate at once (10 is good typically). <seed> is an 
integer seed which labels a stream of random numbers. 
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7 .4 Cmplxlib-Complex Arithmetic 

The cmplx library handles complex numbers, both in single and dou­
ble precision. The line #include <cmplx. h> must be in any program 
using these routines, and it automatically includes the canopy. h file. 
Therefore the #include <cmplx. h> line must be the first include file 
in any program using these functions. Use the -lcmplx switch to in­
clude this library if you are not using the Canopy shells which include 
it automatically. 

7.4.1 Complex Numbers 

There is no intrinsic complex type in C, so one is defined here, along 
with the normal functions on the complex domain. 

typedef struct { I* single precision */ 
float real; 
float imag; 

} complex; 

typedef struct { /* double precision */ 
double real; 
double imag; 

} double_complex; 

Because complex operations are frequently in time-critical places, 
both functions and macros have been provided to handle complex oper­
ations. Due to some compiler's difficulties in handling nested functions 
returning structures, all of the functions take as their input a pointer to 
a complex number. The arguments for the macros are complex num­
bers, not pointers, but like all macros they evaluate their arguments 
many times. 
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7.4.2 Complex Functions 

complex cmplx(float r, float i); 
complex cadd(complex *a, complex *b); 
complex cmul(complex *a, complex *b); 
complex csub(complex *a, complex *b); 
complex cdiv(complex *a, complex *b); 
complex conjg(complex *a); 
float cabs(complex *a); 
float cabs_sq(complex *a); 
float carg(complex *a); 
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Purpose: To initialize, add, multiply, subtract, divide, conjugate, 
find the magnitude and find the phase of complex numbers. 

Arguments: 

float r: Real part of result. 

float i: Imaginary part of result. 

complex *a: Pointer to the first complex argument. 

complex *b: Pointer to the second complex argument. 

Return Values: The result of the operation. cabs_sq returns the 
square of the magnitude of *a; carg returns the phase of *a. 
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complex csin(complex *z); 
complex ccos(complex *z); 
complex ctan(complex *z); 
complex csinh(complex *z); 
complex ccosh(complex *z); 
complex ctanh(complex *z); 
complex casin(complex *z); 
complex cacos(complex *z); 
complex catan(complex *z); 
complex casinh(complex *z); 
complex cacosh(complex *z); 
complex catanh(complex *z); 
complex cexp(complex *a); 
complex clog(complex *a); 
complex csqrt(complex *a); 
complex ce_itheta(float theta); 

Purpose: Complex transcendental functions. 

Arguments: 

complex *z: Pointer to the complex argument. 

float theta: Angle. 

Return Values: The complex result of the operation. 

csin, ccos, ctan: trig functions. 

csinh, ccosh, ctanh: hyperbolic functions. 

casin, cacos, ca tan: inverse trig functions. 

casinh, cacosh, catanh: inverse hyperbolic functions. 

cexp, clog, csqrt: exponentional, natural logarithm, and 
square root functions. 

ce_i theta: Returns the unit complex number with angle theta. 
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7.4.3 Double Complex Functions 

double_complex dcmplx(double r, double i); 
double_complex dcadd(double_complex *a, *b); 
double_complex dcmul(double_complex *a, *b); 
double_complex dcsub(double_complex *a, *b); 
double_complex dcdiv(double_complex *a, *b); 
double_complex dconjg(double_complex *a); 
double dcabs(double_complex *a); 
double dcabs_sq(double_complex *a); 
double dcarg(double_complex *a); 
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Purpose: To initialize, add, multiply, subtract, divide, conjugate, find 
the magnitude and find the phase of double-precision complex 
numbers. 

Arguments: 

float r: Real part of result. 

float i: Imaginary part of result. 

double_complex *a: Pointer to the first argument. 

double_complex *b: Pointer to the second argument. 

Return Values: The result of the operation. cabs_sq returns the 
square of the magnitude of *a; carg returns the phase of *a. 
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double_complex dcsin(double_complex *z); 
double_complex dccos(double_complex *z); 
double_complex dctan(double_complex *z); 
double_complex dcsinh(double_complex *z); 
double_complex dccosh(double_complex *z); 
double_complex dctanh(double_complex *z); 
double_complex dcasin(double_complex *z); 
double_complex dcacos(double_complex *z); 
double_complex dcatan(double_complex *z); 
double_complex dcasinh(double_complex *z); 
double_complex dcacosh(double_complex *z); 
double_complex dcatanh(double_complex *z); 
double_complex dcexp(double_complex *a); 
double_complex dclog(double_complex *a); 
double_complex dcsqrt(double_complex *a); 
double_complex dce_itheta(float theta); 

Purpose: Double-precision complex transcendental functions. 

