
C Fermi National Accelerator Laboratory

FERMILAB-TM-1881

Canopy Version 7.0:
Canopy Manual

Mark Fischler, Mike Uchima, George Hockney and Paul Mackenzie

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

March 1994

0 Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

Canopy 7.0 •December 1993

Fischler • Hockney
Mackenzie • U chima

Fermi National Accelerator Laboratory

Canopy Manual

CJ: Fermi National Accelerator Laboratory

Canopy Version 7. 0:

Canopy Manual

Mark Fischler and Mike Uchima

Fermilab Computer R&D Department
and

George Hockney and Paul Mackenzie

Fermilab Theoretical Physics Group

Copyright© 1990, 1991, 1992, 1993 Universities Research Associates, Inc. All rights reserved.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the Government nor any agency thereof, nor
any of their employees, makes and warranty, express or implied, or assumes any
legal responsibility for the accuracy, completeness, or usefulness of an
information, apparatus, product or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific
commercial product, process or service by trade name, trademark, manufacturer
or otherwise does not constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views of
the authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Contents

1 Introduction 5
1.1 Manual Organization 6
1.2 Perspectives on Usage 7

1.2.1 Canopy on UNIX 9
1.3 Perspectives on Implementation 10

2 Concepts in Canopy 13
2.1 Grid-Oriented Structures 13

2.1.1 Paths 16
2.1.2 Fields 16
2.1.3 Sets 17
2.1.4 Maps. 17

2.2 Canopy Variables 18
2.3 Canopy Program Organization . 19

2.3.l Control Program Declaration Section 19
2.3.2 Control Program Executable Section 19
2.3.3 Task Routines 19

2.4 Summary .. 20

3 A Tutorial Example 21
3.1 Canopy C Conventions 22
3.2 Required Include Files 23
3.3 Grid and Set Defining Functions . 23
3.4 Task Routines . . 26
3.5 Control Routine 32

1

2 CONTENTS

3.6 Running the Example Program 36

4 Parallelism Considerations
4.1 How Field Pointer Works .
4.2 (Lack of) Global Variables
4.3 Arguments to Task Routines
4.4 Synchronization . .

4.5 Note on Efficiency

4.6 Multi-thread
4.6.1 How Multi-thread Works

4.6.2 Control of Multi-thread
4.6.3 Advanced Multi-thread Features .

4.7 General Multi-Processing Issues

4.7.l Random Numbers.
4. 7.2 System Independence ..

5 Typedefs, Structures, and Variables
5.1 Typedefs

5.2 Structures
5.2.1 Canopy Structures

5.2.2 CHIP Structures
5.3 Global Variables and Macros .

5.3.1 Canopy Variables ...

5.3.2 CHIP Variables and Macros
5.4 Keywords

5.4.1 Canopy Keywords ...
5.4.2 Do_task Keywords

5.4.3 Other CHIP Keywords
5.5 Function Types
5.6 Private Canopy Types ...

5.7 Canopy Limits
5.8 List of All Reserved Words .

39

39

42
44
45

47
48
49
50
51
58

58
59

61

63
65
65

67
69
69
70
73

73

74

75
75
76
76
77

CONTENTS

6 Canopy Subroutine Reference
6.1 Declaration Routines . .

6.1.l Grid Declaration
6.1.2 Field Declaration
6.1.3 Set Declaration
6.1.4 Map Declaration
6.1.5 Random Number Declaration
6.1.6 Complete_Definitions

6.2 Routines Called By Control Program
6.2.l Do_Task Routines .
6.2.2
6.2.3
6.2.4

Broadcast
Field File Rau tines . . .
IEEE Precision Control .

3

81
81
82
85
87
88
89
90
91
91
98
99

. 101
6.2.5 Transfer Coalescing . . . 105

6.3 Routines Called During Tasks . 107
6.3.l Site Manipulation 107
6.3.2 Field Manipulation . . . 111
6.3.3 Field Manipulation For Compound Tasks . . 115
6.3.4 Direct Field Addressing . 118
6.3.5 Path Manipulation . 120
6.3.6 Informative Routines . . . 122
6.3.7 Using Coordinates . 126
6.3.8 Obtaining Random Numbers . . 128
6.3.9 The Lalloc Heaps 129
6.3.10 Quick Copy Routine . 130
6.3.11 Control of Coalescing . . 131

6.4 User-Supplied Routines 132
6.4.1 The control Program . 133
6.4.2 Do_Task Routines 134
6.4.3 Set of Sites Functions . . 135
6.4.4 Lattice Definition . . .
6.4.5 Mapping Functions ..
6.4.6 Random Number Generators.
6.4. 7 Tailoring Do_ Task Keywords

6.5 CHIP Routines

. 137

. 146

. 147

. 151

. 164

4 CONTENTS

6.5.1 Inter-Node Communication . 165
6.5.2 Full Address Functions 171
6.5.3 Fatal Errors and Memory Allocation . 172
6.5.4 Do On All Nodes 173
6.5.5 Semaphores and Resources . 174

7 Canopy Libraries 175
7.1 Gridlib-Periodic Grids . 176

7.1.1 Periodic Grids . . . 177
7.1.2 Chunky Periodic Grids . 178
7.1.3 General Periodic Grids . 179

7.2 Setlib-Predefined sets . 180
7.3 Ranlib-Random Numbers .. . 181
7.4 Cmplxlib-Complex Arithmetic . 182

7.4.l Complex Numbers 182
7.4.2 Complex Functions 183
7.4.3 Double Complex Functions . . 185
7.4.4 Complex Macros .. . 187
7.4.5 Polynomial Evaluation . 188
7.4.6 Root Polishing . 189
7.4. 7 Quadratic Equation . . . 190
7.4.8 Cubic Equation ' 191

7.5 FFTlib-Fast Fourier Transforms . 192
7.6 Promptlib-Extended Input .. . 196

7.6.l Example Using Prompts . 197
7.6.2 Subroutines in the Prompt Library . 199

Chapter 1

Introduction

Canopy provides a machine-independent environment for attacking grid­
oriented problems. This document describes the concepts and routines
common to all Canopy implementations, independent of the system
and implementation. Information specific to the massively parallel
ACPMAPS/indexACPMAPS system at FermiLab is contained in two
other documents: The CANOPY ACPMAPS USER'S GUIDE provides
user-oriented instructions on compiling, running, file system usage, and
production job control. The CANOPY ACPMAPS SYSTEM MANUAL
describes system tools and installation and system management tech­
niques. System-specific User's Guides may be created for implementa­
tions on other systems.

The goal of Canopy is to allow scientists to use massively parallel
systems for a broad class of applications without having to become
expert in any particular system or in parallel programming techniques.
The Canopy approach identifies grid-oriented concepts and implements
them as routines in a library. Applications written in terms of these
concepts will run on any system which supports the Canopy software.
A side benefit in dealing with familiar concepts is that programs can
more easily be understood by other researchers.

5

6 CHAPTER 1. INTRODUCTION

1.1 Manual Organization

The INTRODUCTION and the second and third chapters in this manual,
CONCEPTS IN CANOPY and A TUTORIAL EXAMPLE, familiarize the
user with with the Canopy paradigm. They assume, however, that the
user already knows something about both C and numerical analysis.
Together they give an overview of the way Canopy programs work.

The fourth chapter, PARALLELISM CONSIDERATIONS, describes con­
sequences of the assumption that Canopy programs run on parallel,
distributed memory systems.

The fifth and sixth chapters, STRUCTURES AND TYPEDEFS and
CANOPY SUBROUTINE REFERENCE, form a reference manual for the
Canopy software. They describe the provided subroutines (and user­
provided customization functions) and explain how to use them.

The seventh chapter describes standard Canopy libraries. GR!DLIB

is a library of functions to define different sorts of Canopy grids. Cur­
rently it contruns only periodic rectilinear grids but these subroutines
may be used as examples to define grids with other topologies. SETLIB

is a library of common set functions which are mostly related to recti­
linear grids. RANLIB is a library of random number generators suitable
for the massively parallel environment. Currently, it contains routines
only for uniformly-distributed randoms. CMPLXLIB is a library of com­
plex number macros, typedefs, and subroutines. FFTLIB is a library
of FFT routines for periodic rectilinear grids. It contains fast multi­
dimensional FFT's for arrays whose sizes are multiples of three and five
as well as factors of two. PROMPTLIB is a library of prompted input
routines which recover from errors in the input and handle terminal
and re-directed file 1/0 appropriately.

As a general rule, references to sections of the manual are set in
SMALL CAPS and references to C or Canopy objects are set in type­
writer face.

1.2. PERSPECTIVES ON USAGE 7

1.2 Perspectives on Usage

Canopy is a library of C-linkable subroutines designed to guide the
organization of parallel software. Properly written programs using
these subroutines will automatically take advantage of parallel hard­
ware. However, it makes perfect sense to compile, link and run Canopy
programs on a single-node machine as well, and is often useful to do
so while debugging. A Canopy application can be run on any system
which supports the Canopy software (any "Canopy platform"). Care
has been taken to give platform-independent results.

Canopy applications are structured as a control program which is­
sues tasks. The strategy of using a parallel system is that the exectution
of these tasks is distributed over many nodes. A node consists of a CPU
along with its own memory; at any time (including during a task), a
node may access its own memory or the memory of other nodes. Canopy
routines facilitate the access to data which may or may not reside on
the local node. (See Section 2.3 CANOPY PROGRAM ORGANIZATION.)

As Canopy is built on C, almost all C programming concepts apply.
In particular, since C is built on UNIX, system calls and program in­
vocation follow UNIX conventions. Canopy is generally written to use
POSIX system calls where-ever possible to enhance portability. There­
fore Canopy programs look almost like UNIX C programs.

However, there are a few subtle differences arising from the parallel
nature of Canopy. These are gathered together here and apply to all
Canopy platforms

Canopy programs have control() instead of main() as
their main entry point. Just as main returns an exit code
and has argc and argv and envp arguments, so does control.
Using control this way allows Canopy set-up to be done
before the program starts.

Canopy modules are compiled and linked with a special
tool instead of cc which defines appropriate macros and
links appropriate libraries. The cane tool prepares modules

8 CHAPTER 1. INTRODUCTION

for the native UNIX machine. Tools for module prepara­
tion on specific massively parallel systems are described in
system-specific user's guides. For example, the dcanc and
acanc tools prepare modules for the multi-node ACPMAPS
machine; these are detailed in the CANOPY ACPMAPS
USER'S GUIDE. On these tools, most of the cc flags work
in the normal way.

All Canopy programs should call complete_defini tions ()
once and only once. This is required to set up the grids and
fields but also ensures the linker will find the main program.
Sometimes a program without this call will link correctly
but it is a good idea to include it.

I/O should not be done inside task routines. This is mostly
a logical restriction, since the order of I/ 0 would then be
undefined. Sometimes it is useful to print from inside a
task and while this is allowed it is discouraged except for
debugging. Input is not supported. The result of output
is not completely defined and may cause surprises, even if
ffl ush is used.

The use of global variables is discouraged since the compiler
cannot tell if their use is legal. In general they should only
be used to pass data between different parts of the control
program or different parts of the task routine on the same
site or to pass data from the control program to all the
task routines using broadcast. Other uses are probably
not logically correct in ways that are hard to find. Sending
data through do_task is much safer.

The setjmp and longjmp routines are not allowed. While
these may work in some implementations (and do strange
things) they are not required of a valid Canopy platform.
In particular, setjmp and longjmp must not jump into or
out of tasks.

1.2. PERSPECTIVES ON USAGE g

Canopy modules created with cane work exactly the same way nor­
mal C programs do, picking up the environment and command line
arguments the same way. They are invoked simply by typing their
names and work with pipes in the normal UNIX fashion. Multi-node
Canopy modules also pick up environment and command line argu­
ments and work with pipes, but using them requires understanding the
ACPMAPS system tools. Notice that, as with all cross-compiler tools,
. o object files created with different compilers are incompatible and
therefore must be kept separate.

1.2.1 Canopy on UNIX

On UNIX systems, the Canopy-specific tool cane is used instead of
cc to compile and link Canopy programs. Here is a simple Canopy
program which does not make use of the Canopy grid or parallelism
concepts:

f* file hi.c, almost the simplest Canopy program*/

/* */
#include <canopy.h>

void control(int argc, char **argv, char **envp)
/* pick up command line */

{

int i;
printf("Hi Guys!\n");
complete_definitions(); /*significant for linker*/
printf("argc = %d\n",argc);
for (i=O; i<argc; i++) {

printf("argv[%d] = %s\n",i,argv[i]);
}

} /* control */

cane works like cc, in particular obeying the command line options
-c, -o <file>, -D<name>, and -l<lib>. To use cane to compile the

10 CHAPTER 1. INTRODUCTION

example do this:

>cane hi.c -a hi

The hi module is an ordinary UNIX module which runs in the ordinary
UNIX way:

>hi users
Hi Guys!
argc = 2
argv[O] = hi
argv[1] = users

1.3 Perspectives on Implementation

Although Canopy is designed as an environment providing the concepts
natural to grid-oriented applications, it is also designed for efficient
implementation on a variety of massively parallel, distributed memory
systems. The Canopy software implementation is organized with that
in mind, striving for ease in portability. There are two aspects to
portability: Applications making use of Canopy routines should run
on any Canopy platform; and it should be straightforward to port the
Canopy software to suitable new systems.

To achieve these goals, Canopy is designed as a layered product,
with each layer presenting a clean interface to the higher layers. The
lowest layer, the Canopy Hardware Interface Package (or CHIP), pro­
vides routines unifying different machines. The public interface to
the CHIP routines-and all routines in layers above CHIP-will be
machine-independent. The next layer, Canopy, provides grid and task
primitives, implementing the concepts needed for grid-oriented appli­
cations. On top of that are libraries built on the Canopy routines
(and using the public CHIP interfaces where necessary): The set, grid,
prompt, cmplx, and fft libraries provide specific tools within the Can­
opy framework. The highest layer is, of course, the user application.
Each layer has access to all of the public concepts of the lower layers.

1.3. PERSPECTIVES ON IMPLEMENTATION 11

The CHIP layer is designed to isolate the higher layers from ma­
chine details. Intended as a base for Canopy and other higher-level
application packages, it introduces concepts for dealing with single- or
multi-node machines in a unified way, so that details such as the exact
flavor of C or the number of nodes are unimportant above this layer.
All the mechanics of synchronizing and controlling parallel CPU's are
provided by CHIP, including: an overall paradigm for system addresses;
routines to read and write to those addresses; the general job start-up
and running procedures; fatal error handling; semaphores; and a facility
to run subroutines on all nodes.

The Canopy layer introduces concepts appropriate for solving grid­
oriented problems, including grids, sites, sets, directions, paths, fields,
maps, and tasks. It contains a large number of subroutines for manipu­
lating the concepts discussed in the second chapter of this manual. The
CANOPY SUBROUTINE REFERENCE chapter of this manual describes
the public Canopy and CHIP subroutines in detail, and explains how
to use them. The last section of this chapter describes the public CHIP
routines,

Chapter 2

Concepts in Canopy

Canopy provides a natural environment for solving grid-oriented prob­
lems. It includes concepts such as links, sets, and fields over grids;
and subroutines for doing numerical analysis operations that deal with
these concepts. Since it is designed to run in a parallel environment
(the massively parallel ACPMAPS system), it uses the natural paral­
lelism in most grid-oriented problems automatically, isolating the user
from the multi-node nature of the machine. By using the grid-oriented
concept of performing the same operation on many sites of the grid
simultaneously, it encourages more structured programming as well as
efficient use of the parallel processing machine.

2.1 Grid-Oriented Structures

The underlying arena on which grid-oriented problems are solved is
a grid consisting of sites (or points on the grid) and links connecting
these sites. Canopy requires the additional concepts of the coordinates
of a site and the direction of a link. Each site is referenced by its
coordinates, and each link by its direction from some site.

Each link may therefore be named in two ways since it connects two
sites. The link in direction +d from site A to site A+d must be the link
in direction -d from site A+d to site A. It is not trivial to require links

13

14 CHAPTER 2. CONCEPTS IN CANOPY

and directions to be labeled this way, although it is natural to do so on
rectangular grids. For lattice gauge theory programs in four dimensions
on a regular hypercubic grid there are four positive directions X, Y,
Z, and T; and the four corresponding negative directions. On a two­
dimensional rectangular grid there are two positive and two negative
directions, and the labelling looks as follows:

to (0,0)

I
I

(to (2,2))-- (0,2)

I
I
I

(to (2,1))-- (0,1)

I
I
I

(to (2,0))-- (0,0)

I
I

to (0,2)

to (1,0)

I
I

(1,2)

I
I
I

(1,1)

I
I
I

(1,0)

I
I

to (1,2)

to (2,0)

I
I

(2,2) --(to (0,2))

I
I
I

(2,1) --(to (0,1))

I
I
I

(2,0) --(to (0,0))

I
I

to (2,2)

For other types of grids the direction and coordinate structure
can be more complicated. For example, one way to set up a hexagonal
grid is to use three positive directions on the plane: +xOOO, +x120 and
+x240; and the corresponding negative directions -xOOO, -x120, and
-x240. Then, as is shown in the diagram on the next page, some sites
only have links in the positive directions and some have links only in
the negative directions, so not all directions lead to links from every
site. The coordinate assignment is also arbitrary, and some coordinates,
such as (1, 1) in the diagram, do not correspond to sites.

2.1. GRID-ORIENTED STRUCTURES

(1'4)

\

I
I

(1,2)

\

I
I

(1,0)

\

I

\

\
(2,3)

\
(2 '1)

I

I
(3,3)

\

I

(4,4)
I

\
\
(4' 2)
I

I
I

(3' 1)

\
\
\
(4' 0)

(5,4)
\

I
(5' 2)

\

I
(5,0)

\
\

(6' 3)

I
I

\
\

(6,1)

I
I

15

The concepts of coordinate and direction do not always have
direct physical meaning. For example, a problem done on a mesh model
of a surface where each site always has four nearest neighbors can easily
be handled in Canopy by mapping the surface to a two-dimensional
rectangle with appropriate boundary conditions and using the X and
Y directions. It is also possible to define irregular grids by increasing
the number of directions, although the unused directions will take up
memory space.

The standard library gridlib contains definition routines for peri­
odic rectilinear grids. Other grids, such as the example hexagonal grid,
may be defined by the user with the Canopy subroutine arbitrary_
grid.

16 CHAPTER 2. CONCEPTS IN CANOPY

2.1.1 Paths

A path is a list of directions showing how to move from site to site
along the links of a grid. Paths are a powerful concept because they
can express algorithms in a position-independent way. For example,
a common object in lattice gauge theory is the product of link matri­
ces around a plaquette or square formed by the path +dl, +d2, -dl,
-d2. The plaquette can be calculated from any site on the grid without
reference to coordinates, even if the path crosses a boundary; all that
matters is the grid connectivity set up at the beginning of the Canopy
program.

However, not all paths need be valid from all sites since not all sites
have links in all directions. On the hexagonal grid example there are
really two types of sites (those with links in the +xOOO, +x120, and
+x240 directions and those with links in the -xOOO, -x120, and -x240
directions), and paths valid for one would not be valid for the other. It
is also possible to define a rectilinear grid without periodic boundary
conditions where the sites on the edge have no neighbor in the direction
of the edge. In this situation paths are still useful but some of them
may lead NOWHERE and the program must account for this.

2.1.2 Fields

Many physical problems involve fields of some sort defined on the con­
tinuum, such as the electric field on space or the gluon field on space­
time. When problems involving fields are solved by a grid approxima­
tion, the continuum fields are replaced by fields on the sites or links of
the grid. Canopy allows fields to be defined which reserve space for
field elements on either the sites or links of a grid and provides a set
of subroutines for manipulating the field elements. Note the distinc­
tion between a field element, which is some structure stored on a site,
and a field, which is a variable used to refer to a particular group of
structures on sites. The field concept is one of the ways Canopy hides
the multi-node nature of the machine. Field elements are distributed
over the nodes automatically, but the user always references field ele-

2.1. GRID-ORIENTED STRUCTURES 17

ments through Canopy subroutines so the actual distribution of field
elements to nodes never affects the high-level user programs. Even on
a single-node machine this construct improves modularity by making
all references to field elements (which are a kind of global data) only
through conceptually simple subroutines.

2.1.3 Sets

After grids and fields have been defined Canopy is ready to do op­
erations on some set of sites on the grid, such as all sites on a grid or
the sites on the grid boundary. The do_task subroutine loops over all
the sites in a set, calling some task routine on each one. These calls to
the task routine are automatically distributed over nodes and are done
in parallel. The task routine does something relative to its HOME site
(the current site in the do_ task loop). Canopy does parallel operations
only through calls to do_task() on some set of sites.

2.1.4 Maps

A map establishes relations between grids. Each site on a domain grid
is mapped either to some site on a range grid or to a special site called
NOWHERE. These maps may be one-to-one or many-to-one and need not
cover the entire range grid. Canopy provides subroutines for finding
the image or inverse image of a site, and for doing operations on each
site in the inverse image of a site.

Maps are intended for problems where there is an obvious sub-grid
structure. For example, it is sometimes useful to sum up all elements of
one time-slice of a four-dimensional grid. By creating a separate time
grid and mapping each element of the four-dimensional grid to its time
coordinate in the time grid, a task can be written for the time grid
which does a sub-task to sum up the elements of the four-dimensional
grid for each time slice. This allows all the time slices to be summed
up in parallel, which is hard to do any other way.

18 CHAPTER 2. CONCEPTS IN CANOPY

2.2 Canopy Variables

To implement the above concepts Canopy uses the following variable
types which are all defined in C typedef statements:

grid: Variables of type grid identify particular grids.

set: Variables of type set identify particular sets.

map: Variables of type map identify particular maps.

field: Variables of type field identify particular fields. These are
used by Canopy subroutines with site and direction variables
to fetch and store field elements, which may be any C structure.

site: Variables of type site identify particular sites on a grid. There
is a special variable inside task routines, HOME, which points to the
current site in the loop over sites done by the do_task routine.
Another special site, NOWHERE, is used by map routines to indicate
that the image or inverse image of a map is empty.

direction: Variables to indicate particular directions, which range
from -ndir to +ndir (skipping 0). For example, grid. h defines
the symbols MINUS_T, MINUS_Z, MINUS_y, MINUS_X, X, Y, Zand T
as the numbers -4 to 4, appropriate for hyper-cubic grids.

coordinates: This is a 1-based array of integers used to specify a
site's coordinates. For the above-mentioned hyper-cubic grid the
directions X, Y, Z and T are indices for this array.

path: This type is a pointer to a list of directions.

These types are described in detail in the TYPEDEFS and CANOPY

SUBROUTINE REFERENCE sections. There are some additional types,
used mainly for internal reference and optimization, but they are built
around the same concepts.

2.3. CANOPY PROGRAM ORGANIZATION 19

2.3 Canopy Program Organization

Canopy programs are divided into three parts: the declaration section
where grids, fields, sets, and maps are defined; the single-thread ex­
ecutable section which does overall process control and calls parallel
tasks; and tasks, which do some operation in parallel on a set of sites.
The first and second sections together compose the control program, so
called because its main entry point must be named control().

2.3.1 Control Program Declaration Section

The declaration section is the place where all the grids, fields, sets
and maps are declared. This section can read input from a file or
terminal and then decide what sizes to use, so very flexible programs
may be written. After completing the declaration section the program
must call complete_defini tions, which reserves space for and sets up
pointers to the declared structures.

2.3.2 Control Program Executable Section

The executable section of the control program actualy executes the
algorithm. It can invoke do_task() to call the task routines, which are
executed in parallel. Both the declaration and the executable section
of the control program may call subroutines which are still considered
part of the control program for all system purposes.

2.3.3 Task Routines

Task routines do the same thing on each site for which they are called.
Typically they use the HOME site, which is set by the do_task() call to
each site in the set in turn, as a base site. Some fields are gathered in
directions or paths relative to HOME, some calculation is done and the
results stored back in a field on the HOME site.

The task routines must be written so that each site in the set may
be acted on without interfering with the task routine on other sites

20 CHAPTER 2. CONCEPTS IN CANOPY

of the same set. Thus Canopy can run on all of the sites in parallel
without any additional user intervention. Provisions are made for com­
pound sets of sites, where do_task must call the task routine in some
specific order. The PARALLELISM CONSIDERATIONS chapter describes
the special subroutines needed to manage this situation properly.

2.4 Summary

Canopy is a framework for writing programs that solve grid-oriented
problems. Subroutines to create grids with known connectivity are built
into it, as are subroutines to manipulate the fields that live on these
grids. Parallelism is automatically achieved by writing task routines
which do an operation on a site. The user need not be aware of machine
details such as the number of nodes or the distribution of sites to nodes.
With Canopy, programs can be debugged on a normal single-thread
machine and then moved to a multi-node system without change.

Chapter 3

A Tutorial Example

Perhaps the simplest and best-known grid-oriented problem is the Lap­
lace heat equation, '17 2 </> = 0. It can be solved numerically by a relax­
ation algorithm. The program laplace. c, which solves this equation
on a rectangular grid, is a good example of how Canopy functions fit
together. This chapter discusses laplace. c in detail and also explains
how to use other Canopy concepts to solve more complicated problems.
The basic organization of the example program will be shared by all
Canopy programs.

To solve '17 2 </> = 0 on a rectangular grid, start by writing the differ­
ential equation as a difference equation:

(3.1)

or

((</>x+x - </>x)- (</>x - </>x-x)) + ((<f>x+Y- </>x)- (</>x - </>x-;;)) = 0 (3.2)

which yields the equation

</> _ <f>x+x + <f>x-x + </>x+fJ + <f>x-fJ
x - 4 . (3.3)

This may be solved by a relaxation algorithm which replaces the value
at each point on the grid with the average value of its nearest neighbors.

21

22 CHAPTER 3. A TUTORIAL EXAMPLE

The program laplace. c (there is a copy of it available in Canopy source
files) implements this algorithm. Lines from laplace. c appear roughly
in order throughout this chapter with explanations. Its main sections
work as follows: First, it sets the boundary conditions on the grid,
which are fixed throughout all the relaxation sweeps. This is actually
one of the hardest parts of the program to write since considerable
thought must be given to various details. In laplace. c, the program
takes as input the values of the temperature at the four corners of the
rectangle and then interpolates these values along the edge, thereby
eliminating any possible discontinuity problems. Then the program
sweeps over the interior sites iteratively, replacing the temperature at
each site with the average of the temperature of its four neighbors. The
sites are updated in a red/black order and the new values of the red
sites are used to update the black sites. For the convergence of the
Laplace equation this ordering is unimportant, but for other problems
it is crucial. The PARALLELISM CONSIDERATIONS chapter discusses
some of the subtler issues involving the order. Finally, the program
uses a subroutine to print out the initial and final temperature values
in a user-readable form.

As usual in a C program, lower-level routines precede the top rou­
tines which call them. In the context of this Canopy TUTORIAL ex­
ample, that means the overall control program appears at the end; the
individual task routines (to be executed in parallel) are presented be­
fore that; and the routines defining sets of sites over which the tasks
are to work are presented first.

3.1 Canopy C Conventions

Canopy is designed to run under C compilers which conform to the
ANSI standard. Canopy applications should be written in ANSI C
style.

Since Canopy existed before the ANSI C standard, and the com­
piler for the Weitek processor used in the original ACPMAPS system
was not ANSI C, the Canopy compilation tool applies a pre-processor

3.2. REQUIRED INCLUDE FILES 23

which performs necessary conversions such as including changing ANSI
prototypes and function declarations to the old Kernighan and Ritchie
style.

In order to be compatible with the preprocessor, programs should
use the voidptr type instead of void* and should not use array types
in function argument lists (that is, avoid constructs such as int f(int
x [3]))-use typedefs instead. Also, variable length argument lists
pose a special problem since there are many ways to handle them.
The pre-processor does not attempt to convert these automatically.
However, the Canopy routines which take variable length argument lists
(do_task and make_path) are declared in <canopy.h> in the correct
way for several target systems.

3.2 Required Include Files

Every Canopy program must include the <canopy .h> file, which con­
tains function prototypes and definitions for all the Canopy and CHIP
functions. In additions to <canopy .h>, the Laplace program uses rou­
tines from <math.h>, <prompt.h>, and <grid.h>. The math library
is standard C and the prompt and grid libraries is described in this
manual. MINUs_y, MINUS_X, X and Y are #defined in <grid. h>.

#include <canopy.h>
#include <grid.h>
#include <math.h>
#include <prompt.h>

3.3 Grid and Set Defining Functions

A Canopy program may contain functions defining one or more grids,
and functions to define sets of sites on the grids. The example Laplace
program will use periodic_square_grid() defined in <grid.h>, so no
grid definition functions appear here. The program defines five simple
and one compound set of site functions, some of which are used as
building blocks for the others. Some of these set functions are also in

24 CHAPTER 3. A TUTORIAL EXAMPLE

setlib, but are repeated here for clarity. If setlib functions are used,
then set . h should also be included ..

