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I Introduction 

One of the important considerations in the design of the Main Injector is the 

beam coupling impedances i.n the vacuum chamber and the stability of the 

beam. Along with the higher intensities comes the possibility of instabilities 

which lead to growth in beam emittances and/or the loss of beam. This 

paper makes estimations of the various impedances and instability thresholds 

based on impedance estimations and measurements. Notably missing from 

this paper is any analysis of transition crossing and its potential limitations 

on beam intensity and beam emittance. Future work should consider this 

issue. 

The body of the work contains detailed analysis of the various impedance 

estimations and instability threshold calculations. The calculations are based 

on the Main Injector beam intensity of 6 x 1010 protons per bunch, 953 nor

malized transverse emittances of 2071" mm-mrad, and 953 normalized longi

tudinal emittance of 0.1 eV-s at 8.9 GeV injection energy and 0.25 eV-s at 

150 GeV flattop energy. 

The conclusions section summarizes the results in the paper and is meant 

to be readable by itself without referring to the rest of the paper. Also in 

the conclusion section are recommendations for future investigations. 
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II Impedance and Stability Estimations 

A Space Charge Impedance 

The Main Injector beampipe, shown in Figure 1, is approximately ellipti

cal with a full height of 5.31 cm (2.09 inches) and a full width of 12.3 cm 

(4.84 inches). When installed in the Main Injector magnets and under vac

uum the beampipe deforms reducing its height to 5.08 cm. The elliptical 

beampipe shape makes calculation of the space charge impedance difficult 

so we make estimations using beampipes with circular and rectangular cross 

sections instead. The formula for circular cross sections is well known while 

the formula for rectangular cross sections is derived using conformal mapping 

techniques [l J. 

For a circular beampipe of radius b and a cylindrical beam of radius 

a. located at the center of the beampipe, the longitudina.l impedance per 

harmonic is 

Z11(w) Z0 

-n- = -j 
21312 

[l + 2ln(b/a)J (1) 

and the transverse impedance is 

. RZ0 ( 1 1) 
Z.L(w) = -1132

1
2 a.2 - b2 (2) 

where n is the harmonic number, R = 528.3 mis the radius of the machine, 

and Z 0 = 377 !1 is the free-space impedance. 

For a rectangular beampipe with full height h and full width w the lon

gitudinal impedance per harmonic [l] is 

Z11(w) = -j~ [1+2ln (
2

htanh(rrw))] 
n 21312 ira 2h 

(3) 
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Figure 1: Geometry of Main Injector Beampipe and Beam Position Monitor. 

and the transverse impedance is 

. RZ0 [ l 8 H V H V ] 
ZH,v(w) = -J (P12 a2 - h2((1, - <1, ) (4) 

where the superscripts H and V refer to 'the horizontal and vertical direction 

and <1 and e1, called the incoherent and coherent non-penetrating electric 

image coefficients, are found from the conformal mapping technique and de

pend on the ratio w/ h. For the ratio w I h = 2.51 we find er - f~ = 0.208 and 

er - <~ = 0.41l. The space charge impedances given by the above formulas 

are valid up to angular frequency w < 1c/b, b being the beampipe radius, 

and roll off at higher frequencies. 

Using Equations 1-4 we calculate the space charge impedance at 8.9 GeV 

for beam with a 95% normalized transverse emittance of 2071' mm-mrad. A 
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Circular Rectangular 

Beam pipe Beam pipe 

Z11/n -jll.3 !1 -jl2.3 !1 

Z.Lx -j314 M!1/m -j317 M!1/m 

Z.Ly -j302 M!1/m -j303 M!1/m 

Table 1: Space charge impedance for circular beampipe with 2.39 cm radius 

and rectangular beampipe 4.78 cm by 12.0 cm. Calculations are at 8.9 Gev 

using a cylindrically uniform beam with transverse radius of 2.65 mm in the 

x direction and 2. 70 mm in the y direction. 

Gaussian beam distribution in transverse phase space is assumed correspond

ing to a transverse beam size of crx = 2.65 mm and cry = 2. 70 mm at points 

of average beta, f3x,avg = 20 m and {Jy,avg = 20.1 m. We therefore use a cylin

drical beam with a radius of a = er in our calculation of the space charge 

impedances. In the circular case the beampipe has a radius of b = 2.39 cm 

while in the rectangular case the beampipe has a full height of h = 4.78 cm 

and a full width of w = 12.0 cm. The results of these calculations are shown 

in Table 1. 

As will be shown in Section I, the longitudinal space charge impedance 

per harmonic is below the threshold of microwave instability, except in the 

region of transition crossing where the Landau damping due to revolution 

frequency spread becomes negligibly small. The growth rate without Lan

dau damping can be shown to be proportional to Z11. Thus the microwave 
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growth due to space charge near transition will be tremendous near w /27r ;:::; 

/tc/27rb ~ 40 GHz where the transition gamma is It = 20.4. On the other 

hand, however, the transverse impedance due to space charge will not cause 

any microwave instability. As will be shown in Section I, there is always Lan

dau damping due to tune spread although the revolution frequency spread 

become negligibly small. The full issues of transition crossing are not con

sidered in this paper. 

B Space Charge Tune Shifts 

We are also interested in the coherent and incoherent tune shifts resulting 

from direct space charge forces, electric image charges, and magnetic image 

currents. These image charges and image currents inside the vacuum chamber 

walls and magnet laminations create electromagnetic fields which alter the 

transverse focusing force on the particles thus changing their tune. The 

tune shifts are usually characterized [2, 3] by the electrostatic coherent and 

incoherent image coefficients ~~,v and E~,v and by the magnetic coherent and 

incoherent image coefficients ~~,v and E~,v which all depend on the geometry 

of the vacuum chamber and magnet laminations. 

The total tune shift is the sum of the tune shifts from the various im

age fields. These include electric fields from charge induced on the vacuum 

chamber wall, magnetic fields from image currents induced in the magnets 

by DC beam current, and magnetic fields from image currents induced in 

the vacuum chamber walls by the AC beam current. The AC beam current 

is a result of both longitudinal bunching and transverse betatron motion. 
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Horizontal Vertical 

Electric coherent (1 +0.0037 +0.615 

Electric incoherent <1 -0.204 +0.204 

Magnetic coherent 6 +o.o +0.617 

Magnetic incoherent £2 -0.41l +0.41l 

Table 2: Electric image coefficients for an elliptical beampipe with width 

to height ratio of 2.51 and magnetic image coefficients for a set of parallel 

magnet poles. 

The magnetic fields from the AC beam current do not penetrate the vacuum 

chamber while those from the DC beam current do penetrate the vacuum 

chamber walls and enter the magnet laminations. 

Including all of the above contributions to the tune shift [4] leads to the 

following expression for the total coherent tune shift 

= ( 

,H.Y H,V 
~1 f2 

(3'Bh2 + g'l:F 
,H,V (1- _ 1) cH,V H,Y) 
<,1 B "1 - <1 

h' h2 
(5) 

The first term is clue to the electric image force from the wall, the second 

is due to the DC magnetic image force from the dipole pole faces, the third 

and fourth are clue to the AC magnetic image forces from the wall due to 

the longitudinal bunching and the transverse beam motion, respectively. In 

Equation 5, N is the total number of particles, r 0 = 1.535 x 10-18 m is the 

classical proton radius, R is the radius of the ring, h is the full height of the 
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beampipe, g is the full magnet pole gap distance, :F is fraction of the ring 

circumference covered by dipole magnets, and vH and v v are the horizontal 

and vertical tunes. The bunching factor B is the ratio of the average current 

l.vg = M h to the peak current IP and is related to both the number of 

bunches and the bunch length. 