Arguments: 

double_complex *z: Pointer to the argument. 

float theta: Angle. 

Return Values: The double-precision complex result of the opera­
tion. 

des in, dccos, dctan: trig functions. 

dcsinh, deco sh, dctanh: hyperbolic functions. 

de as in, dcacos, dcatan: inverse trig functions. 

dcasinh, dcacosh, dcatanh: inverse hyperbolic functions. 

de exp, de log, de sqrt : exponentional, natural logarithm, and 
square root functions. 

ce_i theta: unit complex number with angle theta. 
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7.4.4 Complex Macros 

CONJG(a,b) b = conjg(a) 
CADD(a,b,c) c = a + b 
CSUM(a, b) a += b 
CSUB(a,b,c) c = a - b 
CMUL(a,b,c) c = a * b 
CDIV(a,b,c) c = a I b 
CMUL_J (a, b, c) c = a * conjg(b) 
CMULJ_ (a, b, c) c = conjg(a)*b 
CMULJJ(a,b,c) c = conjg(a*b) 
CNEGATE(a,b) b = -a 
CMUL_I(a,b) b = ia 
CMUL_MINUS_I(a,b) b = -ia 
CMULREAL(a,f,c) c = fa 
CDIVREAL(a,f,c) c = a/f 

Purpose: In-line Macros for fast complex operations. 

Arguments: 

a, b, c: complex or double_cornplex numbers-not pointers! 

f: A float or double for the real operations. 

Return Values: None. These macros return nothing. 

Note: These are C macros, which means that there are restrictions 
on the arguments: 

1: Since the macro arguments may be evaluated more than once 
they must not be functions with side effects. 

2: For CMUL, CDIV, CMULJ, CMULJ_, CMULJJ, CMULI and 
CMUL.MINUS_I the result must not be one of the other two 
arguments. Any of the other arguments to any of the macros 
may be the same. 
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7.4.5 Polynomial Evaluation 

complex evaluate_complex_polynomial 
(int order, complex *coef, complex *val); 

double_complex evaluate_double_complex_polynomial 
(int order, double_complex *coef, *val); 

Purpose: To evaluate a polynomial. 

Arguments: 

int order: The order of the polynomial (such as 3 for cubic). 

(type) *coef: An array of order+ 1 numbers which are the 
coefficients of the polynomial : 
coef[order]xorder + ... + coef[O] = 0. 

(type) *val: A pointer to the number to be plugged into the 
polynomial. 

Return Value: The result of the evaluation. 
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7.4.6 Root Polishing 

complex polish_complex_root 
(int order, complex *coef, complex *root, int n); 

double_complex polish_double_complex_root 
(int order, double_complex *coef, *root, int n); 
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Purpose: To improve a putative polynomial root by the Newton­
Raphson method. Note that the putative roots are always in the 
complex domain. 

Arguments: 

int order: The order of the polynomial (such as 3 for cubic). 

(type) *coef: An array of order+ 1 numbers which are the 
coefficients of the polynomial : 
coef[order]xorder + ... + coef[O] = 0. 

(type) *root: A pointer to the putative root which will be 
improved. 

int n: The number of times to iterate the Newton-Raphson 
procedure. 

Return Value: The improved root. Note that this routine comes 
with no guarantees-if the putative root is not close to an actual 
root or if the polynomial is not stable then the returned value 
may not be closer to a root. A good value of n is about 10. 
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7.4.7 Quadratic Equation 

int solve_complex_quadratic(complex *coef, *root); 
int solve_double_complex_quadratic 

(double_complex *coef, *root); 

Purpose: To solve the quadratic equation. 

Arguments: 

(type) *coef: An array of three numbers which are the 
coefficients of the quadratic : 
coef[2]x 2 + coef[1]x + coef[O] = 0. 

(type) *root: An array of two complex numbers to hold the 
returned roots of the equation (starting at root [OJ). 

Return Value: The magnitude of the return value is the number 
of non-degenerate roots. If both roots are real the return value is 
negative, otherwise it is positive. 
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7.4.8 Cubic Equation 

int solve_complex_cubic(complex *coef, *root); 
int solve_double_complex_cubic 

(double_complex *coef, *root); 

Purpose: To solve the cubic equation. 

Arguments: 
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(type) *coef: An array of four numbers which are the coeffi­
cients of the cubic equation: 
coef[3]x 3 + coef[2]x 2 + coef[1]x + coef[O] = 0. 

(type) *root : An array of three complex numbers to hold the 
returned roots of the equation (starting at root [OJ). 