The red_func function sets up a simple set of sites whose sum of
coordinates is odd. It does this by returning 1 for those sites with
odd coordinate sums and 0 for those sites with even coordinate sums.
This function is not actually used except to build the other functions,
but it could be used to define a set of sites. Note how the number of
dimensions is obtained from the lattice argument:

int red_func(grid lattice, intptr coords)

{
/* red sites have odd coordinate sums *I

int ndirn = number_of_dirnensions_of_grid(lattice);
int i;
int csum.=O; /* note that coords is 1-based! */
for (i=1; i<=ndirn; i++) { csum += coords[i]; }
return(csum 'l. 2); /• 1 for red; 0 for black•/

} /• red_func •/

The black_func function sets up a simple set of sites whose coor­
dinate sum is even by returning 1 if the coordinate sum is even and 0
if it is odd. It uses red_func to do the work. This function also is not
used except to build other functions:

int black_func(grid lattice. intptr coords)
/* black sites have even coordinate sums */

{

return (1 - red_func(lattice,coords));
} /• black_func •/

The boundary _func function sets up a simple set of sites which
lie on the edge of the grid. This function actually is used to make
a set of sites, since the initialization is done only on the boundary
sites and the update only on the interior sites. It uses grid_upper_ -
bounds() and grid_lower_bounds () to find out the grid dimensions
without explicitly using any global variables.

3.3. GRID AND SET DEFINING FUNCTIONS

int boundary_func(grid lattice. intptr coords)*/

{

}

I* sites on the boundary -- using Canopy data */

int ndim number_of_dirnensions_of_grid(lattice);
int *max= grid_upper_bounds(lattice);
int *min= grid_lower_bounds(lattice);
int i;

/* coords, min. and max are 1-based */
for (i=1; i<=ndim; i++) {

}

if ((coords [i] ==min [i]) I I (coords [i] ==max [i])) {
return(!);/* boundary sites are in the set */

}

return (O); /* other sites are not */

25

Now the above three functions are used to make functions for the
red interior sites and the black interior sites, which are the sets used for
the Laplace update. As was mentioned above, the Laplace algorithm
converges no matter what order is chosen for the field update. The
red/black order is chosen due to subtle issues involving parallism that
are described in detail in the PARALLELISM CONSIDERATIONS chapter,
which gives rules on how to choose acceptable orderings.

int red_interior_func(grid lattice, intptr coords)
/* red sites not on the boundary */

{

}

int i;
if (boundary_func(lattice,coords) == 1) {

return(O); /*boundary sites are not in set */
}

/* otherwise red sites are 1 and black sites O */
return (red_func(lattice, coords))j

26 CHAPTER 3. A TUTORIAL EXAMPLE

int black_interior_func(grid lattice, intptr coords)
/* black sites not on the boundary */

{

}

int ii
if (boundary_func(lattice,coords) == 1) {

return(O); /*boundary sites are not in set */
}

I* otherwise red sites are 0 and black sites 1 *I
return (black_func(lattice, coords));

Finally, rb_interior is the compound set of sites. It sets up the
set of all interior sites in a red-then-black order. For boundary sites it
returns O, for interior red sites 1, and for interior black sites 2. This
compound set of sites could be used for updating red sites first and then
black sites, if appropriate changes are made to the task routines. Again
there is more discussion of these techniques and their implications m
the PARALLELISM CONSIDERATIONS chapter.

int rb_interior(grid lattice, intptr coords)

{

}

/* sites not on the boundary, in red-black order *I

int i;
if (boundary_func(lattice,coords) == 1) {

return(O); /*boundary sites are not in set */
}

/* otherwise red sites are 1 and black sites 2 */
return (1 + black_func(lattice~ coords));

3.4 Task Routines

Task routines are the heart of Canopy programming. They do some
operation on the HOME site, such as initializing or updating one of its
fields using the Canopy subroutines. Task routines are called by the
do_task subroutine once for each site in some set, with the HOME site
taking on the value of each site in the set. do_taskO automatically
distributes the calls to the task routine over all the available nodes so

3.4. TASK ROUTINES 27

operations may be done in parallel. A typical do_t ask call looks like
this:

float f;

float x[4];
do_task(task_routine, set_to_do,

PASS, tf, sizeof(f),
INTEGRATE, tx, 4•sizeof(float),
END);

This causes the subroutine task_routine to be called once for each
site in the set set_to_do. The remaining arguments of do_task()
describe the arguments of task_routine and what is to be done with
them. In this example, task_routine would look like this:

void task_routine(float *farg, float *xarg)
{

/* code where *farg is read-only but */
/* four elements of xarg[] are qritten */

} /* task_routine */

The two arguments of task_routine are farg, which is used as a
pointer to a float, and xarg which is used as a four-element floating
point array. The array is filled with four values. The argument triplets
in the do_t ask call tell the system exactly how to treat arguments to
task_routine (see Section 4.3, ARGUMENTS TO TASK ROUTINES).

The (PASS, &f, sizeof (f)) triplet says that the first argument to
task_routine is read-only, that its address is &f, and that it has the
size of a float. The second triplet says that the second argument of
task_routine is to be summed up over all the sites in the set as a
floating-point array with four elements. The array at &x will be filled
with the answer-note that do_ task initializes it to zero first. The last
"triplet," END, says there are no more arguments. This complicated
structure is needed in order to properly call task_routine on many
different processors simultaneously and keep track of the results.

The task routines in laplace. c use a "generalized subroutine head­
er" structure which lets the calling routine call what looks like an ordi­
nary C subroutine that handles the do_ task call internally. There are

28 CHAPTER 3. A TUTORIAL EXAMPLE

two reasons for using this: 1) the control program will look simpler
and 2) the error-prone ugliness of passing input scalars by address in­
stead of by value is eliminated. The "generalized subroutine header"
format requires two routines with almost the same name: one of these
is the actual task routine that appears in the do_task call and the
other is a header routine that calls do_ task. The first routine has the
same name as the second with an underscore character appended. In
the first example below, the task routine is set_field_ to_zero_ and
the header routine is set_field_ to_zero.

The header routine has one more argument than the task rou­
tine, since the header routine needs to know which set to use in the
do_task() call. Conventionally, this set is the first argument of the
header routine. The remaining arguments of the header routine are the
same as the arguments of the task routine except that scalar input ar­
guments such as fields, maps, grids, sets, ints and floats may be
pass-by-value in the header routine. All arguments of the task routine
are pass-by-address, since do_ task uses the address of the argument.

The first example is a simple task routine which sets a field of floats
to zero on its HOME site. It has only one argument: the field to be
set to zero. This is passed by value to the header routine and passed
by address in the task routine. This routine is rather specialized since
it needs to know both that the field is a field of floats and that the
length of each field element is one. It would be possible to write a more
general routine that uses the f ield_length () function to zero a field
of arbitrary length but for laplace. c this is not needed.

/* first the actual task routine, */
/* complete with ending underscore *I

void set_field_to_zero_(field *f)
/* zero HOME site of f */

I* in task routines, always pass arg'lllllents by address */
{

float zero ; 0.0;

put_field(•f, HOME, (voidptr) tzero);
}

3.4. TASK ROUTINES

/* now the header routine with the */
/* same name but no underscore *I

void set_field_to_zero(set set_of_sites, field f)
I* note that here arguments can be pass-by-value */
{

do_task(set_field_to_zero_, set_of_sites,
PASS, tf, sizeof(field),
END);

} /* set_field_to_zero */

29

The second task routine does a relaxation sweep on the HOME site.
It replaces the field at the HOME site with the average of the field at the
nearest neighbors. The header structure is exactly the same as before.

void laplace_sweep_(field *f)
/* in task routines, arguments are pass-by-address */
{

}

float a ==

•(float•)field_pointer_at_dir(•f, X) +
•(float•)field_pointer_at_dir(•f, Y) +
•(float•)field_pointer_at_dir(•f, MINUS_X) +
•(float•)field_pointer_at_dir(•f, MINUS_Y);
a /= 4.0;
put_field (•f, HOME, (voidptr) ta);

/* now the header routine with the */
/* same name but no underscore */

void laplace_sweep(set set_of_sites, field f)

/* note that f is pass-by-value here */
{

do_task(laplace_sweep_, set_of_sites,
PASS, tf, sizeof(field),
END);

} /• laplace_s~eep •/

The third task routine is called at the beginning of the program to
initialize all the sites on the boundary. It uses the grid information
routines to get the upper and lower coordinate limits and is passed an
array of floats containing the values in the corners, which it uses to
interpolate boundary values for the edges. Since it only makes sense

30 CHAPTER 3. A TUTORIAL EXAMPLE

to call this task with the boundary set of sites it would be possible to
re-write the header to use the boundary set directly. This would require
that the boundary set be a global variable instead of local to the main
program, however.

void set_boundary_sites_(float *corner_value, field *f)
{

}

grid lattice= grid_supporting_site(HOME);
int *max= grid_upper_bounds(lattice);
int *min= grid_lo~er_bounds(lattice);
coordinates coords; /* temp coordinate array */
float valj

get_coordinates (HOME. coords);
if (coords [X] ==min [X]) { /• top •I

val = (corner_value[1] - corner_value[O]);
val*= coords[Y] - min[Y]j
val /= max[Y]-min[Y]+l;
val+= corner_value[O];
put_field (•f, HOME, (voidptr) &val);

} else if (coords[X]==max[X]) { /•bottom•/
val= (corner_value[2] - corner_value[3]);
val•= coords[Y]-min[Y];
val /= max[Y]-min[Y]+l;
val += corner_value[3];
put_field (•f, HOME, (voidptr) &val);

} else if (coords[Y]==min[Y]) { I• left •/
val = (corner_value[3] - corner_value[O]);
val *= coords[X]-min[X];
val /= max[X]-min[X]+l;
val += corner_value[O];
put_field (*f, HOME, (voidptr) &val);

} else if (coords[Y]==max[Y]) { /•right •/
val= (corner_value[2] - corner_value[1]);
val •= coords[X]-min[X];
val /= max[X]-min[X]+l;
val+= corner_value[l]j
put_field (•f, HOME, (voidptr) &val);

}

3.4. TASK ROUTINES

void set_boundary_sites(set s, float *corner_value, field f)
{

do_task(set_boundary_sites_, s,
PASS, corner_value, FOUR*sizeof(int),
PASS, &f, sizeof(field),
END);

} /* set_boundary_sites */

31

The final task routine shows how the same return value can lead to
radically different answers depending on the keyword in the do_ task
triplet. get_limits returns the value of field f on the HOME site twice,
but the do_ task integrator only keeps the maximum value of the first
argument and the minimum value of the second. The purpose of this
routine is to return the maximum and minimum values of the field on
some set of sites.

void get_limits_(float •high, float •low, field •f)
{

}

•high= •(float•)field_pointer (•f, HOME);
*low = *high;

void get_limits(set set_of_sites,
float *high,
float *low,

{

}

field f)
/* high and low must both be pass-by-address, */
/* since they are return values */

do task (get_limits_, set_of_sites,
MAX_REAL, high, sizeof(float),
MIN_REAL, low, sizeof(float),
PASS, &f, sizeof(field),
END);

32 CHAPTER 3. A TUTORIAL EXAMPLE

3.5 Control Routine

The main entry point of a Canopy program JS a subroutine named
control(). This is executed as an ordinary C program on a single
node of the system. Only when do_t ask() is called does Canopy start
parallel processes. There are therefore some distinctions between the
control program level and the task routine level. Most importantly,
task routines cannot call other task routines (though there is a sub-task
facility using maps, it does not re-distribute control to another node)
and cannot do I/O. The control program may call other subroutines
that are also part of the control section-task routines may only be
entered through do_ task and do_task_n_times.

Technically speaking the task routine headers are part of the control
section since they do run at the top level and call do_ task, but it is
much more convenient to to keep them near the task routine itself as
has been done in laplace. c.

The only other subroutine in the control section of the Laplace
program is show_field, which prints out the field on a grid using the
digits 0 through 9 to indicate the value of the field normalized to its
limits. It uses the get_limi ts task to find the upper and lower limits
of the field value and loops over all the sites on the lattice the hard way
to print them:

void show_field(grid g, field f)
{

int *max= grid_upper_bounds(g);
int *min grid_lower_bounds(g);
site Si

coordinates coords;
int i;
int j;
int k;
float a, h, l; /* h and 1 are upper and lower limits */

get_limits (g, th, tl, f);

I* loop over all sites the primitive way *I
I* one site at a time on the control node */

3.5. CONTROL ROUTINE

for (i=O; i<(max[X]-min[X]+1); i++) {
for (j=O; j<(max[Y]-min[Y]+1); j++) {

coords [X] = i;
coords [Y] = j ;
s = site_at_coordinates(g, coords);

a= *(float*)field_pointer (f, ts);
k = 9.99/(h-l) * (a-1);
printf ("%1ld' 1 ,k);

}

}

printf("\n");

} /* show_field */

33

The control program itself is the mam entry point for a Canopy
program. It is called by the system after all of the Canopy set-up
completes. Notice particularly how the size of the grid plane is input
before being used to declare the grid-since complete_defini tions ()
is an executable routine, Canopy provides flexibility in changing sizes
at run-time.

void control ()
{

grid plane; I* declare the grid, field and */
field points; /* set variables -- note they */
set rb_sites i I* are local. */
set boundary_sitesj
set red_interior;
set black_interior;

int x_dimension;
int y_dimension;
int number_of_sweeps;
float corner_value[4];
float aO,a1,a2,a3j

/* these are the values
/* input by the user.

*/
*/

inti, j; /*every program needs a few integers*/

/* Now input the size, boundary values, and */
I* sweeps using routines in the prompt library */
/* */
prompt_scanf (2. 11Enter dimensions height. lilidth: 11

34 CHAPTER 3. A TUTORIAL EXAMPLE

11 Xld,%ld 11 ,.tx_dimension,ly_dimension);
number_of_sweeps =

prompt_int(11Enter number of sweeps: ");
prompt_scanf(4,

"Enter 4 corners clockwise from top
11 Y.f J Y.f J Xf J Y.f II 0 ll:aO, lal, &:a2, h3);

printf("Enter 1 to read file or 0 for new
i = prompt_int

("Enter 1 to read file or 0 for new

corner_value[O] = aO;/* aO ... a3 are just

left:

run:

run:

con-
corner_ value [1] = al;/* venient abbreviations.
corner_ value (2] = a2;
corner_ value [3] = a3;

"

ti) ;

..) ;

•I
•I

I* Now call the declaration routines. Notice */
I* how there were C executable statements before*/
I* these calls to get input values. */
I•
plane = periodic_square_grid (x_dimension,

y_dimension);
points= site_fiold(plane, sizeof(float));
rb_sites = set_of_sites(plane, rb_interior);
red_interior = set_of_sites(plane,

red_interior_func);
black_interior = set_of_sites(plane,

black_interior_func);
boundary_sites = set_of_sites(plane,

boundary_func);

/*Now set up the grids, fields and sets with */
/*this call to complete_definitions. */
/• */
complete_definitions()j

I* •/
/* The first tasks are to zero the field points */
/* ary values. Each of these tasks is done in */
I* parallel on all the nodes. *I
I•
set_field_to_zero(plane. points);
set_boundary_sites(boundary_sites,

•/

3.5. CONTROL ROUTINE

corner_ value,
points);

/* Now open the field file if the field was to */
/* be read. */
/• •I
if (i==l) {

}

open_field_file("lap. out" ,READ);
read_field(11 lap.out 11 ,points);
close_f ield_f ile (11 lap. out 11

);

I* Now print the initial values -- note that */
I* show_field must loop over the sites itself. */
I• •I
printf(11 Initial values: \n\n' 1

);

sho~_field(plane, points);

/* Now sweep over the grid plane */
f* number_of_sweeps times. */
I• •I
/• IMPORTANT: •/
I* It would appear on the surface not to be */
I* necessary to red-black the laplace sweep. *I
I* Unfortunately, in a real multi-processor */
I* system it is not guaranteed that one might */
/* hit the timing exactly wrong and try to */
I* read a field while another node is updating*/
/* it. For fields of length greater than one, */
/* this may result in reading a half-updated */
/* field. This can lead to improper results */
/* even it either the old or the new field */
I* were by itself permissible. */
I• •I
for (i=O; i<number_of_sweeps; i++) {

}

laplace_sweep(red_interior> points)j
laplace_sweep(black_interior, points);

I* Now print out the final values
I•
printf("\n\nFinal Values:\n\n");

•I
•I

35

36 CHAPTER 3. A TUTORIAL EXAMPLE

show_field(plane, points);

/* and write them to a field file.
I•
open_f ield_f ile (''lap. out••. WRITE);
Ti.l'rite_field(11 lap.out 11 ,points);
close_f ield_f ile (ulap. out") ;

} /* control */

•I
•I

3.6 Running the Example Program

A Canopy application can be run on a massively parallel system such
as ACPMAPS, or on a single-node Unix machine. Individual Can­
opy User's Guides are provided for massively parallel systems. Here,
we illustrate how the laplace. c application would be run on a Unix
system.

The Canopy-specific tool cane is used instead of cc to compile and
link the Canopy program:

>cane laplace.c -o laplace

The laplace module is an ordinary UNIX modules which runs in
the ordinary UNIX way:

>laplace
Enter dimensions height,width: 6,58
Enter number of sweeps: 1000
Enter 4 corner values clockwise from top left: 1,2,3,4
Enter 1 to read file or 0 for new run: 0
Initial values:

2222222222223333333333333333333333334444444444444444444444
3005
4005
6006
7006
gggggggggggggggggggggggsssssssssssssssssssssss777777777777

3.6. RUNNING THE EXAMPLE PROGRAM 37

Final Values:

Largest site value is 4.000000 at (5,0)
0000000000000000001111111111111111112222222222222222233333
1112222222222222222222222222223333333333333333333333333333
33333444
4554
6777777777777777777777777777766666666666666666666666666655
9999999999999999988888888888888888877777777777777777666666

Chapter 4

Parallelism Considerations

Canopy is designed to work in a parallel computing environment con­
sisting of many independent processors with independent memory ad­
dress spaces. The control program is run on one of these processors
and the task routines are distributed across all of them. Most of the
work involved in doing this is automatic but there are a few special
considerations of which users should be aware.

In general, when a task is done over a set of sites, each site can be
viewed as a virtual processor: The task routine is the program, and
the HOME site's field data (along with any stack space used) is the lo­
cal memory. The paradigm is that all sites are done simultaneously;
a practical consequence is that any operation that depends on the or­
der of processing sites within a simple task is logically unsound. (For
compound tasks, operations which depend on the order of sites within
a given level would be unsound.)

4.1 How Field Pointer Works

The f ield_pointer routines look innocent enough, but on close ex­
amination it is obvious something is missing. On a single CPU with a
single memory space, the address of any object can always be returned,
but on a distributed system the field element may be in some other

39

40 CHAPTER 4. PARALLELISM CONSIDERATIONS

node's address space. If the field element is off-node, a copy of that el­
ement must be made into local memory; field_pointer then returns
the address of the copy to the caller. This has several implications:

The returned pointer may point to either the original field
element or a local-memory copy of the field element

Something allocates memory for the copy

Either something frees memory for the copy with no user
intervention or wasted memory piles up somewhere

The first implication means that the field element must be considered
read-only unless it is certain that it was on the same node as the call.
As the user has no way of telling which node is which, all of the elements
must be considered read-only. There is one exception to this designed
to improve efficiency in some common cases: inside task routines the
HOME site is certain to be on the current node. This means that fields
on the HOME site may be updated without put_field(). IMPORTANT:
This is only true in task routines called by do_ task() and do_task_n_ -
times(). In sub-task routines called by do_task_on_inverse_image ()
the HOME site is not guaranteed to be on the current node.

The memory management issue is more interesting. Since pointers
inside task routines only are valid inside the task routine (and may not
be returned since it makes no sense to combine the values returned by
each site into a single value), the memory used for off-node field storage
can be returned to the pool after each call do_task makes to the task
routine. There is a special area of memory for this (on each node) called
the do_task lalloc heap which is set up at the beginning of the program.
However, too many calls to off-node field_pointer reads inside a task
may still overflow the lalloc heap. There are two ways to deal with
that situation. One is to call the declare_lalloc_sizes () routine in
the declaration section of the control program to make the do_task
lalloc heap larger, which is generally best unless the number of calls
can become large and variable. The other is to call reset_lalloc ()
from inside the task routine itself, invalidating all pointers previously

4.1. HOW FIELD POINTER WORKS 41

obtained through field_pointer by freeing the entire lalloc heap at
once. Any field element that needs to survive a call to reset_lalloc ()
must be copied to a new area before the call. At the present time there
is no selective free_lalloc routine which determines whether a pointer
points to the lalloc heap and then frees just that area if it does. In the
future such a routine may be implemented, but for now reset_lalloc
is the only way to free space.

In the control program things are worse since pointers in the
control program and its subroutines are theoretically valid forever.
This could require an infinite amount of storage on the control pro­
gram. The solution Canopy adopts is to have field_pointer class
routines from the control program use memory from another area
called the control lalloc heap. Unlike the do_task lalloc heap, pointers
allocated on the control lalloc heap are valid for all time. Since many
programs call field_pointer routines once or more per iteration, it is
often impossible to fix overflows by extending the heap with declare_ -
lalloc_sizes () . Instead, the reset_lalloc routine must be used
with its attendant headache of invalidating all old data. The best way
to do this is to call resetlallocx at the end of each iteration if the pro­
gram calls field_pointer routines from the control level. Note that
calls to reset_lalloc inside a task routine do not affect the control
lalloc heap.

A side issue concerning the lalloc heap is that of data alignment.
For some CPU chips, the i860 in particular, it is crucial that double
precision numbers be 8-byte aligned. Canopy handles that properly by
having lalloc return 8-byte aligned addresses whenever a multiple of 8
bytes is requested. (The malloc routine in C works the same way.) Since
fields containing double precision data should always be sized in mul­
tiples of 8 bytes (assuming that a sizeof() is used as nbytes in the field
definition routine), the alignment of data fetched by fielcLpointer
should always be proper.

42 CHAPTER 4. PARALLELISM CONSIDERATIONS

4.2 (Lack of) Global Variables

The laplace. c program does not have a single global variable. This
is not due to some perverse stylistic purity concept of its author, but
rather to a sad fact of life on parallel machines: what C thinks is a global
variable is not really a global variable. This confusion arises because
each of the nodes has a separate address space, and if C declares a global
variable an independent copy is allocated on each node. Updating a
global variable on one node will not update it on another, and if two
nodes try to update the same physical memory location by using full­
addresses at the same time bizarre synchonization errors may occur.
As a result, global variables can lead to many strange bugs and should
be avoided wherever possible.

There are a few cases where global objects can be used safely. First,
the field elements and Canopy data are global variables of a sort, but
they are always used through subroutines with special rules which keep
the data sensible. Second, global variables can be set in the control
program, and the values broadcast to all the nodes. Such variables are
read-only from the perspective of task routines. Third, global variables
can be used to transfer data between subroutines running on the same
node, such as to pass values between various subroutines in the control
program.

Global variables might also be used to pass values between sub­
routines called by a particular task routine. This use of "task global"
variables is not encouraged. Since the space of globals is shared by all
the sites processed on a node, using task global variables contradicts
the paradigm of each site being an independent virtual processor. Con­
sequently, these variables must be handled in a special way if "multi­
thread" is used to improve communications efficiency-see the section
on TASK GLOBALS. Similar issues arise on systems where multiple pro­
cessors share the same address space-global variables which are "one
copy per processor" must be distinguished from those which are really
global.

There are some common temptations to use global variables where
they won't work at all. Canopy provides structured ways to handle

4.2. (LACK OF) GLOBAL VARIABLES 43

these situations. For example, to accumulate values inside tasks use
integrate arguments instead of updating a global variable. The global
variable method will not work when running on more than one node.
Another improper use of global variables is to synchronize tasks by
setting a global variable flag. Instead, the compound set of sites and
synchronization routines will do the job correctly.

A valid use for global variables is to set up tables of initial values
or pass overall parameters. The broadcast() subroutine can set this
up providing that the variables are treated as read-only after being
broadcast. A call to broadcast makes a static global variable have
the same value on all nodes that it does on the control node. For
example:

int var[4]j

void control() {

var[O] = 2; var[l] = 5; var[2] = 11; var[3] 17;

broadcast((voidptr) var, sizeof(var));

} /• control •/

After the broadcast call the values 2, 5, 11, and 17 are in var on
every node in the system, so task routines can read var as if it were an
ordinary global variable. Notice however that no routine can change
var after the call to broadcast without causing total confusion. It
is important to remember that broadcast only works on global static
variables, because only for global static variables is the same memory
address allocated on each node. If a call to broadcast is made with
an automatic variable or one for which space has been dynamically
allocated (say with malloc), the results will be unpredictable.

44 CHAPTER 4. PARALLELISM CONSIDERATIONS

4.3 Arguments to Task Routines

There are logical subtleties associated with passing arguments to task
routines. The first problem is that of length of data. In C, it makes
sense to pass an argument by address; it is assumed that the function
will use the data in the appropriate manner. But Canopy platforms are
allowed to have distributed memory, so a copy of the data representing
the argument must be sent to each processor node running the appli­
cation. This means that somehow the Canopy routines must be made
aware of the length of data that the task routine will be using.

The use of arguments to return values from a task routine presents
another issue. In C, the calling routine can receive a return value by
passing the address of a variable-the subroutine will eventually store
a result at that address. But what does it mean to have each of many
sites return a value? If an array of answers is required, Canopy al­
ready provides the concept of "one datum for each site": A field. If
a single value is expected, there is the question of how to amalgamate
the values returned by the task routine for each site, into that single
value. The routine may wish to return the sum of the values, or the
maximum value, or some other function of the values. Therefore, for
each argument to a task routine invoked via do_ task, one must specify
the data length and how to handle the argument, along with the argu­
ment's address. The syntax Canopy uses to do this is that of do_ task
triplets, described in Section 6.2.1 Do_TASK ROUTINES.

Canopy does not support two-way arguments, where the user passes
a value to the function and then expects a return value at the same
address. Also, there is no return value for the do_ task routine itself.

Having resolved the above issues, the use of task routine arguments
is not inefficient-the same procedure that handles the start and finish
of task routines can handle the arguments. Except for overall (one­
time-only) initialization, the use of arguments to task routines is recom­
mended over the naive alternative of using (and explicitly broadcasting)
global variables.

4.4. SYNCHRONIZATION 45

4.4 Synchronization

The most obvious way the parallel nature of the computer intrudes into
Canopy programs is by requiring that calls to task routines not depend
on the order sites are processed. Even if the algorithm is insensitive
to order it may still be inappropriate to let do_task update all the
sites on the grid at once. For example, laplace. c must use an explicit
red/black order for the reason discussed below.

Consider what happens when a Canopy program runs on more than
one processor. The control sections are executed by one processor
(called the control node) and then the task routines are done in parallel
on all the processors. If the Laplace update algorithm were run with
the set of all interior sites the following error could occur: one processor
could have written half of the field value it updates at the same time an­
other processor reads that in to update a neighboring site. This causes
the update on the second processor to be wrong even though the order
of the update is immaterial. Fortunately this and other synchronization
errors may be avoided by following these two rules:

Rule 1: Always write tasks so they only update field ele­
ments on their HOME site.

Rule 2: Arrange sets and do_ task calls so that if a task up­
dates a field element on its HOME site it never reads elements
of that field from any other site in the set currently being
processed.

For the Laplace example this means that update_si te cannot read the
field elements of *f from any site in the set being processed by the
do_ task call, but may read elements of *f from sites not in that set.
Because all the neighbors of red sites are black sites and vice versa,
doing the job in a red-then-black order solves this problem.

Of course, doing separate do_ task calls for each set has some disad­
vantages: notably the number of sets may increase dramatically and the
opportunity to update sites out of strict order by waiting only for their
neighbors to finish, instead of the entire set, is lost. The compound set

46 CHAPTER 4, PARALLELISM CONSIDERATIONS

of sites, in conjuction with the sync_fielcLpointer routines, provides
a way to take advantage of parallelism without such strict order rules
but adds some complications of its own, For example, the laplace, c
program could use a compound set of sites to do the red-then-black up­
dating all at once, Such a compound set, called rb_si tes, was defined,
However, more must be done than just replace the two do_ task calls
with red_interior and black_interior with one using rb_sites,
The update_si tes routine must also be modified as follows to use
sync_field_pointer ():

void laplace_sYeep_(f)
field *f; /* always pass-by-address in tasks */
{

}

float a =
•(float•)sync_field_pointer_at_dir(•f, X) +
•(float•)sync_field_pointer_at_dir(•f, Y) +
•(float•)sync_field_pointer_at_dir(•f, MINUS_X) +
•(float•)sync_field_pointer_at_dir(•f, MINUS_Y);
a /= 4,0;
put_field (•f, HOME, (voidptr) &a);

void laplace_sweep(set_of_sites,f)
field fj /* note that f is pass-by-value here */
set set_of_sites;
{

do_task(laplace_sweep_, set_of_sites,
PASS, if, sizeof(field),
END);

} /* laplace_sweep */

The calls to sync_field_pointer will wait for the task routine at
the target site to finish if the target site is at a lower level then the
HOME site, Here is a rule to decide where to use the sync-class routines:

Rule 3: Use tbe sync routine only to fetcb field elements
of fields wbose elements on tbe HOME site are updated by
tbe task Fetcb all otber field elements witbout tbe sync
routine,

4.5. NOTE ON EFFICIENCY 47

Note that there are certain situations, such as where a field update
requires some new elements and some old elements, where this system
is inadequate. These should be handled by multiple sets of sites. When
a task is done over a compound set of sites the calls to the task routine
will not necessarily be done in order, and it is not even guaranteed that
all sites on a particular level will finish before sites on other levels start
(in fact, that is part of the point!). Since it is easy to make mistakes
here it is strongly recommended that programs be written without using
compound sets and sync routines and then modified after they are
working. That way any errors due to the modification will show up
clearly.

4.5 Note on Efficiency

The laplace. c program illustrated in the TUTORIAL EXAMPLE is, as
it stands, not very efficient (if efficiency is measured by megaflop rate)
because it spends most of its time fetching numbers instead of doing
arithmetic. On realistic lattice gauge problems this sort of arrangement
works better because proportionally more computation is done on each
field. For example, if the Laplace program were re-written so that each
field element had a hundred numbers instead of one then the time spend
fetching fields would be less significant.