Similarly the incoherent tune shift is given by the expression [4] 

4Nr0 R ( ,~,V ,~,v l~,v (~ - 1)) 
~~..,. + -:F - -~~-~ 

7r!JH,V'Y /PB h2 g2 h2 

Nr0 6 1 
------

4')'2 f3 lN,9.5% B 
(6) 

where <N,95 3 is the 953 normalized transverse emittance. The incoherent 

tune shift does not have a contribution from the AC magnetic field created 

by the transverse motion of the beam similar to the fourth term in Equation 5. 

However, there is an extra term, the last term of Equation 6, which represents 

the contribution from the direct space charge forces and is dependent on the 

transverse emittance of the beam [5]. Here a Gaussian distribution in both 

the longitudinal and vertical directions has been assumed. 

We apply Equations 5 and G to the Main Injector with the design beam 

intensity and emittance. The total number of particles is N = 3 x 1013
, the 

ring radius is R = 528.3 m, h = 4.78 cm is the height of the beampipe, 

g = 5.08 cm is the magnet pole gap distance, and :F = 0.543 is fraction of 

the Main Injector circumference covered by dipole magnets. The tunes are 

vH = 26.4 and vv = 25.4 and the 953 normalized transverse emittance is 

<N,953 = 207r mm-mrad. With a 953 normalized longitudinal emittance of 

0.1 eV-s and an RF voltage of 400 kV the bunching factor is B = 0.19. 
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The electric coherent and incoherent image coefficients for an elliptical 

beampipe with width to height ratio of 2.51 were found using a conformal 

mapping technique [6]. The values for the coefficients are listed in Table 2 

and are not much different from the coefficients of parallel plates. The mag

netic coherent and incoherent image coefficients are those of two parallel and 

infinitely wide magnet poles [6]. The tune shifts from the various contribu

tions are listed in Table 3. The net tune shifts are small enough that we do 

not expect any problems. 

Since the Main Injector will have different operating cycles, it is useful to 

express the tune shifts in terms of the number of particles per bunch Nb, the 

total number of bunches in the ring M, and the total bunch length r. Using 

the fact that the bunching factor is 

B = Mr(Jc 
31rR 

(7) 

for the elliptical longitudinal phase space distribution (see Equation 14), we 

can rewrite Equations 5 and 6 in the form 

N 
-1.26 x 10-5 _b + 7 .24 x 10-5 NbM, (8) 

Tns 

N 
-2.16 x 10-3 _b + 7.53 x 10-5 NbM, (9) 

Tns 

( 
4.30 ) Nb +6.90 x 10-4 

- -- - + 7.24 x 10-5 NbM, 
EN,953 Tns 

(10) 

.6.v~c = ( 
4 4.30 ) Nb 6 -7.17 x 10- - -- - + 7.53 x 10- NbM, 

fN,95% Tns 
(11) 

where rn, is the total bunch length in ns and Nb is the number of particles 

per bunch in units of 1010 . 
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Vertical Vertical Horizontal Horizontal 

Coherent Incoherent Coherent Incoherent 

Electric Field -0.180 -0.0595 -0.0010 +0.0572 

DC Magnetic Field -0.0111 -0.0111 +0.0107 +0.0107 

Longitudinal 

AC Magnetic Field +0.143 +0.0474 +0.0008 -0.0045 

Betatron AC Magnetic +0.0231 +0.013 

Direct Space Charge -0.0630 -0.0630 

Total Tune Shift I -0.0245 I -0.0862 1 +0.0215 I -0.0407 1 

Table 3: Coherent and incoherent tune shifts in the Ma.in Injector at 8.9 GeV. 
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C RF Cavities and Coupled Bunch Instabilities 

Higher order cavity modes in the RF accelerating cavities are often the cause 

of coupled bunch instabilities. In this section we estimate the growth times of 

these instabilities based on measurements of the longitudinal impedances of 

the cavities and calculations of the transverse impedances. We also compare 

the estimates for the Main Injector to estimates of growth times in the Main 

Ring. 

The RF cavities to be used for the Main Injector are the 18 RF cavities 

presently installed and operating in the Main Ring. Stretched wire mea

surements of the longitudinal impedances of the cavities have been made [7] 

and the 6 modes with the largest impedances are listed in Table 4. The 

cavity mode at 128 MHz has limited the Main Ring performance in the 

past so a passive mode damper was designed and installed to reduce the 

shunt impedance of that particular mode [8] by a factor of 25 to the value 

of 6.3 kl1/m listed in Table 4. This helped alleviate the problems with the 

coupled bunch instability. 

The transverse modes of the RF cavities have been estimated previously 

using the computer code URMEL [9, 10] and the cavity modes with the 5 

largest transverse impedances are listed in Table 5. 

The standard perturbation theory, which neglects Landau damping ef

fects, predicts that about half of the coupled bunch modes will have a posi

tive growth rate associated with each higher order cavity mode. Therefore it 

is important to make some estimations on the effectiveness of Landau damp

ing in preventing instability. We do this by comparing calculated growth 
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Longitudinal Coupled Bunch Growth Times (msec) 

Freq of z11 (k!1) dipole quadrupole 

mode (MHz) per cavity MI MR MI MR 

71.0 10.0 20.2 50.9 293 483 

100.0 2.5 65.5 177 461 797 

128.0 6.3 24.2 71.6 98.7 182 

223.0 111.0 2.1 10.3 2 1 5.5 

600.0 277.0 9.1 32.7 3.5 20.8 

850.0 49.0 91.5 350 45 241 

Table 4: Calculated growth times for the longitudinal dipole and quadrupole 

coupled bunch instability in the Main Injector and Main Ring with 18 RF 

cavities. 
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Transverse Coupled Bunch Growth Times (msec) 

Freq of Zl. (Ml!/m) dipole quadrupole 

mode (MHz) per cavity MI MR MI MR 

398 3.3 4.0 6.8 4.2 6.6 

454 1.9 8.1 13 8.0 13.4 

566 0.75 25.0 42 26 42 

1270 l. 7 25 41 25 48 

1290 2.4 18.0 30 18. l 29.9 

Table 5: Calculated growth times for the transverse dipole and quadrupole 

coupled bunch modes in the Main Injector and Main Ring with 18 RF cavi-

ties. 

times in the ~1ai11 Injector to the calculated growth times in the Main Ring. 

Since these cavities are presently used in the Main Ring, we can compare the 

calculated growth times to any observed instabilities. 