Return Value: The magnitude of the return value is the number 
of non-degenerate roots. If all roots are real the return value is 
negative, otherwise it is positive. If two roots are degenerate, 
they are root [1] and root [2]. 
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7.5 FFTlib-Fast Fourier Transforms 

The FFT library provides subroutines which do Fourier transforms and 
inverse Fourier transforms on rectangular periodic grids of any size and 
dimension less than seven. The sizes in each direction are not limited 
to a power of two, but the current implementation is extremely slow 
unless the size is 2, 3, or 5 times a power of two. 

Since for certain analysis programs, it is useful to FFT just the 
spatial directions, this library also includes routines to transform only 
specified directions. 

To use this library, include <fft. h> in your program and then call 
FFT _setup once for each grid on which you wish to do Fourier trans­
forms. After complete_definitions, call FFT or Inverse_FFT with 
the field you wish to transform, which must live on one of the grids 
you declared. The field length must be a multiple of size of (complex). 
Canopy will treat the field as a vector of complex numbers and trans­
form each element of the vector. The order of the transformed field 
is the natural one, with element (x,y,z,t) corresponding to the element 
with momentum (x,y,z,t) in units of 27r/(number of elements in that 
direction). 
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Here is a sample program using this library: 

#include <fft.h> 
grid gl, g2; field fl, f2, f3; 
void control() { 
g1 = periodic_cubic_grid(4,4,8); 
g2 = periodic_hypercubic_grid(B,8,8,12); 
fl ; site_field(g1,2•sizeof(complex)); 
f2 ; site_field(g2,1•sizeof(complex)); 
f3; site_field(g1,3•sizeof(complex)); 
FFT_setup(gl); FFT_setup(g2); 

complete_definitions(); 
... /* initialize fl, f2, and f3 */ 
FFT(fl); 
Inverse_FFT(f2); 
FFT(f3); 
Inverse_FFT(f3); 
FFT(f2); 
Inverse_FFT(f1); /*back the way it was*/ 
} 
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On the first call to either FFT or InverseYFT for each grid an 
initialization subroutine is done which more than doubles the time of 
the first transform. Subsequent calls are therefore faster. 
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void FFT_setup(grid g); 
void FFT(field f); 
void FFT_double(field f); 
void Inverse_FFT(field f); 

CHAPTER 7. CANOPY LIBRARIES 

void Inverse_FFT_double(field f); 

Purpose: To do Fourier transforms on fields. The basic routines treat 
the field elements as collections of floats; the "double" routines 
treat them as collections of doubles. 

Arguments: 

grid g: For the setup, the grid on which the fields to be 
transformed live. One call must be make for each grid on 
which transforms are to be done. This routine must be called 
before cornplete_defini tions. 

field f: The field to transform. This field must live on one of 
the grids with which FFLsetup was called. 

Return Values: none. 
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void FFT_some_directions 
(field f, logical *fft_this_dir); 

void FFT_double_some_directions 
(field f, logical *fft_this_dir); 

void Inverse_FFT_some_directions 
(field f, logical *fft_this_dir); 

void Inverse_FFT_double_some_directions 
(field f, logical *fft_this_dir); 
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Purpose: To do Fourier transforms on some directions on fields. 
These routines operate the same way as ordinary FFT routines, 
excpet that the transform is only performed for direction d if 
fft_this_dir [d] is TRUE. 

Arguments: 

field f: The field to transform. This field must live on one of 
the grids with which FFLsetup was called. 

logical *fft_this_dir: An array specifying which directions 
are to be transformed. 

Return Values: none. 
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7 .6 Promptlib-Extended Input 

These routines provide standard robust user-friendly flexible ways to 
read stdin into Canopy programs. 

• They ensure that the expected number of items is read. 

• They can range check the input arguments. 

• They can provide default values for input arguments. 

• They recover from errors in the input. 

• They echo the input if the input is from a file, which makes the 
output look much better. 

• They ask the user to re-enter the input if an error is made at a 
terminal, but they exit if an error is made in input from a file. 

For Canopy applications running on distributed systems, the promptlib 
routines have the further advantage of resolving some sticky problems 
with ordinary I/O, for instance, what happens if an interrupt is en­
countered. 

The #include file is prompt.hand the C switch is -!prompt. 
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7.6.1 Example Using Prompts 

The file doprompt. c in cansource/programs contains examples illus­
trating how prompted input may be used. It is self-explanatory: 

#include <canopy.h> 
#include <prompt.h> 
#include <math.h> 

void control() 
{ 

/* example of the use of prompts *I 

float vals[10]; /* The first part reads in up to 10 */ 
int d[S] j /* floats and then prompts for a */ 
int i,j ,k; /• power for each one. •/ 
complete_definitions(); /•this is in all Canopy progs*/ 

/* Get the list of up to 10 numbers */ 
i:;;prompt_float_list ("Enter up to 10 numbers: 11

, 10, vals) ; 
for (j=O; j<i; j++) { /• get the power for each one •/ 

} 

char ss[80]j /*with a default value and range*/ 
float power; 
sprintf (ss, "Power for %f 11