The field_pointer_from_address() and address_of_field() rou­
tines are available to create and use pre-computed field addresses and
thus avoid the overhead of computing locations on every sweep, but
this optimization does not save much time. In absolutely critical appli­
cations they may make a 53 or so difference (and they aren't always
faster).

In general, the efficiency of a Canopy application on a given system
will depend on several factors, including: the fraction of work which
is done by tasks (as opposed to the control program); the expense of
the Canopy "bookkeeping" to fetch fields and move among sites; the
cost of synchronization in terms of nodes becoming idle during and at
the end of tasks; and the cost of internode communication required to

48 CHAPTER 4. PARALLELISM CONSIDERATIONS

transfer data between processors.

For realistic problems running on typical massively parallel systems,
most work is done in tasks, and the bookkeeping and synchronization
inefficiencies are small. Canopy bookkeeping becomes expensive when
very little work is done by each task. Synchronization inefficiency can
occur if each node is handling only a few sites, or on algorithms with
compound tasks implementing an order of processing which forces se­
quential operation.

4.6 Multi-thread

A number of strategies have been implemented in the Canopy library
to improve performance of communications-intensive Canopy applica­
tions; these strategies are collectively referred to as "multi-thread",
since they involve the running of multiple threads of execution on each
node.

Multi-thread operation improves performance because it allows many
small transfers to be transparently coalesced into fewer, larger transfers.
Fewer communications overheads are taken, and the available commu­
nications bandwidth is used more efficiently. This coalescing is done by
processing multiple sites in parallel on each node. Each site has its own
CPU context-multi-thread is simple form of multi-tasking. The coa­
lescing of data transfers is done transparently by the Canopy library,
by grouping together transfer requests from multiple sites.

In most cases, no modifications are required to existing Canopy ap­
plications, to allow them to be run multi-threaded. The Canopy library
guarantees bit-for-bit identical results for correctly written applications,
whether run single- or multi-threaded.

The use of multi-thread can be controlled by Canopy subroutine
calls and command-line switches to the canopy hosting tool. These
switches are explained in the RUNNING APPLICATIONS section of the
CANOPY ACPMAPS USER'S GUIDE.

4.6. MULTI-THREAD 49

4.6.1 How Multi-thread Works

In "classic" Canopy, task routines are single-threaded. A task routine
which requests off-node data (via a field_pointer request) blocks­
no other work is done on the node requesting the transfer until the
data transfer completes. Likewise for put_field()-all processing on
the node is suspended until the data is actually written to the remote
node 1s memory.

Under multi-thread operation, multiple sites are processed in par­
allel on each node; each site being processed has its own CPU con­
text (thread). When field_pointer requires an off-node field access,
the CANOPY run-time library records information about the requested
transfer, but does not actually perform the remote access. Instead,
the CPU moves on to do the task routine for another site-another
"thread" of execution. The new thread has its own stack, but is run­
ning the identical task routine; the cost of this "context switch" is
minimal.

This process is repeated until all of the available threads are waiting
for off-node data (or the list of sites to be processed is exhausted).
Then, all of the requests for each target node are combined into a single
scatter/gather transfer request. The transfers are done, and threads
which now have the data they need are allowed to proceed. The key
point is that of the many access requests accumulated, usually several
will involve the same remote node - these requests can be coalesced
into a single transfer.

Similarly, off-node writes required by put_field are queued up;
in this case the same thread continues execution, until a remote read
access or the end of the task forces it to do the remote writes.

Multi-thread gains when the cost of a thread context switch is
smaller than the overhead associated with a transfer, or when commu­
nications overheads affect the availability of a resource which is shared
among many nodes. So any advantages depend on the nature of the
system, and on particulars of the algorithm and its communications
pattern. On the ACPMAPS system at Fermilab, when production lat­
tice gauge physics programs are run on hundreds of nodes, the typical

50 CHAPTER 4. PARALLELISM CONSIDERATIONS

application gains a factor of 2-3 in performance with multi-thread en­
abled.

4.6.2 Control of Multi-thread

To use multi-thread mode, all that is generally necessary is to specify
the number of threads to be used; this controls how many sites can
be processed in parallel. The number of threads may be set between
1 and MAXTHREADS, which is currently 512 on ACPMAPS. Generally,
the more threads the better for efficiency, but each thread requires
some extra memory. Each thread requires a separate stack; for typical
Canopy applications, the default value of SK bytes of stack per thread
is adequate. Each thread also gets its own local allocation lalloc
heap (see the section 6.3.9 THE LALLOC HEAPS in THE CANOPY

SUBROUTINE REFERENCE); if a non-default size for the task lalloc
heap is declared, this is applied to every thread. (The default lalloc
heap size is 2K bytes.)

By default, the number of threads is set to 1 and Canopy processes
each site on each node sequentially. The number of threads may be
selected at the start of the job by the -threads <nthreads> option on
the canopy command line or via the environment variable CAN_ THREADS

= <nthreads, nstack>. It may also be changed from within the ap­
plication by calling the function

multithread(int nthreads, int stack_size);

from the control program. This may be called multiple times in an
application to dynamically change the number of threads or stack size,
but it is a relatively expensive operation and so should not be done
frequently. It is best to choose a number of threads and stack size
which works for the entire application, and set them once at the start
of the program.

For optimal performance, the user must choose an appropriate num­
ber of threads. The additional memory used for stacks and local allo­
cation heaps is about lOK bytes per thread, so if the application is
tight on memory, that can restrict the number of threads. In general,

4. 6. MULTI-THREAD 51

the more threads the better; but adequate transfer coalescing is usually
achieved by the time nthreads reaches 32-64.

Under certain special conditions it may be desirable to temporarily
disable context switching between threads. This might be useful if:

A section of code which does its own synchronization needs
to protect a critical section (i.e. to prevent other threads
from running, even if the current thread requests an off-node
access).

It is "known" that a task on some site is critical-many
other sites are waiting on results from the current site.
In this case allowing the task on the current site to fin­
ish quickly, at the expense of other sites on the same node,
can be a net win.

A task violates the multi-thread rules for usage of task
global variables or does something else unorthodox.

Two functions, multi threacLdisable () and multi threacLenable(),
are provided to disable and re-enable multi-thread context-switching.

4.6.3 Advanced Multi-thread Features

This section describes techniques which may be useful in certain special
situations - dealing with non-standard usage of global variables, fine­
tuning applications for maximum efficiency, and getting statistics on
multi-thread coalescing and memory usage.

Task Globals

It is possible (but considered harmful) to use global variables to pass
values between subroutines called by a particular task routine. For
example:

52 CHAPTER 4. PARALLELISM CONSIDERATIONS

int tg;
mytask_ ()
{

/• A task global •/
/* The task routine */

SotThingsUp ();

mysub ();

}

SetThingsUp ()
{

tg = ~hatever;/* Set global to its desired value*/
}

mysub () I* Subroutine done during this task */
{

value :: tg; /* Using the value set up */
}

Here, the variable tg is written in one subroutine and used in an­
other; we call tg a "task global". The light-weight context-switching
used by multi-thread does not provide a separate copy of task globals
for each thread. This means that the task globals, unlike broadcast
globals and automatic (stack) variables, cannot be used if nthreads >
1.

The following work-around may be used in cases where the task
global construct is required: during execution of a task routine with
multi-thread enabled, the CANOPY run-time library guarantees that
the global variable CAN_my _thread will contain a unique value, between
0 and MAXTHREADS-1. This value will be unique in each active thread.
An appropriately defined array can replace a task global, as illustrated
in this example:

4.6. MULTI-THREAD

int tg_[MAXTHREADS];
#define tg (tg_[CAN_my_thread])
/* Now there is a separate tg for each thread */
mytask_ () { /• The task routine •/
{

Set Things Up ();

mysub ();

}

SetThingsUp ()
{

tg = whatever;
I• Expands to tg_[CAN_my_threadJ = whatever •/

}

mysub () I* Subroutine done during this task */
{

value = tg;
I• Expands to value = tg_[CAN_my_thread] •/

}

53

A warning: The above technique has several limitations. The use of
#define to hide the indexing operation becomes more complicated if
the task global is an array or a structure, and will fail if the name of the
task global matches the name of an element in some other structure.
Also, task globals take up at least MAXTHREADS times as much space
as before, and become slightly less efficient to access. (NOTE: For
cases where the actual number of threads used tends to be much less
than MAXTHREADS, some savings in memory usage may be realized by
dynamically allocating the array with the malloc () library function,
such that it has exactly CAN~threads elements, instead of MAXTHREADS
elements.)

Independent of Canopy considerations, using global variables in this
way may be considered "poor coding practice"; but if there are com­
pelling reasons, they can be handled (with care) as illustrated above.

54 CHAPTER 4. PARALLELISM CONSIDERATIONS

Vertical Coalescing

Normally, the thread associated with a given site will hlock when it
calls field_pointer() to request off-node data; the thread resumes
execution only after the data has been obtained. There is a small
amount of overhead incurred whenever this happens, due to the thread
context switch. In some situations, it may be possible to reduce the
number of context switches (thereby increasing program efficiency), by
combining several field_pointer() calls made from the same thread.
This is called vertical coalescing.

The CANOPY library provides routines which allow vertical coalesc­
ing to be explicitly turned on and off. All field_pointer() calls sand­
wiched between multithread_begiILvertical() and multithread_­
end_vertical () will be coalesced. IMPORTANT: This means the re­
turned pointers will not be valid until after the multi thread_ end_ -
vertical() calL Here is an example:

multithread_begin_vertical();
/* queue the requests but do not do the actual transfers */
for (i;O; i<n; i++) {

}

ar[i];(whatever•)field_pointer(f1, &sites[i]);
I• •(ar[O .. n-1]) is not valid here yet•/
br[i];(whatever•)field_pointer(f2, &sites[i]);

multithread_end_vertical();
/* now ar and br are valid */

Because off-node accesses after a call to multithread_begiILver­
tical() might not receive data until multithread_end_vertical()
is executed, routines which return a site structure which might be
based on off-node information are illegal while vertical coalescing is ac­
tive. Specifically, move_siteO, move_site_by_path(), and site_at_­
pathO, are illegal between calls to multi thread_begiIL vertical()
and multi thread_ end_ vertical().

It is a logical error for a task to terminate while vertical coalescing
still active, since any field pointers that have been acquired have never

4.6. MULTI-THREAD 55

been valid. Canopy will declare an error and terminate the job if this
happens.

NOTE: When multi-thread is enabled, vertical coalescing is al­
ways enabled for data written to remote nodes with the put_field ()
function. Vertical coalescing of put_field() calls is not affected by
rnul ti thread_ begin_ vertical() or rnul ti thread_end_ vertical().

Copying Put_field() Data

Most Canopy programs use put_field() only to modify field data at
the HOME site, but some (for example, the FFT routines in FFTLIB),

modify data at other sites. When multi-thread is enabled, outgoing
data transfers are coalesced: putJield() requests are queued, and
the thread is allowed to continue. All putJield requests are buffered
until processing of the site is complete; at that time, all of the buffered
putJield () requests are flushed.

It is possible for the current thread to modify the contents of the
buffer passed to put_field (),before completing the task at the current
site. If this happens, there is a danger that the wrong data will get
written to the remote node, since the data has been changed before
the queue of outstanding put_field () requests has been flushed. To
avoid incorrect behavior in this situation, the putJield() function
normally makes a copy (on the lalloc heap) of any data being sent
off-node. Making these copies imposes a small performance penalty,
and increases the required lalloc heap size. (Since each thread has its
own lalloc heap, the amount of additional memory required can be
fairly large.)

Two routines are provided, which allow a task routine to control
whether or not a copy of off-node put_field() data is made. The
rnultithreacLbegin_nocopy() function tells Canopy that it is safe to
skip the copying of put_field data, since the contents of these vari­
ables will not be modified until after a call to multi threacLencL­
nocopy(). When rnultithreacLencLnocopy() is called, the queued
putJield() requests are flushed. These routines will normally be
used to bracket a short section of code which issues a series of put_ -

56 CHAPTER 4. PARALLELISM CONSIDERATIONS

field() requests, or a loop, which writes out the results of some op­
eration.

Miscellaneous Multi-thread Interactions

The features available for control of multi-thread opoerations are in­
tended to provide performance advantages when used in the simple
intended ways. For instance, veritcal coalescing should be invoked
by sandwiching a short section of code (containing field_pointer­
class routines) between calls to multi thread__ begiIL vertical() and
multi thread__ end__ vertical(). Similarly, multi thread__begiILnocopy()
should start a short code segment which is terminated by multi thread_ -
end_nocopy(). Invoking multi-thread should never alter the result of
a program.

However, Canopy cannot prevent these routines from being called
in arbitrary combinations and circumstances. In these cases, the prime
object is that the Canopy program will always get the correct result.
In order to prevent errors, certain combinations of advanced options
will be "turned off", behaving in a conservative manner with respect
to waiting and coalescing transfers:

Calling field_pointerO automatically causes the queue
of pending put_field() requests for the current site to be
executed. This is necessary to prevent data coherency prob­
lems which could otherwise occur if a task writes data with
put_field(), then turns around and attempts to access the
same data again using field_pointer().

A task or subtask inherits the multi-thread state (enabled
or disabled) of its parent. Furthermore, if multi-thread is
disabled on entry to a task or subtask, then that task or
subtask may not itself enable multi-thread (any calls to
multithread_enable() are ignored).

All tasks and subtasks started while multi-thread is enabled
begin executing with vertical coalescing disabled, and copy­
ing of put_field() data enabled. Calling a subtask does

4.6. MULTI-THREAD

not affect the state of these settings in the calling task, but
will have the side effect of causing the queue of pending off­
node requests (both read and write) for the current site to
be executed.

Calling any of the following routines, or returning from a
task routine, will cause any queued put_field or field_ -
pointer requests for the current site to be executed:

multithread_enable()
multithread_disable()
multithread_begin_vertical()
multithread_end_vertical()
rnultithread_begin_nocopy()
rnultithread_end_nocopy()

Multi-Thread Statistics

57

The print_mul ti thread_stats () function prints statistics which may
be useful for fine-tuning the number of threads and/or stack size for
an application. It reports the average degree of communications coa­
lescing, and stack usage statistics. The statistics are reset each time
print_mul ti thread_stat s is called. The print_mul ti thread_ stats
function may be called only from the control program (it is illegal inside
of tasks).

58 CHAPTER 4. PARALLELISM CONSIDERATIONS

4. 7 General Multi-Processing Issues

4.7.I Random Numbers

There are several subtleties relating to the use of (pseudo-)random num­
bers in a massively parallel environment, For one thing, the increased
computational power of these systems means that many more random
numbers can be run through; this implies more severe requirements
on the quality of the random sequence. Another point is that it is
desirable to have precisely reproducible results; many schemes for gen­
erating random numbers would lead to different results depending on
the number of nodes used. And it can be undesirable for two streams
of random numbers used in the same job to actually be two parts of
the same longer stream-this increases the likelihood of getting invalid
results due to similarities between the streams.

Even in single-processor systems, there are examples of researchers
obtaining incorrect results by using fl.awed random number generators.
Although Canopy provides a generator which is strongly felt to have
excellent properties (see RANLIB-RANDOM NUMBERS), the user is
free to provide a different kernel for generating the random sequence,
within the bookkeeping framework Canopy provides.

The proper logical entity for producing a stream of random numbers
is the site (the virtual processor). If a separate stream is associated
with each site, then random numbers will not cause results to depend
on the number of nodes, or on how the sites are distributed among the
nodes. Since typical jobs involve millions of sites, there are concerns
about correlations among the millions of streams, as well as the usual
concerns about randomness of an individual stream.

To set up and use random numbers in Canopy, the progam calls
make_randol!Lgeneratorduring the declaration phase-the random func­
tion is specified here. (Canopy provides in RAN LIB an excellent func­
tion: duaLrandom, which is based on a large feedback register method.
However, the user is free to create a different function-see section 6.1.5
RANDOM NUMBER DECLARATION.) Whenever a random number is
desired, whether during a task or otherwise, the random() function is

4. 7. GENERAL MULTI-PROCESSING ISSUES 59

called.
The naive way of handling randoms numbers on massively paral­

lel systems is to have one stream of numbers per node. Compared to
stream-per-site, this approach is very slightly faster, and saves the ne­
cessity of allocating room for seeds and queues of randoms for every
site (about 80 bytes per site). Canopy provides the option of stream­
per-node randoms. Using stream-per-node has the consequence that
repeated runs of the identical application on different numbers of nodes
will not produce identical results. If multi-thread is active, stream-per­
node randoms can lead to non-identical results, even if the number of
nodes is unchanged. Identical repeatability is often useful, so most
applications should select stream-per-site random numbers.

4.7.2 System Independence

In important consideration in program development is that programs
should give bit-for-bit identical results regardless of details such as the
number of nodes or the exact CPU on which the program was run.
Unfortunately, while Canopy was designed with this principle in mind,
C was not. However, if stream-per-site random numbers are used, the
only remaining problems are related to floating-point arithmetic. The
following may cause programs to give results which are not bit-for-bit
identical:

Integrate arguments involving floating point operations are
used in do_task, and the number of nodes has changed.

The compiler has re-arranged the order of floating-point
operations.

The supplied C math library, or the floating point arith­
metic itself, is different. (Not every CPU is perfectly IEEE
compliant.)

Only the first of these is specific to Canopy. If stream-per-node
random numbers are used, the the following discrepanceies can also
occur:

60 CHAPTER 4. PARALLELISM CONSIDERATIONS

Random numbers are used, and the number of nodes has
changed. Since different streams of randoms will apply to
a given site, the results can be completely different. The
difference is analogous to starting with a different random
seed.

Multi-thread context-switching is active, and randoms are
called for during task routines after f ield_pointer is called.
In this case, the order of randoms can vary even if the num­
ber of nodes remains unchanged.

Of course, a genuine error can cause inconsistency (and invalid re­
sults). This can happen if the application violates the Canopy paradigm,
which states that sites in a task are (logically) processed simultaneously.
For example, if the laplace. c example did not use the red-black tech­
nique to avoid the use of "stale" field data, it could produce inconsistent
results, depending on just how quickly each node does its work. Or the
application might use a global variable which is set but not broadcast,
or broadcast a variable which is obtained through dynamic allocation
(and in different places on various nodes).

Chapter 5

Typedefs, Structures, and
Variables

This chapter and the next chapter CANOPY SUBROUTINE REFERENCE,

form a reference manual for the Canopy software.
Canopy is designed as a set of subroutines callable from ordinary

C programs. This chapter describes the typedefs, structures, #defines
and global variables visible to the user and explains how to use them.
These objects are all declared in the include files for the Canopy sys­
tem. There are a few additional reserved words in Canopy which are
private variables and functions which for some reason or other cannot
be hidden. These reserved names all start with the string "CAN_" so
they can be avoided by normal programs. There are additional private
structures and typedefs but these are not in the linker tables so they
do not affect user programs.

Canopy is a layered product, with each layer presenting a clean
interface to the higher layers. The lowest layer, the Canopy Hardware
Interface Package (or CHIP), is designed to isolate the higher layers
from the machine and system details. The next layer, Canopy, is built
upon CHIP; other concept-oriented tools can be built upon the same
CHIP foundation.

Canopy is a set of subroutines designed for solving grid-oriented
problems on a multi-processor machine. Accordingly, the canopy. h

61

62 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

include file contains structures and typedefs for grid, field, and site
variables; and function prototypes for the routines that manipulate
them. Everything at the Canopy layer is built upon CHIP, so the
site variables, for instance, know about multiple nodes. However, a
great deal of effort has been spent ensuring that the user does not need
to know about CHIP; the multi-processor (or not) nature of the real
machine is not visible from the application software.

All the CHIP features documented here are visible at all levels.
The include file canopy. h itself includes chip. h, so the casual user
need never be concerned about the levels at which features are defined:
As long as canopy. h is included and the application is compiled using
a Canopy compilation tool (to link in appropriate libraries), an ap­
plication can freely mix Canopy routines and direct CHIP primitives
if needed. Normally, CHIP routines will not be called directly; but
some typedefs defined at the CHIP level (e.g. voidptr) will commonly
appear in user applications.

For convenience in porting Canopy to other platforms, and in iden­
tifying the nature of the CHIP interface, concepts defined at the CHIP
level are identified explicitly in this chapter. The last section of the
CANOPY SUBROUTINE REFERENCE forms a reference for CHIP sub­
routines.

5.1. TYPEDEFS 63

5.1 Typedefs

CHIP sets up some simple types to allow the ANSI-style Canopy code
to work on non-ANSI compilers. It is recommended that user Canopy
programs utilize these same types (e.g. voidptr rather than void*) so
that the applications will be portable to Canopy platforms which do
not have ANSI C.

void: void is defined as int (with a macro definition) if a non-ANSI
compiler lacks it, so programs can, with no modification, take
advantage of ANSI type-checking for void function return values
when compiled with an ANSI compilero

logical: A synonym for int, intended to be TRUE or FALSE

intptr: A synonym for int*.

floatptr: A synonym for float*.

charptr: A synonym for char*.

voidptr: Canopy uses voidptr extensively in the ANSI sense of
a "pointer to anything." All of the field_pointer routines, for
example, return voidptr because the fiel<Lpointer routine is
general and does not know the type to which its return value
points. Canopy uses voidptr in formal arguments and function
return values where the argument must be a pointer to some
type but that type is not fixed. Pointer arguments to Canopy
routines must thus be cast as voidptr and return values of Can­
opy routines cast back as pointers to the real type, since ANSI C
sometimes complains voidptr does not conform to a pointer to
something not void even though this practice is officially blessed.
For non-ANSI compilers lacking a void type, voidptr may be de­
clared as either intptr or charptr, which means *voidptr may
not be type void, (it may be char instead of int, for example).
This can never matter for valid programs.

64 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

intfunptr: A pointer to a function returning an integer, declared as
typedef int (*intfunptr)().

voidfunptr: A pointer to a function with no return value, declared
as typedef void (*voidfunptr) () or something else as appro­
priate for a non-ANSI compiler.

5.2. STRUCTURES 65

5.2 Structures

The Canopy structures define the types of variables that the user ma­
nipulates to utilize the Canopy concepts. There are also CHIP struc­
tures that the Canopy routines work with. For instance, the concept of
a fulLaddress is used to specify a memory location in a distributed
memory system. The Canopy concept of a site variable is based on
this underlying CHIP concept. The user manipulates sites and should
never need to know the details of the fulLaddress structure.

5.2.1 Canopy Structures

grid: Type for grid variables.

field: Type for field variables.

set: Type for set variables. A grid may be cast as a set and used as
the set of all sites on the grid.

map: Type for map variables.

site: This type is a structure whose purpose is to point to a Canopy
site. One element of this structure is a fulLaddress, which can
be used as an argument to ONMYNODE().

<site>. address The fulLaddress of the "origin" of the data­
including field data and other Canopy structures-for this
site.

When checking whether two site variables refer to the identi­
cal site, is_same_si te () should be used, rather than comparing
fulLaddress.

path: Structure to refer to a path along the grid. A path is an array
of directions, so path is the same as direction*-a synonym
for intptr. Note that malloc must be used to allocate enough
space for a path-the path variable is just a pointer. An array

66 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

of integers may be cast as path. The path array is terminated
by the special value END, which is an integer greater than any
allowable direction.

direction: Type of a direction, which is an integer between -ndir
and +ndir skipping zero. In grid. h definitions are made for the
directions X, Y, Z, T, MINUS_X, MINUS_ Y, MINUS_Z and MINUS_ T.
Since directions are small integers skipping 0, loops over directions
may be done as follows:

Positive directions: for (i=X; i<=T; i++) {}

Negative directions: for (i= -X; i>= -T; i--) {}

All directions: for (i= -T; i<=T; i=(i==-1)?1:i+1) {}

coordinates: Type to store coordinates. This is a 1-based array
of coordinates for each direction, with enough space to hold the
largest possible number of dimensions. The 0 element is present
but unused. For the rectilinear grids, the index into this array is
just the direction, so that, say, coords [X] is the coordinate in the
X direction. When a coordinates object is passed to a function
the function should declare it as type intptr.

field_address: This type is a structure whose purpose is to point to
a Canopy field element. One element of this structure is a fulL
address.

<field_address>.fieldadd: The fulLaddress of the data
composing this field element.

sync_address: This type is a structure with a fulLaddress as its
only element. Its purpose is to point to a Canopy synchronization
word, and its components should only be used internally:

<sync_address>. syncadd: The fulLaddress of the synchro­
nization word.

5.2. STRUCTURES 67

5.2.2 CHIP Structures

CHIP defines structures to deal with the distributed memory nature
of systems, the need for semaphores, and the control of multi-node
task processing. Most Canopy programs will not use these structures
directly.

Ordinary C pointers specify an address in the process memory space.
On a multi-node machine a pointer must also specify the node where
an address is valid. CHIP uses these structures to do so:

fulLaddress: This type comprises a node number and a voidptr, so
it may be used as a sort of "extended pointer" to point to memory
anywhere in the machine. Anywhere Canopy needs to refer to a
memory location that may be on an arbitrary node it uses this
construct. The internal nature of a fulLaddres structure may
depend on the platform on which Canopy is running. Although
definitions of the elements making up this structure may be found
in chip.h, those are not part of the public CHIP interface (and
thus not listed in this manual). Explicit use of such elements may
lead to non-portable code, and is deprecated.

fulLaddress_ptr: Synonym for fulLaddress*

CHIP has a special type for a CHIP semaphore. These provide a
system-independent means of contending for resources; they are used
via the routines in the SEMAPHORES section of the CHIP SUBROU­

TINE REFERENCE. The individual elements of the semaphore structure
are not described here because they have meanings which are system
dependent.

semaphore: A piece of memory used to keep track of a semaphore

semaphore_ptr: Synonym for semaphore*

CHIP defines the type for controlling arguments in calls to do_task()
and do_on_alLnodes (). While the former is a Canopy layer concept
the typedefs required for it must be defined in CHIP in order to be

68 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

passed through multi-node subroutine calls. This is the only place
where a CHIP concept has been modified for Canopy.

These structures appear in the Canopy library routines establish­
ing various sorts of do_task argument types. A user-supplied routine
defining new types of integrate arguments would utilize these struc­
tures (see USER SUPPLIED ROUTINES in the subsection on Do_TASK
KEYWORDS).

CAN_do_task_keyword: A structure describing a do_ task argument.
This is the type of the first argument to a do_task triplet, a
structure controlling how to combine the return arguments from
task routines.as described in detail in 6.4. 7 TAILORING Do_TASK
KEYWORDS.

CAN_do_task_keyworcLptr: Synonym for CAN_do_task_keyword*

One structure exists only as part of the host communication scheme.
This is never touched by any higher layer but it must be public so the
host can find it in the symbol table and interpret it:

CHIP _node_start_frall\e: Used for host communications.

5 3. GLOBAL VARIABLES AND MACROS 69

5.3 Global Variables and Macros

5.3.1 Canopy Variables

Canopy makes public several global variables, which are valid on all
nodes may be used inside tasks or in the control program. They may be
implemented as ordinary variables or as macros (by #define directives).
Either way, these are to be treated as read only variables; attempts to
change their values directly will lead to undesired results.

site *HOME: A pointer to the HOME site.

grid NOGRID: A grid variable used as the null grid (type is grid).

site NOWHERE: The null site. The NOWHERE site is valid during and
after the call to complete_definitions. Note that the variable
NOWHERE is of type site, in contrast to HOME which is a site*
pointer to a site. It is appropriate to use NOWHERE in user-supplied
mapping functions and lattice definition functions-these func­
tions get called by complete_defini tions.

site CAN_current_site_pointer: This variable is pointed to by HOME
and should probably not be used by itself. It is valid only inside
tasks.

int CAN_nlattices: Number of grids.

int CAN_nfields: Number of fields.

int CAN_nsets: Number of sets.

int CAN_nmaps: Number of maps.

int CAN_nrandoms: Number of random number generators.

int CAN_nthreads: Maximum number of threads to be used.

70 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

int CAN_stack_size Size of stack assigned to each thread. The values
of CAN_stack_size and CAN_nthreads may be controlled using
the multi thread routine (section 4.6.2 CONTROL OF MULTI­

THREADING); the user must not modify these variables directly.

int CAN_my_thread: Number of the thread currently executing. This
is valid anywhere, but will be zero outside of tasks.

(The lattice, field, set, map and randoms counters are valid for use
at all times, but before complete_defini tions () they only count the
number declared to that point.)

These lalloc structures have to be visible to the linker but should
probably not be used directly:

CAN_lalloc_structure CAN_lalloc

CAN_lalloc_structure CAN_control_lalloc

CAN_lalloc_structure CAN_do_task_lalloc

In addition, canopy. h defines the following symbol for convenience
in compilation:

CANOPY ..l:!: This is defined to prevent errors if canopy. h is included
more than once.

5.3.2 CHIP Variables and Macros

CHIP defines logical values (as integers), for internal use. The user is
free to take advantage of these when using logical variables.

TRUE: Value 1 for logical variables.

FALSE: Value 0 for logical variables.

CHIP also defines the words ZERO through TWENTY as the integers 0
through 20 (in the obvious way). This can be useful when invoking
routines which expect arguments passed by reference.

The following is defined as a fulLaddress structure which matches
no other fulLaddress:

5.3. GLOBAL VARIABLES AND MACROS 71

NULLFULLADDRESS: A fulLaddress that matches no other, and
which is invalid to attempt to dereference.