The theoretical growth rate is derived by a perturbation expansion of 

the Vlasov Equations [11, 12]. The growth rate, without including Landau 

damping effects, is found by solving the matrix equation below for the value 

of the mode oscillation frequency l!, 

( 12) 
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where Im{ll} < 0 implies an instability with an exponential growth time of 

1/Im{ll}. In this equation, 

w 0 /2rr is the revolution frequency, 

w,/2rr the synchrotron frequency, 

lb the average current per bunch, 

M the number of bunches, 

h the RF harmonic number, 

V the peak RF voltage, 

¢, the synchronous RF phase, 

E the Learn energy, 

s the coupled bunch mode number (ranging from 0 to M - 1 ), 

Jm the Bessel function of the first kind, 

and r the distance from the center of the normalized longitudinal 

phase space. 

Also g0 (r) is the stationary longitudinal phase space distribution, m refers 

to the single-bunch number in the longitudinal phase space (m = 1 is the 

dipole mode, m = 2 is the quadrupole mode, etc.), and am(I) are amplitudes 

of the beam spectrum at frequencies w = ( 1/\1 + s )w0 • 

Considering a high-Q resonator impedance, such as an RF cavity mode, a 

single term dominates in the sum over p and the matrix Equation 12 reduces 

to 

-nw,hMm 
lm{ll} = hV A. Re{Z11(nw0 )}Fm 

2 . COS \Ps 
( 13) 

where Im{ll} < 0 implies an instability, n is the harmonic number nearest to 

the frequency of the high-Q resonator, and Fm is a form fact.or which depends 
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on the bunch length and shape. 

To calculate the form factor Fm we use an elliptical density distribution 

longitudinal phase space of the form 

(14) 

corresponding to a parabolic line charge density distribution 

3 [ T2 l 
,\( T) = 4( TL/2) l - ( TL/2)2 (15) 

where the parameter TL is the full bunch length. For this distribution the 

form factor is 

(16) 

where XL = nw0 TL/2. A plot of F,,.(xL) for various m values is shown in 

Figure 2. 

In the l\faiu Injector we find that the longitudinal coupled bunch growth 

times are shortest at 150 GeV. Therefore the growth times listed in Figure 4 

are at 150 GeV and use M = 498 bunches with N = 6 x 1010 per bunch 

(current per bunch h = 0.87G pA). With a 95% normalized longitudinal 

emittance of 0.25 eV-s and an RF voltage of V = 400 kV the bunch length 

is TL = 3.39 ns. As a comparison we also calculate the growth times in the 

Main Ring with M = 1008 bunches of N = 3 x 1010 particles per bunch and 

a longitudinal emittance of 0.25 eV-s. The growth times for both machines 

are listed in Table 4. 

Some of the calculated growth times for the Main Injector are short. 

It must be remembered however that these calculations do not include the 
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Figure 2: Longitudinal form factor for elliptical phase space density distri

bution. 

Landau damping effect which may stabilize the beam and help prevent in

stability. The calculations are also worst case scenarios since it was assumed 

that the frequencies of the higher order modes in all 18 RF cavities are iden

tical. In practice, the higher order modes are at slightly different frequencies 

in the individual cavities. Although the growth times are short, they are not 

alarming when compared to the calculated Main Ring growt!1 times which 

are also short. 

Experience with the Main Ring has shown that the 128 MHz mode can 

sometimes be a problem in fixed target operation with a full ring of bunches. 

Also of concern is the short growth time of the 223 MHz mode. As a result a 

set of passive mode dampers for the cavities was designed to reduce the shunt 

impedance of the 223 MHz mode a.nd further damp t.lic 128 MHz mode as 
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well. With this mode damper installed the 223 MHz impedance is lowered to 

a value of about 10 kf! reducing the calculated growth rate of the 223 MHz 

mode by a factor of about 10. If needed other RF cavity modes could be 

damped as well. 

Also of concern is the coupled bunch instability with the short batches 

used in coalescing. Presently in the Main Ring there is evidence of an instabil

ity for short batches (about 11 consecutive bunches) with 3 x 1010 particles 

per bunch. Since this type of instability depends on R/Q and not on R, 

adding passive dampers does not remove the instability. The Main Injector 

calls for G x 1010 particles per bunch so there could be substantial difficulty 

with short batch operation. Dealing with this problem will probably require 

the development of an active feedback damping system. 

Calculated growth times for the transverse coupled bunch instability 

modes are based on the same perturbation approach used in the longitu

dinal case [11] and use the transverse impedances shown in Table 5. The 

growth rate for this instability, without including Landau damping effects, is 

found by solving the matrix equation for the mode oscillation frequency !1, 

(!1 - mw,)am(l) = 
00 .echM L J E Z1-[(pM+s+vfJ)w0 ]am(P) 

p=-oo 2 V[J 

fo00 

lm [(pM + s + vµ)w 0 r - w,r] 

lm [(U\1+s+11/i)w0 r - w,r] g0 (r)r dr, (for all I) (17) 

and Im{!1} < 0 implies an instability with exponential growth time l/Im{!1}. 

In Equation 17 the variables are the same as in the longitudinal case, VfJ = VH 
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or vv is the tune of the machine, and w, = w0 ~/'f/ accounts for chromaticity 

effects. The am(/) are the amplitudes of the transverse beam spectrum at 

frequencies of w =(IM+ s + v13)w0 -w,. Here 'f/ = 1;2 -1-2 is the frequency 

slip parameter, where /t = 20.4 is the transition gamma. 

For the case of a high-Q resonator impedance a single term dominates in 

the sum over p and Equation 17 reduces to 

ehM 
E Re{Z.L[(n - v13)w0 ]}Fm(a). 

411' V13 
Im{n} = (18) 

where a = [(n + v13)w0 - w,]rL/2, Fm( a) is a form factor that depends on 

the longitudinal distribution of the bunches, and n is the positive harmonic 

nearest to the high-Q resonator. 

For the elliptical phase space density distribution of Equation 14 the form 

factor can be expressed as 

r= , 
Fm( a)= 2rr Jo J!(ax)(l - x 2 )>xdx (19) 

Figure 3 shows a plot of Fm( a) for various values of m. 

The growth times for both the Main Injector and the Main Ring are 

calculated at an energy of 8.9 GeV, a 95% normalized longitudinal emittance 

of 0.1 eV-s, and an RF voltage V = 400 kV. The number of protons per 

bunch is 6 x 1010 in the Main Injector 3 x 1010 in the Main Ring and the 

results are listed in Table 5. The calculated growth times in the Main Injector 

are about one half of those in the Main Ring. So far there has not been any 

evidence observed of transverse coupled bunch modes in the Main Ring driven 

by the transverse RF cavity modes. This is due to the Landau damping given 

by the tune spread. 
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Figure 3: Transverse coupled bunch instability form factor as function of n. 

(See Equation 19) 

D Resistive Wall 

The shape of the Main Inject.or beampipe is shown in Figure l. It is approx

imately elliptical with a full height of 5.31 cm (2.09 inches) and a full width 

of 12.3 cm (4.84 inches). The beampipe is stainless steel, has a thickness of 

1.5 mm, and a resistivity of fl = 74 µf2-cm. When installed in the Main In

jector magnets and under vacuum the beampipe deforms reducing its height 

to 5.08 cm. The shape of the beampipe makes an exact calculation of the 

resistive wall impedance difficult. Instead we make estimations using exact 

solutions for beampipes with circular [13] and rectangular [1] cross sections. 