, vals [j]); /* make prompt*/ 
power:;; prompt_float_range_default(ss,1.0,0.1,100.0); 
printf ( "%2d: %g~%f is %g\n 11

, j , vals [j] , 
power,pow(vals[j] ,power)); 

/* This is how to read in exactly n */ 
/* values in a comma-delimited list */ 

prompt_scanf (4, "Enter four integers: 11
, 

"%d '%d, %d, %d" 'l:d [1] 'll:d [2] 'll:d [3] ,ll:d [4]); 
printf(''The 4-d point is (%d,%d,%d,Y.d)\n11

, 

d[1] ,d[2] ,d[3] ,d[4]); 

} /• control •/ 

To compile and link this example for a Unix system and for the 
D860 nodes in ACPMAPS, use 

cane doprompt.c -o doprompt 
dcanc doprompt.c -o doprompt 

Note that -lprompt is included automatically by the shells. 
A sample session using this file from a terminal is: 
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>doprompt 
Enter up to 10 numbers: 1.1,2,4.3e5 

Power for 1.100000 [0.1 .. (default 1) .. 100) 6 
O: 1.1-s.000000 is 1.77156 

Power for 2.000000 [0.1 .. (default 1) .. 100) 0.07 
Value out of range -- re-enter 
Power for 2.000000 [0.1 .. (default 1) .. 100) 2 

1: 2-2.000000 is 4 
Power for 430000.000000 [0.1 .. (default 1) .. 100) 

2: 430000-1.000000 is 430000 
Enter four integers: 1,2,3,4 
The 4-d point is (1,2,3,4) 
> 

Notice how the out-of-range input "0.07" was re-prompted and how 
the default value "1" was taken. 
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7.6.2 Subroutines in the Prompt Library 

As outlined in the introduction, the prompt library provides clean input 
subroutines. All of these routines prompt stdout with the prompt 
string (which may be the null string) and fetch one line of input from 
stdin. This line is then checked to ensure it contains the requested 
input tokens and no others. If it does then the value is either returned 
or put in an argument as described in the individual routines. If it does 
not, the routine takes different action depending on whether stdin is 
a terminal device or not. For terminals, the routines do the following: 
print "Input is in error -- please re-enter" on stdout; print 
the prompt string again; and then wait for a new line to be typed. 
If stdin is a file, they print "Invalid input in file -- quitting" 
and exit the program. 

If only a newline is entered, the routines which have default values 
will return the default value. If the input is out of range on those 
routines that check range the error is handled like any other invalid 
entry. 

These routines place a length limitation on the input line of 255 
characters. 

All of these routines, including the ones that return lists of values, 
make sure there is no extra garbage at the end of the line. They also 
echo the input line if stdin is a file and do not echo it if stdin is a 
terminal. This makes stdout look the same with both types of input 
since the terminal handler echos the input line. 
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Prompt for Single Value 

double prompt_double(char *prompt); 
float prompt_float(char *prompt); 
int prompt_int(char *prompt); 
void prompt_string(char *prompt, char *ss); 
void prompt_word(char *prompt, char *ss); 

Purpose: To prompt for and read in a single value. The differencce 
between prompt_word and prompt_string is that prompt_word 
expects a single word with no white space characters inside it and 
prompt_string returns the entire input line. Note that neither 
string routine will return a null string-if a return is entered the 
user will be prompted again (if on a terminal) or the program will 
exit (if input is from a file). Promptlib has other routines that 
interpret a null string (entered by just pressing return) as taking 
the default value-these are described later. 

Arguments: 

char *prompt : The prompt string. This is used verbatim. 

char *ss: The address of memory for the returned string. 

Return Value: For prompt_int, prompt_float, and prompt_double 
the return value is the user input value. 
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Prompt with Default Value 

double prompt_double_default(char *prompt, 
double default); 

float prompt_float_default(char *prompt, 
double default); 

int prompt_int_default(char *prompt, 
int default); 

void prompt_string_default(char *prompt, 
char *default, 
char *ss); 

void prompt_word_default(char *prompt, 
char *default, 
char *ss); 
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Purpose: To prompt for and read in a single value, taking the default 
value if a newline is entered. 

Arguments: 

char *prompt : The prompt string. The string 
"(default <default>) " 

is appended to the prompt. 

default: The default value. Note that this is a double 
for the float routine; this is because some versions of C don't 
always handle float arguments correctly. With this declara­
tion, no cast is needed on the calling line. 

char *ss: The address of memory for the returned string. 