NDDE_NUMBER(NULLFULLADDRESS) returns -1, a value which can­
not match any actual node.

locaLaddress_fronLfulLaddress(NULLFULLADDRESS) returns
NULL, a null pointer.

The NOi/HERE site has NULLFULLADDRESS as its fulLaddress.

The following variables are established and exported by the CHIP
layer routines. They are set up before the call to control and so are
valid anywhere. The Canopy program is allowed to read them (but
should not normally need to).

int CAN...number_of_nodes: Number of nodes used by this job.

int CAN...number_of_ this_node: Index of this node, where the control
node is 0 and the range is up to CAN...number_of_nodes - 1.

The following provide portable ways of extracting infromation from
fulLaddresses. These can be macros in a given implementation, so
user code should not attempt to pass them as a function, or to use
them with pre- or post-incremented arguments:

logical ONMYNODE(fulLaddress *fa): TRUE if *fa is local to this
node.

logical IS-5AME_FULL...ADDRESS (fulLaddress *fal, fulLaddress *fa2):

TRUE if both arguments point to the same location in the mem­
ory space.

int NDDLNUMBER(fulLaddress *fa): Returns the node number of
*fa; returns -1 if fa is NULL_FULL...ADDRESS.

voidptr LDCALADDRESS(fulLaddress *fa): Returns the address
(within local memory on the relevant node) of *fa; returns NULL
if fa is NULL_FULL_ADDRESS.

72 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

Functions for forming fulLaddresses from node numbers and pointers
are described in section 6.5.2, FULL ADDRESS FUNCTIONS.

The following macros are defined in chip.h for use by Canopy inter­
nals:

DO_TASK_PASS: Value for task keyword type.

DO_TASK_FUNCTIDN: Value for task keyword type.

DO_TASK_INTEGRATE: Value for task keyword type. All user-defined
do_ task keywords will be of this type.

MAXARGS: Maximum number of arguments permitted in a do_task call.

MAX_NODES: Maximum number of nodes in any given job.

WORD SIZE: sizeof (voidptr), which in most implementations matches
sizeof (int).

In addition, chip. h defines the following symbols for convenience
in compilation and inter-system compatibility:

ANSLPRDTDTYPES: Defined if ANSI C prototypes exist.

BIG_ENDIAN: Defined only if the machine is big endian.

VARARGS: Defined if using VARARGS

STDARG: Defined if using STDARGS (we are moving toward this)

BSD: Defined if BSD 4.2 or 4.3

SYS_V: Defined if SYSV Unix.

XXX_C: XXX is replaced by the machine currently in use-see chip. h for
a list. This is used for language-dependent ifdefs. It is usually
set by a -D option in the shell running the compilation.

CHIP ..1l: Defined after chip. h has been included; this prevents errors
if the file is included more than once.

5.4. KEYWORDS 73

5.4 Keywords

5.4.1 Canopy Keywords

Canopy applications will make use of these keywords, defined as integer
values in canopy .h, to direct the behavior of various Canopy routines.

READ: Keyword used by open_field_file().

WRITE: Keyword used by open_fiel<Lfile().

APPEND: Keyword used by open_field_file().

STREAM_PER._SITE: Keyword used to make a random number generator
that keeps a separate stream of pseudo-random numbers for each
site on each grid.

STREAM_PER_NODE: Keyword used to make a random number generator
that keeps a separate stream of pseudo-random numbers only on
each node, which is the minimum number of streams needed to
do things in parallel.

While Canopy itself does not include #def in es to refer to any di­
rections, most user programs do. The file grid. h, for example, defines
these:

X, Y, Z, T: Many programs define these as 1, 2, 3, and 4 for the
four positive directions.

MINUS_X, MINUS_ Y, MINUS_Z, MINUS_ T: Many programs define these
as -1, -2, -3, and -4 for the four negative directions. Note that
with these definitions MINUS_](= -X and so forth.

74 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

5.4.2 Do_task Keywords

Canopy applications use keywords to describe the nature of arguments
to tasks. These keywords are used by do_task, but also by the CHIP
level routine do_on_alLnodes -therefore, they are CHIP concepts.
These keywords are pointers to CAN_do_task_keyword structures which
must be in the same memory location on all nodes. The Do_TASK
KEYWORDS subsection of USER-SUPPLIED ROUTINES describes how
such a structure is set up. The most common types of arguments are
specified by the following keywords, set up by CHIP:

PASS: Pass any type of argument except a function.

FUNCTION: Pass a function.

SUM-11.EAL: Sum up the returned argument as a float.

INTEGRATE: Synonym for SUM-11.EAL

MAX-11.EAL: Take the maximum returned argument as a float.

MIN-11.EAL: Take the minimum returned argument as a float.

SUM_INTEGER: Sum up the returned argument as an integer

MALINTEGER: Take the maximum returned argument as an integer.

MIN_INTEGER: Take the minimum returned argument as an integer.

SUMJ)OUBLE: Sum up the returned argument in double-precision.

MAXJ)OUBLE: Take the maximum returned argument (double-precision).

MINJ)OUBLE: Take the minimum returned argument (double-precision).

TAGJ1AX_INTEGER: Return the maximum integer value and a tag field
associated with it.

TAGJ1ALREAL: Return the maximum float value and a tag field
associated with it.

5.5. FUNCTION TYPES 75

TAG.J1ALDDUBLE: Return the maximum double value and a tag field
associated with it.

END: Not a CAN_do_task_keyword_ptr but rather just an integer which
is used to signify the end of the do_task triplet list.

5.4.3 Other CHIP Keywords

These special values are defined in CHIP for internal use, and are not
typically used by applications:

AVAILABLE: Used by semaphores.

5.5 Function Types

Canopy declares several special types of functions even though C com­
pilers do not notice the distinction. These different declarations are
made anyway since they improve clarity.

set_of_sit es_func: intfunptr returning TRUE or FALSE and used to
set up a set of sites.

connecti vi ty_Iunc: voidfunptr described m USER SUPPLIED

ROUTINES and used to set up grids.

distribution_iunc: voidfunptr described m USER SUPPLIED

ROUTINES and used to set up grids.

coordinate_func: voidfunptr described in USER SUPPLIED ROU­

TINES and used to set up grids.

inverse_coordinate_func: voidfunptr described m USER SUP-

PLIED ROUTINES and used to set up grids.

76 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

5.6 Private Canopy Types

Canopy uses an assortment of private types. These words are, of course,
reserved. More information about the private types is in the canopy. h
file.

define_fielcLlist: Information about field set-up.

define__map_list: Information about map set-up and maps.

lalloc_structure: lalloc pointers.

queue_struct : Random number queue.

random_generator_area: Used by random number definition.

5. 7 Canopy Limits

Several Canopy limits are set by various #define objects. These may be
changed by changing the #define statement in canopy. h. The current
value of each of these limits is in parantheses:

MAXPARAMETERS (57): Maximum number of parameters in a grid
definition. For periodic rectilinear grids this must be at least
twice the dimension.

MAXFIELDS (200): Maximum number of site fields. Each link field
takes up ndim + 1 site fields.

MAXLATTICES (10): Maximum number of grids.

MAXSETS (200): Maximum number of sets. Each grid takes up one
set as well as one grid.

MAXCLUSTERS (20): Maximum number of field clusters. Each link
field takes up one cluster.

5.8. LIST OF ALL RESERVED WORDS 77

MAXPAIRS (20): Maximum number of field pairs. Each link field also
takes up one pair.

MAXFILES (5): Maximum number of simultaneously open field files
of both the tape and disk variety.

MAXMAPS (20): Maximum number of maps. Each map also takes up
two fields.

MAXGENERATORS (5): Maximum number of simultaneous different
random number generators. Each generator also takes up at least
two fields and a cluster.

MAXTHREADS (512): Maximum number of threads of execution which
may be active simultaneously.

Other limits are set in chip .h, as described in CHIP VARIABLES

AND MACROS:

MAx_.NoDES (630): Maximum number of processor nodes to be used
by any one process. This may be less than the total number in
the system. Implementations of Canopy on very large systems
will modify this limit to allow for very large jobs.

MAXARGS (10): Maximum number of argument triplets in a call to
do_ task.

CAN_ATOMIG_GATHER (512): Maximum number of blocks of data that
will be atomically transfered by a remote_gather or remote_scatter
call.

5.8 List of All Reserved Words

This is a list of words the Canopy user is restricted from defining in an
application, because the Canopy software already defines them. These
words include typedefs, structs, keywords, global variables and macros,

78 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

defined in this chapter, and names of public routines, defined in the
CANOPY SUBROUTINE REFERENCE chapter.

There may, depending on implementations, be other reserved words,
which are inappropriate for the user to use but which need to be ex­
ported for interfacing to hosting or other tools. All such "hidden"
reserved words begin with CAN_ or CHIP_; every symbol is either public
(and defined in this manual) or begins with one of those strings.

5.8. LIST OF ALL RESERVED WORDS

ANSI_PROTOTYPES
APPEND
AVAILABLE
BIG_ENDIAN
BSD
CANOPY_H
CAN_ATOMIC GATHER
CAN_control_lalloc
CAN_current_site_pointer
CAN_do_task_keyword
CAN_do_task_keyword_ptr
CAN_do_task_lalloc
CAN_lalloc
CAN_lalloc_structure
CAN_my_thread
CAN_nf ields
CAN_nlattices
CAN_nmaps
CAN_nrandoms
CAN_nthreads
CAN_nsets
CAN_number_of nodes
CAN_number_of_this_node
charptr
CHIP_H
connectivity_func
coordinates
coordinate_func
define_field_list
define_map_list
direction
distribution_func
DO_TASK_FUNCTION
DO_TASK_INTEGRATE
DO_TASK_PASS

EIGHT
EIGHTEEN
ELEVEN
END
FALSE
field address
FIFTEEN
FIVE
floatptr
FOUR
FOURTEEN
full_address
FUNCTION
grid
HOME
INTEGRATE
intfunptr
intptr
inverse_coordinate_func
IS_SAME_FULL_ADDRESS
LOCAL_ADDRESS
logical
map
MAXARGS
MAX CLUSTERS
MAXFIELDS
MAXFILES
MAXGENERATDRS
MAXLATTICES
MAXMAPS
MAXPAIRS
MAXPARAMETERS
MAXSETS
MAX_DDUBLE
MAX_ INTEGER

79

80 CHAPTER 5. TYPEDEFS, STRUCTURES, AND VARIABLES

MAX_NODES
MAX_REAL
MINUS_T
MINUS_X
MINUS_Y
MINUS_Z
MIN_DOUBLE
MIN_INTEGER
MIN_REAL
NINE
NINETEEN
NODE_NUMBER
NO GRID
NOWHERE
ONMYNODE
ONE
PASS
path
queue_struct
random_generator_area
READ
semaphore
semaphore_ptr
set
set_of_sites_func
SEVEN
SEVENTEEN
site
SIX
SIXTEEN
stack_ size
STDARG
STREAM_PER_NODE
STREAM_PER_SITE
SUM_ DOUBLE

SUM_ INTEGER
SUM_REAL
sync_ address
SYS_V
T

TAG_MAX_DOUBLE
TAG_MAX_INTEGER
TAG_MAX_REAL
TEN
THIRTEEN
THREE
TRUE
TWELVE
TWENTY
TWO
VARARGS
void
voidfunptr
voidptr
WORDSIZE
WRITE
x
y

z

Chapter 6

Canopy Subroutine
Reference

6.1 Declaration Routines

Before the call to cornplete_defini tions () all of the grids, fields, sets,
maps, and random number generators used in Canopy must be declared
using these routines. The grid, set, map, and random number generator
routines require user-supplied functions to determine which grid, set,
map or random number generator is being declared. (These are detailed
in the section USER-SUPPLIED ROUTINES.)

The libraries gridlib, setlib, and ranlib contain routines for
several commonly-used constructs, which may be used as examples and
templates for building customized functions for other constructs.

81

82 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.1.1 Grid Declaration

indextarbitrary _grid()

grid arbitrary_grid(int nsites,
int ndim,
int ndir,
intptr lower_limits,
intptr upper_limits,
intptr other_params,
distribution_func dist_func,
coordinate_func c_func,
inverse_coordinate_func icfunc,
connectivity_func conn_func);

Purpose: To declare an arbitrary grid using user-supplied functions
for the grid connectivity and distribution. When arbi trary_grid
is called, Canopy will the coordinate function and distribution
function for site 1, the site 2, ... up to nsi tes,] to determine
the coordinates and the node responsible for each site. Although
the coordinates may have gaps, site serial numbers run from 1
to nsi tes continuously. After the coordinates and site distribu­
tion have been set up, the connectivity and inverse coordinate
functions are used to create the remaining structures defining the
grid.

Arguments:

int nsi tes: The number of sites in the grid.

int ndim: The number of dimensions of the grid.

int ndir: The number of positive directions of the grid. This
is not necessarily the number of dimensions. For example,
in a hexagonal lattice on a plane there are three positive
directions but only two dimensions. Also notice that of the
six possible links (in the positive and negative directions

6.1. DECLARATION ROUTINES 83

from each site) only three are realized. This is allowed as
long as the grid has the property that the site in direction
+d from the site in direction -d from site s is site s (which
simply says that the way to get back is to go in the negative
direction).

intptr lower_limits: A one-based array containing the lower
limits (or least coordinate allowed) in each dimension.

intptr upper_limits: A one-based array containing the upper
limits (or greatest coordinate allowed) in each dimension.
Notice two things: 1) The number of sites allowed in a di­
mension is thus upper_limit-lower_limit + 1; and 2)
Not all the allowed coordinates need be used. For rectilinear
lattices all combinations of coordinates correspond to sites.
For some grids (such as hexagonal grids) this will not be so,
which is fine as long as all the points have coordinates inside
the limits.

intptr other _params: Pointer to an array which may be used
to pass extra user-defined information about the grid, to var­
ious user supplied connectivity, coordinate and distribution
functions (see section 6.4, User Supplied Routines). The
number of words of data available in this manner is MAXPA­
RAMETERS - 2*ndim. This array must always be present;
if no extra data is to be used, a dummy array of dimension
MAXPARAMETERS is always safe.

distribution_func dist_func: A pointer to a distribution
function, as described in USER SUPPLIED ROUTINES.

coordinate_func c_:func: A pointer to a coordinate function,
as described in USER SUPPLIED ROUTINES.

inverse_coordinate_:func ic_func: A pointer to an inverse
coordinate function, as described in USER SUPPLIED ROU­
TINES.

84 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

connect i vi ty_func conn_func: A pointer to a connectivity
function, as described in USER SUPPLIED ROUTINES.

Return Value: The grid variable referring to this grid.

The following functions already exist in gridlib and are good ex­
amples of where to begin. The default distribution function can be
used without change for any new grid, leading to sensible (though not
necessarily optimal) distribution of sites among the nodes.

default_distribution_function
periodic_connectivity_func
periodic_coordinate_func
periodic_inv_coordinate_func
chunk_coordinate_func
chunk_inv_coordinate_func

6.1. DECLARATION ROUTINES

6.1.2 Field Declaration

Declaration

field site_field(grid g, int nbytes);
field link_field(grid g, int nbytes);

85

Purpose: To declare fields on the sites or links of a previously declared
grid. If the field is a site field it has one element on each site of
the grid. If it is a link field it has one element on each link, and
the element in direction +d from site s is the same as the element
in direction -d from the site in direction +d from site s.

Arguments:

grid g: The grid on which the new field is to be declared.

int nbytes: The size of each element of the new field, in bytes.
Especially when a field may contain a complicated structure,
it is highly recommended that sizeof (fieldelement) be used
rather than a manual count of the size of the field. This is
because many C compilers will pad a structure to allow for
alignment of the data in that structure; sizeof () will always
take this padding into account.

Return Value: The field variable referring to the new field.

The data reserved for fields is aligned in an appropriate manner:
Fields are always at least 4-byte aligned, and nbytes for a field is a
multiple of eight, then the field elements will be 8-byte aligned. On
certain chips (the i860 in particular), this 8-byte alignment is crucial,
since double-precision loads must start on an 8-byte boundary. Even if
a system is capable of handling a non-aligned access, aligned accesses
are more efficient.

Canopy does not support automatic quadword (16-byte) alignment.

86 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Grouping

void overlap_fields(int n, field *list);
void cluster_fields(int n, field *list);

Purpose: To force fields to be consecutive or to share memory space.
This is used primarily by the link_field function, which creates
an overlapped and clustered field as described below.

Arguments:

int n: The number of fields to be overlapped or clustered.

field *list: An array of fields of length n.

Return Value: None

Example: A 4-D Link Field:
/* notice that site_field returns */
I* consecutive integers. *I

field clist[4]; /*list of clusters *I
field olist[2]; /*list of overlaps*/
field flink=site_field(g,4*nbytes);
clist[O]=site_field(g,nbytes);/*a field for each*/
clist[1]=site_field(g,nbytes);/*direction on the*/
clist[2]=site_field(g,nbytes);/*grid -- known to*/
clist[3]=site_field(g,nbytes);/*be 4-dimensional */
cluster_fields(4,clist);/* force to be in order */
olist [1] = list [O];
olist[O] = flink;
overlap_fields(2,olist);/* link field now is one*/

/* large field overlapped*/
/* with four smaller ones*/

6.1. DECLARATION ROUTINES

6.1.3 Set Declaration

set set_of_sites(grid g, set_of_sites_func func);
set redefine_set_of_sites(grid g,

set_of_sites_func func,
set set_to_change);

87

Purpose: To declare a set of sites for use by do_task. The redefine
function is special: it is the only declaration routine that is called
after complete_definitions time. If the set_of_sites function
uses global variables this can be used to make a set of sites which
depends on some calculation done on the grid.

Arguments:

grid g: The grid on which to declare the set.

set_of _si tes_func func: The function that determines which
sites are in the set and, if the set is compound, their level in
the set. This function is described in the USER SUPPLIED

ROUTINES section.

set set_to_change: For a redefinition, this is the set variable
of the set to be changed. This set must have been already
declared on the same grid as the new definition.

Return Value: The newly declared set. For redefinitions, this is the
same as seLto_change.

88 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.1.4 Map Declaration

map define_map(grid domain,
grid range,
intfunptr mapfunc);

map compose_map(map mid_to_range,
map domain_to_mid);

Purpose: To declare maps. define~ap declares a map from a
function; compose~ap declares the composition of two maps. The
maps in a composition must have already been declared and the
range of the second must be the domain of the first, which is
required by the mathematical definition of composition. Maps
may be automorphisms, and there may be more than one map
connecting the same grids.

Arguments:

grid domain: The domain grid for the new map.

grid range: The range grid for the new map.

intfunptr mapfunc: A pointer to the mapping function, as de­
scribed in USER SUPPLIED ROUTINES. Note that mapfunc
returns a logical rather than an integer, but that logical
is a synonym for the subset (0,1) of the integers so the types
really do conform.

map mid_to_range: The map applied second in a composition.

map domain_to_mid: The map applied first in a composition.
The composed map maps a site in the domain grid of the
domain_ t o_mid map to the range grid of the micL t o_range
map. The site maps to NOWHERE in the obvious cases.

Return Value: The newly declared map.

6.1. DECLARATION ROUTINES

6.1.5 Random Number Declaration

int make_random_generator(voidfunptr random_func,
int type,
int number_to_make,
int seed);

Purpose: To declare a random number generator.

Arguments:

89

voidfunptr random_func: The function returning pointers to
the generation and initialization functions, as described in
USER SUPPLIED ROUTINES.

int type: Either STREAM_PER...SITE or STREAM...PER...NODE.

int number_to_make: The number of random numbers to be
generated in a single call to the generation function. It is
more efficient to use larger values for this number but it
takes more storage, particularly in the stream-per-site case.
The random sequence does not depend on this number.

int seed: The seed value. The same seed value leads to the
same sequence.

Return Value: The integer number of the random number generator
as used by multLrandom.

Note: In stream-per-site mode each site on each grid is assigned
a unique stream number from its coordinates and grid number.
Therefore changing from, say, a periodic grid to a chunky periodic
grid of the same size has no effect on the random numbers, but
changing the program so a new grid is declared before the old grid
will change the streams. With a little thought programs may be
revised so the random number sequence is the same if the same
seed is used-this simplifies debugging.

90 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.1.6 Complete_Definitions

void complete_definitions();
void complete_canopy_handshake();

Purpose:
used to

complete_definitions creates the internal structures
control all of the declared objects. All of the declara-

tions except redefine_set_of_sites must precede it, and only
one call to it may be made in a program. A call to complete_
definitions also causes the linker to load in all of the Canopy
structure that calls the control entry point, so a C program may
be converted to a Canopy program by adding the line complete_
definitions and changing the main entry point from main to
control.

complete_canopy_handshake may be used instead of complete...
definitions to run a prgram with no other Canopy library rou­
tines, on a platform which expects Canopy applications. This
makes the executable image smaller, since the internal Canopy
routines called by complete_defini tions need not be linked in.

Arguments: None

Return Value: None

6.2. ROUTINES CALLED BY CONTROL PROGRAM 91

6.2 Routines Called By Control Program

6.2.1 Do_Task Routines

Tasks Using Sets

void do_task(voidfunptr task, sets, ... , END);
void do_task_n_times(voidfunptr task, set s,

int ntimes, ... , END);

Purpose: To call some subroutine on each site in a set. This is
how Canopy effects parallelism: The sites in the set are done on
individual nodes in parallel. An example of how to use this is
given later in this section: Do_ TASK EXAMPLE.

Arguments:

voidfunptr task: The task to be done on sets. Task functions
are described in detail in USER SUPPLIED ROUTINES.

set

int

s: The set on which to do the task. If s is a compound set
later levels are done only after earlier levels are completed,
but consult the description of compound set usage in the
PARALLELISM CONSIDERATIONS of the TUTORIAL chapter
for details of how to ensure synchronization.

ntimes: For do_task_n_times, this is the number of times
to do the task. This is like creating a compound set of sites
with each site in the set several times, so the synchronization
routines must be used the same way.

Triplets of arguments, as described in Do_ TASK TRIPLETS.

END: The keyword to end the variable argument list.

Return Value: None

92 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Sub-Tasks Using Maps

void do_task_on_inverse_image(voidfunptr task, map m,
... , END);

void do_task_on_inverse_image_set
(voidfunptr task, map m, set s,
... , END);

Purpose: To do a sub-task. These must be called inside another task
routine. They do a task on the inverse image of the HOME site.
These calls may be nested to any level, as the HOME site in the
sub-task may have another inverse image by another map.

Arguments:

voidfunptr task: The task to be done on set s. This task func­
tion is described in detail in USER SUPPLIED ROUTINES.

map m: A map whose range grid must be the grid of the current
HOME site. The task is done on those sites on the domain
grid of m in the inverse image of the HOME site.

set s: A set in the domain of the map used to restrict the inverse
image. The task will be done only on those sites both in the
inverse image of the HOME site and in set s. Ifs is a compound
set, the sites will be done in the order described by the levels
just as in do_task itself.

Triplets of arguments, as described in Do_ TASK TRIPLETS.

END: The keyword to end the variable argument list.

Return Value: None

A warning: During a sub-task, the fields on the HOME site are not guar­
anteed to reside on the local node. During sub-tasks, put_field must
be used to modify field data, even at the HOME site.

6.2. ROUTINES CALLED BY CONTROL PROGRAM 93

Do_Task Triplets

Ordinary subroutines only need to know the address or value of their
arguments. Because Canopy task subroutines are done over a set of
sites on (possibly) different CPU's, they need to also know the length
of their arguments. In addition, Canopy tasks need to know what to
do with output arguments from a task on a site, since there is only
one output returned to the calling routine instead of one for each site.
This is controlled by the keyword governing the argument. For internal
reasons, arguments to task routines must all be pass by address. A
complete triplet is of the form:

<keyword>, <address of argument>, <length in bytes>

Several keyword arguments have already been defined:

FUNCTION: To pass a function address.

PASS: To pass any other variable.

INTEGRATE: To sum up the arguments after the task routine returns,
treating them as real numbers.

SUM...REAL: Synonym for INTEGRATE

MAX...REAL: To keep only the maximum argument, treating them as
real numbers.

MIN...REAL: To keep only the minimum argument, treating them as real
numbers.

SUM_INTEGER: To sum up the arguments, treating them as integers.

MAX-INTEGER: To keep only the maximum argument, treating them as
integers.

MIN_INTEGER: To keep only the minimum argument, treating them as
integers.

SUMJ)OUBLE: Double-precision sum.

94 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

MAX...DOUBLE: Double-precision maximum.

MIN...DOUBLE: Double-precision minimum.

TAGJ1AX_INTEGER: Used to return a tag field. Returns the maximum
value of the first element of a structure (treated as an integer)
and the remainder of the structure associated with the maximum
value. For example, this could be used to return the coordinates
of the site with the largest value.

TAGJ1AX_REAL: As above, but treats the first element as a float.

TAGJ1AX_DOUBLE: As above, but treats the first element as a double.

Obviously, PASS and FUNCTION are used when the task routine is
expecting a pointer to an input argument, and the others are used
when the task routine computes a value and stores it. The length of
the arguments is also needed so that do_task can process the return
values properly. Users may create additional keywords as described in
the section on USER-SUPPLIED ROUTINES.

Examples of triplets are:

PASS, &this, sizeof(this),
INTEGRATE, &somefloat, sizeof(float),
MAX_INTEGER, &intarray, arraydimension*sizeof(int),
MIN_REAL, &realval, sizeof(realval),
FUNCTION, functionname, sizeof(functionname),

For the FUNCTION keyword the argument is always a function name and
the length is always the size of a pointer (function pointers have the
same length as any other pointer type). If an array of function pointers
is passed to the task routine (which is completely legal since functions
are guaranteed to have the same address on all nodes) use PASS instead.

On the following page is an example of how to use tag fields to write
a routine that returns the coordinates of the site with the largest value
of some field.

6.2. ROUTINES CALLED BY CONTROL PROGRAM

typedef struct { /* Define the structure first */
float value;
coordinates coords;

} test_tag;

void task_(tt,f)
test_ tag *tt;
field *f;

/* the task routine */

{

I* the value and its coordinates */
tt->value = *((float*)field_pointer(f,HOME));
get_coordinates(HOME, tt->coords);

} /* task_ */

void task(f)/* this routine for 2-D grids only */
field f;
{

test_tag tt; /* temporary */
do_task(task_, grid_supporting_field(f),

TAG_MAX_REAL, &tt, sizeof(tt),
PASS, &f, sizeof(f),
END);

printf("%f at (%d,%d)\n" ,tt.value,
tt.coords[X] ,tt.coords[Y]);

} /* task */

95

96 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Do_Task Example

/* Here is an example of do_task using the */
/* 'generalized subroutine header' structure. */

/* test_task returns the sum of the co- */
I* ordinates at a site multiplied by an */
/* integer in the array inarg. */
/*The output is a float. */

void test_task_(inarg, outarg);/* note at end*/
int *inarg;
float *outarg; /* everything is pass-by-address*/
{

coordinates coords;
grid g = grid_supporting_site(HOME);
int ndim = number_of_dimensions_of_grid(g);
int i;
get_coordinates(HOME,coords);
for (*outarg=O.O, i=1; i<=ndim; i++) {

*outarg += inarg[i]*coords[i];
}

} /* test_task_ */

void test_task(s, inarg, outarg) /* routine to */
set s; /* call test_task_ through do_task */
int *inarg;
float *outarg;
{

grid g = grid_supporting_set(s);
int ndim = number_of_dimensions_of_grid(g);
do_task(test_task_, s,

PASS, inarg, ndim*sizeof(int),
INTEGRATE, outarg, sizeof(float),
END);

} /* test task */

6.2. ROUTINES CALLED BY CONTROL PROGRAM 97

I* this is a sample control */
/* program using test_task. */

void control()
{

grid g;
coordinates a;

float outval;
/* define the grid here */

g = periodic_cubic_grid(3,4,5);
/* This call must be in all */
f* Canopy programs after the */
/* declarations are done. */

complete_definitions();

/* set up the array for inarg*/
a[1] = 1; a[2] = 2; a[3] = 4;
test_task((set) g, a, &outval);

/* print the result */
printf("And the answer is %f\n",outval);
printf("And the answer should be 270.0\n");

} /* control */

98 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.2.2 Broadcast

void broadcast(voidptr object, int length);

Purpose: To make the value of a global variable set in the control
program known to all of the task routines on every other node as
well.

Arguments:

voidptr object: The address of the static variable. This
address is cast as a voidptr since Canopy uses that type as
a "pointer to anything."

int length: The length in bytes of the object to be broadcast.

Return Value: None

NOTE: This cannot be called from inside a task routine, nor can it
be used on variables obtained through dynamic allocation (since
those variables will not be in the same place on all nodes). It also
makes a temporary copy of the object being broadcast, so very
large objects should be broken into pieces if malloc runs out of
space.

6.2. ROUTINES CALLED BY CONTROL PROGRAM 99

6.2.3 Field File Routines

Opening and Closing Files

void open_field_file(char *filename, int rwmode);
void close_field_file(char *filename);

Purpose: To open and close Canopy field files. These must not be
called from a task routine.

Arguments:

char *filename: The field file name. If the name does not
contain a '#' sign, the file is an ordinary UNIX file on the
host machine. If the name does contain a '#' then the field
file is stored on the distributed file system. The format for
file-names on the distributed system is setname#filename,
where set name identifies the tape set or (disknn) the multi­
disk set. Tape sets must have been already initialized and
mounted using the appropriate tape system commands be­
fore open is called. See the User's Guide for more details
about mounting tapes and about set names for files on disk.

int rwmode: This is the keyword value READ or WRITE, de-
pending on whether the field file is to be opened for read,
write. On the distributed file system, open for write will
only create a new file-if a file already exists open will fail.
For disk files, a third option is APPEND, which allows new
field records to be appended to existing files (or creates a
new file if filename does not exist).