We use a circular beampipe with a radius of b = 2.39 cm and a rectangular 

beampipe with a height of 4.78 cm and a width of 12.0 cm. 
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For a circular beampipe with beam traveling down its center the longitu

dinal resistive wall impedance is given by the expression 

Z11(w) = (1 + j)~: (20) 

where 

(21) 

is the skin depth, R = 528.3 m is the radius of the machine, and b = 2.39 cm is 

the radius of the beampipe. Similarly the transverse resistive wall impedance 

is given by 

Z ( ) ( 
. ) 2cRp 

.L w = 1 + J w/p{, . (22) 

The expressions given above for the longitudinal and transverse impedances 

are valid only when the skin depth in the beampipe is less than the thickness 

of the beampipe. When the skin depth is greater than the thickness of the 

beampipe, then the thickness of the beampipe must be substituted for the 

skin depth in Equation 20 and 22 and the imaginary part vanishes. 

Using the circular approximation t.o the Main Injector beampipe we get 

the results listed in Table 6. The results are expressed as a function of the 

revolution harmonic number n for both high and low frequencies. 

In the interest of understanding the effect that the shape of the beam 

pipe has on the resistive wall instability, the beampipe cross section is also 

approximated by a rectangle. The full height. and width of the rectangular 

beam pipe is chosen to be h = 4. 78 cm by w = 12.0 cm to match the inside 

diameters of the actual elliptical beampipe. The results can be expressed as 
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Circular Beampipe 

n < 11c ri > ·nc 

Z11/n 10.9/n fl (1 + j)ll.3/ Jn fl 
ZJ_ 20.3/n Mfl/m (! + j)21.l/ fo Mfl/m 

Rectangular Beampipe 

n < ·nc n > nc 

Z11 /n 10.8/n fl (1 + j)!l.2/fo fl 

zl_x 8.24/n Mfl/m (1 + j)S.55/ fo Mfl/m 

Z1-y 16.7/n Mfl/m (I+ j)l 7.3/fo Mfl/m 

Table G: Resistive wall impedance as a function of revolution harmonic n 

for circular beampipe with radius b = 2.39 cm and rectangular beampipe 

4. 78 cm by 12.0 cm. Results are given for frequencies where the skin depth 

is less (greater) than the thickness of the beampipe n > n, (n < n,) where 

n, = 0.922. 

22 



the product of a form factor times the circular result with radius b = h/2 [1]. 

For the width to height ratio 2.51 the form factors are found to be Fil = 0.993, 

FJ..x = 0.406, and FLy = 0.822. Thus the longitudinal impedance does 

not differ much between the circular and rectangular case. The transverse 

impedance in the y direction in the rectangular case is not much less than 

that in the circular approximation. However, the transverse impedance in 

the x direction is only about one half of that in the y direction. 

The most important effect of the resistive wall instability is the transverse 

coupled bunch mode at low frequencies and low energies. The growth rate for 

this instability, without including Landau damping, is given in Equation 17. 

At low frequencies the resistive wall impedance is proportional to w-t 
and therefore sharply peaked at the origin. Since the vertical tune is 25.4 

the coupled bunch mode s = -2G has the largest growth rate. The lowest 

and most relevant frequency is only -0.6w0 /27r = 54 kHz which is very small. 

Since the transverse impedance is so sharply peaked at the origin we consider 

only the term with p = 0 and s = -26 in Equation 17. This reduces the 

expression for the growth rate to 

echt.1 
Im{f!} = + E Re{ZJ.. [(s + v13)w0 )]}Fm(a) 

47r V13 
(23) 

where a= [(n + v13)w 0 - w,]rL/2 and F m(a) is a form factor which depends 

on the bunch length and the chromaticity and, again, lm{!1} < 0 implies an 

inst.ability. For the elliptical phase space density distribution in Equation 14 

the form factor is given by Equation 19 and is plotted in Figure 3. 

Using the low frequency estimates of the Lambertson magnets (see Sec

tion H) and the beampipe resistive wall impedance we calculate the cor-
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responding growth time for mode s = -26. The resistive wall impedance 

of the beampipe is Re{Z.L(-0.6w0 )} = -27.8 M!1/m and the Lambertson 

impedance is Re{Z.L(-0.6w 0 )} = -35 M!1/m. We assume 6 x 1010 particles 

per bunch (M h = 0.434 amps), a 95% normalized longitudinal emittance of 

0.1 eV-s and an RF voltage of 400 kV. With the chromaticity set to zero the 

form factor is unity (a = O)giving a calculated growth time of 0.35 ms at 

8.9 GeV. 

Alt.hough this 1s a fast growth time, some observations of the Main 

Ring [14] lead us to believe that the resistive wall instability will not be 

a problem. Using an impedance of -98 M!1/m and intensity of 1.5 x 1013 in 

the Ma.in Ring, the calculated growth time of the resistive wall instability is 

0.6.5 ms. However at this intensity beam is stable in the Ma.in Ring without 

providing any method of damping (transverse dampers turned off, chromatic

ity set to zero, and no octupole magnets used). At the higher intensity of 

2 x 1013 beam is stable whenever any one of the following is true: 1) just 

the transverse dampers turned on, 2) just the chromaticity set between -30 

to -40, and 3) just the octupole magnets turned on. The Ma.in Injector, in 

addition to the transverse damper, has all three methods available to provide 

further damping. For instance, changing the chromaticity of the Main In

jector at injection from zero to -20 increases the growth time from 0.35 ms 

to 2 msec. Thus we should not expect any problems with the transverse 

resistive wall instabilities in the Main Injector. 

24 



E Beam Position Monitors 

The Main Injector BPM consists of 4 stripline pickups which are cut out of 

the approximately elliptical beampipe. Two pickups are located on each of 

the top and bottom surfaces of the beampipe and are spaced 40 mm apart 

from center to center as shown in Figure 1. Each stripline is about 1 cm wide, 

l = 40 cm long, and has a characteristic impedance of 50 S1. The downstream 

end of each stripline is shorted while the upstream end is connected in parallel 

with a 50 S1 cable leading to the RF module. 

Image current traveling in the beampipe which enters the stripline at 

the upstream end will see the Zc = 50 S1 cable and the shorted Z, = 50 S1 

stripline in parallel. Therefore the impedance of an individual pickup is given 

by the expression 

Z, = ~c (1 - cos(2kl) + j sin(2ki)] (24) 

where k = w/c is the wave number. 

As a bunch passes the BPM only a fraction of the image current on 

the beampipe is picked up by the striplinc. To estimate this fraction, the 

beampipe is approximated as an elliptical cylinder with 5.12 cm by 12.30 cm 

diameter. The charge density induced on an elliptical conductor by a line 

charge at the center was then calculated using the program POISSON (15] 

and the assumption made that the fraction of image current entering the 

stripline pickup is the same as the fraction of static charge density induced 

on the stripline which is valid when w < 1c/ d where d is the distance from 

the beam to the stripline. For the model used in this paper, the fraction is 

f = 0.055 for each stripline. 
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The beam impedance due to a single stripline is then calculated by noting 

that the power lost in the stripline must equal the power lost by the beam. 