Return Value: For prompt_int_default, prompt_float_default, 
and prompt_double_defaul t the return value is the user input 
value. 
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Prompt with Range Check 

double prompt_double_range(char *prompt, 
double low, 
double high); 

float prompt_float_range(char *prompt, 
double low, 
double high); 

int prompt_int_range(char *prompt, 
int low, 
int high); 

Purpose: To prompt for and read in a single value checking that it is 
in a given range. If the input is not in the range, it is prompted 
for again (if terminal input) or the program is terminated (if file 
input). 

Arguments: 

char *prompt: The prompt string. The string 
" [<low> .. <high>] " 

is appended to the prompt. 

low: The lower limit. 

high: The upper limit. 

Note: The range accepted is low ::; value ::; high. 

Return Value: The user input value. 
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Prompt with Default and Range Check 

float prompt_double_range_default(char *prompt, 
double default, 
double low, 
double high); 

float prompt_float_range_default(char *prompt, 
double default, 
double low, 
double high); 

int prompt_int_range_default(char *prompt, 
int default, 
int low, 
int high); 
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Purpose: To prompt for and read in a single value checking that it 
is in a given range and giving the default value if a newline is 
entered. 

Arguments: 

char *prompt : The prompt string. The string 
" [<low> .. (default <default>) .. <high>] " 

is appended to the prompt. 

default: The default value. 

low: The lower limit. 

high: The upper limit. 

Note: The range accepted is low :S value :S high. 

Return Value: The user input value. 
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Prompt for a List of Values 

int prompt_double_list(char *prompt, 
int max, 
double* list); 

int prompt_float_list(char *prompt, 
int max, 
float* list); 

int prompt_int_list(char *prompt, 
int max, 
int* list); 

Purpose: This prompts for and reads in some number of comma­
separated items. It returns the number of items in the list. One 
use of this in lattice gauge theory is to input the size of the lat­
tice. The maximum number of items that can be read in is the 
maximum number that can fit on one line. 

Arguments: 

char *prompt: The prompt string. This is used verbatim. 

int max: The maximum number of items that may be rn 

the list. If more are entered, the routine prompts again 
with a message of what the maximum is. In the current 
implementation the maximum value for max is 20. 

xxx *list: A 0-based array of whatever type was specified. 

Return Value: The number of items entered. 
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General Prompt 

void prompt_scanf(int expected, 
char *prompt, 
char *format, 
... ) 
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Purpose: This is the most general promptlib routine. It expects some 
number of arguments and keeps re-prompting until it gets them 
(unless the input is from a file, in which case it exits the program 
with an error message). The format and variable arguments are 
identical to those used in scanf except that the format may not 
contain any newline characters. 

Arguments: 

int expected: The expected number of return values. Un-
fortunately this may not match the number of items in the 
format string or the argument list, so count carefully or use 
one of the other routines. 

char *prompt : The prompt string. This is used verbatim. 

char *format: The format string. This is the same as the for­
mat string for scanf except that it must contain no newline 
characters. It should have as many fields as the expected 
number of arguments. 

The addresses of the values being read, as in scanf. 

Return Value: There is no return value from this function smce 
it keeps retrying until it succeeds (if an error occurs in terminal 
input) or it stops the program (if an error occurs in file input). 
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Canopy Version 7.0 Quick Reference Section 

CANOPY Types: 
void 

int *intptr 
float *fl.oatptr 

grid 
set 
site 

direction 

full ...address 

void *voidptr 

logical 
char *charptr 

field 
map 
path 

coordinates 

field...address 

sync _address semaphore 

fulLa.ddress *fulL.address _ptr 

CAN _do J;ask .keyword (int) ( •intfunptr )() 

(void) ( •voidfunptr )() 
intfunptr set_of...sites-1unc 

voidfunptr connectivity .iunc: 

voidfunptr distribution .func: 

voidfunptr coordinate_iunc: 

voidfunptr inverse....coordinate .func: 

Exported Variables: 
int CAN .-nlattices 

int CAN _nsets 

int CAN _nrandoms 

int CAN _my _thread 

site *HOME 
grid NOGRID 

int CAN ...nfields 

int CAN _nrnaps 

int CAN ...nthreads 

int CAN ...stack_size 

site NOWHERE 

CANOPY Limits: 
MAXPARAMETERS (57) 
MAXFIELDS (200) 
MAXLATTICES (10) 
MAXSETS (200) 
MAXCLUSTERS (20) 
MAXPAIRS (20) 
MAXFILES ( 5) 
MAXMAPS (20) 
MAXGENERATORS (5) 
MAX_NODES (630) 
MAXARGS ( 10) 
MAXALLOWED (2048) 
CAN ..ATOMIC_ GATHER (512) 