Return Value: None. Errors in file open or close operations are
reported as fatal errors.

100 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Writing and Reading Fields

void write_field(char *filename, field f);
void read_field(char *filename, field f);
void read_slice_of_field

(char *filename, field f, intfunptr mapfunc);

Purpose: To read and write fields on field files. (These must not
be called from a task routine.) Use read_slice_of_field() to
input a subset of field elements from a stored field. For example,
one time-slice of a 4-dimensional grid may be input onto a field
defined on a 3-dimensional grid.

Arguments:

char *filename: The field file name as used in the open_ -
field_file() call.

field f: The field to read or write: read_field and wri te_field
read or write the entire field to disk or tape.

intfunptr mapfunc: For read_slice_of_field, this is a
pointer to the mapping function specifying where each in­
put field element is to be placed. See the section Mapping
Functions in USER SUPPLIED ROUTINES for a description
of the function syntax. The input coordinates of the map re­
fer to the grid associated with the field stored on disk or tape;
the output coordinates are on the grid supporting the field
f. For given input coordinates, if mapfunc returns FALSE,
then the field element at that site is not read in at all.

Return Value: None. Errors are fatal.

6.2. ROUTINES CALLED BY CONTROL PROGRAM 101

6.2.4 IEEE Precision Control

On those machines which have IEEE floating-point arithmetic (such as
the D860 and FPAP nodes) these routines provide a unified method of
setting the mode in use. Canopy programs print out the IEEE mode
they are using at the beginning so there is no confusion. Not all CPU's
support all modes and the defaults may be different for different ma­
chines.

The modes and flag names are described on the next page. Canopy
reads the enviroment variable FMODE to over-ride the default IEEE
modes. For example,

setenv FMODE="ROUND_UP,UNDERFLDW_ZERO"

selects round toward plus infinity and set underflows to zero. The
default modes for some existing target machines are:

FPAP: Round to nearest, underflow to zero, all the rest IEEE.

D860: Round to nearest, underflow to zero, all the rest abort.

ULTRIX: IEEE handling unavailable.

SGI: Round to nearest, all the rest IEEE.

The reason the defaults are different is that the IEEE modes are not
provided on all platforms. As the system matures full IEEE handling
will be available for D860's eventually.

102 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Rounding Mode: Sets the IEEE rounding mode

FMDDLROUND_TQ_NEAREST: The usual IEEE handling whereby
several guard bits are kept.

FMODLROUND_UP: Round toward positive infinity.

FMODE.JWUND_DOWN: Round toward negative infinity.

FMODLROUND_ TQ_ZERO: Round toward zero.

Underflow Handling: Specifies underflow handling

FMODLUNDERFLOW_IEEE: Does IEEE "soft" underflow by us-
ing denormals to represent numbers smaller than the least
possible floating-point value available with full precision.

FMODE_UNDERFLOW_ZERO: Sets the result to zero when an under­
flow occurs.

FMODLUNDERFLOW_ABORT: Stops the job if an underflow occurs.

Overflow Handling: Specifies overflow handling

FMODLOVERFLOW_IEEE: Sets the result to +Inf or - Inf if an
overflow occurs, depending on the sign of the result.

FMODLOVERFLQW_ABORT: Stops the job if an overflow occurs.

Zero Divide Handling: Specifies handling of divide-by-zero errors.

FMODE_ZERO_DIVIDLIEEE: Sets the result to +Inf or -Inf if a
zero-divide error occurs depending on whether the dividend
was positive or negative.

FMODLZERO_DIVIDLABORT: Stops the job if a zero-divide occurs.

Invalid Handling: Specifies handling of illegal subroutine arguments.

FMODLINVALID_IEEE: Sets the result to the IEEE specified value
if an invalid operand is detected.

FMODLINVALID_ABORT: Stops the job if an invalid operand is
detected.

6.2. ROUTINES CALLED BY CONTROL PROGRAM 103

int set_default_floating_mode();
int set_floating_mode_to_environment();

Purpose:

Arguments: None

Return Value: If there were no errors these return 0, if there are
errors (which cannot occur setting the default mode) the return
is ~ 1 and the reason for failure is printed on std err.

int get_current_floating_mode();

Purpose: To return the currently set floating-point mode. This is the
logical or of all the currently set mode flags.

Arguments: None

Return Value: The currently set floating modes.

104 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

void print_current_floating_mode();

Purpose: Prints the currently set floating-point mode on stdout in
human-readable form.

Arguments: None

Return Value: None

int set_current_floating_mode(int flags);

Purpose:

Arguments:

int flags: The flag bits for the desired mode, or'ed together.
A full specification would be five flag bits set, one for each of
the exception types. If no bit is specified for an exception,
the mode for that exception is unchanged. For example,
setting flags to FMODLUNDERFLOW_ZERO has no effect on the
rounding, overflow, zero divide, or invalid handling.

Return Value: If there were no errors these return 0, if there are
errors (which cannot occur setting the default mode) the return
is -1 and the reason for failure is printed on std err.

6.2. ROUTINES CALLED BY CONTROL PROGRAM 105

6.2.5 Transfer Coalescing

These routines control the efforts to mm1m1ze he number of actual
data transfers by coalescing accesses required by field_pointer and
put-±ield routines. For some systems (including any single-CPU im­
plementation of Canopy), multi-threading and transfer coalescing are
null concepts or unnecessary. These routines are present (but have not
effect) in Canopy on such systems.

Multi-thread Setup

void multithread(int nthreads, int stack_size);

Purpose: To establish multi-thread operation, in which some number
of threads may be active at one time on each node, to allow
for coalescing of multiple transfers to other remote nodes. An
explicit call to multithread() will override any multi-thread mode
settings established in other ways. This function can be called
multiple times in an application to dynamiccally alter the number
fo threads or stack size; specifying nthreads= 1 will disable multi­
thread mode. Note that calling multithread() is a relatively time­
consuming operation.

Arguments:

int nthreads: The maximum number of threads that will be
active simultaneously on each node.

int stack_size: The amount of local stack space reserved
for each potential thread. If multi-threading is enabled from
the command line, this defaults to a reasonable value (8K
bytes).

Return Value: None.

106 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Multi-thread Control

void multithread_disable ();
void multithread_enable ();

Purpose: To temporarily disable (and later enable) multi-thread
mode. This may be desirable under conditions discussed in sec­
tion 4.6.2 CONTROL OF MULTI-THREADING. A task cannot en­
able multi-thread mode if it has been disabled by its "parent":
If the control program disables multi-thread, then multi thread_
enable() has no effect inside a task routine, and if a task dis­
ables multi-thread, then it cannot be enabled within any subtask
it invokes. Unlike multithread(), these routines are not time­
consummg.

Arguments: None.

Return Value: None.

void print_multithread_stats ();

Purpose: To print statistics which may be useful for fine-tuning
the number of threads and/ or stack size for an application. In­
formation reprorted includes the average degree of coalescing and
stack usage statistics. The statistics are reset each time print_
multithread_statsO is called. This function may not be called
from inside a task routine.

Arguments: None.

Return Value: None.

6.3. ROUTINES CALLED DURING TASKS 107

6.3 Routines Called During Tasks

This section describes routines for manipulating Canopy concepts. These
routines in this section are typically called by task routines, but may
also invoked by the control program.

6.3.l Site Manipulation

Absolute Site Location

site site_at_coordinates(grid g, intptr coords);

Purpose: To set a site variable to the location specified by
coordinates on grid g.

Arguments:

grid g: The grid on which to place the site.

intptr coords: The coordinates to place the site, in a one-
based coordinates array (see GETTING COORDINATES in
section 6.3. 7).

Return Value: A site variable at the desired location.

Examples:
coordinates coordsj

site s1, s2, s3;

coords[X] = 1; /* X, Y, Z, T are 1, 2, 3, 4 */
coords[Y] = 3·

'
coords [Z] = O·

'
coords[T] = 4·

'
s1 = *HOME; /* HOME is a pointer a site! */
s2 = site_at_coordinates(g, coords);
s3 = s2; /* set s3 equal to s2 */

108 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Relative Site Location

site move_site(site *startsite, direction dir);
site move_site_by_path(site *startsite, path p);
site site_at_dir(direction dir);
site site_at_path(path p);

Purpose: To return a site variable offset from another site variable or
the HOME site. The move_site, move_site_by_path, and site_­
at_path routines are illegal while vertical coalescing is active.

Arguments:

site *startsi te: A pointer to a site.

direction dir: A direction used to specify the site in direction
dir from *startsite or HOME. If dir is zero, then the site
returned is startsite (or HOME for site_at_dir).

path p: A path used to specify the site at the end of path p
from *startsite or HOME.

Return Value: A site variable at the desired location.

Note: Inside a task routine HOME may be used as a pointer to a site,
so the site_at_dir and site_at_path routines can be built out
of the others:

move_site(HOME, dir) <--> site_at_dir(dir)

move_site_by_path(HOME, p) <--> site_at_path(p)

6.3. ROUTINES CALLED DURING TASKS 109

Site Comparison

logical is_same_site(site *s1, site *s2);

Purpose: To test if two sites are the same.

Arguments:

site *s 1: A pointer to a site.

site *s2: A pointer to another site.

Return Value: TRUE if *s1 and *s2 are the same, FALSE if not.

Note: The special site NOWHERE matches only itself.

Site Information

grid grid_supporting_site(site *s);

Purpose: To return the grid on which a site is located.

Arguments:

site *s: Apointertoasite.

Return Value: The grid where *s lives. If the argument is NOWHERE
then the return is NOGRID. This can create confusion with maps,
since it means that the grid supporting the site of a mapped image
may be NOGRID and not the range grid of the map.

110 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Mapping Sites

site irnage_of_site(map m, site *s);
site *inverse_image_of_site(map m, site *s);

Purpose: To use a map to find the image and inverse image of a site.

Arguments:

map m: The map to use for mapping *s.

site *s: A site on the domain of rn for image_of_si te and on
the range of m for inverse_image_of_si te.

Return Values: For image_of_si te, the return is the site on the
range of m mapped to by *s. If *s does not map to any site in
the range under m, the function returns the special site NOWHERE.

For inverse_image_of_site, the return is a pointer to a list of
sites in the inverse image terminated by NOWHERE. This list is not
guaranteed to be in any particular order but it does include all of
the sites which map to *sunder rn. If no sites map to *s, the first
element in the list is NOWHERE (the return is not a null pointer).

6.3. ROUTINES CALLED DURING TASKS

6.3.2 Field Manipulation

Field_Pointer Routines

voidptr field_pointer(field f, site *s);
voidptr field_pointer_at_dir(field f, direction dir);
voidptr field_pointer_at_path(field f, path p);

111

Purpose: To return a pointer to a read-only copy of the field element
at the desired site. If the site is HOME inside a task (but not a
sub-task) then the pointer points to the actual field element and
not to a copy. Except in that case, modifying the copy of the field
element is not permitted.

Arguments:

field f: This is the field variable whose value at some site
is desired. If field was a link__field this routine returns a
pointer to the cluster of links in all the positive directions.

site *s: Specifies the desired site absolutely. May be HOME.

direction dir: Specifies the site in direction dir from the
HOME site.

path p: Specifies the site at the end of path p from the HOME
site.

Return Value: A pointer to a copy of the field element at the
specified site. (See the caveat in PURPOSE above.) While this is
returned as a voidptr, it is used as a pointer to whatever type
the field element actually is. Hence the typical call looks like this:

whatsit *w;
w = (whatsit*) field_pointer(whatsitfield,HOME)

112 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

PuLField Routines

void put_field(field f, site *s, voidptr object);
void put_field_at_dir

(field f, direction dir, voidptr object);
void put_field_at_path

(field f, path p, voidptr object);

Purpose: To copy object into the specified field element. Except
during sub-tasks, this is normally only used to store objects not
on the HOME site, since field_pointer returns a pointer directly
to the field element on the HOME site.

Arguments:

field f: The field variable of the desired site field.

site *s: Specifies the desired site absolutely. May be HOME.

direction dir: Specifies the site in direction dir from the
HOME site.

path p: Specifies the site at the end of path p from the HOME

site.

voidptr object: Pointer to the data to be copied into the
field element. This is a voidptr because it must accept
pointers to all types of objects. This argument is usually
cast explicitly to voidptr in the call.

Return Value: none.

6.3. ROUTINES CALLED DURING TASKS

Link~Field_Fointer Routines

voidptr link_f ield_pointer
(field f, direction link, site *s);

voidptr link_field_pointer_at_dir
(field f, direction link, direction dir);

voidptr link_field_pointer_at_path
(field f, direction link, path p);

113

Purpose: To return a pointer to the element of the link field f on the
link in direction link emanating from the specified site. If the
site is HOME inside a task (but not a sub-task) and the direction is
positive, then the pointer points to the actual field element and
not to a copy. Except in that case, modifying the copy of the field
element is not permitted.

Arguments:

field f: The field variable of the desired link field.

direction link: The desired link direction. This may be
positive or negative, but if it is negative then remember that
it is the same as the link in the positive direction from the
site at its other end.

site *s: Specifies the desired site absolutely. May be HOME.

direction dir: Specifies the site in direction dir from the
HOME site.

path p: Specifies the site at the end of path p from the HOME

site.

Return Value: Pointer to a copy of the link field element. (See the
caveat in PURPOSE above.)

114 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

PuLLink_Field Routines

void put_link_field
(field f, direction link, site *s, voidptr object);

void put_link_field_at_dir
(field f, direction link, direction dir,

voidptr object);
void put_link_field_at_path

(field f, direction link, path p, voidptr object);

Purpose: To copy object into the element of link field f at the speci­
fied site. This is normally only used to store objects on links not in
positive directions from the HOME site, since link_fielcLpointer
returns a pointer directly to link field elements on links in positive
directions from the HOME site.

Arguments:

field f: The field variable of the desired link field.

direction link: The desired link direction. This may be
positive or negative, but if it is negative then remember that
it is the same as the link in the positive direction from the
site at its other end.

site *s: Specifies the desired site absolutely. May be HOME.

direction dir: Specifies the site in direction dir from the
HOME site.

path p: Specifies the site at the end of path p from the HOME

site.

voidptr object: Pointer to the data to be copied into the field
element. Normally this must be cast as a voidptr.

Return Value: none.

6.3. ROUTINES CALLED DURING TASKS 115

6.3.3 Field Manipulation For Compound Tasks

Synchronization Routines

void synchronize(site *s);
void synchronize_at_dir(direction dir);
void synchronize_at_path(path p);

Purpose: To wait for a site to reach the current synchronization
level, which is needed only when using compound sets of sites.
The machine waits until the target site has been processed by
this call to do_ task. The intended use of these routines is to
ensure, in compound tasks, that each site whose level is less than
the current level has indeed completed before its field is read. For
do_ task_n_ times, the synchronization routines ensure that the
previous sweep has been completed on all the needed sites before
their field elements are read.

Arguments:

site *s: Specifies the desired site absolutely. May be HOME.

direction dir: Specifies the site in direction dir from the
HOME site.

path p: Specifies the site at the end of path p from the HOME

site.

Return Value: none.

116 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

sync_address sync_word(site *s);
sync_address sync_word_at_dir(direction dir);
sync_address sync_word_at_path(path p);

Purpose: Returns the sync_address for the desired site. This is
used by synchronize_wi th... sync_ word to wait for a site to reach
a certain level in a compound task.

Arguments:

site *s: Specifies the desired site absolutely. May be HOME.

direction dir: Specifies the site in direction dir from the
HOME site.

path p: Specifies the site at the end of path p from the HOME

site.

Return Value: The sync_word for the desired site.

void synchronize_with_sync_word(sync_address *sync);

Purpose: Same as synchronize, but uses a previously computed
sync instead of a site.

Arguments:

sync_address *sync: The previously computed sync_address.

Return Value: none

6.3. ROUTINES CALLED DURING TASKS

Synchronize and Get Pointer Routines

voidptr sync_f ield_pointer
(field f, site *s);

voidptr sync_field_pointer_at_dir
(field f, direction dir);

voidptr sync_field_pointer_at_path
(field f, path p);

117

Purpose: These are optimized combinations of synchronize and
field_pointer.

Arguments:

field f: The field variable of the desired site field.

site *s: Specifies the desired site absolutely. May be HOME.

direction dir: Specifies the site in direction dir from the
HOME site.

path p: Specifies the site at the end of path p from the HOME

site.

Return Value: Pointer to a copy of the field element.

118 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.3.4 Direct Field Addressing

Field Address Creation

field_address address_of_field
(field f, site *s);

field_address address_of _f ield_at_dir
(field f, direction dir);

field_address address_of_field_at_path
(field f, path p);

field_address address_of _link_field
(field f, direction link, site *s);

field_address address_of_link_field_at_dir
(field f, direction link, direction dir);

field_address address_of_link_field_at_path
(field f, direction link, path p);

Purpose: To pre-compute a field.address variable for later use. This
saves only a little time.

Arguments:

field f: The field variable of the desired site or link field.

direction link: The desired link direction. This may be
positive or negative, but if it is negative then remember that
it is the same as the link in the positive direction from the
site at its other end.

site *s: Specifies the desired site absolutely. May be HOME.

direction dir: Specifies the site in direction dir from the
HOME site.

path p: Specifies the site at the end of path p from the HOME

site.

Return Value: The field.address for later use.

6.3. ROUTINES CALLED DURING TASKS

Field Address Use

voidptr field_pointer_frorn_address
(field_address *where);

voidptr sync_field_pointer_frorn_address
(field_address *where, sync_address *sync);

void put_field_at_field_address
(field_address *where, voidptr object);

int length_of_field_address_field
(field_address *where);

119

Purpose: To use precomputed field_address variables instead
of doing the computation each time. Otherwise these routines
behave like their brothers. Nate that this approach saves only a
little time.

Arguments:

field_address *where: The previously computed field address.

sync_address *sync: The previously computed sync address.

voidptr object: Pointer to the data to be copied into the field.

Return Values: Same as for the field_pointer routines.

120 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.3.5 Path Manipulation

int make_path(path p, ...);
int extend_path(path p, direction dir);
int concat_path(path dest, path source);
int copy_path(path dest, path source);
int path_length(path p);

Purpose: These routines create, extend, concatenate, and copy paths.

Arguments:

path p: A path variable (that is, an intptr) pointing to at least
as many available words as 1 +path_length .

. . . : A list of directions terminated by END.

direction dir: A direction to add to the end of the path.

path dest: The target of a concatenation or copy.

path source: The source of a concatenation or copy.

Return Value:
path.

Example:

All of these routines return the length of the new

direction *pl, *p2;
pl= (direction *)malloc(10*sizeof(direction));
p2 = (direction *)malloc(10*sizeof(direction));
make_path((path)pl, X, Y, END); /*returns 2 */
make_path((path)p2, -X, -Y, END); /*returns 2 */
concat_path((path)p1,(path)p2); /*returns 4 */
path_length((path)p1); /*returns 4 */

6.3. ROUTINES GALLED DURING TASKS 121

Manipulating Paths Directly

A path variable is a pointer to a direction. The path is an array of
directions in order, terminated by the special value END, which is defined
in canopy. h as an integer out of the range permissible for genuine
directions. At the end of the previous example, path pl would be

X, Y, -X, -Y, END

Any ordered, END-terminated array of directions may be used wherever
a Canopy routine expects a path argument. It is legal (and sometimes
convenient) to deal with the direction* path variable directly. For
example, to create a null-terminated array of paths initialized to values
for subsequent use:

direction pathx[] = {T, T, X, x, -T, -T, END};
direction pathy[] = {T, T, Y, Y, -T, -T, END};
direction pathz[] {T, T, Z, z. -T, -T, END};
direction longpath[] = {X, Y, z. T, -x, -Y, -z. T, END};

path mypatharray[]= {pathx,pathy,pathz,longpath,NULL};

In this example, a path is initialized by declaring it as an array of
directions. C syntax does not support the following slightly cleaner
construct:

path pathx {T,T,X,X,-T,-T,END}; /* won;t compile! */

122 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.3.6 Informative Routines

Information About Grids

intptr grid_lower_bounds(grid g);
intptr grid_upper_bounds(grid g);
intptr grid_parameters(grid g);
int number_of_directions_of_grid(grid g);
int number_of_dimensions_of_grid(grid g);
int number_of_fields_on_grid(grid g);
int number_of_sets_on_grid(grid g);

Purpose: To return the desired data about the grid at any time after
it has been defined.

Arguments:

grid g: The grid for which information is desired.

Return Values: The first three routines return pointers to read-only
arrays. For the supplied grids, grid_parameters is meaningless.
The grid_upper_bounds and gricLlower_bounds routines both
return a pointer to an array of integers of length grid-dimensions
containing the lowest and highest coordinate in each dimension.
Note that the return value points to a 1-based array of integers
(the same as the coordinates type) and it is illegal to use the 0
element.

intptr lower= grid_lower_bounds(g);
intptr upper= grid_upper_bounds(g);

For the supplied grids, lower [X] , lower [Y] , ... are now all 0 and
upper [X] is the maximum coordinate in the X direction (which is 7 if
the lattice size is 8).

6.3. ROUTINES CALLED DURING TASKS

Information About Fields

grid grid_supporting_field(field f);
int field_length(field f);

Purpose: To return data about a field.

Arguments:

field f: The field for which information is desired.

123

Return Values: The grid on which field f is defined and the length
in bytes of an element of field f.

124 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Information About Sets

grid grid_supporting_set(set s);
int number_of_sites_in_set(set s);
int number_of_levels_in_set(set s);
intptr nsites_at_each_level(set s);
int level_of_site_in_set(set s, site *ss);

Purpose: To return data about a set. Information about the number
of sites is available only after the call to complete_defini tions.

Arguments:

set s: The set for which information is desired. Note that a
grid may be used as the set of all sites on that grid if it is
cast as a set.

site *ss: For level_of_si te_in_set this is the site whose
level is desired.

Return Values: The grid on which set s is defined; the total number
of sites in set s; the number of levels in set s (which is 1 ifs: is not
a compound set); a pointer to a read-only array whose 0 element
is the total number of sites in set s and whose level element is
the number of sites at that level. For non-compound sets, the
number of sites at level 1 is the same as the total number of sites
in the set. For level_of_si te_in_set, the site's level. If the
site is not in the set it returns zero; if the site is not on the same
grid as the set a fatal error is declared.

6.3. ROUTINES CALLED DURING TASKS

Information About Maps

grid domain_grid_of_map(map m);
grid range_grid_of_map(map m);
map *maps_connecting_grids(grid domain, grid range);
logical is_sarne_map(map ml, map m2);

125

Purpose: To return information about maps. Note that is_sarne...rnap
can only be called from the control program.

Arguments:

map m: The map for which information is desired

grid domain: domain grid to check for maps

grid range: range grid to check for maps

map ml: One of two maps to test for sameness

map m2 : One of two maps to test for sameness

Return Values: maps_connecting_grids returns a pointer to a list
of those previously declared maps with the specified domain and
range. This list is terminated by (map) 0 (a null pointer). The
is_sarne_map routine returns TRUE if ml and m2 are isomorphic
and FALSE otherwise.

126 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.3. 7 Using Coordinates

Getting Coordinates

void get_coordinates(site *s, intptr coords);
void get_coordinates_at_dir

(direction dir, intptr coords) ;
void get_coordinates_at_path

(path p, intptr coords);

Purpose: To copy the coordinates of a site into an array.

Arguments:

intptr coords: The array where the coordinates will be
placed. Note that coordinates range from 1 to ndim. This
means that X, Y, ... are the indices into this array.

site *s: A pointer to the site.

direction dir: Specifies the site in positive or negative direc­
tion from the HOME site.

path p: Specifies the site at the end of a path from the HOME
site.

Return Value: None.

Example
coordinates mycoords;
get_coordinates(HOME,mycoords);
I* now mycoords[X] ... mycoords[Z] make sense */

6.3. ROUTINES CALLED DURING TASKS 127

Printing Coordinates

void sprintf_site_coordinates(char *ss, site *s);

Purpose: To print the coordinates of site *s in the string *ss.
The coordinates will be formatted using " (%d, %d, ...) ". This
routine is intended for use by the control program to assist in
printing out site locations.

Arguments:

char *ss: A pointer to the string where the coordinates will be
sprinted.

site *s: A pointer to the site.

Return Value: None.

128 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.3.8 Obtaining Random Numbers

float random();
float multi_random(int generator);

Purpose: To return the next pseudo-random number in a sequence
set up by the make_randolll.generator declaration.

Arguments:

int generator: If more than one random number generator was
declared, mul t i..random uses this value to select which one to
use. The random function returns a random number using
the first random generator declared. This number is the
number returned by the make_randolll.generator routine.

Return Value: The next pseudo-random number.

Note: Even a single random number generator in Canopy has several
streams: in the STREAM_PER_NDDE case, one on each node; in the
STREAM_PER_SITE case, one for each site in addition to a separate
one for the control program.

6.3. ROUTINES CALLED DURING TASKS 129

6.3.9 The Lalloc Heaps

The lalloc heaps are the memory areas for an inferior (but efficient)
malloc-like function used by the field_pointer class routines when an
off-node read occurs. There are separate heaps for the control program
and for task routines, since the pointers in a task routine become invalid
at the end of each site and the memory can be reclaimed, but the
pointers in the control program are valid until the end of the program.
Normally the default sizes and resets are adequate.

Declaring Heap Size

void declare_lalloc_sizes(int do_task_size,
int control_size);

Purpose: To override the default size of the lalloc heaps. This routine
must be called before complete_definitions.

Arguments:

int do_task_size: Size in bytes of the do_task lalloc heap

int controLsize: Size in bytes of the control lalloc heap.

Return Value: None

Resetting the Heap

void reset_lalloc();

Purpose: To reclaim all of the memory in a lalloc heap, thereby
invalidating all pointers returned by field_pointer class rou­
tines. This resets the control lalloc heap if called from the control
program or resets the do_task lalloc heap if called inside a task
routine.

Arguments: None

Return Value: None

130 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.3.10 Quick Copy Routine

void intcpy(voidptr dest, voidptr src, int words);

Purpose: To copy data faster than the C library memcpy routine.
This is possible for a word oriented processor, when it is known
that the source and destination are word-aligned.

Arguments:

voidptr dest: Word-aligned pointer to destination.

voidptr src: Word-aligned pointer to source.

int words: Number of words to copy.

Return Value: None

Note: dest and src must not overlap.

6.3. ROUTINES CALLED DURING TASKS

6.3.11 Control of Coalescing

Vertical Coalescing

multithread_begin_vertical()
multithread_end_vertical()

131

Purpose: To allow a task routine to delay fetching off-node data or
suspending the thread. multi threacLbegiIL vertical() asserts
that data from ensuing field_pointer calls will not be used until
multi threacLencL vertical() is called.

Warning: If these pointers are used before the multithreacL
end_vertical () call (in violation of the assertion), the results
will be unpredictable. Using move_site, move_sita_by_path, or
si te_at_path routines while vertical coalescing is active is illegal,
and may lead to invalid pointers.

Arguments: None.

Return Value: None.

Put_field Copying Control

multithread_begin_nocopy()
multithread_end_nocopy()

Purpose: multi threacLbegiILnocopy() informs Canopy that
it is safe to skip the copying of put_field data, because the
data will remain unchanged until multi thread_ encLnocopy () is
called. Allows for a smaller lalloc heap for each thread.

Warning: If the put_field data is changed before multi thread_
end_nocopy() is called, the data stored at the put_field site will
be unpredictable.

Arguments: None.

Return Value: None.

132 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.4 User-Supplied Routines

The substance of a Canopy program will of course be the user code.
This will consist of a control program (to be run on a single node) and
task routines to be executed for multiple sites (and which thus may be
run in parallel on multiple nodes). In addition, the user may supply
routines to tailor Canopy concepts to a particular application.

For example, a typical application may use sets of sites other than
entire lattices. To define the nature of these sets, the user supplies a
Set of Sites function to pass to the set_of_si tes definition routine.

Other user supplied functions include coordinate, connectivity and
distribution functions used to define arbitrary "customized" grids; func­
tions to create customized do_task keywords by defining arbitrary meth­
ods of collating data; functions defining maps from one grid to another;
and functions defining customized kernels for random number genera­
tors.

Working samples of the various types of user-supplied functions can
be found in the Canopy libraries. For example, GRIDLIB contains coor­
dinate, connectivity and distribution functions used to define the pre­
packaged grids. These can be used as templates when an application
requires custom features not available in the libraries.

6.4. USER-SUPPLIED ROUTINES 133

6.4.1 The control Program

void control(int argc, char **argv, char **envp);
void control();

Purpose: The main entry point of a Canopy program. This takes
the place of main() in a C program. If the application does not
use arguments to the main program or environment variables, it
is permissible to omit the declaration of the arguments (as per C

conventions).

Arguments:

int argc: The number of command-line arguments.

char **argv: The array of command-line arguments, with
the 0 element the name of the executing program. When a
multi-node Canopy job is launched the canopy tool removes
the number of nodes and time limit from the argument list
and sets argv[O] to the name of the file canopy is executing
instead of the canopy tool itself.

char **envp: An array of environment strings. This is not
edited by the canopy tool, so the environment array is the
same for a job running on the host and for a job running in
a multi-node way from that host. Numerical precision may
be controlled through the environment.

Return Value: None. To return a non-zero exit code call make an
explicit call of exit (code).

134 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.4.2 Do_Task Routines

All users must write task routines which are called on each site in some
set of sites. These simple routines are the basic means of providing
parallelism in Canopy programs.