The beam impedance for a single stripline is then f 2 Z, or Z = 4f2 Z, for an 

entire BPM. With N = 208 BPMs in the Main Injector the net longitudinal 

impedance is then 

Z11 = 2N J2 Z,[l - cos(2kl) + j sin(2kl)]. (25) 

To estimate the transverse impedances, an approach similar to the lon

gitudinal case is used. A dipole current at the cent.er of the BPM induces 

image current in the beampipe and a certain amount of the current enters 

the striplines. For a dipole current density in the y direction of magnitude 

1 amp-mm the dipole current entering the stripline is equal to 2.8 amps. 

With this information the longitudinal impedance for the dipole mode is cal

culated to be Z1 11Y = 31.lZ, f!/111 2 for a single BPM and Z1 11Y = 6470Z, f!/ni2 

for all 208 BPMs. Using the Panofsky-\\lenzel theorem [16] the transverse 

impedance is given by the relation Z1-y = ~Z1 11u· 

In the .T direction, with a dipole current of I amp-mm at the center of 

the beampipe, the current entering the stripline is equal to 2.0 amps giving 

a longitudinal impedance for the dipole mode of Z111x = IG.IZ, f!/m 2 for a 

single BPM and Z1 11x = 3350Z, fl/m 2 for all 208 BPMs. Thus the transverse 

impedance is calculated to be z,_, = ~Z111x· 

In the low frequency limit, the tot.a.I longitudina.l impedance of all 208 

BPMs becomes Z11/n = j0.095 fl and the total transverse impedances be

comes Z1-y = j5.15 kf!/m and z,_, = j2.66 kf!/m. These impedances a.re 

much lower than other components in the ring. This is ma.inly due to the 
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relatively narrow width of the stripline pickups. Thus the BPMs are not 

expected to be a problem. 

F Bellows 

The beampipe bellows will consist of approximately 10 to 17 convolutions 

extending over one inch. The inner dimensions of the bellows are an el

lipse of similar size to the beampipe and the convolutions extend 1.28 cm 

(0.5 inches). To estimate tl1e impedance the elliptical shape was approxi

mated by a. circular beampipe with radius 2.67 cm (1.05 inches). This was 

done for both 10 and 17 bellow convolutions using the program TBCI [17]. 

The calculated longitudinal impedance of the 10 and 17 bellow convolution 

models are very similar. The real part of the longitudinal and transverse 

impedance of a single bellow with 10 convolutions are shown in Figures 4 

and 5. 

The longitudinal impedances of a single bellow can be characterized ap-

proximately as two resonators of the form 

R, 
Zii(w) = I+ jQ(w/w, - w,/w) (26) 

with values R, = 400 fl, Q = 5.3, w,/2r. = 4 GHz and R, = 120 fl, Q = 4.3, 

and w, /2r. = 8.5 GHz. 

In the Ma.in Injector there are 516 bellows giving a. total longitudinal 

impedance of R,/n = 4.66 fl or R,/Q = 38.9 kf! at 4 GHz and R,/n = 

0.658 fl or R,/Q = 14.4 kf! at 8.5 GHz. The typical rms bunch length 

at 8.9(150) GeV is 1.24(0.69) ns corresponding to a rms spectral spread of 

0.13(0.23) GHz. On the other hand, the widths of the bellows impedance 
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resonances are 0. 75 GHz at and 2.0 GHz the resonance frequencies of 4 GHz 

and 8.5 GHz. Therefore these resonances should be treated as broadband and 

the impedance values should be compared with the microwave instability 

budget limits as calculated in Section I, which gives JZ11/nl < 36.9 l1 at 

8.9 Gev and JZ11/nl < 6.6 l1 at 150 Gev. 

The transverse impedance of the bellows can be approximated as a res

onator of the form 

ZL(w) = _!_ Rl.w,. 
wl+jQ(w/w, -w,/w) 

(27) 

with values Rl. = 1.5 kl1/m, Q = 5.3, and w,/2rr = 8 GHz. \\Tith 516 be!-

lows in the Main Injector the total transverse impedance is then RJ./n = 

8. 74 kl1/m and RL/Q = 146 kl1/m at 8 GHz. Both of these values are 

well below the microwave instability limits of JZL/nl < 55 kfl/m and RJ. < 

71.6 Ml1/m calculated in Section I at 8.9 GeV. Therefore the transverse 

impedance of the bellows should not create any problems in the Main Injec

tor. 

G Vacuu1n Valves 

Although the vacuum valve design is not yet completed, its general shape is 

known. In this section we consider the two different shapes shown in Figures 6 

and 7. The difference between the two designs is the presence or absence of 

the cylindrical pillbox cavities on either side of the valve. Using these shapes 

the 3D computer code MAFIA [18] was used to calculate the longitudinal 

and transverse impedances. The beampipe cross section is approximated by 

an ellipse with 5.12 cm by 12.3 cm diameters. The resistivity of the vacuum 
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Figure 6: Approximate geometry of Main Injector vacuum valve with pillbox 

cavities. 

valve is the same as the beampipe, p = 74 µ!1-cm, and the results from 

MAFIA are converted to match this assumption. The impedances of a single 

vacuum valve are shown in Table 7 and the net impedances of all 30 valves 

in the Main Injector are shown in Table 8. The impedances are assumed to 

have impedances of the forms in Equation 26 and 27. 

Calculations for the coupled bunch growth rates show that the vacuum 

valve modes are benign. This is mainly due to the fact that the modes in the 

valves are at frequencies above the beam spectrum frequencies. All modes 

have a growth time of greater than 100 ms except for the quadrupole mode 

of the 2.46 GHz mode which has a growth rate of 62 ms. 

Also of concern is the potential microwave instability due to the vacuum 

valves. Section I discusses the threshold values for resonator impedances. 
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Vacuum valve with pillbox cavities 

Freq (GHz) Z11 (k!1) Q 

1.511 76 2090 

2.460 117 3800 

Freq (GHz) Z.Lx (M!1/m) Q 

1.52 1.7 3000 

3.11 0.071 4000 

Freq (GHz) Z.Ly (M!1/m) Q 

1.928 0.47 1980 

3.154 0.21 3810 

Vacuum valve without pillbox cavities 

Freq (GHz) Z11 (k!1) Q 

1.30 52 1600 

2.85 13.4 2700 

Freq (GHz) Z.Lx (M!1/m) Q 

2.95 0.422 2500 

Freq (GHz) Z.Ly (M!1/m) Q 

3.10 0.032 2500 

Table 7: Estimated frequency, impedance per vacuum valve, and Q value 

of longitudinal and transverse modes in two different Main Injector vacuum 

valve designs. See Figures 6 and 7. 
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Vacuum valve with pillbox cavities 

(See Figure 6) 

Freq (GHz) IZ11/nl (fl) R11/Q (fl) 

1.511 135 1090 

2.460 129 924 

Freq (GHz) IZ.Lx/nl (kfl/m) R.Lx/Q (kfl/m) 

1.52 3.0 17 

3.11 0.06 0.53 

Freq (GHz) IZ.Ly/nl (kfl/m) R.Ly/Q (kfl/m) 

1.928 .650 7.2 

3.154 .178 1.6 

Vacuum valve without pillbox cavities 

(See Figure 7) 

Freq (GHz) IZ11/nl (fl) R
11
/Q (fl) 

1.30 108 975 

2.85 12.G 150 

Freq (GHz) IZ.J..x/nl (H1/m) R.Lx/Q (kfl/m) 

2.95 .387 5.04 

Freq (GHz) IZ.Ly/nl (kfl/m) R.Ly/Q (kfl/m) 

3.10 0.028 0.384 

Table 8: Estimated net impedances of 30 vacuum valves in the Main Injector. 
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Figure 7: Approximate geometry of Main Injector vacuum valve without 

pillbox cavities. 