CANOPY Keywords: 
PASS FUNCTION 
SUM-1lEAL INTEGRATE 
SUM-1NTEGER 
MAX-1lEAL 
MAX-1NTEGER 
MAXJ)OUBLE 
TAG_MAX-1lEAL 

SUMJJOUBLE 
MIN-1lEAL 
MIN-1NTEGER 
M!NJ)OUBLE 
TAG_MAX-1NTEGER 

TAG_MAXJ)OUBLE END 
STREAM_FERJllTE STREAM_FER_NODE 

READ WRITE 

Declaration Routines: 
grid arbitrary _grid 

(int nsites, int ndim, int ndir, 

APPEND 

intptr lower Jimits, intptr upper _limits, 

int ptr other _par ams 1 

distribution .func dist.lune, 

coordinate.func c...func, 

inverse_coordinate .func icfunc, 

connectivity _func conn..func); 

field siteJield(grid g, int nbytes); 

field linkJield(grid g, int nbytes); 
void overlap Jields(int n, field *list); 

void cluster Jields(int n, field *list); 
set set_of . ..sites(grid g, set...of....sites.func func); 

set redefine...set_of...sites 

(grid g, set_oL.sites_func func, 

set set_to_change); 

map define_map 

(grid domain, grid range, 

intfunptr mapfunc); 

map compose_map 

(map mid_to__range, map domain ..to _mid); 

int make__random...generator 

( voidfunptr random ..func, int type, 

int number_to_make, int seed); 

void declareJalloc _sizes 

(int do_task...size, int control...size); 

void complete ...definitions(); 

Data Management: 
void resetJalloc(); 

void broadcast{voidptr object, int nbytes); 

void intcpy(voidptr <lest, voidptr src 1 int words); 



do_task Routines: 
void do_task 

(voidfunptr task, sets, ... ,END); 
void do_task...n_times 

( voidfunptr task, set s, 

int ntimes, ... , END); 
void do_task_on inverse image 

(voidfunptr task, map m, ... , END); 
void do_task_oninverseimage ..set 

( voidfunptr task, map rn, 

set s, ... , END); 
A complete triplet is of the form: 
<keyword>, <address>, <length in bytes> 

Coordinates: 
void get_coordinates(site *s, intptr coords); 
void get_coordinates ...at ..dir 

(direction dir, intptr coords); 

void get_coordinates ..at .path( path p, int •coords ); 

void sprintf ..site _coordinates( char *ss, site *s ); 

Site Management: 
site site...at_coordinates(grid g, intptr coords); 

site site....a.t ...d.ir( direction dir ); 

site site..at_path(path p); 
site move....site(site *startsite, direction dir); 

site rnove..site...by ..path( site •startsite, path p ); 
logical is..same..site(site •sl, site *s2); 
grid grid ...supporting _site( site *s ); 

site image...of...site(map m, site *s); 

site *inverseimage...of...site(map m, site *s); 

Path Routines: 
int make_path(path p, ... ); 

int extend_path(path p, direction dir); 
int concat_path(path dest, path source); 

int copy _path(path dest, path source); 
int pathJength(path p); 

Field File Routines: 
void openJieldJile(char *filename, int rwmode); 
void close.Jield Ji.le( char •filename); 
void write.Jield( char •filename, field f); 

void read.Jield( char *filename, field f); 
void read__slice...of.Jield 

(char *filename, field f, intfunptr mapfunc); 

Field Pointer Routines: 
Access by site, direction or path: 
Routines have _at_dir and _at_path variations 

substituting direction dir or path p for site *s: 

voidptr field_pointer(field f, site *s); 

void put_field(field f, site •s, voidptr object); 
voidptr link.Jield..pointer 

(field f, direction link, site *s); 
void putJinkJield(field f, direction link, 

site •s, voidptr object); 

void synchronize(site *s); 
sync_address sync_word(site *s); 

voidptr sync.Jield..pointer (field f, site *s); 

field_a.ddress address..of.iield (field f, site *s); 
field _address address ...of Jink Jield 

(field f, direction link, site *s); 

Direct use of field address: 
voidptr field_pointer Jrom...a.ddress 

(field_address *where); 
voidptr sync.Jield..pointer .from ...address 

(field_address *where, sync...a.ddress *sync); 
void putJield ...a.t ..field ...address 

(field_address *where, voidptr object); 

int length_of_field..address .field 

{field_address *where); 

Information Routines: 
intptr gridJower_bounds(grid g); 
intptr grid_upper ...bounds(grid g); 

intptr grid_parameters(grid g); 
int number _oL..directions _of ..grid(grid g); 
int number _of_..d_imensions _of .grid(grid g); 
int number _af .Jields _on ..grid( grid g); 

int number ...of ...sets...on _grid(grid g); 

grid grid ...supporting Jield(:field f); 
int fieldJength(field f); 
grid grid...supporting_set(set s); 
int number_of...sitesin_set(set s); 

int number_ofJevelsin .set( set s); 

intptr nsites_at_eachJevel(set s); 

int level...of...sitein .set( sets, site *ss); 
grid domain...gridJ)f.map(map m); 

grid range_grid-.0fJDap(map m); 

map •maps_connecting_grids(grid domain, range)i 
logical is_sameJDap(map ml, map m2); 