More advanced users may wish to define new do_ task keywords that
allow more flexible communication between the control program and
task routines. In Canopy all do_ task keywords (except for END, which is
just a number) are pointers to a CAN_do_ task__keyword structure which
may be defined by the user. The existing keywords are defined in
chip.c and may be used as examples.

Task Routines

void <task_routine>(...);

Purpose: To do some task on a set of sites. This is the routine called
by do_task.

Arguments:

The argument list for the task routine. These must all
be pass-by-address arguments matching the call to do_task.
There is a detailed description of task routines and an ex­
ample in the Do_TASK section.

Return Value: None

6.4. USER-SUPPLIED ROUTINES 135

6.4.3 Set of Sites Functions

int <set_of_sites_function>(grid g, intptr coords);

Purpose: To return the level of the site in the set or zero if the site
is not in the set. For simple sets, the level is always one. This is
used only by calls to set_of_sites and redefina.seLoLsites
to create sets of sites. This function is called on all nodes, so if
it uses any global variables (this is allowed but discouraged) they
must be broadcast first.

Arguments:

grid g: The grid on which this set of sites is defined. Be-
cause of this argument, the set of sites function can get grid
information using the grid information routines.

intptr coords: One-based array of coordinates describing this
site

Return Value: Zero if the site is not in the set; level if the site is
in the set. For non-compound sets, level is always one.

Note: The type set_of_sites_func is really a pointer to a function
returning an int. In most C's, there is no distinction between
pointers to functions of different types, so there is no real need to
cast the function during the set-up call. However, if you want to
be completely clean, the cast should be there.

Examples are on the next page:

136 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Examples:

int odd_func(g, coords)
grid g;
intptr coords; {

int i;
int csum = O;

/* a simple set first */
f* sites Yith odd */
/* sum of coordinates */

for(i=1; /* coords is one-based */
i<=number_of_dimensions_of_grid(g);
i++) {

csum += coords[i]; /*add up coordinates*/
}

return(csum % 2);
} /* odd_func */

f* 0 if even, 1 if odd */

/* another simple set *f
int even_func(g, coords)
grid g;
intptr coords; {

return (1 - odd_func(g, coords));
} /* even_func */

/* a compound set */
int odd_then_even_func(g, coords);
grid g;
intptr coords; {

return (1 + even_func(g, coords));
} /* odd_then_even_func */

6.4. USER-SUPPLIED ROUTINES 137

6.4.4 Lattice Definition

The arbi trary_grid routine uses several functions to allow the user to
define a custom grid: A function (and its inverse) assigning coordinates
to each site, and a connectivity function defining neighbors in each
direction. In addition, the user may supply a distribution function
specifying which physical node will assume responsibility for each site.

These functions are only of interest if you wish to define a new grid
with new connectivity. The distribution function is not logically crucial
to defining the grid, but a suitable choice will allow efficient processing
of mostly-local applications on the grid. A default distribution function
is provided, which will be adequate in most cases.

Coordinate Function

void <coordinate_function>(grid g,
int serial,
intptr coords);

Purpose: Used only at start-up time To obtain the coordinates of a
site from its internal canopy serial number.

Arguments:

grid g: Grid to which the coordinates refer.

int serial: Internal Canopy serial number from 1 to the
number of sites on the grid.

intptr coords: (Output) array of coordinates which have this
internal serial number.

Return Value: None

Note: This had better match the inverse coordinate function.

138 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Inverse Coordinate Function

void <inverse_coordinate_function>(grid g,
intptr coords,
intptr serial);

Purpose: Used both at start-up time and by site_at_coordinatesto
obtain the internal serial number of a site from its coordinates.

Arguments:

grid g: Grid where the site lives.

intptr coords: Coordinates of the site.

intptr serial: (Output) internal serial number of the site.

Return Value: None

Note: Examples coordinate functions and matching and mverse
coordinate functions may be found in the file grid. c

6.4. USER-SUPPLIED ROUTINES

Connectivity Function

void <connectivity_function>(grid g,
intptr coords;
site *site_struct;

139

Purpose: To fill the Canopy connectivity structure at set-up time
and thus determine the grid's connectivity.

Arguments:

grid g: The grid whose connectivity is about to be calculated.

intptr coords: The coordinates of the site whose connectivity
is about to be calculated.

site *site_struct: (Output.) A pointer to an array of sites
which are going to be filled with nearest-neighbor informa­
tion, as described in the <canopy. h> file. What the con­
nectivity function does is to use the si te_at_coordinates
function (which is a part of Canopy and quite callable by
ordinary users) to get nearest neighbor sites by coordinates.
Si te_struct is used as an array with elements . . . [-Y],

[-X], [OJ, [+X], [+Y], ... whicharefilledwithsite
variables refering to the neighbors in all directions. The
0 direction must point to itself. Other connectivities may
be contructed by giving this function a different idea of the
coordinates of nearest neighbors. Note that the number of
directions need not be the number of dimensions and that
some of the neighbors may be NOWHERE.

Return Value: None

An example of a connectivity function may be found in grid. c.

140 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Distribution Function

void <distribution_function> (grid g,
int serial,
int *node,
intptr posit);

Purpose: Determines how the arbitrary _grid routine distributes
sites to nodes. A default_distribution_function, provided in
the GRIDLIB library

(see grid. c) may be used as an example to guide the creation of
custom distribution functions.

Arguments:

grid g: The grid whose sites are to be distributed. Note that
this is a hook into all of the information about grids.

int serial: The serial number of the site. Serial numbers are
internal numbers Canopy uses to keep track of sites at set­
up time. It is required that serial numbers be consecutive
integers from 1 to the total number of sites on the grid.
These serial numbers are related to site coordinates by the
coordinate and inverse coordinate functions.

int *node: (Output) node on which to place the input
site. This must be a valid node address-between 0 and
CAN_number_of_nodes-1. See the default distribution func­
tion for correct details.

intptr posit: (Output) integer which is the position of the
input site on the output node. posit must be unique for
each site and must be between 1 and the number of sites on
the node without any gaps. It is the responsibility of the
programmer to ensure this is so!

Return Value: None

6.4. USER-SUPPLIED ROUTINES 141

defaul LdistributioILfunction assigns the sites in order of coor­
dinate numbers, with the last coordinate varying most rapidly. This
algorithm is recommended for most user-definied arbitrary grids. It re­
sults in reasonable efficiency for most applications on most grids. This
simple strategy is easy to modify, but very hard to improve in general
cases.

142 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Using the other_params Argument

The other_params argument to arbitrary_grid (see section 6.1.1 GRID
DECLARATION) may be used to pass to the user-supplied lattice defini­
tion routines additional lattice information beyond the numbers of sites,
dimensions and directions and the range of each coordinate. These
additional parameters are amalgamated into the array containing the
lower and upper limits of the coordinates. Because the parameters
are amalgamated with other information, and because the coordinates
arrays are 1-based, this access is a bit tricky. The following exam­
ple sets up a skew-periodic lattice- when crossing the boundary in the
last dimension, the coordinates in the other dimensions shift by a skew
vector. The skew vector is passed to the connectivity function via
other_params. The routine uses the periodic coordinate and inverse
coordinate functions appearing in grid. c, and defines its own connec­
tivity function.

#include <canopy.h>
#include 11

•• /cansource/canopy_prv.h"

#include <grid.h>

void skew_periodic_connectivity_func(
int lattice,

{

intptr coords, /* 1 based!!! */
site *site_struct)

grid_list *point; /* pointer to lattice structure */
int i,j;
int newcoords[MAX_COORDINATES];
intptr skews = &point->other_parameters[-1];

/* This is how to get at the other parameters. *I
/* We want skews[1] to correspond to others[O] .•/
point= grid_list_pointer(lattice);
site_struct[O] = site_at_coordinates((grid)(lattice), coords);

6.4. USER-SUPPLIED ROUTINES

for (i=O; i<point->ndir; i++) {

}

/* fill +dir site_struct with +dir neighbor */
I* using 0-based skew periodic boundary conditions *I
for (j;Q; j<point->ndir; j++) {

newcoords[j+1]=coords[j+1];
}

if (coords [i +1] ! ; point->max_coords [i]) {
newcoords[i+1] =val+ 1;

} else {
if (i==point->ndir-1) /* Now implement skew */

for (j;Q; j<point->ndir-l;j++) {
newcoords[j+1] += skews[j+i];

}

if (newcoords[j+1]>point->max_coords[j])
newcoords[j+1] -= point->max_coords[j];

newcoords[i+1] = O;
}

site_struct[(i+l)]
site_at_coordinates ((grid)lattice, newcoords);

/* fill -dir site_struct with -dir neighbor */
I* using 0-based skew periodic boundary conditions */
for (j;Q; j<point->ndir; j++) {

newcoords[j+1]=coords[j+1];
}

if (coords [i+l] ! ; 0) {
newcoords[i+1] = val - 1;

} else {

}

if (i==point->ndir-1) /* Now implement skew */
for (j;Q; j<point->ndir-l;j++) {

newcoords[j+l] -; skews[j+l];
if (newcoords [j+l] < 0)

newcoords[j+1] += point->max_coords[j];
}

newcoords[i+1] = point->max_coords[i];

site_struct[-(i+l)] ;
site_at_coordinates((grid)lattice, coords);

} /* periodic_connectivity_func */

143

144 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

grid skew_periodic_grid(int ndims,
intptr sizes, intptr skews)

{
I* sizes and skews are 1-based arrays *I

int i;
int nsites;
coordinates upper_limits;
coordinates lower_limits;
int others[MAXPARAMETERS];

int n_nodes;
n_nodes = CAN_number_of_nodesj

for (nsites=1, i=1; i<=ndirns; i++) {

nsites *= sizes[i]j
upper_limits[i] = sizes[i]-1;
lower_lirnits[i] = O;

}

for (i=O; i<ndims; i++) {
others [i] = skews [i +1] ;

}

for (i=ndirns; i<MAXPARAMETERS; i++) {
others[i] = O; /*Set unused others to 0 */

}

/* call define_arbitrary_lattice to do it */
return(arbitrary_grid (nsites, ndims, ndims,

lower_limits, upper_limits, others,
default_distribution_func,
periodic_coordinate_function,
periodic_inv_coordinate_function,

skew_periodic_connectivity_func));
} /* skew_periodic_grid */

Users wishing to define complicated grids can also be guided by
the gridlib routine chunky_periodic...grid, appearing in grid. c. Here,
when the coordinate ranges and number of nodes are suitable, each node
is assigned an n-dimensional "chunk" of sites, rather than the default
"sheet" of sites. (This reduces the "surface to volume ratio" for each
node, potentially reducing the frequency of off-node communications.)

To accomplish this, before arbi trary_grid is called, a routine is

6.4. USER-SUPPLIED ROUTINES 145

called to determine the best division of sites; this produces an array of
one "divisor" per coordinate. The coordinate (and inverse coordinate)
function will use these divisors to create a special relation between site
serial number to coordinates, implementing the improved assignments.
The other_params mechanism is used by chunky_periodic_grid to
make the computed divisors available to the these functions.

(The gridlib routine chunky_periodic_grid uses the usual periodic
connectivity function and its own coordinate and inverse coordinate
functions, while the ske1Lperiodic_grid example uses the usual cood­
inate functions and its own connectivity function. Both routines use
the default distribution function; clever ways of distributing sites can
often be incorporated into the way the coordinate function relates serial
number to coordinates.)

146 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.4.5 Mapping Functions

logical <mapfunctionname> (intptr incoords,
intptr outcoords);

Purpose: define_map and read_slice_of_field use these user-
supplied routines to define maps between two grids.

Arguments:

intptr incoords: (Input) array of coordinates (1-based) on
the domain grid of map or the field on the tape.

intptr outcoords: (Output) array of coordinates (1-based) on
the range grid of the map or the grid supporting the field
to be read. Note that there is no information available on
the dimension or size of either the domain or range grid.
The mapping function must know it internally, which means
that mapping functions are really rather delicate. As a rule
they must be shaped individually for each different program.
However, some simple transformations, such as setting the
nth coordinate to zero or returning FALSE for all sites with
odd coordinates, may be used for many different sizes of
grids.

Return Value: FALSE if the site at incoords maps to NOWHERE (or
the site is not to be read in read_slice) and TRUE otherwise.

Example: /* map sites from 4-d to 3-d */
logical example_map(i,o)
intptr i,o; {

o[X] = i[Y]; /* ignore the X coord */
o[Y] = i[Z]; f* in the original and*/
o[Z] = i[T]; I* map all sites. */
return (TRUE);

} /* example_map */

6.4. USER-SUPPLIED ROUTINES 147

6.4.6 Random Number Generators

Defining Function

void <random_func>(random_generator_area *area);

Purpose: To define a random number generator. The area argument
is a pointer to a structure containing the length in bytes of the
state information, an initialize routine, and a generator rou­
tine. All <random±unc> does is return pointers and sizes through
area. Many different random number generators may be declared
and the mul ti_random routine used to get numbers from different
generators.

Arguments:

random_generator_area *area: Pointer to an area to be filled
as follows:

area->size_of_state: size of the state area for this
random number generator.

area->generator_func: Address of the generator function
for this random number generator.

area->ini tialize_func: Address of the initialization
function for the random number generator.

Return Value: None

NOTE: There are concerns about the propeties of pseudo-random
sequences for use in massively parallel systems. Obviously, increased
computational power means more random numbers can be used in a
single stream of jobs; this argues that generators should have more
bits of internal state. Less obvious is a problem that can occur if a
single pseudo-random algorithm is used to generate many streams of
random numbers, distinguished only by different initial states: The
state of one stream can eventually match the initial state of another.
For large numbers of streams, unless the period of the random sequence
is extremely large, it is surprisingly likely that some pair of streams

148 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

will be related in this way. These concerns should be addressed when
selecting a random number generator.

6.4. USER-SUPPLIED ROUTINES

Generator Function

void <randorn_generator>(int nurnber_to_rnake,
queue_struct *queue;
voidptr state;

149

Purpose: To put nurnber_to_rnake new random numbers in *queue,
using and updating state.

Arguments:

int nurnber_to_rnake: Number of new random numbers to put
in the queue. Normally, the queue is empty when this call
is made.

queue_struct *queue: Pointer to the queue structure. This
structure is defined in canopy. c.

voidptr state: Pointer to the state structure. This structure
is defined privately by the random number generator, which
is why it is cast as voidptr.

Return Value: None

150 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Initialize Function

void <randorn_initialize>(int seed,
int stream,
voidptr state);

Purpose: To initialize *state. cornplete_defini tions is the only
routine that calls this.

Arguments:

int seed: The system-wide random number seed.

int stream: The stream number of this stream. Together seed
and stream are used to create a unique state for this stream
of the random number generator which is independent of the
other streams.

voidptr state: The state to be filled.

Return Value: None

6.4. USER-SUPPLIED ROUTINES 151

6.4.7 Tailoring Do_Task Keywords

Each do_ task keyword such as SUM_REAL or PASS is a pointer to a
CAN_do_task_keyword structure which in turn consists of pointers to
various functions used by the system to implement that keyword. The
user can create an instance of this structure, with poiters to user­
supplied functions, customizing new do_ task keywords. This section
explains how that is done, and illustrates the process with an example
at the end. Other examples, implementing the keywords supported by
Canopy, can be found in chip. c. (The keywords are defined at the
CHIP level, so that do_task triplets can be used by do_on_alLnodes
as well as by the Canopy do_task routine.)

The elements of a do_ task triplet are the keyword which controls the
action, the address of the argument, and the length of the argument.
The argument as it appears in do_task is called the final argument
and its length the final size. The arguments of a task routine are all
pointers to the argument area, called the local argument. The task
routine is assumed to know the length (or local size) of the argument.
What do_ task does is to call the task routine once for each site in
some set and accumulate all of the returned local arguments into the
final argument, where the exact meaning of accumulate depends on the
keyword. For the standard keywords, the final and local arguments
have the same type and size.

Internally, do_ task uses a third sort of argument called the interme­
diate argument which has the intermediate size. All of the returned lo­
cal arguments are accumulated into intermediate arguments first, then
the intermediate arguments on each node are accumulated together,
and finally the intermediate argument on the control node is copied
into the final argument. The do_ task keyword points to a structure
containing the functions for these operations. Note that the PASS and
FUNCTION keywords work a little differently since they copy data down
to the nodes instead of back up to the control program. In fact they
use the same structure and routines as the accumulate arguments.

The accumulate operation must be commutative and associative,
such as addition or taking the maximum value. If the computer rep-

152 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

resentation of the operation is not exactly commutative or associative
then the computer will give slightly different answers depending on the
number of nodes used in the calculation.

The third argument in the triplet, the final size, is present so vectors
may be accumulated efficiently. A final size of zero is allowed; this does
nothing. Note that local argument to the task routine will still be a
valid non-null pointer in this case but that what it points to must not
be written.

The most common reason for making the intermediate type differ­
ent from the final type is to handle initial cases-see the MAx..REAL
keyword definition in chip. c. At the end of this section is an example
of a user-tailored keyword, illustrating the use of the final, local, and
intermediate arguments.

In addition to functions describing how to accumulated results, the
user supplies constructors, telling how to set aside room for intermedi­
ate and final results, and how to initialize them. These are conceptually
similar to constructors in the C++ sense. The fact that a pointer to
the created area are output as an argument rather than as the return
value, and that the return value is set to the size of the allocated area,
is not an important difference. An important restriction stems from
Canopy calling a standardized destructor to free memory when the ob­
ject constructed is no longer needed, and from assumptions made about
how an intermediate or final object may be copied. Because of this, the
constructor must malloc contiguous memory that can be freed with a
single free. For instance, the intermediate constructor function can
not set *inter to a pointer to a static area, or to an array of pointers to
allocated blocks.

6.4. USER-SUPPLIED ROUTINES

The Keyword Structure

typedef struct {
int do_task_type;
intfunptr verify_length_func;
intfunptr inter_constructor_func;
voidfunptr inter_accumulate_func;
voidfunptr inter_finish_func;
intfunptr local_constructor_func;
voidfunptr local_accumulate_func;

} CAN_do_task_keyword, *CAN_do_task_keyword_ptr;

153

int do_task_type: This is DO_TASK_INTEGRATE for all of the user­
defined functions. Other possible values are DO_TASK_PASS and
DO_TASK_FUNCTION. PASS and FUNCTION arguments handle mem­
ory differently.

verify _length_func: Checks to see that final size is valid.

inter _constructor _func:
malloc's space.

Computes the intermediate size and

inter _accumulate_func: Does the accumulate operation on two
intermediate arguments (called only on multi-node systems).

inter _finish_func: Copies from the accumulated intermediate argu­
ment to the final argument.

locaLconstructor _func:
space.

Computes the local size and mallocs's

locaLaccumulate_func: Accumulates a returned local value into the
intermediate argument for that node.

154 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Verify Length Function

logical <verify_length_function>(int bytes);

Purpose: Returns TRUE if bytes is a valid final size and FALSE
if not. For keywords that allow varying lengths zero should be a
valid value.

Arguments:

int bytes: The length in bytes passed as the third element of
the do_task triplet.

Return Value: TRUE if the length is OK and FALSE if it is invalid.

6.4. USER-SUPPLIED ROUTINES

Inter Constructor Function

int <inter_constructor_func>(voidptr final,
voidptr *inter,
int finalsize);

155

Purpose: Returns the intermediate size in bytes and malloc's and
initializes *inter, which is copied as an initialized empty accu­
mulate variable to all the nodes. The memory must be allocated
using a single malloc call.

Arguments:

voidptr final: Pointer to the final argument, which is the
second argument of a do_task triplet.

voidptr *inter: Pointer to a pointer to the intermediate area
being prepared by this function.

int final size: The size in bytes of the final argument, which
is the third argument of the do_task triplet.

Return Value: The length in bytes of *inter. This is computed
from finalsize after finalsize has been verified.

156 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Inter Accumulate Function

void <inter_accumulate_func>(voidptr inter_acc,
voidptr inter,
int intersize);

Purpose: Accumulates *inter into *inter_acc.

Arguments:

voidptr inter_acc: Pointer to the intermediate argument
which will be updated.

voidptr inter: Pointer to the intermediate argument with the
new values.

int intersize: The size in bytes of intermediate arguments as
returned byte the inter_constructor_func.

Return Value: None

Note: This is only called on multi-node systems.

6.4. USER-SUPPLIED ROUTINES

Finish Function

void <finish_func>(voidptr final,
voidptr inter,
int intersize);

157

Purpose: Finishes the do_task operation by copying *inter to
*final, editing it appropriately.

Arguments:

voidptr final: Pointer to the final argument. This is the
second argument in a do_task triplet.

voidptr inter: Pointer to the intermediate argument with the
completed accumulation.

int intersize: The intermediate size as returned by the
<inter_constructor_func>.

Return Value: None

158 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Local Constructor Function

int <local_constructor_func>(voidptr inter,
voidptr *local,
int intersize);

Purpose: Returns the local size in bytes and malloc's a local area
which usually requires no initialization. The memory must be
allocated using a single malloc call.

Arguments:

voidptr inter: Pointer to the intermediate argument as
created by inter _constructor _func.

voidptr *local: Pointer to a pointer to the local area which
will be passed to the task routine. Usually this area requires
no initialization but for PASS-type arguments some set-up
is needed.

int intersize: The intermediate size as returned by the
inter_constructor_func.

Return Value: The length in bytes of *local. This is computed
from intersize after intersize has been computed from the
original finalsize.

6.4. USER-SUPPLIED ROUTINES

Local Accumulate Function

void <local_accmnulate_func>(voidptr inter,
voidptr local,
int localsize);

Purpose: Accumulates *local into *inter.

Arguments:

159

voidptr inter: Pointer to the intermediate argument which
will be updated.

voidptr local:
values.

Pointer to the local argument with the new

int intersize: The size in bytes of intermediate arguments as
returned by the inter _constructor _func.

Return Value: None

160 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Example of Customized Keyword

In this example, the user will establish a keyword MEAN_SIGMA which
takes a single float value from the task routine (for each site), but re­
turns a structure with fields representing the mean of those values and
the standard deviation. Here, the lengths of the local, intermediate,
and final arguments are all different: A single float goes to three inter­
mediate quantities (a count, and sums of x and x 2), which in the finally
lead to a structure containing x and u. For purposes of illustration, and
in principle to avoid loss of precision, the intermediate real results will
be kept in double precision.

As is the case for any DO_TASK_INTEGRATE keyword defined, the
keyword may be used in the context of a vector of results, of length of
one or more elements.

Following the usual C conventions, the example will define the var­
ious user-supplied functions, followed by the keyword structure for this
new integration type. The user-defined functions will be prefixed by
UMS, standing for User-defined Mean and Sigma.

typedef struct {

float mean;

float sigma;
} Mean_and_Sigma;

I• This structure holds the result:

I• This typedef ~ould be in a .h file,
I• to be included in the user program.

typedef struct {
double sum; /* Sum of x */
double sumsq; /* Sum of x*x */
int count;

} UMS_stats;

•/
•/
•I

I* This structure holds the intermediate argument */

#define FINALTYPE Mean_and_Sigma
#define INTERTYPE UMS_stats
#define LOCALTYPE float
#define FINALSIZE sizeof (FINALTYPE)
#define INTERSIZE sizeof (INTERTYPE)

6.4. USER-SUPPLIED ROUTINES

#define LOCALSIZE sizeof (LOCALTYPE)

logical UMS_Word_Length(int bytes) {
if (bytes < 0) return FALSE;

}

if (bytes%4 == O) return TRUE;
return FALSE;

161

The inter_constructor_function creates and initializes an inter­
mediate object. The final object size is used to determine how many
elements there are in the vector of results. (Note that the destructor
corresponding to this constructor is implicit and assumes this Junction
does exactly one malloc- the destructor does exactly one free}.

int UMS_Inter_Con(voidptr final, voidptr *inter, int finalsize) {
int ii
int vector_length = finalsize I FINALSIZE;
•inter= (voidptr) malloc(vector_length•INTERSIZE);
for (i=O; i<vector_length; i++) { /* initialize inter object */

((INTERTYPE•) •inter)[i] .sum = 0.0;
((INTERTYPE•) •inter)[i] .sumsq = 0.0;
((INTERTYPE•) •inter)[i] .count= O;

}

return(vector_length * INTERSIZE); /*return length of inter*/
} /* intermediate constructor */

The inter_accumulate._function combines two intermediate ob­
jects. This is used both when combining results from two nodes, and
within a single node if multi-thread is enabled.

/*inter_accumulate_function
void UMS_Accum_Stats(voidptr inter_acc, voidptr inter, int intersize)
{

}

int i;
int vector_length = intersize I INTERSIZE;
for (i=Oj i<vector_length; i++) {

}

((INTERTYPE•)inter_acc)[i] .count+= ((INTERTYPE•)inter)[i] .n;
((INTERTYPE•)inter_acc)[i] .sum += ((INTERTYPE•)inter)[i] .sum;
((INTERTYPE•)inter_acc)[i] .sumsq += ((INTERTYPE•)inter)[i].sumsq;

162 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

The finish_function computes the value of the final object from
the value of an intermediate object. It uses intersize to determine the
vector length.

void UMS_Find_Mean_Sigma(voidptr final. voidptr inter, int intersize)
{

}

int i;
int vector_length = intersize I INTERSIZE;
for (i=O; i<vector_length; i++) {

}

double n = (double) ((INTERTYPE *) inter)[i] .n;
double average = ((INTERTYPE *) inter)[i] .sum/n;
double avsquare = ((INTERTYPE *) inter)[i] .sumsq/n;
((FINALTYPE*) final)[i] .mean =average;
((FINALTYPE*) final)[i] .sigma=

sqrt((avsquare - average*average));

The locaLconstructor_function creates a local object.

int UMS_Local_Con(voidptr inter, voidptr *local, int intersize)
{

int vector_length = intersize I INTERSIZE;
*local= (voidptr)malloc(vector_length*LOCALSIZE)j
return(vector_length * LOCALSIZE);

} /* MSDF_Local_Con */

The locaLaccumulate...function combines a local object with an
intermediate object. In this case it adds to the sum and the sum of the
squares of the local object, and keeps an explicit count.

void UMS_Accum_x_x2(voidptr inter, voidptr local, int localsize)
{

}

int ii
int vector_length
INTERTYPE *interd
LOCALTYPE *locald =

localsize / LOCALSIZE;
(INTERTYPE*) inter;
(LOCALTYPE*) local;

for (i=O; i<vector_length; i++) {

}

double value= ((LOCALTYPE•)local)[i];
((INTERTYPE•) inter)[i] .n += 1;
((INTERTYPE•) inter)[i] .sum +=value;
((INTERTYPE•) inter)[i] .sumsq += value•value;

6.4. USER-SUPPLIED ROUTINES 163

Finally, we can initialize the do_task keyword structure, and set up
a mnemonic to refer to it:

CAN_do_task_keyword UMS_Mean_Sigma = {

};

DO_TASK_INTEGRATE, /• type •/
UMS_Word_Length, /• verify •/
UMS_Inter_Con, /* intermediate construtor */
UMS_Accum_Stats,
UMS_Find_Mean_Sigma,
UMS_Local_Con,
UMS_Accum_x_x2

/* intermediate

I* :finisher
accumulator*/

•I
/* local constructor
/* local accumulator

•I
•I

CAN_do_task_keyword_ptr MEAN_SIGMA = tUMS_Mean_Sigma;

Having defined this new type of integration, the user program could
use it as follows:

Mean_and_Sigma r;
do_task (produce_r, mygrid,

MEAN_SIGMA, &r, sizeof(r),
END);

The produce_r task routine will have one float* argument, say xx.
It after computing a result, it will set xx = result. After do_task
returns, r will haver.mean set to the average and r.sigma to the
standard deviation of the results returned by produce_r for each site.

164 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.5 CHIP Routines

CHIP, the Canopy Hardware Interface Package, is designed to isolate
the Canopy implementation from machine details. It is a set of sub­
routines that allows machine-independent control of parallelism, and
is therefore a good package for other parallel meta-applications to use.
The CHIP routines and the hosting software are independent of the
Canopy layer. Since Canopy is site-based not node-based, ordinary
Canopy programs will have little use for these routines-but they may
be included if needed.

6.5. CHIP ROUTINES 165

6.5.1 Inter-Node Communication

The CHIP inter-node communication routines read and write data from
and to fulLaddresses. It makes no difference if the target address is
on the local node or a remote node; the operation is the same. Any
piece of memory on any node can be written or read by any other node
in the same job at any time, so competition must be considered in every
program. The Canopy layer provides one way of organizing programs
cleanly. Uses outside the Canopy paradigm must provide another way
of synchronization.

The keep, more, and close variations of remote...read and remote_
write are advisory only; they tell the communications routines that
the next transfer is to the same target, so the total number of channel
arbitrations may be reduced. However, remote...read routines always
make object valid before returning and reads and writes are guaranteed
to occur in the order specified.

Different implementations of CHIP may implement these routines
in different ways. The only guarantees are these:

Transfers are done by 32-bit words, which means that a
particular 32-bit word is always some correct value. Longer
entities, such as doubles or structures, may have invalid
values since they may be part old and part new. A 32-bit
word is never set to any other value than the old value or
the new value (such as by being cleared to 0 first). Flags
should therefore always be 32-bit words.

Any memory access after a remote_wri te, local or remote,
will read the changed value. Any memory access after any
local write (even one not using the remote_wri te routines)
will read the changed value. This means that-unlike some
implementations of NFS-it will always work in Canopy to
change a value, tell other nodes the value is changed, and
know that if they read it they will read the new value (or
some later value). This is true even of the keep variations.