The conclusion is that the vacuum valves must have a total longitudinal 

impedance of their resonator modes R11/Q ::; 26. 7 k!1 and their total trans

verse impedance R1-/Q ::; 71.6 .\!!1/m. The vacuum valve impedances arc 

less than these threshold values. 

H Lambertsons 

The main concern of the Lambertson magnets is the low fre<Juency component 

created by the exposure of the bare magnet laminations to beam. A rough 

estimation of the Lambertson magnets is made by approximating the magnet 

as a series of annular laminations of 0.953 mm width. The inner radius is 

chosen to be b = 2.51 cm and the outer radius is chosen to be d = 5.08 cm. 
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The low frequency current traveling through the magnet is assumed to flow 

in one lamination from the inner radius to the outer radius, cross over to the 

next lamination, and flow from the outer radius to the inner radius. Even 

though we are concerned about the low frequency impedance, the skin depth 

is less than the lamination thickness at the frequencies we are considering. 

The current is therefore constrained to one skin depth in the laminations. 

The impedance of the magnet is then calculated by adding up the resistance 

along the entire current path. 

For the current traveling from the inner radius to the outer radius the 

net impedance is 

p d 
Z = (1 + J) ,,.,5 ln(l + y;) (28) 

where pis the resistivity of the laminations a.nd f, is the skin depth. For the 

current traveling along the inner tip of the laminations the resistance per 

unit length is 

z = (1 + j)2;M. (29) 

The lamination material has a resistivity of p = 20 11.fl-cm and a relative 

permeability of I' = 100. With 25.8 meters of Lambertson magnets in the 

Main Inject.or the total estimated low frequency impedance is 

I ( 
16.4 z11 n = 1 + ]) y'n M!1. 

To estimate the transverse impedance we use the approximate relation 

z.L = 2c Z11 
b2 w 

34 

(30) 

(31) 



and arrive at 

(32) 

It should be noted that the Lambertson magnet was assumed to have a 

circular geometry with inner radius of b = 2.54 cm. The actual shape of 

the Lambertson is much different so this estimate can only be approximate. 

Using a slightly larger inner radius can change the impedance by a significant 

amount (i.e. if bis 10% larger the longitudinal impedance drops by 10% and 

the transverse impedance drops by 25%). 

The impedance at higher frequencies was also calculated assuming the gap 

between the laminations acts as a radial waveguide. The material in the gap 

has a relative permittivity c = 6 and a small conductivity O" = 0.01 n-1m- 1. 

The results of this type of analysis are shown in Figures 8 and 9. 

I Microwave Instabilities 

The possibility of microwave instability is an important consideration for 

the Main Injector and in this section we calculate the microwave instability 

impedance budget. Although particularly relevant at transition, this paper 

does not consider transition crossing issues. This is, however, an important 

aspect of the Main Injector and deserves further attention. 

The microwave stability limit for bunched beam with a Gaussian mo

mentum distribution in the presence of a broadband resonator [19] can be 

expressed in terms of the rms momentum spread of a bunch O"p/P and the 
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peak current in the bunch Ip 

l
zlll::; 27rl'll(E/e)/3

2 (ap) 2 

n Ip l' 
(33) 

Here 17 = /( 2 
- ,-2 is the frequency slip parameter where It = 20.4 is the 

transition gamma. The peak current for a short bunch with a Gaussian 

distribution in longitudinal phase space is related to the rms bunch length 

ar v1a 

(34) 

where N0 is the number of particles per bunch. 

Also using a short bunch approximation and a Gaussian distribution the 

rms momentum spread and bunch length sigma are related to the 95% nor

malized longitudinal emittance S via 

27rlql£3 (a")2 = 67r/3w,, 
heV l' 

(35) 

Substituting Equations 34 and 35 into Equation 33 we arrive at 

(36) 

where h = N 0ew0 /27r and w0 /27r is the revolution frequency. From this 

equation we can see that, except near transition where 1111 is close to zero, 

the impedance limit is most restrictive at high energy and low voltage. 

The impedance budget for the Main Injector is calculated at injection 

energy of 8.9 GeV and flattop energy of 150 GeV with 6 x 1010 protons 

per bunch. At injection we use a 95% normalized longitudinal emittance of 

0.1 eV-s while at. flattop we use an emittance of 0.25 eV-s. In both cases, the 
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8.9 GeV 150 GeV 

IZ11/nl 36. 9 fl 6.6 fl 

R11/Q 85.4 kfl 26.7 kfl 

JZ,_/nl 0.055 Mfl/m 0.63 Mfl/m 

1z,_ I 500 Mfl/m 10.l Gfl/m 

@ Freq.I 0.81 GHz 1.44 GHz 

R,_/Q 71.6 Mfl/m 1450 Mfl/m 

Table 9: l'vlicrowave instability impedance budget for broadband and narrow

band impedances. t Transverse impedance budget IZ,_/nJ applies only above 

microwave frequencies where the wavelength is smaller than the rms bunch 

length. Thus IZ,_I is the relevant impedance budget. 

RF voltage V = 400 kV has been used. The results of these calculations are 

shown in Table 9. The bunch lengths a, = 1.24 (0.69) ns at 8.9 (150) Gev 

have been used. 

The growth rate in the absence of Landau damping [19] is 
I 

_!_ = (elpl7/Z1il") 
2 

Wo. 

r 11 2ir {3 2 E 
(37) 

Near transition crossing, there is negligible spread in revolution frequency 

for damping. Therefore the growth is mostly driven by the space-charge 

impedance and the rate is directly proportional ton up to frequency w ;:::: 'YC/ b 

where b is the beampipe radius. 

For the case of sharp resonances, narrower that the bunch spectrum, 

the relevant quantity [20] is not JZ11/nJ but R11/Q where R11 is the shunt 
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impedance of a high-Q resonator. The impedance budget in this narrowband 

case is 

(38) 

or, using Equation 35 and 34, the equivalent expression written in terms of 

the longitudinal emittance is 

R11 2w0 -<-
Q - 37reh 

heVlr1I S. 
2,,.E 

(39) 

\Vith the same beam parameters as 111 the broadband case the limits are 

calculated and shown in Table 9. 

In the transverse case the microwave instability limit for broadband res

onances [20, 21], written in terms of I,, and O'p/Ji, is 

( 40) 

or written in terms of the longitudinal emittance S is 

( 41) 

where ( is the chromaticity. The contribution to Landau damping from the 

revolution frequency spread and from the tune spread are included with the 

ri and ( terms respectively. 