User-Supplied Routines: 
void control(int argc, char **argv, char **envp); 

void <task_routjne>( ... )i 
int <set_of_sites_functi.on>(grid g, intptr coords); 

logical <mapfunctionname> 

(intptr incoords, intptr outcoords); 
void <random .func> (random .generator ..area *a); 

void <random_generator> 

(int number _to..make, 

queue_struct •queue, voidptr state); 

void <random.initialize> 
(int seed, int stream, voidptr state); 

void <distribution _function> 

(grid g, int serial, intptr node, intptr posit); 

void <coordinate_function> 

(grid g, int serial, intptr coords ); 

void <inverse_coordinate .iunction> 

(grid g, intptr coords, intptr serial); 

void <connectivity ..function> 

(grid g, intptr coords, site *site...struct); 

Multithread Control: 
void multithread(int nthreads, int stack_size); 
void multithread_enable(); 

void multithread_disable(); 

void print ..multi thread .stats(); 

void multithread_begin _vertical(); 
void multithread...end_vertical()i 
void multithread_begin ...nocopy(); 

void multi thread ....end ...nocopy(); 

IEEE Precision Control: 
void set_default ..:floating.mode(); 

void set_floating_mode ..to ..environment(); 

int get_currentJloating_m_ode(); 

void print __currentJloating _mode(); 
int set_currentJloating_mode(int flags); 

Random Numbers Routines: 
float random(); 

float multi_random(int generator); 

CHIP Routines (<chip.h>) 
void rernote_read 

(full_address *add, int len 1 voidptr object )i 
void remote...read-.and_keep 

(full_address *add, int len, voidptr object); 
void remote_read _more 

(full_address *add, int len, voidptr object); 

void remote.-read....and...close 

{full_address *add, int len, voidptr object); 

void remote_write 

{full_address *add, int len, voidptr object); 
void remote_write_and.J<:eep 

(full_address *add, int len, voidptr object); 

void remote_write...more 

(full_address *add, int len, voidptr object); 

void remote_write_and..close 

{full_address •add, int len, voidptr object); 

void full....address _from Jo cal ..address 

( voidptr local_address ); 

void full....a.ddress ...on .another Jlode 

(voidptr address, int node...number); 

void yderr(char *errstring); 

void do_on....a.11-. .nodes(voidfunptr task, ... , END); 

logical init ..resource{ full.address *resource); 

logical lock ..resource( full ..address •resource); 

void wait _for ..resource( full .Address *resource); 

void free.resource( full ..address *resource); 

CHIP Exported Variables: 
int CAN...number_of..nodes; 
int CAN...number_of_this...node; 



Gridlib ( <grid.h>) 

Defined in <grid.h> 

x 
y 

z 
T 

MINUS~ 

MINUS_Y 
MINUs_z 

MINUS_T 

grid periodic linear _grid(int x); 

grid periodic..square..grid(int x, y); 

grid periodic...cubic..grid(int x, y1 z); 

grid periodic...hypercubic..grid(int x, y) z, t); 
grid chunky _periodic ...square ..grid(int x, y ); 

grid chunky _periodic ...cubic ..grid(int x, y, z ); 

grid chunky_periodic.liypercubic..grid(int x, y, z, t); 
grid periodic__grid(int ndims, intptr size); 

grid chunky _periodic ..grid(int ndims, intptr size); 

Ranli b ( <random.h>) 

void bad..random{); 

void dual...xandom(); 

FFTlib ( <fft.h>) 
void FFT_setup(grid g); 

void FFT(fie!d f); 
void lnverse_FFT(field f); 
void FFT ...some_directions 

(field f, logical *fft..this..direction); 
void lnverse_FFT ...some_directions 

(field f, logical *fft ..this ..direction); 
void FFT_double(field f); 
void Inverse-.FFT ...double( field f); 
void FFT _double...some_directions( ... ); 

void Inverse..FFT _double _some_directions( ... ); 

Set lib ( <set.h>) 
int red..func(grid lattice, int *coords); 

int black..func(grid lattice, int *coords); 

int br_func(grid lattice, int •coords); 

int rbJunc(grid lattice, int •coords); 

int hyperL.func(grid lattice, int *coords); 

int hyperu..func(grid lattice1 int •coords); 

int spherel_func(grid lattice, int •coords); 

int sphereu..func(grid lattice, int *coords); 