166 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

While transfers (except for single-word transfers) need not
be atomic, the word with the highest address will always
be changed after all the other words. indextransfers!non­
atomic Even if the keep routines are used, the highest word
of the previous transfer will be done before any word of the
next transfer. Of course, it is preferable to write a data
block and then write a flag in a separate transfer since this
is easier to modify correctly.

Transfers may take arbitrary lengths of time. One node may access
another several times, or none, before a third node can. The order of
transfers except for the last word is undefined.

Operations that need exclusive access should use semaphores. Here
is an example used in setting up maps in Canopy where nodes need
to update a counter asynchronously. This code works regardless of
whether where is local or remote.

/* start an atomic operation */
wait_for_resource(&where_semaphore);

I* keep and close are advisory only */
remote_read_and_keep(where, 1, &what);
what += 1;
remote_write_and_close(where, 1, &what);

/* let somebody else update it */
free_resource(&where_semaphore);

6.5. CHIP ROUTINES

Single-block Communication

void remote_read
void remote_read_and_keep
void remote_read_more
void remote_read_and_close

(full_address *add, int len, voidptr object);

void remote_write
void remote_write_and_keep
void remote_write_more
void remote_write_and_close

(full_address *add, int len, voidptr object);

167

Purpose: To read len words from *add into object or to write
len words to *add from object. The keep, close, and more
variations give hints to the system about whether more data is
going to the same node.

Arguments:

fulLaddress *add: The source (read) or destination (write)
address. The node may be any node including the calling
node but the address must be word-aligned.

int len: The number of words to move.

voidptr object: A local pointer to the destination (read)
or source (write) of the data on this node. This must be
word-aligned.

Return Value: None

NOTE: Do not rely on the keep variations to act as semaphores. Use
the semaphore routines if semaphores are needed.

168 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

Multiple-block Communication

int remote_gather (int nblocks, int* node,
voidptr *src, int *len, vodiptr *dst)

Purpose: To read nblocks blocks of data of various lengths from a
list of addresses (src) on a specified remote node, into memory
blocks (dst) on the local node. The remote gather and scatter
routines facilitate transfer coalescing, in which several transfers
between two nodes are done in one transaction on the commu­
nications medium. Although remote_gather and remote_scatter
could be written in terms of multiple calls to remote_read and
remote_write, the point of these routines is to reduce the number
of communications.

To further facilitate efficient communications in applications which
may involve high levels of traffic, this transfer is non-blocking: if
the channel is busy, control may return immediately, with a neg­
ative return value.

Arguments:

int nblocks: The number of blocks of data to be transfered.

int *node: The remote node to gather data from. (May be
identical to the local node, in which case simple memory
copies are done.)

voidptr *src: A local pointer to a list of source addresses.
Each is to be used as an address of a block of data on the
remote node.

int *len: A local pointer to a list oflengths (numbers of words)
of each block to transfer.

voidptr *dst: A local pointer to a list of destination addresses.
Each is to be used as an address on the local node for a block
of data to be copied.

6.5. CHIP ROUTINES 169

Note: Transfers must be word aligned: The elements of the
source and destination lists must be multiples of four.

Return value:: Either a negative integer error code, or the actual
number of blocks read. The only circumstance in which an error
can be returned is if the connection is refused (because the channel
is busy) and should be re-tried later; all other errors result in
an abort of the job. The actual number of blocks read can be
less than nblocks, if nblocks is greater than CAN_ATOMICGATHER

(defined in chip.h).

170 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

int remote scatter (int nblocks, int* node,
voidptr *dst, int *len, vodiptr *src)

Purpose: To write nblocks blocks of data of various lengths from
a list of addresses (src) on the local node, into memory blocks
(dst) on the specified remote node.

Arguments:

int nblocks: The number of blocks of data to be transfered.

int *node: The remote node to gather data from. (May be
identical to the local node, in which case simple memory
copies are done.)

voidptr *dst: A local pointer to a list of destination addresses.
Each is to be used as an address on the remote node for a
block of data to be copied.

int *len: A local pointer to a list of lengths (numbers of words)
of each block to transfer.

voidptr *src: A local pointer to a list of source addresses.
Each is to be used as an address of a block of data on the
local node.

Note: Transfers must be word aligned: The elements of the
source and destination lists must be multiples of four.

Return value:: Either a negative integer error code (if the channel
was busy), or the actual number of blocks written.

6.5. CHIP ROUTINES 171

6.5.2 Full Address Functions

void full_address_from_local_address(voidptr local_address);

Purpose: To form a full address structure pointing to a location
on the local node specified by a local pointeL

Arguments:

voidptr locaLaddress: The address in local memory space.

Return Value: A structure of type fulLaddress pointing to the
local address on this node.

void full_address_on_another_node
(voidptr address, int node_number);

Purpose: To form a fulLaddress structure pointing to a location on
an arbitrary node, specified by the node number and an address
within that node's memory space.

Arguments:

vo idptr address: The address in in node memory space; an
ordinary pointer when used by that node.

int node...number: Specifies the node associated with the mem­
ory of the desired location.

Return Value: A structure of type fulLaddress pointing to the
specified address on the specified node.

172 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.5.3 Fatal Errors and Memory Allocation

void yderr(char *errstring);

Purpose: To report fatal errors. This routine stops the program when
called from any level and reports *errstring to the controller.

Arguments:

char *errstring: The error message to report to the controller.

Return Value: None. This function doesn't even return!

voidptr ckmalloc(int size);

Purpose: To allocate memory without requiring the user to check for a
null return. This routine behaves identically to malloc () excpet
that a yderr() is declared if insufficient memory is available.

Arguments:

int size: The number of bytes to be allocated.

Return Value: A valid pointer to the allocated block of memory.
If memory could not be allocated, this function will call yd err()
with a suitable error string, and never return.

6.5. CHIP ROUTINES

6.5.4 Do On All Nodes

void do_on_all_nodes(voidfunptr local_func,
<triplets>,
END);

Purpose: To do locaLfunc on all nodes of the system.

Arguments:

173

voidfunptr locaLfunc: A pointer to a function whose ar-
guments aare those defined by the <triplets> given. This
function will be called once on each node. The arguments
work the same way as for do_task (see section 6.2.l Do_TASK

TRIPLETS).

triplets: These are the same as the do_task triplets described
with do_task.

END: This is the END keyword used just the same was as in
do_task.

Note: This function works at the CHIP level, not at the Canopy
level, which means that Canopy concepts such as the HOME site
and field_pointer routines are not valid in locaLfunc. The
random number generator will not work there either. To use
Canopy constructs on a per-node basis define a grid containing
as many sites as there are nodes and then do a do_task over that
grid.

Note2: There is an CHIP function called do_frame_oILalLnodes
which is to this function as vprintf is to printf, used for the
implementation of the various do_task routines. This private
function uses a frame argument which is non-trivial to set up and
subject to change. However, it must be used to build a system
such as Canopy where vprintf-like functionality is needed.

Return Value: None

174 CHAPTER 6. CANOPY SUBROUTINE REFERENCE

6.5.5 Semaphores and Resources

logical init_resource(full_address *resource);
logical lock_resource(full_address *resource);
void wait_for_resource(full_address *resource);
void free_resource(full_address *resource);

Purpose: To provide a CHIP standard way of contending for re-
sources. In CHIP, each resource is assigned a semaphore vari­
able which governs it. The full-addresses used as arguments to
these routines must point to that semaphore variable. Before
the semaphore can be used, it must be initialized with a call to
init_resource. After that call the lock, waiLfor, and free
routines may be used to control the resource. If the semaphore
variable was automatic or malloc'ed it must not be used after it
goes out of scope (meaning that the routine automatically allo­
cating it returns-it is OK to use it in that routine's subroutines,
including tasks that routine spawns) or is freed.

Arguments:

fulLaddress *resource: Address of a full-address pointer to
a semaphore variable.

Return Value: TRUE if the request was granted and FALSE if the
semaphore was busy or could not be initialized.

Note: The CHIP semaphore contention is not guaranteed to be
fair, especially if wai t_for_resource is used. It will always be
mutually exclusive and will never deadlock.

Chapter 7

Canopy Libraries

The Canopy libraries provide routines for operations which are ubiqui­
tous over a wide range of applications. These include functionallity par­
ticular to Canopy (e.g. gridlib), generic to massively parallel systems
(e.g. ranlib), or needed because of peculiarities in I/O or deficien­
cies in the C language (e.g. cmplxlib). The utility of these routines
extends beyond the obvious advantage of not having to re-create each
routine:

• When common routines are standardized, there is an advantage
in code readability and in confidence in routine correctness.

• Any subtle issues which arise in implementing these routines can
be resolved correctly once and for all.

• In cases where efficiency is likely to be an issue, the library rou­
tines might be more carefully optimized than individually created
routines would be.

Other libraries of routines oriented toward more specific applica­
tions groups are also available. An example is QCDLIB, which contains
routines for manipulation of SU(3) and GL(3) matrices and 3-vectors.
These applications libraries are not part of Canopy per se, and therefore
are not documented in this manual.

175

176 CHAPTER 7. CANOPY LIBRARIES

7 .1 Gridlib-Periodic Grids

The grid library contains standard periodic grid defining functions as
described in the grid declaration section of CANOPY SUBROUTINE

REFERENCE. The sources for these routines are also useful as tem­
plates for customized grids.

The grid library #defines names for the directions in grid. h, which
should be #included in any program using these routines:

#define x 1
#define y 2

#define z 3
#define T 4
#define MINUS _x -1

#define MINUS_Y -2
#define MINUS_Z -3
#define MINUS_T -4

7.1. GRIDLIB-PERIODIC GRIDS

7.1.1 Periodic Grids

grid periodic_linear_grid(int x);
grid periodic_square_grid(int x, y);
grid periodic_cubic_grid(int x, y, z);
grid periodic_hypercubic_grid(int x, y, z, t);

177

indexgrids!periodic linear indexgrids!periodic square indexgrids!periodic
cubic indexgrids!periodic hypercubic

Purpose: To declare rectilinear periodic grids with coordinates in
the range [O .. n-1]. These functions map the sites to the serial
numbers (and hence to the nodes) with x varying fastest, then y,
then z, and finally t. The result is that sites in the same time
slice tend to be together on the nodes.

Arguments:

int x, y, z, t:

periodic grid.
The x, y, z, and t dimensions of the new

The grid coordinates run [O .. x-1] [O .. y-1]

Return Value: The grid variable referring to this grid, which is used
by all the subroutines using this grid.

178 CHAPTER 7. CANOPY LIBRARIES

7.1.2 Chunky Periodic Grids

grid chunky_periodic_square_grid(int x, y);
grid chunky_periodic_cubic_grid(int x, y, z);
grid chunky_periodic_hypercubic_grid(int x, y, z, t);

Purpose: To declare rectilinear periodic grids with coordinates in
the range [O .. n-1]. These functions map the sites to the serial
numbers (and hence to the nodes) in a way that tries to keep
neighboring sites on the same nodes. Each dimension except the
last is divided into even chunks (so the size shouldn't be prime)
and then the chunks are divided by the distribution function. The
net result is that approximately a square chunk of the grid is on
each node, which maximizes the likelihood that nearest neighbors
will be on the same node.

Arguments:

int x, y, z, t:

periodic grid.
The x, y, z, and t dimensions of the new

The grid coordinates run [O .. x-1] [O .. y-1]

Return Value: The grid variable referring to this grid, which is used
by all the subroutines using this grid.

7.1. GRIDLIB-PERIODIC GRIDS 179

7.1.3 General Periodic Grids

grid periodic_grid(int ndims, intptr size);
grid chunky_periodic_grid(int ndims, intptr size);

Purpose: To declare rectilinear grids of arbitrary dimensions with
zero-based coordinates. To declare a grid whose lowest coordinate
is not 0 use the arbi trary_grid routine.

Arguments:

int ndims: The number of dimensions of the new grid.

intptr size: A one-based array of sizes. The coordinates of
the new grid run [O .. size[1J-1J, [O .. size[2J-1J, ...
[O .. size [ndimsJ -1J. This agrees with the normal defi­
nitions of directions so that size [XJ is the first direction
and so forth for Y, z, and T. Note that if size was declared
as coordinates that size [OJ exists but is not used. If
size was an array returned from some function call (such as
grid_lower_bounds) then size [OJ may not exist.

Return Value: The grid variable referring to this grid.

180 CHAPTER 7. CANOPY LIBRARIES

7 .2 Setlib-Predefined sets

Several set-of-sites functions, such as red_func which selects those sites
whose sum of coordinates is odd, are quite common. They have been
written in a clean way and collected here so users don't have to keep re­
writing them. An attempt has been made to keep them general enough
so they will work on any grid. The #include file is set. h and the C
switch is -lset.

All of these functions have the standard syntax of a set-of-sites
function:

int <set_of_sites_func>(grid lattice, intptr coords);

where lattice is the grid on which the set is defined and coords is the
(1-based) array of coordinates for a particular site. The return value is
either the level of the site in the set or 0 if the site is not in the set.
The following functions are provided:

red_func : The set of sites with odd sum of coordinates.

black_func : The set of sites with odd sum of coordinates.

rb_func The compound set of sites red first then black.

br_func The compound set of sites black first then red.

hyperl_func
this set

The compound set of sites to make a hyperplane. In
the level of each site is the sum of its coordinates plus

one.

hyperu_func The compound set which 1s hyperl_func m the
reverse order.

spherel_func : The compound set in which the level of each set is
its distance from the origin plus one.

sphereu_func : The compound set which is spherel_func in the
reverse order.

7.3. RANLIB-RANDOM NUMBERS 181

7 .3 Ranlib-Random Numbers

The random number library contains the functions needed to set up a
Canopy random number generator. The #include file is random.hand
the C switch is -lran. Issues involving random numbers in a multi­
processing context are discussed in section 4. 7.1 RANDOM NUMBERS.

There are currently two random number generator functions in the
library:

bad_random () : Created in the dark ages as a test, bad_ random uses a
modular congruence algorithm with a short period.

dual_random(): Created 5/25/88 by Doug Toussaint. This is a feed­
back shift register generator xor'ed with a modular congruence

The way to use either of these in a Canopy program with a single ran­
dom number generator is (cf. section 6.1.5 RANDOM NUMBER DEC­

LARATION and section 6.3.8 OBTAINING RANDOM NUMBERS):

#include <random.h>

make_random_generator(dual_random,STREAM_PER_SITE,<n>,<seed>)i

complete_definitions();

Having prepared this, then calls to random() (by either task routines
or the control program) will return floating point numbers between 0.0
(inclusive) and 1.0 (exclusive). In place of duaLrandom, bad_random,
(or a user-defined generator) could be selected; and STREAM_PER_NODE
randoms may be chosen instead of STREAM_PEILSITE.

For efficiency, generators produce several randoms at a time and
dole them out each time random() is called; <n> controls the number
of randoms to generate at once (10 is good typically). <seed> is an
integer seed which labels a stream of random numbers.

182 CHAPTER 7. CANOPY LIBRARIES

7 .4 Cmplxlib-Complex Arithmetic

The cmplx library handles complex numbers, both in single and dou­
ble precision. The line #include <cmplx. h> must be in any program
using these routines, and it automatically includes the canopy. h file.
Therefore the #include <cmplx. h> line must be the first include file
in any program using these functions. Use the -lcmplx switch to in­
clude this library if you are not using the Canopy shells which include
it automatically.

7.4.1 Complex Numbers

There is no intrinsic complex type in C, so one is defined here, along
with the normal functions on the complex domain.

typedef struct { I* single precision */
float real;
float imag;

} complex;

typedef struct { /* double precision */
double real;
double imag;

} double_complex;

Because complex operations are frequently in time-critical places,
both functions and macros have been provided to handle complex oper­
ations. Due to some compiler's difficulties in handling nested functions
returning structures, all of the functions take as their input a pointer to
a complex number. The arguments for the macros are complex num­
bers, not pointers, but like all macros they evaluate their arguments
many times.

7.4. CMPLXLIB-COMPLEX ARITHMETIC

7.4.2 Complex Functions

complex cmplx(float r, float i);
complex cadd(complex *a, complex *b);
complex cmul(complex *a, complex *b);
complex csub(complex *a, complex *b);
complex cdiv(complex *a, complex *b);
complex conjg(complex *a);
float cabs(complex *a);
float cabs_sq(complex *a);
float carg(complex *a);

183

Purpose: To initialize, add, multiply, subtract, divide, conjugate,
find the magnitude and find the phase of complex numbers.

Arguments:

float r: Real part of result.

float i: Imaginary part of result.

complex *a: Pointer to the first complex argument.

complex *b: Pointer to the second complex argument.

Return Values: The result of the operation. cabs_sq returns the
square of the magnitude of *a; carg returns the phase of *a.

184 CHAPTER 7. CANOPY LIBRARIES

complex csin(complex *z);
complex ccos(complex *z);
complex ctan(complex *z);
complex csinh(complex *z);
complex ccosh(complex *z);
complex ctanh(complex *z);
complex casin(complex *z);
complex cacos(complex *z);
complex catan(complex *z);
complex casinh(complex *z);
complex cacosh(complex *z);
complex catanh(complex *z);
complex cexp(complex *a);
complex clog(complex *a);
complex csqrt(complex *a);
complex ce_itheta(float theta);

Purpose: Complex transcendental functions.

Arguments:

complex *z: Pointer to the complex argument.

float theta: Angle.

Return Values: The complex result of the operation.

csin, ccos, ctan: trig functions.

csinh, ccosh, ctanh: hyperbolic functions.

casin, cacos, ca tan: inverse trig functions.

casinh, cacosh, catanh: inverse hyperbolic functions.

cexp, clog, csqrt: exponentional, natural logarithm, and
square root functions.

ce_i theta: Returns the unit complex number with angle theta.

7.4. GMPLXLIB-GOMPLEX ARITHMETIC

7.4.3 Double Complex Functions

double_complex dcmplx(double r, double i);
double_complex dcadd(double_complex *a, *b);
double_complex dcmul(double_complex *a, *b);
double_complex dcsub(double_complex *a, *b);
double_complex dcdiv(double_complex *a, *b);
double_complex dconjg(double_complex *a);
double dcabs(double_complex *a);
double dcabs_sq(double_complex *a);
double dcarg(double_complex *a);

185

Purpose: To initialize, add, multiply, subtract, divide, conjugate, find
the magnitude and find the phase of double-precision complex
numbers.

Arguments:

float r: Real part of result.

float i: Imaginary part of result.

double_complex *a: Pointer to the first argument.

double_complex *b: Pointer to the second argument.

Return Values: The result of the operation. cabs_sq returns the
square of the magnitude of *a; carg returns the phase of *a.

186 CHAPTER 7. CANOPY LIBRARIES

double_complex dcsin(double_complex *z);
double_complex dccos(double_complex *z);
double_complex dctan(double_complex *z);
double_complex dcsinh(double_complex *z);
double_complex dccosh(double_complex *z);
double_complex dctanh(double_complex *z);
double_complex dcasin(double_complex *z);
double_complex dcacos(double_complex *z);
double_complex dcatan(double_complex *z);
double_complex dcasinh(double_complex *z);
double_complex dcacosh(double_complex *z);
double_complex dcatanh(double_complex *z);
double_complex dcexp(double_complex *a);
double_complex dclog(double_complex *a);
double_complex dcsqrt(double_complex *a);
double_complex dce_itheta(float theta);

Purpose: Double-precision complex transcendental functions.

Arguments:

double_complex *z: Pointer to the argument.

float theta: Angle.

Return Values: The double-precision complex result of the opera­
tion.

des in, dccos, dctan: trig functions.

dcsinh, deco sh, dctanh: hyperbolic functions.

de as in, dcacos, dcatan: inverse trig functions.

dcasinh, dcacosh, dcatanh: inverse hyperbolic functions.

de exp, de log, de sqrt : exponentional, natural logarithm, and
square root functions.

ce_i theta: unit complex number with angle theta.

7.4. CMPLXLIB-COMPLEX ARITHMETIC 187

7.4.4 Complex Macros

CONJG(a,b) b = conjg(a)
CADD(a,b,c) c = a + b
CSUM(a, b) a += b
CSUB(a,b,c) c = a - b
CMUL(a,b,c) c = a * b
CDIV(a,b,c) c = a I b
CMUL_J (a, b, c) c = a * conjg(b)
CMULJ_ (a, b, c) c = conjg(a)*b
CMULJJ(a,b,c) c = conjg(a*b)
CNEGATE(a,b) b = -a
CMUL_I(a,b) b = ia
CMUL_MINUS_I(a,b) b = -ia
CMULREAL(a,f,c) c = fa
CDIVREAL(a,f,c) c = a/f

Purpose: In-line Macros for fast complex operations.

Arguments:

a, b, c: complex or double_cornplex numbers-not pointers!

f: A float or double for the real operations.

Return Values: None. These macros return nothing.

Note: These are C macros, which means that there are restrictions
on the arguments:

1: Since the macro arguments may be evaluated more than once
they must not be functions with side effects.

2: For CMUL, CDIV, CMULJ, CMULJ_, CMULJJ, CMULI and
CMUL.MINUS_I the result must not be one of the other two
arguments. Any of the other arguments to any of the macros
may be the same.

188 CHAPTER 7. CANOPY LIBRARIES

7.4.5 Polynomial Evaluation

complex evaluate_complex_polynomial
(int order, complex *coef, complex *val);

double_complex evaluate_double_complex_polynomial
(int order, double_complex *coef, *val);

Purpose: To evaluate a polynomial.

Arguments:

int order: The order of the polynomial (such as 3 for cubic).

(type) *coef: An array of order+ 1 numbers which are the
coefficients of the polynomial :
coef[order]xorder + ... + coef[O] = 0.

(type) *val: A pointer to the number to be plugged into the
polynomial.

Return Value: The result of the evaluation.

7.4. CMPLXLIB-COMPLEX ARITHMETIC

7.4.6 Root Polishing

complex polish_complex_root
(int order, complex *coef, complex *root, int n);

double_complex polish_double_complex_root
(int order, double_complex *coef, *root, int n);

189

Purpose: To improve a putative polynomial root by the Newton­
Raphson method. Note that the putative roots are always in the
complex domain.

Arguments:

int order: The order of the polynomial (such as 3 for cubic).

(type) *coef: An array of order+ 1 numbers which are the
coefficients of the polynomial :
coef[order]xorder + ... + coef[O] = 0.

(type) *root: A pointer to the putative root which will be
improved.

int n: The number of times to iterate the Newton-Raphson
procedure.

Return Value: The improved root. Note that this routine comes
with no guarantees-if the putative root is not close to an actual
root or if the polynomial is not stable then the returned value
may not be closer to a root. A good value of n is about 10.

190 CHAPTER 7. CANOPY LIBRARIES

7.4.7 Quadratic Equation

int solve_complex_quadratic(complex *coef, *root);
int solve_double_complex_quadratic

(double_complex *coef, *root);

Purpose: To solve the quadratic equation.

Arguments:

(type) *coef: An array of three numbers which are the
coefficients of the quadratic :
coef[2]x 2 + coef[1]x + coef[O] = 0.

(type) *root: An array of two complex numbers to hold the
returned roots of the equation (starting at root [OJ).

Return Value: The magnitude of the return value is the number
of non-degenerate roots. If both roots are real the return value is
negative, otherwise it is positive.

7.4. CMPLXLIB-COMPLEX ARITHMETIC

7.4.8 Cubic Equation

int solve_complex_cubic(complex *coef, *root);
int solve_double_complex_cubic

(double_complex *coef, *root);

Purpose: To solve the cubic equation.

Arguments:

191

(type) *coef: An array of four numbers which are the coeffi­
cients of the cubic equation:
coef[3]x 3 + coef[2]x 2 + coef[1]x + coef[O] = 0.

(type) *root : An array of three complex numbers to hold the
returned roots of the equation (starting at root [OJ).

Return Value: The magnitude of the return value is the number
of non-degenerate roots. If all roots are real the return value is
negative, otherwise it is positive. If two roots are degenerate,
they are root [1] and root [2].

192 CHAPTER 7. CANOPY LIBRARIES

7.5 FFTlib-Fast Fourier Transforms

The FFT library provides subroutines which do Fourier transforms and
inverse Fourier transforms on rectangular periodic grids of any size and
dimension less than seven. The sizes in each direction are not limited
to a power of two, but the current implementation is extremely slow
unless the size is 2, 3, or 5 times a power of two.

Since for certain analysis programs, it is useful to FFT just the
spatial directions, this library also includes routines to transform only
specified directions.

To use this library, include <fft. h> in your program and then call
FFT _setup once for each grid on which you wish to do Fourier trans­
forms. After complete_definitions, call FFT or Inverse_FFT with
the field you wish to transform, which must live on one of the grids
you declared. The field length must be a multiple of size of (complex).
Canopy will treat the field as a vector of complex numbers and trans­
form each element of the vector. The order of the transformed field
is the natural one, with element (x,y,z,t) corresponding to the element
with momentum (x,y,z,t) in units of 27r/(number of elements in that
direction).

7.5. FFTLIB-FAST FOURIER TRANSFORMS

Here is a sample program using this library:

#include <fft.h>
grid gl, g2; field fl, f2, f3;
void control() {
g1 = periodic_cubic_grid(4,4,8);
g2 = periodic_hypercubic_grid(B,8,8,12);
fl ; site_field(g1,2•sizeof(complex));
f2 ; site_field(g2,1•sizeof(complex));
f3; site_field(g1,3•sizeof(complex));
FFT_setup(gl); FFT_setup(g2);

complete_definitions();
... /* initialize fl, f2, and f3 */
FFT(fl);
Inverse_FFT(f2);
FFT(f3);
Inverse_FFT(f3);
FFT(f2);
Inverse_FFT(f1); /*back the way it was*/
}

193

On the first call to either FFT or InverseYFT for each grid an
initialization subroutine is done which more than doubles the time of
the first transform. Subsequent calls are therefore faster.

194

void FFT_setup(grid g);
void FFT(field f);
void FFT_double(field f);
void Inverse_FFT(field f);

CHAPTER 7. CANOPY LIBRARIES

void Inverse_FFT_double(field f);

Purpose: To do Fourier transforms on fields. The basic routines treat
the field elements as collections of floats; the "double" routines
treat them as collections of doubles.

Arguments:

grid g: For the setup, the grid on which the fields to be
transformed live. One call must be make for each grid on
which transforms are to be done. This routine must be called
before cornplete_defini tions.

field f: The field to transform. This field must live on one of
the grids with which FFLsetup was called.

Return Values: none.

7.5. FFTLIB-FAST FOURIER TRANSFORMS

void FFT_some_directions
(field f, logical *fft_this_dir);

void FFT_double_some_directions
(field f, logical *fft_this_dir);

void Inverse_FFT_some_directions
(field f, logical *fft_this_dir);

void Inverse_FFT_double_some_directions
(field f, logical *fft_this_dir);

195

Purpose: To do Fourier transforms on some directions on fields.
These routines operate the same way as ordinary FFT routines,
excpet that the transform is only performed for direction d if
fft_this_dir [d] is TRUE.

Arguments:

field f: The field to transform. This field must live on one of
the grids with which FFLsetup was called.

logical *fft_this_dir: An array specifying which directions
are to be transformed.

Return Values: none.

196 CHAPTER 7. CANOPY LIBRARIES

7 .6 Promptlib-Extended Input

These routines provide standard robust user-friendly flexible ways to
read stdin into Canopy programs.

• They ensure that the expected number of items is read.

• They can range check the input arguments.

• They can provide default values for input arguments.

• They recover from errors in the input.

• They echo the input if the input is from a file, which makes the
output look much better.

• They ask the user to re-enter the input if an error is made at a
terminal, but they exit if an error is made in input from a file.

For Canopy applications running on distributed systems, the promptlib
routines have the further advantage of resolving some sticky problems
with ordinary I/O, for instance, what happens if an interrupt is en­
countered.

The #include file is prompt.hand the C switch is -!prompt.

7.6. PROMPTLIB-EXTENDED INPUT 197

7.6.1 Example Using Prompts

The file doprompt. c in cansource/programs contains examples illus­
trating how prompted input may be used. It is self-explanatory:

#include <canopy.h>
#include <prompt.h>
#include <math.h>

void control()
{

/* example of the use of prompts *I

float vals[10]; /* The first part reads in up to 10 */
int d[S] j /* floats and then prompts for a */
int i,j ,k; /• power for each one. •/
complete_definitions(); /•this is in all Canopy progs*/

/* Get the list of up to 10 numbers */
i:;;prompt_float_list ("Enter up to 10 numbers: 11

, 10, vals) ;
for (j=O; j<i; j++) { /• get the power for each one •/

}

char ss[80]j /*with a default value and range*/
float power;
sprintf (ss, "Power for %f 11

, vals [j]); /* make prompt*/
power:;; prompt_float_range_default(ss,1.0,0.1,100.0);
printf ("%2d: %g~%f is %g\n 11

, j , vals [j] ,
power,pow(vals[j] ,power));

/* This is how to read in exactly n */
/* values in a comma-delimited list */

prompt_scanf (4, "Enter four integers: 11
,

"%d '%d, %d, %d" 'l:d [1] 'll:d [2] 'll:d [3] ,ll:d [4]);
printf(''The 4-d point is (%d,%d,%d,Y.d)\n11

,

d[1] ,d[2] ,d[3] ,d[4]);

} /• control •/

To compile and link this example for a Unix system and for the
D860 nodes in ACPMAPS, use

cane doprompt.c -o doprompt
dcanc doprompt.c -o doprompt

Note that -lprompt is included automatically by the shells.
A sample session using this file from a terminal is:

198 CHAPTER 7. CANOPY LIBRARIES

>doprompt
Enter up to 10 numbers: 1.1,2,4.3e5

Power for 1.100000 [0.1 .. (default 1) .. 100) 6
O: 1.1-s.000000 is 1.77156

Power for 2.000000 [0.1 .. (default 1) .. 100) 0.07
Value out of range -- re-enter
Power for 2.000000 [0.1 .. (default 1) .. 100) 2

1: 2-2.000000 is 4
Power for 430000.000000 [0.1 .. (default 1) .. 100)

2: 430000-1.000000 is 430000
Enter four integers: 1,2,3,4
The 4-d point is (1,2,3,4)
>

Notice how the out-of-range input "0.07" was re-prompted and how
the default value "1" was taken.