With the harmonic number n as a factor on the right. side of Equation 40 

the transverse impedance budget becomes more stringent at lower frequen

cies. However this equation applies only to microwave frequencies which 

have a wavelength ,\ smaller than the rms bunch length. In other words 

Equation 40 applies only for harmonic number n > 27r /(w0 0'T ). Except near 
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transition crossing where 1] is small, we have mostly l(n - v11)1/I > 1(1, and 

the contribution of chromaticity can be neglected. Therefore we calculate 

the transverse impedance budget for the Main Injector using Equation 40 

with n = 27r /w0 a, giving the result 

( 42) 

where the rms bunch lengths a, = 1.24 ns and 0.69 ns at 8.9 GeV and 

150 GeV, respectively, have been used. Equation 42, written in terms of the 

longitudinal emittance becomes 

( 43) 

Unlike the longitudinal impedance budget which goes to zero at transi

tion, the transverse impedance budget is still finite due to the contribution 

of chromaticity. As a result transverse microwave growth usually does not 

occur at transition. 

The transverse microwave growth rate in the absence of Landau damp-

ing [21 J is 

(44) 

for a broadband impedance. Note that unlike the longitudinal situation this 

growth rate does not depend on the frequency slip parameter 17. 

For narrowband transverse impedances the impedance budget 1s given 

by [20] 

Rj_ < SY2/31Ev11l•1I ("
1

,p) , 
Q - e7rRh 

( 45) 
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or 

I l 

RJ.. < 8./2-yv(j (Swo)' (heVEl111 3
)' 

Q - E1r Rh 611" 271" 
( 46) 

Using the same parameters as in the longitudinal case the transverse mi

crowave impedance budgets were calculated and are shown in Table 9. 
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III Conclusions and Further Work 

We have made impedance estimations of the various vacuum chamber com

ponents in the Main Injector and used these estimates to analyze beam stabil

ity. Impedance estimations were made for the RF cavities, beam pipe bellows, 

vacuum valves, beam posit.ion monitors, and Lambert.son magnets. Growth 

rat.es of the coupled bunch instabilities have been calculated and a microwave 

instability impedance budget established. The calculations made in this pa

per are based on the Main Injector design parameters listed in Table 10 and 

we have summarized the results in Tables 11-14. 

Although we find nothing to prevent the Main Injector from reaching 

its design goals, there are several areas of concern which should be investi

gated further. In particular, the issue of possible beam loss and/or emittance 

growth during transition crossing was not examined and requires further 

analysis. The possibility of a short batch coupled bunch instability during 

Main Injector coalescing cycles also exists. Since this type of instability is 

observed in the /\fain Ring, work should begin on designing and testing an 

active feedback damper to cure any potential problems. 

The space charge impedance for the Main Injector was calculated using 

both a circular beam pipe with 2.39 cm radius and 4. 78 cm by 12.0 cm rect

angular beampipe [l]. The beam size, determined from the transverse emit

tance and the average beta, was chosen to be 2.65 mm. The space charge 

impedance is most important in estimating emittance blowup at transition. 

Although we have not considered transition crossing in this paper we include 

the space charge impedance for completeness. 
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Main Injector 
Number of particles per bunch 6 x 1010 

Number of bunches 498 

Number of particles total 3 x 1013 

Longitudinal emittance at 8.9 GeV 0.1 eV-s 

Longitudinal emittance at l.SO GeV 0.25 eV-s 

Transverse emittance in x and y 20ir mm-mrad 

RF voltage a.t 8.9 Gev 400 kV 

RF voltage at 150 Gev 400 kV 

I\1ain Ring 
Number of particles per bunch 

Number of bunches 

Number of particles total 

Longitudinal emittance at 8.9 GeV 

Longitudinal emittance at 150 GeV 

RF voltage at 8.9 Gev 

RF voltage at 150 Gev 

3 x 1010 

1008 

3 x 1013 

0.1 eV-s 

0.25 eV-s 

400 kV 

400 kV 

Table 10: Parameters used for instability threshold calculations. Emittances 

are 953 normalized values. 
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Space Charge Longitudinal Z11/n = -jl2.3 l1 

Impedance Transverse Horz Z.Lx = -j314 Ml1/m 

at 8.9 GeV Transverse Vert Z.Lu = -j302 Ml1/m 

Spa.ce Charge Coherent Vert {Horz) -0.024{ +0.022) 

Tune Shifts Inc. Vert. (Horz) -0.086{ -0.041) 

Low Frequency Transverse Horz IZ.Lxl = 8.2/n Ml1/m 

RW Impedance Transverse Vert. JZ.Lul = 16. 7 /n Ml1/m 

Low Frequency Transverse IZJ_I = 
Lambert.son Impedance (1 + j)lG.4/ yin Ml1/m 

R\V and Lambertson !\fain Injector 0.35 msec 

Trans. Coupled Bunch Main Ring 0.55 msec 

Growt.h Time 

BPM Impedance Longitudinal IZ11/nl < 0.095 n 
(all 208 BPMs) Transverse Horz IZ.Lx/nl < 2.GG kl1/m 

Transverse Vert IZ.Ly/nl < 5.15 kl1/m 

Table 11: Summary impedance est.imat.ions and inst.ability growth times for 

t.he Main Injector. 
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growth time in msec 

dipole quadrupole 

Freq (MHz) Z11 (k!!) MI MR MI MR 

71.0 10.0 20.2 50.9 293 483 

100.0 2.5 65.5 177 461 797 

128.0 6.3 24.2 71.6 98.7 182 

223.0 111.0 2.1 10.3 2.1 5.5 

600.0 277.0 9.1 32.7 3.5 20.8 

850.0 49.0 91.5 350 45 241 

Table 12: Dipole and quadrupole mode growth times for both the Main 

Injector and the Main Ring due to the longitudinal RF cavity modes. 

The space charge forces are also responsible for the coherent and incoher

ent tune shifts [4]. These are largest at 8.9 GeV so calculations were made 

at this energy. Using a 4.78 by 12.0 cm elliptical beampipe and a conformal 

mapping technique [6] the tune shifts were calculated in both planes and 

are shown in Table 3. The coherent tune shifts were found to be less than 

-0.025 and are not expected to create any problems. The incoherent tune 

shifts on the other hand are calculated to be rather large, especially the ver

tical incoherent tune shift of 6.~c = -0.086. Note that if the Main Injector 

is operated with a nominal tune of 0.4 then due to the incoherent tune shift 

some of the particles will have a tune of 0.4 - 0.086 = 0.314 which crosses 

the third integer resonance. It is not understood what, if any, problems this 
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Bellows 4 GHz IZ11/nl = 4.7 fl R11/Q = 38.9 kfl 