Promptlib (<prompt.h>) 
double prompt_double(char •prompt); 

float prompt..fl.oat(char *prompt); 

int prompt_int(char •prompt); 

void prompt_string(char *prompt, char *Ss); 

void prompt_word(char •prompt, char *SS)i 

double prompt_double...default 

(char *prompt, double default); 

float prompt..fl.oat...default 

(char •prompt, float default); 
int prompt_int ...default 

(char •prompt, int default); 
void prompt _string _default 

(char •prompt, char *default, char *ss); 
void prompt_word_default 

(char •prompt, char *default, char *ss); 

double prompt_double.range 

(char •prompt, double low, double high); 

fl.oat prompt.JI.oat.range 

(char •prompt, float low, float high); 

int promptint.range 

(char •prompt, int low, int high); 

double prompt_double .range ...default 

{char •prompt, double default, 

double low, double high); 

float prompt.JI.oat.range ...default 

(char •prompt, float default, 

float low, float high); 

int promptint.range...default 

(char *prompt, int default, 

int low 1 int high); 

int prompt_doublelist 

(char *prompt, int max, double *list); 
int prompt..fl.oatlist 

(char *prompt, int max, float •list); 
int prompt_int Jist 

(char *prompt, int max, int *list); 

void prompt..scanf(int expected, char *prompt, 

char •format, ... ); 



Cmplxlib (<cmplx.h>) 

Complex Number Types 
typedef struct { 

float real; 

float imag; 

} complex; 

typedef struct { 

double real; 

double imag; 
} double_complex; 

Complex Functions: 
float cabs{complex *a); 

float cabs...sq(complex *a); 

float carg( complex *a )i 
complex cmplx(float r, float i); 

complex conjg( complex *a); 

complex cadd(complex *a, complex *b); 

complex cdiv(complex *a, complex *b)i 

complex cmul(complex *a, complex *h); 

complex csub( complex *a, complex *b ); 

complex csin(complex *a); 

complex ccos(complex *a); 

complex ctan( complex *a); 

complex casin(complex •a); 

complex cacos(complex •a); 

complex ca.tan( complex •a); 

complex csinh(complex •a); 
complex ccosh(complex •a); 

complex ctanh( complex •a); 
complex casinh(complex *a); 

complex cacosh(complex •a); 

complex catanh( complex *a); 

complex cexp( complex *a); 

complex clog(complex *a); 

complex ce jtheta(float theta); 

complex evaluate_complex..polynomial 

(int order, complex •coef, complex •val); 

complex polish..complex_root 

(int order, complex •coef, *root, int nval); 

int solve_complex..quadratic 

(complex *Coefi complex *root); 

int solve_complex...cubic 

(complex *Coef, complex *root); 

Complex Macros: 
CONJG(a,b) b = congj( a) 
CADD(a,b,c) c = a + b 
CSUM(a,b) a += b 
CSUB(a,b,c) c a - b 
CMUL(a,b,c) c a * b 
CDIV{a,b,c) C a / b 
CMULJ c a * conjg(b) 
CMULL c conjg( a) * b 
CMULJJ c con jg( a * b) 
CNEGATE(a,b) b = -a 
CMULI(a,b) b = ia 

CMUL.MINUSJ(a,b) b = -ia 
CMULREAL( a,f,c) c = fa 
CDIVREAL{ a,f,c) c = a/f 
Double Complex Functions: 
double dcabs( double _complex *a); 

double dcabs_sq(double..complex •a); 

double dcarg(double _complex *a); 

double_complex dcmplx(double r, double i); 

double_complex dconjg(double..complex •a); 

double_complex dcadd(double..complex •a, •b); 

double_complex dcdiv(double..complex •a, •b); 

double..complex dcmul( double ..complex •a, •b ); 

double...complex dcsub( double ..complex *a, *b ); 

double_complex dcsin(double..complex *a); 

double_complex dccos( double ..complex •a); 

double_complex dctan( double ..complex •a)i 

double_complex dcasin(double..complex *a); 

double _complex dcacos( double ..complex *a); 

double_complex dcatan(double ..complex •a); 

double_complex dcsinh(double..complex •a); 

double...complex dccosh(double ..complex *a); 

double_complex dctanh( double ..complex *a); 

double_complex dcasinh( double ..complex *a); 

double_complex dcacosh(double..complex •a); 

double_complex dcatanh( double ..complex •a); 

double_complex dcexp( double ..complex •a); 

double_complex dclog(double..complex •a); 

double_complex dee itheta( double theta); 

double_complex evaluate_double ..complex ..polynomial 

(int order, double_complex *coef, *val); 

double_complex polish_double ..complex _root 

(int order, double_complex •coef, *root, int nval); 

int solve_double..complex _quadratic 

(double_complex *coef, *root); 

int solve_double ..complex .cu hie 

( double_complex •coef1 *root); 