7.6. PROMPTLIB-EXTENDED INPUT 199

7.6.2 Subroutines in the Prompt Library

As outlined in the introduction, the prompt library provides clean input
subroutines. All of these routines prompt stdout with the prompt
string (which may be the null string) and fetch one line of input from
stdin. This line is then checked to ensure it contains the requested
input tokens and no others. If it does then the value is either returned
or put in an argument as described in the individual routines. If it does
not, the routine takes different action depending on whether stdin is
a terminal device or not. For terminals, the routines do the following:
print "Input is in error -- please re-enter" on stdout; print
the prompt string again; and then wait for a new line to be typed.
If stdin is a file, they print "Invalid input in file -- quitting"
and exit the program.

If only a newline is entered, the routines which have default values
will return the default value. If the input is out of range on those
routines that check range the error is handled like any other invalid
entry.

These routines place a length limitation on the input line of 255
characters.

All of these routines, including the ones that return lists of values,
make sure there is no extra garbage at the end of the line. They also
echo the input line if stdin is a file and do not echo it if stdin is a
terminal. This makes stdout look the same with both types of input
since the terminal handler echos the input line.

200 CHAPTER 7 CANOPY LIBRARIES

Prompt for Single Value

double prompt_double(char *prompt);
float prompt_float(char *prompt);
int prompt_int(char *prompt);
void prompt_string(char *prompt, char *ss);
void prompt_word(char *prompt, char *ss);

Purpose: To prompt for and read in a single value. The differencce
between prompt_word and prompt_string is that prompt_word
expects a single word with no white space characters inside it and
prompt_string returns the entire input line. Note that neither
string routine will return a null string-if a return is entered the
user will be prompted again (if on a terminal) or the program will
exit (if input is from a file). Promptlib has other routines that
interpret a null string (entered by just pressing return) as taking
the default value-these are described later.

Arguments:

char *prompt : The prompt string. This is used verbatim.

char *ss: The address of memory for the returned string.

Return Value: For prompt_int, prompt_float, and prompt_double
the return value is the user input value.

7.6. PROMPTLIB-EXTENDED INPUT

Prompt with Default Value

double prompt_double_default(char *prompt,
double default);

float prompt_float_default(char *prompt,
double default);

int prompt_int_default(char *prompt,
int default);

void prompt_string_default(char *prompt,
char *default,
char *ss);

void prompt_word_default(char *prompt,
char *default,
char *ss);

201

Purpose: To prompt for and read in a single value, taking the default
value if a newline is entered.

Arguments:

char *prompt : The prompt string. The string
"(default <default>) "

is appended to the prompt.

default: The default value. Note that this is a double
for the float routine; this is because some versions of C don't
always handle float arguments correctly. With this declara­
tion, no cast is needed on the calling line.

char *ss: The address of memory for the returned string.

Return Value: For prompt_int_default, prompt_float_default,
and prompt_double_defaul t the return value is the user input
value.

202 CHAPTER 7. CANOPY LIBRARIES

Prompt with Range Check

double prompt_double_range(char *prompt,
double low,
double high);

float prompt_float_range(char *prompt,
double low,
double high);

int prompt_int_range(char *prompt,
int low,
int high);

Purpose: To prompt for and read in a single value checking that it is
in a given range. If the input is not in the range, it is prompted
for again (if terminal input) or the program is terminated (if file
input).

Arguments:

char *prompt: The prompt string. The string
" [<low> .. <high>] "

is appended to the prompt.

low: The lower limit.

high: The upper limit.

Note: The range accepted is low ::; value ::; high.

Return Value: The user input value.

7.6. PROMPTLIB-EXTENDED INPUT

Prompt with Default and Range Check

float prompt_double_range_default(char *prompt,
double default,
double low,
double high);

float prompt_float_range_default(char *prompt,
double default,
double low,
double high);

int prompt_int_range_default(char *prompt,
int default,
int low,
int high);

203

Purpose: To prompt for and read in a single value checking that it
is in a given range and giving the default value if a newline is
entered.

Arguments:

char *prompt : The prompt string. The string
" [<low> .. (default <default>) .. <high>] "

is appended to the prompt.

default: The default value.

low: The lower limit.

high: The upper limit.

Note: The range accepted is low :S value :S high.

Return Value: The user input value.

204 CHAPTER 7. CANOPY LIBRARIES

Prompt for a List of Values

int prompt_double_list(char *prompt,
int max,
double* list);

int prompt_float_list(char *prompt,
int max,
float* list);

int prompt_int_list(char *prompt,
int max,
int* list);

Purpose: This prompts for and reads in some number of comma­
separated items. It returns the number of items in the list. One
use of this in lattice gauge theory is to input the size of the lat­
tice. The maximum number of items that can be read in is the
maximum number that can fit on one line.

Arguments:

char *prompt: The prompt string. This is used verbatim.

int max: The maximum number of items that may be rn

the list. If more are entered, the routine prompts again
with a message of what the maximum is. In the current
implementation the maximum value for max is 20.

xxx *list: A 0-based array of whatever type was specified.

Return Value: The number of items entered.

7.6. PROMPTLIB-EXTENDED INPUT

General Prompt

void prompt_scanf(int expected,
char *prompt,
char *format,
...)

205

Purpose: This is the most general promptlib routine. It expects some
number of arguments and keeps re-prompting until it gets them
(unless the input is from a file, in which case it exits the program
with an error message). The format and variable arguments are
identical to those used in scanf except that the format may not
contain any newline characters.

Arguments:

int expected: The expected number of return values. Un-
fortunately this may not match the number of items in the
format string or the argument list, so count carefully or use
one of the other routines.

char *prompt : The prompt string. This is used verbatim.

char *format: The format string. This is the same as the for­
mat string for scanf except that it must contain no newline
characters. It should have as many fields as the expected
number of arguments.

The addresses of the values being read, as in scanf.

Return Value: There is no return value from this function smce
it keeps retrying until it succeeds (if an error occurs in terminal
input) or it stops the program (if an error occurs in file input).

Index

acanc, 8
ACPMAPS, 8, 9, 13, 22, 49, 50
address_of_field(), 47, 118
ANSI C, 22, 63
APPEND, 73, 99
arbitrary_grid(), 15, 137, 142
argc, argv, 7, 133
argument triplets, 27, 91, 93

black_func, 24
boundary conditions, 15, 22, 29
broadcast(), 8, 98

CAN_do_ task_keyword, 68, 134,
151, 153

CAN_nty_thread, 52, 70
CAN_nfields, 69
CAN_nlattices, 69
CAN_nrnaps, 69
CAN _nrandorns, 69
CAN_nsets, 69
CAN_nthreads, 53, 69
CAN_nurnber_of_nodes, 71
CAN_nurnber_of_ this_node, 71
CAN_stack_size, 70
cane, 7, 36
Canopy platform, 7, 44
canopy.h, 23, 61, 70, 73

206

charptr, 63
CHIP, 10, 61, 164
chip .h, 62, 168
ckrnalloc (), 172
close_field_file(),99
cluster_fields (), 86
crnplx.h, 182
CMPLXLIB, 6, 182
cornplete_canopy_handshake(),

90
cornplete_definitions(),8, 19,

33, 69, 70, 81, 90
complex, 182
complex functions, 183

double precision, 185
macros, 187
transcendental, 184

cornpose..map (), 88
compound tasks, 39
concat_path (), 120
connectivity function, 139
connecti vi ty_func, 75, 82-84
control lalloc heap, 41
control node, 45
control program, 7, 19, 32, 33,

39, 50, 132
control(), 19, 32, 43, 98, 133

INDEX

coordinate function, 137
coordinate limits, 29
coordinate_func, 75, 82, 83
coordinates, 13, 66, 107
copy_path(), 120

dcanc, 8
declaration section, 19, 81
declare_lalloc_sizes(),40,41,

129
define_map(), 88
direction, 13, 66
direction defines, 73
distribution function, 140
distributioILfunc, 75, 82, 83
do_on_alLnodes (), 67, 74, 173
do_task_n_times(), 40, 91
do_task_on_inverse_image(), 40,

92
do_task(), 8, 17-20, 23, 26-28,

32, 40, 67, 68, 74, 91, 96
do_task keywords, 74, 151

customized: example, 160
do_task triplets, 27, 31, 44, 68,

91, 92, 93, 151, 173
examples, 94

domain_grid_of_map(), 125
double_complex, 182
duaLrandom(), 58, 181

END, 27, 75, 121, 173
envp, 7, 133
extend_path(), 120

FFLdouble(), 194, 195
FFLsetup(), 194, 195

FFT(), 192, 194, 195
fft.h, 192
FFTLIB, 6, 192
field, 16, 18, 65
field elements, 16, 18

byte alignment, 85

207

field file keywords, 73
field_address, 66
field-1ength (), 28, 123
field_pointer_at_dir(),29
field_pointer_from..address (),

47, 119
field_pointer(),39,41,54,56,

57, 63, 111
field_pointer

from control program, 41
memory for, 40

fields
as global data, 17
link, 18
site, 18

floatptr, 63
Fourier transforms, 192
free_resource(), 174
fulLaddress, 65, 165, 167
full_address_from..local_address(),

171
FUNCTION, 94

generalized subroutine header, 27
get_coordinates (), 30, 126
global variables, 98

lack of, 42
grid, 13, 18, 65
grid_lower_bounds(), 24,29,30,

208

122
grid_parameters (), 122
grid_supporting_field(),123
grid_supporting_set(), 124
grid_supporting_site(),30, 109
grid_upper_bounds(),24,30, 122
grid-oriented problems, 13
grid. h, 23, 73, 176
GRIDLIB, 6, 132, 140, 176
grids

chunky periodic, 178, 179
hexagonal, 14
hypercubic, 14
irregular, 15
map domain, 17
map range, 17
periodic, 179
rectangular, 14

hi. c, 9
HOME, 69, 92, 108, 111-113
HOME site, 17-19, 26, 28, 29, 39,

40, 55

image_of_site(), 110
init__resource(), 174
intcpy(), 130
INTEGRATE, 27
integrate arguments, 59
intfunptr,64
intptr, 63
inverse coordinate function, 138
inverse_coordinate...func, 75,

82, 83
Inverse_FFT_double(), 194, 195
Inverse...FFT(), 192, 194, 195

INDEX

inverse_image_of_site(),110
rs_SAME_FULL_ADDRESS, 71
is_same_map(),125
is_same_si te (), 109

lalloc heap, 40, 50, 129
laplace. c, 21
length_of_field..address_field(),

119
leveLoLsi te_i11..set (), 124
libraries

CMPLXLIB, 6, 182
FFTLIB, 6, 192
GRIDLIB, 6, 176
PROMPTLIB, 6, 196
RANLIB, 6, 181
SETLIB, 6, 180

limits, 76
link, 13
link_field_pointer(), 113
link_field(), 85
LOCALJ\DDRESS, 71
lock_resource(), 174
logical, 63
longjrnp, 8

make_path (), 23, 120
make_random..generator (), 58,

89
map, 17, 18, 65
map domain, 88, 92
map range, 88, 92, 109
maps_connecting_grids(), 125
MAX_NODES, 77
MAXARGS, 77
MAXCLUSTERS, 76

INDEX

MAXFIELDS, 76
MAXFILES, 76
MAXGENERATORS, 76
MAXLATTICES, 76
MAXMAPS, 76
MAXPAIRS, 76
MAXPARAMETERS, 76, 83
MAXSETS, 76
MAXTHREADS, 50, 52, 53, 76
move_si te_by_path(), 108
move_site(), 108
multi_random(), 128
multi-thread, 48, 105
multi thread_ begiILnocopy (), 55,

56, 131
multi thread_begiIL vertical(),

54, 56, 131
multithread_disable(),51, 106
multithread_enableO, 51, 106
mul tithread_end_nocopy() ,55,

56, 131
multi thread_ end_ vertical(), 54,

56, 131
multithread(), 50, 70, 105

node, 7, 44
NODE_NUMBER, 71
NOGRID, 69, 109
non-ANSI compilers, 63
NOWHERE, 69, 109, 110
NOWHERE site, 16-18, 109
nsites_at_each_level(), 124
NULL_FULL_ADDRESS, 70
number_of_dimensions_of_grid(),

122

209

number_of_directions_of_grid(),
122

number_oLfields_on_grid(), 122
number_of_levels_in_set(),124
number_of_sets_on_grid (), 122
number_of_sites_in_set(),124

ONMYNODE, 71
open_field_file(), 73, 99
other_params, 142
overlap_fields (), 86

parallelism, 39, 91
PASS, 27, 94
path, 16, 18, 65, 120
path_length(), 120
periodic_square_grid,23
polynomial evaluation, 188
polynomial roots, 189

cubic, 191
quadratic, 190

print_mul ti thread_ stats(), 57,
106

prompt. h, 23, 196
prompted input, 196
PROMPTLIB, 6, 196
put_field_at_field_addressO,

119
put_field(), 40, 49, 55-57, 112
put_link_field(), 114

QCDLIB, 175

random number keywords, 73
random numbers, 58, 181

generators, 147, 149

210

stream per node, 59, 128
stream per site, 58, 59, 128

random(), 58, 128, 181
range_grid_of_map (), 125
RANLIB, 6, 58, 181
READ, 73, 99
read_field(), 100
read_slice_of_field(),100
red_func, 24
redefine_set_of_sites(),87
remote memory access, 165
remote_gather(), 168
remote...read(), 167
remote_scatter(), 170
remote_wri te (), 167
reset_lalloc (), 40, 41, 129
resources, 174

scatter/gather, 49, 168
semaphore, 67
semaphores, 166, 174
set, 18, 65
set of sites, 17, 65

compound, 20, 26, 43, 46
defining functions, 23, 135
simple, 24

set_of_sites_func, 75
set_of_sites(),87
set.h, 180
setjmp, 8
SETLIB, 6, 180
site, 13, 18, 65
site_at_coordinates(),107
site_at_dir(), 108
site_at_path(), 108

site_field(), 85
sites, special

INDEX

HOME, 17-19, 26, 28, 29, 39,
40, 55

NOWHERE, 16-18, 109
HOME,69
NOWHERE,69

sprintf_site_coordinates(),127
stream number, 89
STREAM_PER_NODE, 73, 128
STREAM_PER_SITE, 73, 128
sub-task, 1 7, 40, 92
summing time slices, 17
sync_address, 66
sync_f ield_pointer_from_address (),

119
sync_field_pointer(), 46, 117
sync_word(), 116
synchronize_wi tlLsync_word (),

116
synchronize(),115
synchronizing tasks, 45

task, 7
task globals, 42, 51
task routine, 17, 19, 26, 39, 132,

134
examples, 28
headers, 32

thread, 49
transfers

inter-node, 165

voidfunptr,64
voidptr, 62, 63, 67

INDEX

wait_for_resource(),174
WRITE, 73, 99
write_field(), 100

yderr(), 172

211

Canopy Version 7.0 Quick Reference Section

CANOPY Types:
void

int *intptr
float *fl.oatptr

grid
set
site

direction

full ...address

void *voidptr

logical
char *charptr

field
map
path

coordinates

field...address

sync _address semaphore

fulLa.ddress *fulL.address _ptr

CAN _do J;ask .keyword (int) (•intfunptr)()

(void) (•voidfunptr)()
intfunptr set_of...sites-1unc

voidfunptr connectivity .iunc:

voidfunptr distribution .func:

voidfunptr coordinate_iunc:

voidfunptr inverse....coordinate .func:

Exported Variables:
int CAN .-nlattices

int CAN _nsets

int CAN _nrandoms

int CAN _my _thread

site *HOME
grid NOGRID

int CAN ...nfields

int CAN _nrnaps

int CAN ...nthreads

int CAN ...stack_size

site NOWHERE

CANOPY Limits:
MAXPARAMETERS (57)
MAXFIELDS (200)
MAXLATTICES (10)
MAXSETS (200)
MAXCLUSTERS (20)
MAXPAIRS (20)
MAXFILES (5)
MAXMAPS (20)
MAXGENERATORS (5)
MAX_NODES (630)
MAXARGS (10)
MAXALLOWED (2048)
CAN ..ATOMIC_ GATHER (512)

CANOPY Keywords:
PASS FUNCTION
SUM-1lEAL INTEGRATE
SUM-1NTEGER
MAX-1lEAL
MAX-1NTEGER
MAXJ)OUBLE
TAG_MAX-1lEAL

SUMJJOUBLE
MIN-1lEAL
MIN-1NTEGER
M!NJ)OUBLE
TAG_MAX-1NTEGER

TAG_MAXJ)OUBLE END
STREAM_FERJllTE STREAM_FER_NODE

READ WRITE

Declaration Routines:
grid arbitrary _grid

(int nsites, int ndim, int ndir,

APPEND

intptr lower Jimits, intptr upper _limits,

int ptr other _par ams 1

distribution .func dist.lune,

coordinate.func c...func,

inverse_coordinate .func icfunc,

connectivity _func conn..func);

field siteJield(grid g, int nbytes);

field linkJield(grid g, int nbytes);
void overlap Jields(int n, field *list);

void cluster Jields(int n, field *list);
set set_of . ..sites(grid g, set...of....sites.func func);

set redefine...set_of...sites

(grid g, set_oL.sites_func func,

set set_to_change);

map define_map

(grid domain, grid range,

intfunptr mapfunc);

map compose_map

(map mid_to__range, map domain ..to _mid);

int make__random...generator

(voidfunptr random ..func, int type,

int number_to_make, int seed);

void declareJalloc _sizes

(int do_task...size, int control...size);

void complete ...definitions();

Data Management:
void resetJalloc();

void broadcast{voidptr object, int nbytes);

void intcpy(voidptr <lest, voidptr src 1 int words);

do_task Routines:
void do_task

(voidfunptr task, sets, ... ,END);
void do_task...n_times

(voidfunptr task, set s,

int ntimes, ... , END);
void do_task_on inverse image

(voidfunptr task, map m, ... , END);
void do_task_oninverseimage ..set

(voidfunptr task, map rn,

set s, ... , END);
A complete triplet is of the form:
<keyword>, <address>, <length in bytes>

Coordinates:
void get_coordinates(site *s, intptr coords);
void get_coordinates ...at ..dir

(direction dir, intptr coords);

void get_coordinates ..at .path(path p, int •coords);

void sprintf ..site _coordinates(char *ss, site *s);

Site Management:
site site...at_coordinates(grid g, intptr coords);

site site....a.t ...d.ir(direction dir);

site site..at_path(path p);
site move....site(site *startsite, direction dir);

site rnove..site...by ..path(site •startsite, path p);
logical is..same..site(site •sl, site *s2);
grid grid ...supporting _site(site *s);

site image...of...site(map m, site *s);

site *inverseimage...of...site(map m, site *s);

Path Routines:
int make_path(path p, ...);

int extend_path(path p, direction dir);
int concat_path(path dest, path source);

int copy _path(path dest, path source);
int pathJength(path p);

Field File Routines:
void openJieldJile(char *filename, int rwmode);
void close.Jield Ji.le(char •filename);
void write.Jield(char •filename, field f);

void read.Jield(char *filename, field f);
void read__slice...of.Jield

(char *filename, field f, intfunptr mapfunc);

Field Pointer Routines:
Access by site, direction or path:
Routines have _at_dir and _at_path variations

substituting direction dir or path p for site *s:

voidptr field_pointer(field f, site *s);

void put_field(field f, site •s, voidptr object);
voidptr link.Jield..pointer

(field f, direction link, site *s);
void putJinkJield(field f, direction link,

site •s, voidptr object);

void synchronize(site *s);
sync_address sync_word(site *s);

voidptr sync.Jield..pointer (field f, site *s);

field_a.ddress address..of.iield (field f, site *s);
field _address address ...of Jink Jield

(field f, direction link, site *s);

Direct use of field address:
voidptr field_pointer Jrom...a.ddress

(field_address *where);
voidptr sync.Jield..pointer .from ...address

(field_address *where, sync...a.ddress *sync);
void putJield ...a.t ..field ...address

(field_address *where, voidptr object);

int length_of_field..address .field

{field_address *where);

Information Routines:
intptr gridJower_bounds(grid g);
intptr grid_upper ...bounds(grid g);

intptr grid_parameters(grid g);
int number _oL..directions _of ..grid(grid g);
int number _of_..d_imensions _of .grid(grid g);
int number _af .Jields _on ..grid(grid g);

int number ...of ...sets...on _grid(grid g);

grid grid ...supporting Jield(:field f);
int fieldJength(field f);
grid grid...supporting_set(set s);
int number_of...sitesin_set(set s);

int number_ofJevelsin .set(set s);

intptr nsites_at_eachJevel(set s);

int level...of...sitein .set(sets, site *ss);
grid domain...gridJ)f.map(map m);

grid range_grid-.0fJDap(map m);

map •maps_connecting_grids(grid domain, range)i
logical is_sameJDap(map ml, map m2);

User-Supplied Routines:
void control(int argc, char **argv, char **envp);

void <task_routjne>(...)i
int <set_of_sites_functi.on>(grid g, intptr coords);

logical <mapfunctionname>

(intptr incoords, intptr outcoords);
void <random .func> (random .generator ..area *a);

void <random_generator>

(int number _to..make,

queue_struct •queue, voidptr state);

void <random.initialize>
(int seed, int stream, voidptr state);

void <distribution _function>

(grid g, int serial, intptr node, intptr posit);

void <coordinate_function>

(grid g, int serial, intptr coords);

void <inverse_coordinate .iunction>

(grid g, intptr coords, intptr serial);

void <connectivity ..function>

(grid g, intptr coords, site *site...struct);

Multithread Control:
void multithread(int nthreads, int stack_size);
void multithread_enable();

void multithread_disable();

void print ..multi thread .stats();

void multithread_begin _vertical();
void multithread...end_vertical()i
void multithread_begin ...nocopy();

void multi threadend ...nocopy();

IEEE Precision Control:
void set_default ..:floating.mode();

void set_floating_mode ..to ..environment();

int get_currentJloating_m_ode();

void print __currentJloating _mode();
int set_currentJloating_mode(int flags);

Random Numbers Routines:
float random();

float multi_random(int generator);

CHIP Routines (<chip.h>)
void rernote_read

(full_address *add, int len 1 voidptr object)i
void remote...read-.and_keep

(full_address *add, int len, voidptr object);
void remote_read _more

(full_address *add, int len, voidptr object);

void remote.-read....and...close

{full_address *add, int len, voidptr object);

void remote_write

{full_address *add, int len, voidptr object);
void remote_write_and.J<:eep

(full_address *add, int len, voidptr object);

void remote_write...more

(full_address *add, int len, voidptr object);

void remote_write_and..close

{full_address •add, int len, voidptr object);

void full....address _from Jo cal ..address

(voidptr local_address);

void full....a.ddress ...on .another Jlode

(voidptr address, int node...number);

void yderr(char *errstring);

void do_on....a.11-. .nodes(voidfunptr task, ... , END);

logical init ..resource{ full.address *resource);

logical lock ..resource(full ..address •resource);

void wait _for ..resource(full .Address *resource);

void free.resource(full ..address *resource);

CHIP Exported Variables:
int CAN...number_of..nodes;
int CAN...number_of_this...node;

Gridlib (<grid.h>)

Defined in <grid.h>

x
y

z
T

MINUS~

MINUS_Y
MINUs_z

MINUS_T

grid periodic linear _grid(int x);

grid periodic..square..grid(int x, y);

grid periodic...cubic..grid(int x, y1 z);

grid periodic...hypercubic..grid(int x, y) z, t);
grid chunky _periodic ...square ..grid(int x, y);

grid chunky _periodic ...cubic ..grid(int x, y, z);

grid chunky_periodic.liypercubic..grid(int x, y, z, t);
grid periodic__grid(int ndims, intptr size);

grid chunky _periodic ..grid(int ndims, intptr size);

Ranli b (<random.h>)

void bad..random{);

void dual...xandom();

FFTlib (<fft.h>)
void FFT_setup(grid g);

void FFT(fie!d f);
void lnverse_FFT(field f);
void FFT ...some_directions

(field f, logical *fft..this..direction);
void lnverse_FFT ...some_directions

(field f, logical *fft ..this ..direction);
void FFT_double(field f);
void Inverse-.FFT ...double(field f);
void FFT _double...some_directions(...);

void Inverse..FFT _double _some_directions(...);

Set lib (<set.h>)
int red..func(grid lattice, int *coords);

int black..func(grid lattice, int *coords);

int br_func(grid lattice, int •coords);

int rbJunc(grid lattice, int •coords);

int hyperL.func(grid lattice, int *coords);

int hyperu..func(grid lattice1 int •coords);

int spherel_func(grid lattice, int •coords);

int sphereu..func(grid lattice, int *coords);

Promptlib (<prompt.h>)
double prompt_double(char •prompt);

float prompt..fl.oat(char *prompt);

int prompt_int(char •prompt);

void prompt_string(char *prompt, char *Ss);

void prompt_word(char •prompt, char *SS)i

double prompt_double...default

(char *prompt, double default);

float prompt..fl.oat...default

(char •prompt, float default);
int prompt_int ...default

(char •prompt, int default);
void prompt _string _default

(char •prompt, char *default, char *ss);
void prompt_word_default

(char •prompt, char *default, char *ss);

double prompt_double.range

(char •prompt, double low, double high);

fl.oat prompt.JI.oat.range

(char •prompt, float low, float high);

int promptint.range

(char •prompt, int low, int high);

double prompt_double .range ...default

{char •prompt, double default,

double low, double high);

float prompt.JI.oat.range ...default

(char •prompt, float default,

float low, float high);

int promptint.range...default

(char *prompt, int default,

int low 1 int high);

int prompt_doublelist

(char *prompt, int max, double *list);
int prompt..fl.oatlist

(char *prompt, int max, float •list);
int prompt_int Jist

(char *prompt, int max, int *list);

void prompt..scanf(int expected, char *prompt,

char •format, ...);

Cmplxlib (<cmplx.h>)

Complex Number Types
typedef struct {

float real;

float imag;

} complex;

typedef struct {

double real;

double imag;
} double_complex;

Complex Functions:
float cabs{complex *a);

float cabs...sq(complex *a);

float carg(complex *a)i
complex cmplx(float r, float i);

complex conjg(complex *a);

complex cadd(complex *a, complex *b);

complex cdiv(complex *a, complex *b)i

complex cmul(complex *a, complex *h);

complex csub(complex *a, complex *b);

complex csin(complex *a);

complex ccos(complex *a);

complex ctan(complex *a);

complex casin(complex •a);

complex cacos(complex •a);

complex ca.tan(complex •a);

complex csinh(complex •a);
complex ccosh(complex •a);

complex ctanh(complex •a);
complex casinh(complex *a);

complex cacosh(complex •a);

complex catanh(complex *a);

complex cexp(complex *a);

complex clog(complex *a);

complex ce jtheta(float theta);

complex evaluate_complex..polynomial

(int order, complex •coef, complex •val);

complex polish..complex_root

(int order, complex •coef, *root, int nval);

int solve_complex..quadratic

(complex *Coefi complex *root);

int solve_complex...cubic

(complex *Coef, complex *root);

Complex Macros:
CONJG(a,b) b = congj(a)
CADD(a,b,c) c = a + b
CSUM(a,b) a += b
CSUB(a,b,c) c a - b
CMUL(a,b,c) c a * b
CDIV{a,b,c) C a / b
CMULJ c a * conjg(b)
CMULL c conjg(a) * b
CMULJJ c con jg(a * b)
CNEGATE(a,b) b = -a
CMULI(a,b) b = ia

CMUL.MINUSJ(a,b) b = -ia
CMULREAL(a,f,c) c = fa
CDIVREAL{ a,f,c) c = a/f
Double Complex Functions:
double dcabs(double _complex *a);

double dcabs_sq(double..complex •a);

double dcarg(double _complex *a);

double_complex dcmplx(double r, double i);

double_complex dconjg(double..complex •a);

double_complex dcadd(double..complex •a, •b);

double_complex dcdiv(double..complex •a, •b);

double..complex dcmul(double ..complex •a, •b);

double...complex dcsub(double ..complex *a, *b);

double_complex dcsin(double..complex *a);

double_complex dccos(double ..complex •a);

double_complex dctan(double ..complex •a)i

double_complex dcasin(double..complex *a);

double _complex dcacos(double ..complex *a);

double_complex dcatan(double ..complex •a);

double_complex dcsinh(double..complex •a);

double...complex dccosh(double ..complex *a);

double_complex dctanh(double ..complex *a);

double_complex dcasinh(double ..complex *a);

double_complex dcacosh(double..complex •a);

double_complex dcatanh(double ..complex •a);

double_complex dcexp(double ..complex •a);

double_complex dclog(double..complex •a);

double_complex dee itheta(double theta);

double_complex evaluate_double ..complex ..polynomial

(int order, double_complex *coef, *val);

double_complex polish_double ..complex _root

(int order, double_complex •coef, *root, int nval);

int solve_double..complex _quadratic

(double_complex *coef, *root);

int solve_double ..complex .cu hie

(double_complex •coef1 *root);