( 51 G bellows) 8 .. 5 GHz IZ11/nl = 0.66 fl R11 /Q = 14.4 kfl 

8 GHz IZl./nl = 8.7 kfl/m Rl./Q = 146 kfl/m 

Vacuum valves 1.51 GHz IZ11/nl = 135 fl R11/Q = 1090 fl 

with pillbox 2.46 GHz IZ11/nl = 129 fl R11/Q = 924 fl 

(30 va.lves) 1.52 GHz JZl.x/nl = 3.0 kfl/m Rl.x/Q = 17 kfl/m 

3.11 GHz IZl.x/nl = 6 fl/m Rl.x/Q = 0.53 kfl/m 

1.93 GHz JZJ.,,/nl = 650 fl/m Rl.,,/Q = 7.2 kfl/m 

3.15 GHZ IZl.y/nl = 178 fl/m Rl.,,/Q = 1.6 kfl/m 

Vacuum valves 1.30 GHz IZ11/nl = 108 fl R11 /Q = 975 fl 

without 2.46 GHz IZ11/nl = 13 fl R11/Q = 150 fl 

pillbox 1.52 GHz IZl.x/nl = 387 fl/m Rl.x/Q = 5.0 kfl/m 

(30 va.lves) 3.11 GHz IZl.y/nl = 28.0 fl/m Rl.,,/Q = 384 fl/m 

Table 13: Summary of beampipe bellows and vacuum valve impedance esti

mations for the Main Injector. 
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Microwave 8.9 GeV IZ11/nl < 36.9 n 

Longitudinal R11/Q < 84.5 kn 

Impedance 150 Gev IZ11/nl < 6.6 n 

Budget R11/Q < 26.7 kn 

8.9 GeV IZ_c/nl < 0.055 Mn/m 

IZ_c I < 500 Mn/m 

Transverse @freq. 0.81 GHz1 

Microwave R_c/Q < 71.6 Mn/m 

Impedance 150 GeV IZ_c/nl < 0.63 Mn/m 

Budget IZ_cl < 10.1 Gn/m 

@freq. 1.44 GHzt 

R_c/Q < 1450 Mn/m 

Table 14: Summary of the microwave instability impedance budget in the 

Main Inject.or. t For the transverse broadband impedance the threshold 

IZ_c/nl is calculated but only applies when the wavelength is shorter than 

the bunch length. Therefore the relevant value is IZ_c I a.t the frequency where 

the wavelength equals the bunch length. 
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will cause. 

Using the measured longitudinal impedance values [7, SJ, the coupled 

bunch growth times for the different higher order RF modes were calculated 

using the standard perturbation theory [11 J. Although the calculated growth 

times are short we do not expect coupled bunch instabilities to limit Main 

Injector performance. First, the above estimates do not include Landau 

damping effects which help stabilize the beam. Secondly, the calculation 

assumes the frequencies of the higher order modes for a.II 18 RF cavities 

a.re exactly the same. The differences between cavities will reduce the net 

impedance. Finally, similar calculations in the Ma.in Ring also show short 

growth times but the instability is not the limiting factor in the Ma.in Ring. 

To alleviate any potential problems a. set of passive mode dampers were 

installed in the RF cavities to reduce shunt impedances of several higher 

order modes. If it becomes necessary the shunt impedance of the other 

modes can be reduced a.s well. 

For short batches which do not. completely fill the ring, a.s in coalescing 

and antiproton production cycles, the standard techniques for calculating 

growth times do not apply. Instead we rely on operational experience in 

the Ma.in Ring. Presently there are signs of a short bat.ch instability in 

the Main Ring during coalescing cycles in which 11 consecutive bunches of 

1.5 x 1010 protons per bunch are accelerated. The Ma.in Injector, having 

even higher beam intensities of (i x 1010 protons per bunch, will have the 

same problem. Since this type of instability depends on the R/Q value of 

the higher order cavity mode, and not on the shunt impedance R, passive 

mode dampers, which reduce R but leave R/Q unchanged, cannot be used 
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to cure this instability. The solution is the design and construction of an 

active narrowband damping system. Since the problem exists in the Main 

Ring work is in progress on designing such a system. 

Another potential area of concern is the transverse coupled bunch insta

bility due to the resistive wall and Lambertson impedances. Using estimated 

impedances the calculated growth time [11, 12] for this instability, not includ

ing Landau damping effects, was found to be 0.35 ms in the Main Injector 

and, as a comparison, 0.65 ms in the Main Ring. Even though the growth 

time in the Main Ring is short, the transverse dampers in the Main Ring 

are presently capable of damping out this instability. Therefore it is thought 

that the present system, possibly modified to increase the gain, should be 

capable of preventing the resistive wall instability in the Main Injector. 

Observations in the Main Ring [14] also suggest that using sextupoles and 

octupoles is effective in eliminating the resistive wall instability even with the 

dampers turned off. Therefore we conclude that resistive wall instabilities 

should not limit Main Injector intensity. 

The impedance of the beam position monitors was calculated by treating 

the pickups as striplines and estimating the fraction of image current that 

enters these striplines. It is then possible to relate the stripline impedance to 

the beam impedance. Even with a total of 208 BPMs in the Main Injector 

the net impedance is small and will not affect operations. 

The impedance of the vacuum valves was calculated using the program 

MAFIA [18] and two different designs were considered. One design has two 

small "pillbox" cavities on either side of the vacuum valve while the other 

does not. It was found that the non-pillbox design has lower impedances than 
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the pillbox design although with 30 valves both are within the impedance 

budget limits. 

Estimates of the bellows impedance was made using TBCI [17] with a 

circular beampipe and circular bellows. The calculations show a few modes 

at higher frequencies but the net impedance of the 508 bellows is not expected 

to cause problems with the possible exception of at transition. 

The low frequency impedance of the Lambertson magnets was estimated 

by calculating the net resistance seen by the image current traveling through 

the magnet laminations. The laminations were approximated as annular 

rings with an inner radius of 2 .. 54 cm. It should be noted that this is only a 

rough approximation. The actual shape of the Lambertson aperture is not 

circular and the transverse impedance varies roughly as the inverse of the 

radius cubed. Therefore a 103 increase in the radius will reduce the estima

tions of the longitudinal impedance by 103 and the transverse impedance by 

253. In the transverse plane the Lambertson impedance contributes about 

one half of the tota.I resistive wall impedance. 

Finally we calculate the impedance budget for the microwave instability 

at 8.9 GeV and 150 GeV. The impedance budget. for the microwave insta

bility differs for broadband and narrowband impedances [19, 20]. The usual 

broadband budgets are expressed as JZ11/nl and JZ1- I whereas the narrowband 

budget is determined by the value of R/Q where R is the shunt impedance 

of the narrowband impedance and Q is the quality factor. Impedances such 

as space charge should be less than the broadband budget and impedances 

such as RF cavities and vacuum valves should be less than the narrowband 

limit. 
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The bellows longitudinal impedances meet both the broadband microwave 

impedance budget and the narrowband budget. Note that the longitudinal 

and transverse impedances of the bellows have been treated as broadband 

because the resonances have a Q of <::; 5 and are above cutoff. 

Although an important topic, transition crossing limitations have not 

been addressed in this paper. Space charge, negative mass and microwave 

instabilities at transition can potentially limit beam intensity or blow up 

beam emittance. Further work should look into transition crossing. 

Also important is the short batch coupled bunch instability caused by 

the higher order RF cavity modes and presently observed in the Main Ring. 

The design and implementation of an active damping feedback loop should 

be pursued. 

We have not estimated the impedance of the kicker magnets. We also 

have not studied the possibility of slow head-tail instability and bunch mode

coupling instabilities. These issues may be important and will be investigated 

elsewhere. 
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